
Self-Stabilizing Snapshot Objects for
Asynchronous Failure-Prone Networked Systems

Chryssis Georgiou1, Oskar Lundström2, and Elad M. Schiller2

1 Computer Science, University of Cyprus, Cyprus. chryssis@cs.ucy.ac.cy
2 Computer Science and Engineering, Chalmers Univ. Tech.

{osklunds@student.,elad@}chalmers.se

Abstract. A snapshot object simulates the behavior of an array of
single-writer/multi-reader shared registers that can be read atomically.
Delporte-Gallet et al. proposed two fault-tolerant algorithms for snapshot
objects in asynchronous crash-prone message-passing systems. Their first
algorithm is non-blocking ; it allows snapshot operations to terminate once
all write operations had ceased. It uses O(n) messages of O(n · ν) bits,
where n is the number of nodes and ν is the number of bits it takes to
represent the object. Their second algorithm allows snapshot operations
to always terminate independently of write operations. It incurs O(n2)
messages. The fault model of Delporte-Gallet et al. considers node failures
(crashes). We aim at the design of even more robust snapshot objects.
We do so through the lenses of self-stabilization—a very strong notion
of fault-tolerance. In addition to Delporte-Gallet et al.’s fault model, a
self-stabilizing algorithm can recover after the occurrence of transient
faults; these faults represent arbitrary violations of the assumptions
according to which the system was designed to operate (as long as the
code stays intact). In particular, in this work, we propose self-stabilizing
variations of Delporte-Gallet et al.’s non-blocking algorithm and always-
terminating algorithm. Our algorithms have similar communication costs
to the ones by Delporte-Gallet et al. and O(1) recovery time (in terms
of asynchronous cycles) from transient faults. The main differences are
that our proposal considers repeated gossiping of O(ν) bits messages and
deals with bounded space (which is a prerequisite for self-stabilization).

1 Introduction

We propose self-stabilizing implementations of shared memory snapshot objects
for asynchronous bounded space networked systems whose nodes may crash.

Context and motivation. Shared registers are fundamental objects that
facilitate synchronization in distributed systems. In the context of networked
systems, they provide a higher abstraction level than simple end-to-end commu-
nication, which provides persistent and consistent distributed storage that can
simplify the design and analysis of dependable distributed systems. Snapshot
objects extend shared registers. They provide a way to further make the design
and analysis of algorithms that base their implementation on shared registers



2 C. Georgiou, O. Lundström and E.M. Schiller

easier. Snapshot objects allow an algorithm to construct consistent global states
of the shared storage in a way that does not disrupt the system computation.
Their efficient and fault-tolerant implementation is a fundamental problem, as
there are many examples of algorithms that are built on top of snapshot objects.

Task description. Consider a fault-tolerant distributed system of n asyn-
chronous nodes that are prone to failures. Their interaction is based on the emu-
lation of Single-Writer/Multi-Reader (SWMR) shared registers over a message-
passing communication system. Snapshot objects can read the entire array of
system registers [1, 2]. The system lets each node update its own register via
write() operations and retrieve the value of all shared registers via snapshot()
operations. Note that these snapshot operations may occur concurrently with the
write operations that individual nodes perform. We are particularly interested in
the study of atomic snapshot objects that are linearizable: the operations write()
and snapshot() appear as if they have been executed instantaneously, one after
the other (i.e., they appear to preserve real-time ordering).

Fault model. We consider an asynchronous message-passing system in which
nodes may crash and packets may be lost, duplicated and reordered. In addition
to these failures, we also aim to recover from transient faults, i.e., any temporary
violation of assumptions according to which the system was designed to behave,
e.g., the corruption of control variables, such as the program counter and operation
indices, which are responsible for the correct operation of the studied system, or
operational assumptions, such as that at least half of the system nodes never fail.
Since the occurrence of these failures can be combined, we assume that these
transient faults alter the system state in unpredictable ways. In particular, when
modeling the system, we assume that these violations bring the system to an
arbitrary state from which a self-stabilizing algorithm should recover the system.
Therefore, starting from an arbitrary state, the correctness proof of self-stabilizing
systems [3] has to show the return to a “correct behavior” within a bounded
period. The complexity measure of self-stabilizing systems is the length of the
recovery period.

Related work. We follow the design criteria of self-stabilization, which was
proposed by Dijkstra [3] and detailed in [4]. Our overview of the related work
focuses on self-stabilizing algorithms for shared-memory objects. Attiya et al. [5]
implemented SWMR atomic shared-memory in an asynchronous networked
system. Delporte-Gallet et al. [6] claim that when stacking the shared-memory
atomic snapshot algorithm of [1] on the shared-memory emulation of [5] (with
some improvements), the number of messages per snapshot operation is 8n and it
takes 4 round trips. Their proposal, instead, takes 2n message per snapshot and
just one round trip to complete. Our solution follows the non-stacking approach
of Delporte-Gallet and it tolerates any failure (in any communication or operation
invocation pattern) that [6] can as well as recover after the occurrence of transient
faults that arbitrarily corrupt the system state. The literature on self-stabilization
includes a practically-self-stabilizing variation for the work of Attiya et al. [5]
by Alon et al. [7]. Their proposal guarantees wait-free recovery from transient
faults. However, there is no bound on the recovery time. Dolev et al. [8] consider



Self-Stabilizing Snapshot Objects 3

MWMR atomic storage that is wait-free in the absence of transient faults. They
guarantee a bounded time recovery from transient faults in the presence of a fair
scheduler. They demonstrate the algorithm’s ability to recover from transient
faults using unbounded counters and in the presence of fair scheduling. Then they
deal with the event of integer overflow via a consensus-based procedure. Since
integer variables can have 64-bits, their algorithm seldom uses this non-wait-free
procedure for dealing with integer overflows. In fact, they model integer overflow
events as transient faults, which implies bounded recovery time from transient
faults in the seldom presence of a fair scheduler (using bounded memory). They
call these systems self-stabilizing systems in the presence of seldom fairness. Our
work adopts these design criteria. We are unaware of self-stabilizing algorithms
for snapshot objects that can recover from node failures. We note that “stacking”
of self-stabilizing algorithms for asynchronous message-passing systems is not
straightforward; the existing “stacking” needs schedule fairness [4, Section 2.7].

Contributions. We propose self-stabilizing algorithms for snapshot objects in
networked systems. To the best of our knowledge, we are the first to consider
both node failures and transient faults. Specifically, we propose:

(1) A self-stabilizing variation on the non-blocking algorithm by Delporte-Gallet
et al. (Section 3). As by Delporte-Gallet et al., each snapshot or write operation
uses O(n) messages of O(ν · n) bits, where n is the number of nodes and ν is the
number of bits for encoding the object. Our communication costs are slightly
higher due to O(n2) gossip messages of O(ν) bits, where ν is the number of bits
it takes to represent the object.

(2) A self-stabilizing variation on the always-terminating algorithm by Delporte-
Gallet et al. (Section 4). Our algorithm can: (i) recover from of transient faults,
and (ii) both write and snapshot operations always terminate (regardless of
the invocation patterns of any operation). We achieve (ii) by choosing to use
safe registers for storing the result of recent snapshot operations, rather than
a reliable broadcast mechanism, which often has higher communication costs.
Moreover, instead of dealing with one snapshot task at a time, we take care
of several at a time. We also consider an input parameter, δ. For the case of
δ = 0, our self-stabilizing algorithm guarantees an always-termination behavior
(as in the non-self-stabilizing algorithm by Delporte-Gallet et al.) that blocks
all write operation upon the invocation of any snapshot operation at the cost
of O(n2) messages. For the case of δ > 0, our solution aims at using O(n)
messages per snapshot operation while monitoring the number of concurrent
write operations. Once our algorithm notices that a snapshot operation runs
concurrently with at least δ write operations, it blocks all write operations
and uses O(n2) messages for completing the snapshot operations. Thus, the
proposed algorithm can trade communication costs with an O(δ) bound on
snapshot operation latency. Moreover, between any two consecutive periods in
which snapshot operations block the system for write operations, the algorithm
guarantees that at least δ write operations can occur.

The proposed algorithms use unbounded counters. In Section 5 we explain
how to bound these counters. Due to the page limit, omitted details and proofs



4 C. Georgiou, O. Lundström and E.M. Schiller

appear in [9], together with an explanation on how to extend our solutions to
reconfigurable ones.

2 System Settings

We consider an asynchronous message-passing system. The system includes the set
P of n failure-prone nodes whose identifiers are unique and totally ordered in P.
Any pair of nodes have access to a bidirectional bounded capacity communication
channel that has no guarantees on the communication delays.

Each node runs a program, which we model as a sequence of (atomic) steps.
Each step starts with an internal computation and finishes with a single com-
munication operation, i.e., message send or receive. The state, si, of pi ∈ P
includes all of pi’s variables and the set of all incoming communication channels.
Note that pi’s step can change si and remove a message from channelj,i (upon
message arrival) or add a message in channeli,j (when a message is sent). The
term system state refers to a tuple, c = (s1, s2, · · · , sn), where each si is pi’s
state. An execution R = c0, a0, c1, a1, . . . is an alternating sequence of system
states cx and steps ax, such that each cx+1, except, c0, is obtained from the
preceding state cx by the execution of step ax. Let R′ and R′′ be a prefix, and
resp., a suffix of R, such that R′ is a finite sequence, which starts with a system
state and ends with a step ax ∈ R′, and R′′ is an unbounded sequence, which
starts in the system state that immediately follows step ax ∈ R. The proof of
the algorithms considers the number of (asynchronous) cycles of a fair execution,
i.e., every step that is applicable infinitely often is executed infinitely often and
fair communication is kept. The first (asynchronous) cycle (with round-trips)
of a fair execution R = R′′ ◦R′′′ is the shortest prefix R′′ of R, such that each
non-failing node executes in R′′ at least one complete iteration of its do forever
loop (and completes the round trips associated with the messages sent during
that iteration), where ◦ denotes the concatenation operator. The second cycle in
execution R is the first cycle in suffix R′′ of execution R, and so on.
Fault model. We assume communication fairness, i.e., if pi sends a message
infinitely often to pj , node pj receives that message infinitely often. We note
that without this assumption, the communication channel between any two
correct nodes eventually becomes non-functional. We consider standard terms for
characterizing node failures [10]. A crash failure considers the case in which a node
stops taking steps forever and there is no way to detect this failure. We say that a
failing node resumes when it returns to take steps without restarting its program

— the literature sometimes refer to this as an undetectable restart. The case of a
detectable restart allows the node to restart all of its variables. We assume that
each node has access to a quorum service, e.g., [8, Section 13], that deals with
packet loss, reordering, and duplication. A failure of node pi ∈ P implies that
it stops executing any step without any warning. The number of failing nodes
is at most f and 2f < n for the sake of guaranteeing correctness [11]. In the
absence of transient faults, failing nodes can simply crash, as in Delporte-Gallet
et al. [6]. In the presence of transient faults, we assume that failing nodes resume



Self-Stabilizing Snapshot Objects 5

within some unknown finite time and restart their program after initializing
all of their variables (including the control variables). The latter assumption is
needed only for recovering from transient faults; in [9] we explain how to remove
this assumption. As already mentioned, we consider arbitrary violations of the
assumptions according to which the system and the communication network were
designed to operate. We refer to these violations as transient faults and assume
that they can corrupt the system state arbitrarily (while keeping the program
code intact). The occurrence of a transient fault is rare. Thus, we assume that
transient faults occur before the system execution starts [4]. Moreover, it leaves
the system to start in an arbitrary state.
Dijkstra’s self-stabilization criterion. The set of legal executions (LE)
refers to all the executions in which the requirements of the task T hold. We
say that a system state c is legitimate when every execution R that starts from
c is in LE. An algorithm is self-stabilizing with respect to the task of LE,
when every (unbounded) execution R of the algorithm reaches within a bounded
period a suffix Rlegal ∈ LE that is legal. That is, Dijkstra [3] requires that
∀R : ∃R′ : R = R′ ◦Rlegal ∧Rlegal ∈ LE ∧ |R′| ∈ N, where the length of R′ is the
complexity measure, which we refer to as the recovery time.
Self-stabilization in the presence of seldom fairness. As a variation of
Dijkstra’s self-stabilization criterion, Dolev et al. [8] proposed design criteria
in which (i) any execution R = RrecoveryPeriod ◦ R′ : R′ ∈ LE, which starts in
an arbitrary system state and has a prefix (RrecoveryPeriod) that is fair, reaches
a legitimate system state within a bounded prefix RrecoveryPeriod. (Note that
the legal suffix R′ is not required to be fair.) Moreover, (ii) any execution
R = R′′ ◦ RglobalReset ◦ R′′′ ◦ RglobalReset ◦ . . . : R′′, R′′′, . . . ∈ LE in which the
prefix of R is legal, and not necessarily fair but includes at most O(n ·zmax) write
or snapshot operations, has a suffix, RglobalReset ◦R′′′ ◦RglobalReset ◦ . . ., such that
RglobalReset is required to be fair and bounded in length, but it might permit the
violation of liveness requirements, i.e., a bounded number of operations might be
aborted (as long as the safety requirement holds). Furthermore, R′′′ is legal and
not necessarily fair, but includes at least zmax write or snapshot operations before
the system reaches another RglobalReset. Since we can choose zmax ∈ Z+ to be a
very large value, say 264, and the occurrence of transient faults is rare, we refer
to the proposed criteria as one for self-stabilizing systems that their execution
fairness is unrequited except for seldom periods. We note that self-stabilizing
algorithms (that follows Dijkstra’s criterion) often assume fairness throughout R.

3 The Non-blocking Algorithm

The non-blocking solution to snapshot object emulation by [6, Algorithm 1] allows
writes to terminate regardless of the invocation patterns of any other operation (as
long as the invoking nodes do not fail during the operation). However, snapshot
operation termination is guaranteed only after the last write operation. We
discuss Delporte-Gallet et al. [6, Algorithm 1]’s solution before proposing our
self-stabilizing variation.



6 C. Georgiou, O. Lundström and E.M. Schiller

Delporte-Gallet et al.’s non-blocking algorithm. Algorithm 1 presents [6,
Algorithm 1] using our presentation style; the boxed code lines are irrelevant
to [6, Algorithm 1]. The node state appears in lines 2 to 4 and automatic
variables (which are allocated and deallocated automatically when program
flow enters and leaves the variable’s scope) are defined using the let keyword,
e.g., the variable prev (line 19). Also, when a message arrives, we use the
parameter name xJ to refer to the arriving value for the message field x.

Fig. 1. Examples of Algorithm 1’s executions. The upper
drawing illustrates a case of a terminating snapshot oper-
ation (dashed line arrows) that occurs between two write
operations (solid line arrows). The acknowledgments of
these messages are arrows that start with circles and
squares, respectively. The lower drawing depicts the ex-
ecution of Algorithm 1’s self-stabilizing version for the
same case illustrated in the upper drawing. Note that the
gossip messages do not interfere with other messages.

Node pi stores the array
reg (line 4), such that the
k-th entry stores the most
recent information about
node pk’s object and reg[i]
stores pi’s actual object.
Every entry is a pair of
the form (v, ts), where the
field v is an object value
and ts is an unbounded
object index. The rela-
tion � can compare (v, ts)
and (v′, ts′) according to
the write operation indices
(line 1). Node pi also has
an index for the snapshot
operations, i.e., ssn.

The write(v) operation. Al-
gorithm 1’s write(v) oper-
ation appears in lines 12
to 15 (client-side) and
lines 17 to 23 (server-side).
The client-side operation write(v) stores the pair (v, ts) in reg[i] (line 13), where
pi is the calling node and ts is a unique operation index. Upon the arrival of
a WRITE message to pi from pj (line 26), the server-side code is ran. Node pi
updates reg according to the timestamps of the arriving values (line 27). Then,
pi replies to pj with the message WRITEack (line 31), which includes pi’s local
perception of the system shared registers. Getting back to the client-side, pi
repeatedly broadcasts the message WRITE to all nodes until it receives replies
from a majority of them (line 14). Once that happens, it uses the arriving values
for keeping reg up-to-date (line 15).

The snapshot(v) operation. Algorithm 1’s snapshot() operation appears in
lines 17 to 23 (client-side) and lines 29 to 31 (server-side). Delporte-Gallet et
al. [6, Algorithm 1] is non-blocking w.r.t. snapshot operations (in the absence of
writes). Thus, the client-side is written as a repeat-until loop. Node pi tries to
query the system for the most recent value of the shared registrars. As said, the
success of such attempts depends on the absence of writes. Thus, before each



Self-Stabilizing Snapshot Objects 7

Algorithm 1: Self-stabilizing algorithm for non-blocking snapshot object; code for

pi. The boxed code lines mark our additions to Delporte-Gallet et al. [1, Algorithm 1].

1 Definitions of �: For integers t and t′: (•, t) � (•, t′) ⇐⇒ t ≤ t′; For arrays tab and tab′

of (•, integer): tab � tab′ ⇐⇒ ∀pk ∈ P : tab[k] � tab′[k]; Also, a ≺ b ≡ a � b ∧ a 6= b;

2 local variables initialization (optional in the context of self-stabilization):
3 ssn := 0; ts := 0; /* indices of the snapshout, resp., write operations */
4 reg := [⊥, . . . ,⊥]; /* shared registers (⊥ is smaller than any other written value) */

5 macro merge(Rec) begin

6 ts← max({ts, reg[i].ts} ∪ {r[i].ts | r ∈ Rec});
7 for pk ∈ P do reg[k]← max({reg[k]} ∪ {r[k] | r ∈ Rec});

8 do forever begin

9 foreach ssn′ 6= ssn do delete SNAPSHOTack(−, ssn′);

10 ts← max{ts, reg[i].ts};

11 for pk ∈ P : k 6= i do send GOSSIP(reg[k]) to pk;

12 operation write(v) begin
13 ts← ts+ 1; reg[i]← (v, ts); let lReg := reg;
14 repeat broadcast WRITE(lReg); until WRITEack(regJ � lReg) received from a

majority;
15 merge(Rec) where Rec is the set of reg arrays received at line 14;
16 return();

17 operation snapshot() begin
18 repeat
19 let prev := reg; ssn← ssn+ 1;
20 repeat broadcast SNAPSHOT(reg, ssn); until SNAPSHOTack(•, ssnJ = ssn)

received from a majority;
21 merge(Rec) where Rec is the set of reg arrays received at line 20;

22 until prev = reg;
23 return(reg);

24 upon message GOSSIP(regJ) arrival from pj begin

25 reg[i]← max{reg[i], regJ}; ts← max{ts, reg[i].ts};

26 upon message WRITE(regJ) arrival from pj begin
27 for pk ∈ P do reg[k]← max�(reg[k], regJ[k]);
28 send WRITEack(reg) to pj ;

29 upon message SNAPSHOT(regJ, ssn) arrival from pj begin
30 for pk ∈ P do reg[k]← max�{reg[k], regJ[k]};
31 send SNAPSHOTack(reg, ssn) to pj ;

such broadcast, pi copies reg’s value to prev (line 19) and exits the repeat-until
loop once the updated value of reg indicates the obscene of concurrent writes.

The proposed unbounded self-stabilizing variation. We propose Algo-
rithm 1 as an extension of Delporte-Gallet et al. [6, Algorithm 1]. The boxed
code lines mark our additions. We denote variable X’s value at node pi by Xi.
Algorithm 1 considers the case in which any of pi’s operation indices, ssni and
tsi, is smaller than some other ssn or ts value, say, ssnm, regi[i].ts, regj [i].ts
or regm[i].ts, where Xm appears in the X field of some on transit message. For
the case of corrupted ssn values, pi’s client-side ignores arriving messages with
ssn values that do not match ssni (line 20). The do-forever loop removes any
stored snapshot reply whose ssn field is not ssni. For the case of corrupted



8 C. Georgiou, O. Lundström and E.M. Schiller

ts values, pi’s do-forever loop makes sure that tsi is not smaller than regi[i].ts
(line 10) before gossiping to every node pj ∈ P its local copy of the shared register
(line 11). Also, upon the arrival of such gossip messages, Algorithm 1 merges the
arriving information with the local one (line 25). Moreover, when replies from
write or snapshot messages arrive to pi, it merges the arriving ts value with the
one in tsi (line 6). Figure 1’s upper and lower drawings depict executions of the
non-self-stabilizing algorithm [6], and respectively, our self-stabilizing version
(Algorithm 1). The drawings illustrate a write operation that is followed by a
snapshot operation and then a second write. We use this example for comparing
algorithms 1, 2 and 3 (the latter two are presented in Section 4). The complete
discussion for Algorithm 1 and proof details appear in [9].

Theorem 1 (Recovery). Within O(1) cycles, a fair execution of Algorithm 1
reaches a state c in which (i) tsi’s value is not smaller than any pi’s timestamp
value. Also, if node pi takes a step immediately after c that includes line 13, then
in c it holds that tsi = regi[i].ts = regj [i].ts and for every messages m that is
in transit from pi to pj or pj to pi it holds that m.reg[i].ts = tsi. Moreover, (ii)
ssni is not smaller than any pi’s snapshot sequence number.

Proof Sketch. Arguments (1) to (3) show invariant (i). (1) The values installed in
tsi, regi[i].ts, regj [i].ts, regi[i] and regj [i] are non-decreasing, since their values
are never decremented. (2) Within O(1) cycles, tsi ≥ regi[i].ts, since pi executes
line 10 at least once in every cycle. (3) Within O(1) cycles, regi[i].ts ≥ regm[i].ts
and regi[i].ts ≥ regJ [i].ts whenever pj raises SNAPSHOTack(regJ, ssn) or
WRITE(regJ), where m′ is a message on transit from pj to pk and denote regm′

as values of the reg filed in m′, and pi, pj , pk ∈ P are non-failing nodes (and i = k
possibly holds). Moreover, regj [i].ts ≥ regm′ [i].ts and regi[i].ts ≥ regJ [i].ts when-
ever pk raises GOSSIP(regJ), WRITEack(regJ) or SNAPSHOTack(regJ, •).
The proof follows by the nodes’ message exchange. Invariant (ii) follows by
arguments similar to (1) to (3). �

4 The Always-terminating Algorithm

Delporte-Gallet et al. [6, Algorithm 2] guarantee termination for any invocation
pattern of write and snapshot operations, as long as the invoking nodes do
not fail during these operations. Its advantage over Delporte-Gallet et al. [6,
Algorithm 1] is that it can deal with an infinite number of concurrent write
operations. Before proposing our self-stabilizing always-terminating solution, we
bring [6, Algorithm 2] in Algorithm 2 using the presentation style of this paper.

Delporte-Gallet et al.’s always-terminating algorithm. Delporte-Gallet
et al. [6, Algorithm 2] use a job-stealing scheme for allowing rapid termination
of snapshot operations. Node pi ∈ P starts its snapshot operation by queueing
this new task at all nodes pj ∈ P. Once pj receives pi’s new task and when
that task reaches the queue front, pj starts the baseSnapshot(s, t) procedure,
which is similar to Algorithm 1’s snapshot() operation. This joint participation
in all snapshot operations makes sure that all nodes are aware of all on-going



Self-Stabilizing Snapshot Objects 9

snapshot operations. Moreover, it allows the nodes to make sure that no write()
can stand in the way of on-going snapshot operations. To that end, the nodes
wait until the oldest snapshot operation terminates before proceeding with later
operations. Specifically, they defer write operations that run concurrently with
snapshot operations. This guarantees termination of snapshot operations via the
interleaving and synchronization of snapshot and write operations.

reliableBroadcast reliableBroadcastSNAPSHOT/ SNAPSHOTack

Fig. 2. Algorithm 2’s run for the case of Figure 1’s upper drawing.

Algorithm 2 ex-
tends Algorithm 1
(non-self-stabilizing
version, which does
not include the
boxed code lines)
in the sense that
it uses all of Al-
gorithm 1’s vari-
ables and an ad-
ditional one, array repSnap, which snapshot() operations use. The entry
repSnap[x, y] holds the outcome of px’s y-th snapshot operation, where no
explicit bound on the number of invocations of snapshot operations is given. Note
that bounded space is a prerequisite for self-stabilization.

The write(v) operation and the baseWrite() function. Since write(v) operations
are preemptible, pi cannot always start immediately to write. Instead, pi stores
v in writePendi together with a unique operation index (line 44). It then runs
the operation as a background task (line 38) using baseWrite() (lines 48 to 51).

The snapshot() operation. A call to snapshot() (line 46) causes pi to reliably
broadcast, via the primitive reliableBroadcast, a new ssn index in a SNAP to all
nodes in P. Node pi then places it as a background task (line 47).

The baseSnapshot() function. As in Algorithm 1’s snapshot, the repeat-until
loop iterates until the retrieved reg vector equals to the one that was known
prior to the last repeat-until iteration. Then, pi stores in repSnap[s, t], via a
reliable broadcast of the END message, the snapshot result (line 59 and 66).

Synchronization between the baseWrite() and baseSnapshot() functions. Algo-
rithm 2 interleaves the background tasks in a do forever loop (lines 38 to 42). As
long as there is an awaiting write task, node pi runs the baseWrite() function
(line 38). Also, if there is an awaiting snapshot task, node pi selects the oldest task,
(source, sn), and uses the baseSnapshot(source, sn) function. Here, Algorithm 2
blocks until repSnap[source, sn] contains the result of that snapshot task.

Figure 2 depicts an example of Algorithm 2’s execution where a write operation
is followed by a snapshot operation. Each snapshot is handled separately and the
communications of each such operation requires O(n2) messages.

An unbounded self-stabilizing always-terminating algorithm. We pro-
pose Algorithm 3 as a variation of Delporte-Gallet et al. [6, Algorithm 2]. Algo-
rithms 2 and 3 differ mainly in their ability to recover from transient faults. This
implies some constraints. E.g., Algorithm 3 must have a clear bound on the num-
ber of pending snapshot tasks. For the sake of simple presentation, Algorithm 3



10 C. Georgiou, O. Lundström and E.M. Schiller

Algorithm 2: The non-self-stabilizing and always-terminating algorithm by Delporte-

Gallet et al. [6] that emulates snapshot object; code for pi

32 local variables initialization: ssn := 0; ts := 0; /* snapshout, resp., write indices */
33 writePending ← ⊥; /* stores pi’s write task */
34 reg := [⊥, . . . ,⊥]; /* shared registers (⊥ is smaller than any other written value) */
35 foreach k, s : repSnap[k, s] := ⊥; /* stores pk’s snapshot task result for index s */

36 macro merge(Rec) for pk ∈ P do reg[k]← max({reg[k]} ∪ {r[k] | r ∈ Rec});
37 do forever begin
38 if (writePending 6= ⊥) then baseWrite(writePending);writePending ← ⊥;
39 if (there are messages SNAP() received and not yet processed) then
40 let SNAP(source, sn) be the oldest of these messages;
41 baseSnapshot(source, sn);
42 wait until (repSnap[source, sn] 6= ⊥);

43 operation write(v) begin
44 writePending ← v; wait until (writePending = ⊥); return();

45 operation snapshot() begin
46 sns← sns+ 1; reliableBroadcast SNAP(i, sns);
47 wait until (repSnap[i, sns] 6= ⊥); return(repSnap[i, sns]);

48 function baseWrite(v) begin
49 ts← ts+ 1; reg[i]← (ts, v); let lReg := reg;
50 repeat broadcast WRITE(lReg); until WRITEack(regJ � lReg) received from a

majority;
51 merge(Rec) where Rec is the set of reg arrays received at line 50;

52 function baseSnapshot(s, t) begin
53 while repSnap[s, t] = ⊥ do
54 let prev := reg; ssn← ssn+ 1;
55 repeat
56 broadcast SNAPSHOT(s, t, reg, ssn);
57 until (sJ = s, tJ = t, •, ssnJ = ssn) received from a majority);
58 merge(Rec) where Rec is the set of reg arrays received at line 56;
59 if prev = reg then reliableBroadcast END(source, sn, prev);

60 upon message WRITE(regJ) arrival from pj begin
61 for pk ∈ P do reg[k]← max≺sn (reg[k], regJ[k]);
62 send WRITEack(reg) to pj ;

63 upon message SNAPSHOT(s, t, regJ, ssnJ) arrival from pj begin
64 for pk ∈ P do reg[k]← max≺sn (reg[k], regJ[k]);
65 send SNAPSHOTack(s, t, reg, ssnJ) to pj ;

66 upon message END(s, t, val) arrival from pj do repSnap[s, t]← val;

assumes that the system needs, for each node, to cater for at most one pending
snapshot task. We avoid the use of a reliable broadcast, which Delporte-Gallet et
al. use, and instead, we use a simpler mechanism for safe registers.

Algorithm 3 can defer snapshot tasks until either (i) at least one node was able
to observe at least δ concurrent write operations, where δ is an input parameter,
or (ii) there are no concurrent write operations. The tunable parameter δ balances
between the latency (with respect to snapshot operations) and communication
costs. I.e., for the case of δ being a very high (finite) value, Algorithm 3 guarantees
termination in a way that resembles [6, Algorithm 1], which uses O(n) messages
per snapshot operation, and for the case of δ = 0, Algorithm 3 behaves in a way
that resembles [6, Algorithm 2], which uses O(n2) messages per snapshot.



Self-Stabilizing Snapshot Objects 11

Algorithm details. Algorithm 3 lets every node disseminate its (at most one)
pending snapshot task and use a safe register for facilitating the delivery of the
task result to its initiator. I.e., once a node finishes a snapshot task, it broadcasts
the result to all nodes and waits for replies from a majority of nodes, which may
possibly include the initiator of the snapshot task (see safeReg(), line 71). This
way, if node pj notices that it has the result of an ongoing snapshot task, it sends
that result to the node who initiated the task.

The do forever loop. Algorithm 3’s do forever loop (lines 74 to 80), includes a
number of lines for cleaning stale information, e.g., out-of-synch SNAPSHOTack
messages (line 74), out-dated operation indices (line 75), illogical vector-clocks
(line 76) or corrupted pndTsk entries (line 77). The gossiping of operation indices
(lines 78 and 98) also helps to remove stale information (as in Algorithm 1 but
only with the addition of sns values). The synchronization between write and
snapshot operations (lines 79 and 80) starts with a write, if there is any such
pending task (line 79), before running its own snapshot task, if there is any such
pending, as well as any snapshot task (initiated by others) for which pi observed
that at least δ write operations occur concurrently with it (line 80).

The baseSnapshot() function and the SNAPSHOT message. Algorithm 3
maintains the state of every snapshot task in the array pndTsk. The entry
pndTski[k] = (sns, vc, fnl) includes: (i) the index sns of the most recent snapshot
operation that pk ∈ P has initiated and pi is aware of, (ii) the vector clock
representation of regk (i.e., just the timestamps of regk, cf. line 69) and (iii) the
final result fnl of the snapshot operation (or ⊥, in case it is still running).

The baseSnapshot() function includes an outer loop part (lines 87 and 94),
an inner loop part (lines 87 to 90), and a result update part (lines 91 to 93). The
outer loop increments the snapshot index, ssn (line 87), so that it can consider a
new query attempt by the inner loop. The outer loop ends when there are no
more pending snapshot tasks that this call to baseSnapshot() needs to handle.
The inner loop broadcasts SNAPSHOT messages, which includes all the pending
snapshot tasks, (S ∩∆), that are relevant to this call to baseSnapshot() together
with the local current value of reg and the snapshot query index ssn. The inner
loop ends when acknowledgments are received from a majority of processors and
the received values are merged (line 90). The results are updated by writing to an
emulated safe shared register (line 91) whenever prev = reg. In case the results
do not allow pi to terminate its snapshot task (line 93), Algorithm 3 uses the
query results for storing the timestamps in the field vs. This allows to balance a
trade-off between snapshot operation latency and communication costs, as we
explain next.

The use of the input parameter δ for balancing the trade-off between snapshot
operation latency and communication costs. For the case of δ = 0, since no
snapshot task is to be deferred, the set ∆ (line 70) includes all the nodes for
which there is no stored result, i.e., pndTsk[k].fnl = ⊥. The case of δ > 0 uses
the fact that Algorithm 3 samples the vector clock value of regk and stores it in
pndTsk[k].vc (line 93) once it had completed at least one iteration of the repeat-



12 C. Georgiou, O. Lundström and E.M. Schiller

until loop (line 89 and 90). I.e., the sampling of the vector clock is an event that
occurs not before the start of pk’s snapshot (that has the index pndTsk[k].sns).

Many-jobs-stealing scheme for reduced blocking periods. Whenever pndTsk[k].fnl
6= ⊥ and sns > 0, we consider pk’s task as active. To the end of helping all
actives tasks, pi samples the set of currently pending task (Si ∩ ∆i) (line 87)
before starting the inner repeat-until loop (lines 89 to 90) and broadcasting the
client-side message SNAPSHOT, which includes the most recent snapshot task
information. The server-side reception of this message (lines 103 to 104), updates
the local information (line 105) and sends the reply to the client-side (lines 106
to 107). Note that if the receiver notices that it has the result of an ongoing
snapshot task, then it sends that result to the requesting processor (line 107).

The safeReg() function and the SAVE message. The safeReg() function
considers a snapshot task that was initiated by node pk ∈ P. This function is
responsible for storing the results of snapshot tasks in a safe register. It does so
by broadcasting the client-side message SAVE to all nodes in the system (line 71).
Upon the arrival of the SAVE message to the server-side, the receiver stores the
arriving information, as long as the arriving information is more recent than the
local one. Then, the server-side replies with a SAVEack message to the client-side,
who is waiting for a majority of such replies (line 71).

SNAPSHOT/ SNAPSHOTack SAFE

Fig. 3. The upper drawing depicts an example of
Algorithm 3’s execution for a case that is equivalent
to the one depicted in the upper drawing of Figure 2,
i.e., only one snapshot operation. The lower draw-
ing illustrates the case of concurrent invocations of
snapshot operations by all nodes.

Figure 3 depicts two ex-
amples of Algorithm 3’s ex-
ecution. In the upper draw-
ing, a write operation is fol-
lowed by a snapshot opera-
tion. Note that fewer messages
are considered when compar-
ing to Figure 2’s example. The
lower drawing illustrates the
case of concurrent invocations
of snapshot operations by all
nodes. Observe the potential
improvement with respect to
number of messages (in the up-
per drawing) and throughput
(in the lower drawing) since
Algorithm 2 uses O(n2) mes-
sages for each snapshot task
and handles only one snapshot
task at a time.

Correctness. The complete discussion and proof details appear in [9].

Definition 1 (Consistent system states and executions). (i) Let c be a
system state in which tsi is greater than or equal to any pi’s timestamp values in
the variables and fields related to ts. We say that the ts’ timestamps are consistent
in c. (ii) Let c be a system state in which ssni is greater than or equal to any
pi’s snapshot sequence numbers in the variables and fields related to ssn. We



Self-Stabilizing Snapshot Objects 13

Algorithm 3: Self-stabilizing always-terminating snapshot; code for pi

67 input: δ a number of observed concurrent writes after which writes block temporarily;
68 variables: ts := 0 is pi’s write operation index; ssn, sns := 0 are pi’s snapshot operation

indices; reg[n] := [⊥, . . . , ⊥] buffers all shared registers; writePending ← ⊥ stores pi’s
write task; pndTsk[n] := [(0,⊥,⊥), . . . , (0,⊥,⊥)] control variables of snapshot
operations; each entry form is (sns, vc, fnl), where sns is an index, vc is a vector clock
that time stamps the snapshot operation sns, and fnl is the operation’s returned value;
(In the context of self-stabilization, variable initialization is optional.)

69 macro VC := [tsk]pk∈P where tsk := 0 when reg[k] = ⊥ otherwise reg[k] = (•, tsk);

70 macro ∆ := {(k, pndTsk[k].sns, pndTsk[k].vc)|pk ∈ P ∧ pndTsk[k].fnl = ⊥ ∧ ((δ =
0∧pndTsk[k].sns > 0)∨(pndTsk[k].vc 6= ⊥∧δ ≤

∑
`∈{1,...,n} VC[`]−pndTsk[k].vc[`]))}∪

{(i, pndTsk[i].sns, pndTsk[i].vc) : pndTsk[i].sns > 0 ∧ pndTsk[i].fnl = ⊥};
71 macro safeReg(A) repeat broadcast SAVE(A) until majority of

SAVEack(AJ={(k, s):(k,s,•)∈A}) arrived;
72 macro merge(Rec) {ts← max({ts, reg[i].ts} ∪ {r[i].ts | r ∈ Rec}); for pk ∈ P do

reg[k]← max({reg[k]} ∪ {r[k] | r ∈ Rec})};
73 do forever begin
74 foreach ssn′ 6= ssn do delete SNAPSHOTack(−, ssn′);
75 (ts, sns)← (max{ts, reg[i].ts},max{sns, pndTsk[i].sns});
76 for k ∈ {1, . . . , n} : pndTsk[k].vc 6� VC, where line 1 defines the relation � do

pndTsk[k].vc← ⊥;
77 if sns 6= pndTsk[i].sns then pndTsk[i]← (sns,⊥,⊥);
78 for pk ∈ P : k 6= i do send GOSSIP(reg[k], pndTsk[k].sns) to pk;
79 if writePending 6= ⊥ then {baseWrite(writePending);writePending ← ⊥; };
80 if ∆ 6= ∅ then baseSnapshot(∆);

81 operation write(v) {writePending ← v; wait until (writePending = ⊥); return();}
82 operation snapshot() begin
83 (sns, pndTsk[i])← (sns+ 1, (sns,⊥,⊥)); wait until

(pndTsk[i].fnl 6= ⊥); return(pndTsk[i].fnl);

84 function baseWrite(v) {ts← ts+ 1; reg[i]← (ts, v); let lReg := reg; repeat
broadcast WRITE(lReg); merge(Rec) where Rec is the received reg arrays} until
WRITEack(regJ � lReg) received from a majority;

85 function baseSnapshot(S) begin
86 repeat
87 ssn← ssn+ 1; let prev := reg; repeat
88 broadcast SNAPSHOT((S ∩∆), reg, ssn);
89 until (S ∩∆) = ∅ or majority of (SNAPSHOTack(•, ssnJ = ssn) arrived);
90 merge(Rec) where Rec is the set of reg arrays received at line 89;
91 if prev = reg ∧ (S ∩∆) 6= ∅ then
92 safeReg({(k, pndTsk[k].sns, prev) : (k, s, •) ∈ (S ∩∆)})
93 else if ((i, •) ∈ (S ∩∆)) ∧ (pndTsk[i].vc = ⊥) then pndTsk[i].vc← VC;

94 until (S ∩∆) = ∅ ∨ ((S ∩∆) = (i, •) ∧ pndTsk[i].sns > 0 ∧ pndTsk[i].fnl = ⊥ ∧ δ ≤∑
`∈{1,...,n}(VC[`]− pndTsk[i].vc[`]));

95 upon message SAVE(AJ) arrival from pj begin
96 foreach (k, s, r) ∈ AJ : pndTsk[k].sns < s ∨ pndTsk[k] = (s, •,⊥) do

(pndTsk[k].sns, pndTsk[k].fnl)← (s, r);
97 send SAVEack({(k, s) : (k, s, •) ∈ AJ}) to pj ;

98 upon message GOSSIP(regJ, snsJ) arrival from pj begin
99 reg[i]← max{reg[i], regJ}; (ts, sns)← (max{ts, reg[i].ts},max{sns, snsJ});

100 upon message WRITE(regJ) arrival from pj begin
101 for pk ∈ P do reg[k]← max≺sn (reg[k], regJ[k]);
102 send WRITEack(reg) to pj ;

103 upon message SNAPSHOT(SJ, regJ, ssnJ) arrival from pj begin
104 for pk ∈ P do reg[k]← max≺sn (reg[k], regJ[k]);
105 foreach (s, sn, vc) ∈ SJ : pndTsk[s].sns < sn ∨ pndTsk[s] = (sn,⊥,⊥) do

pndTsk[s]← (sn, vc,⊥);
106 let A := {(k, pndTsk[k].sns, pndTsk[k].fnl) : (k, •) ∈ SJ ∧ pndTsk[k].fnl 6= ⊥};
107 send SNAPSHOTack(reg, ssnJ) to pj ; if A 6= ∅ then send SAVE(A) to pj ;



14 C. Georgiou, O. Lundström and E.M. Schiller

say that the ssn’s snapshot sequence numbers are consistent in c. (iii) Let c be
a system state in which snsi is not smaller than any pi’s snapshot index sns.
Moreover, ∀pi ∈ P : snsi = pndTski[i].sns and ∀pi, pj ∈ P : pndTskj [i].sns ≤
pndTski[i].sns. We say that the sns’s snapshot indices are consistent in c. (iv)
Let c be a system state in which ∀pi, pk ∈ P : pndTski[k].vc � VCi holds, where
VCi is the returned value from VC() (line 69). We say that the vector clock values
are consistent in c. We say that system state c is consistent if it is consistent with
respect to invariants (i) to (iv). Let R be an execution of Algorithm 3 that all of
its system states are consistent and R′ be a suffix of R. We say that execution R′

is consistent (with respect to R) if any message arriving in R′ was indeed sent in
R and any reply arriving in R′ has a matching request in R.

Theorem 2 (Recovery). Let R be Algorithm 3’s fair execution. Within O(1)
cycles in R, the system reaches a consistent state c ∈ R (Definition 1). Within
O(1) cycles after c, the system starts a consistent execution R′.

Proof Sketch. Note that Theorem 1 implies invariants (i) and (ii) of Definition 1
also for the case of Algorithm 3, because they use the similar lines of code for
asserting these invariants. For invariant (iii), sns and pndTsk in Algorithm 3
follow the same propagation patterns as ts and reg in Algorithm 1. Moreover,
within a cycle, every pi ∈ P executes line 77. Thus, invariant (iii)’s proof follows
similar arguments to the ones in Theorem 1’s proof. Invariant (iv)’s proof is
implied by the fact that within a cycle, pi ∈ P executes line 76. By the definition
of cycles (Section 2), within a cycle, R reaches a suffix R′, such that every received
message during R′ was sent during R. By repeating the previous argument, it
holds that within O(1) cycles, R reaches a suffix R′ in which for every received
reply has an associated request that was sent during R. �

Theorem 3 (Algorithm 3’s termination and linearization). Let R be Al-
gorithm 3’s consistent execution (Definition 1). Suppose that there exists pi ∈ P,
such that in R’s second system state, it holds that pndTski[i] = (s, •,⊥) and s > 0.
Within O(δ) cycles, the system reaches c ∈ R : pndTski[i] = (s, •, x) : x 6= ⊥.

Proof Sketch. Lemma 1 sketches the key arguments of the termination proof.

Lemma 1 (Algorithm 3’s termination). Within O(δ) cycles, the system
reaches a state c ∈ R in which either: (i) for any non-failing node pj ∈ P it holds
that i ∈ ∆j (line 70) and pndTskj [i] = (s, •,⊥), (ii) ∀M ⊆ P : |M | > |P|/2 :
∃pj∈M : pndTskj [i] = (s, •, x) : x 6= ⊥ or (iii) pndTski[i] = (s, •, x) : x 6= ⊥.

Proof Sketch. We show that R has a prefix R′ that includes O(δ) cycles, such
that none of the lemma invariants hold during R′.

Claim (a). There is no step ai ∈ R′ in which pi evaluate the if-statement condition
in line 91 to be true (or one of the lemma invariants holds).

Proof of claim. Towards a contradiction, suppose that ai ∈ R calls safeRegi().
Arguments (1) and (2) show that this happens for the case of k = i, and that



Self-Stabilizing Snapshot Objects 15

invariant (ii) holds. Argument (1): ai includes the execution of line 91. This is
because, once in O(1) cycles, pi calls baseSnapshoti(Si) (line 80), which does
not change the value of Si. Argument (2): invariant (ii) holds. The function
safeRegi({(•, r) : r 6= ⊥}) (line 71) repeatedly broadcasts SAVE({(•, r) : r 6= ⊥})
until pi receives SAVEack({(•, r) : r 6= ⊥}) from a majority. Theorem 2 and R′s
consistency imply that every received SAVEack is associated with a SAVE that
was sent in R. Invariant (ii) holds due to the majority intersection property. 2

Claim (b). Within O(1) asynchronous cycles, the system reaches a state c′ ∈ R′ in
which for any non-faulty node pj ∈ P it holds that pndTskj [i] = (s, y, •) : y 6= ⊥.

Proof of claim. For the case of j = i, we note that claim (a) implies that (i, •) ∈ Si
holds and the execution of line 93 in every call for baseSnapshot(Si). For the
j 6= i case, we note that within O(1) cycles, pi executes lines 87 and 88 in which
pi broadcasts SNAPSHOT({(•,pndTski[i].vc), •}), such that pndTski[i].vc 6= ⊥
holds by the case of j = i. Once pj receives this message, pndTskj [i].vc 6= ⊥
holds (line 105). The above arguments for the case of j 6= i can be repeated as
long as invariant (iii) does not hold. Thus, the arrival of such a SNAPSHOT
message to all pj ∈ P occurs within O(1) asynchronous cycles. 2

Claim (c). Let c′ ∈ R′ be a system state in which for any non-faulty node pj ∈ P
it holds that pndTskj [i] = (s, y, •) : y 6= ⊥. Let x be the number of iterations of
the outer loop in baseSnapshot() (lines 87 and 94) that node pi takes between
c′ and c′′ ∈ R′, where c′′ is a system state after which it takes at most O(δ)
asynchronous cycles until the system reach the state c′′′ in which at least one of
the lemma invariants holds. The value of x is actually finite and x ≤ δ.

Proof of claim. Argument (1): during the outer loop in baseSnapshot() (lines 87
and 94), pi tests the if-statement condition at line 91 and that condition does
not hold, due to Claim (a). Argument (2): suppose that there are at least x
consecutive and complete iterations of pi’s outer loop in baseSnapshot() (lines 87
and 94) between c′ and c′′ in which the if-statement condition at line 91 does not
hold. Then, there are at least x write operations that run concurrently with the
snapshot operation that has the index of s, since the only way that the if-statement
condition in line 91 does not hold in a repeated manner is by repeated changes
of ts fields in regi during the different executions of lines 87 to 90 (due to line 81
of write()). We define the function Si() so that whenever pi’s program counter
is outside of the function baseSnapshot(), Si() returns ∆i. Otherwise, it returns
(Si∩∆i). Argument (3): there exists x′ ≤ δ for which (i, •) ∈ Si(), where x′ is the
number of consecutive and complete iterations of pi’s outer loop in baseSnapshot()
between c′ and c′′ in which the if-statement condition at line 91 does not hold.
This is because Argument (2) implies that the number of iterations continues
to grow. During every such iteration there are increments of the summation∑
`∈{1,...,n}VCi[`]− pndTski[i].vc[`] until it is at least δ, and thus, (i, •) ∈ Si()

holds (line 70, for the case of k = i). Argument (4): suppose that pi has taken
at least x′ iterations of the outer loop in baseSnapshot() (lines 87 and 94) after
system state c′. After this, suppose that the system has reached a state c′′ in



16 C. Georgiou, O. Lundström and E.M. Schiller

which i ∈ ∆i, where c′′ is defined in Argument (3). Within O(1) cycles after c′′,
the system reaches c′′′ in which i ∈ ∆j holds for any non-failing pj ∈ P. Within
O(1) asynchronous cycles after c′′, it holds that regj ’s ts fields are not smaller
than the ones of regi’s ts fields in c′′ (because in every iteration of the outer
loop in baseSnapshot(), pi broadcasts regi and these boradcasts arrive within
one cycle to pj , who updates regj). The rest of the proof shows that i ∈ ∆j holds
(line 70, case of k = i), as in Argument (3). 2

This completes the proof of the lemma. �
The rest of the theorem’s proof considers the case in which (i) in any system

state of R, it holds that pndTski[i] = (s, •,⊥), s > 0 and any majority M ⊆
P : |M | > |P|/2 include at least one pj ∈ M , such that pndTskj [i] = (s, •, x) :
x 6= ⊥, or (ii) in any system state of R, it holds that pndTski[i] = (s, •,⊥),
s > 0 and for any non-failing node pj ∈ P it holds that i ∈ ∆j (line 70) and
pndTskj [i] = (s, •,⊥). The idea is to show that within O(1) cycles, the system is
in state c ∈ R in which pndTski[i] = (s, •, x) : x 6= ⊥. For the case (i), the proof
shows that pi recives a SNAPSHOTack message that matches the first condition
in line 89 due to a reply to an SNAPSHOT message in line 106. The proof of
case (ii) follows by the fact that all non-failing nodes participate in a helping
scheme that solves pi’s task and then write the result to a safe register by calling
safeReg() in line 91.

Linearizability. We note that the baseWrite(wp) functions in Algorithms 2
and 3 are identical. Moreover, Algorithm 2’s lines 54 to 56 are similar to Algo-
rithm 3’s lines 87 to 90, but differ in the following manner: (i) the dissemination
of the operation tasks is done outside of Algorithm 2’s lines 54 to 56 but inside
of Algorithm 3’s lines 87, and (ii) Algorithm 2 considers one snapshot opera-
tion at a time whereas Algorithm 3 considers many snapshot operations. The
linearizability proof of Delporte-Gallet et al. [6, Lemma 7] is independent of the
task dissemination and result propagation. Moreover, it shows a way to select
linearization points according to some partition. The proof there explicitly allows
the same partition to include more than one snapshot result. �

5 Bounded Variations on Algorithms 1 and 3

There is a technique for transforming a self-stabilizing atomic register algorithm
that uses unbounded operation indices into one with bounded indices, see [8,
Section 10]: [Step-1] once pi notices an index that is at least MAXINT = 264 − 1,
it disables new operations and starts gossiping of the maximal indices (while
merging the arriving information with the local one). [Step-2] once all nodes
share the same maximal indices, the procedure uses a consensus-based global
reset procedure for replacing, per operation type, the highest operation index
with its initial value, 0, while keeping the values of all shared registers unchanged.
After the end of the global reset procedure, all operations are enabled.

Self-stabilizing global reset procedure. The implementation of the self-
stabilizing procedure for global reset can be based on existing mechanisms, such
as the one by Awerbuch et al. [12]. We note that the system settings of Awerbuch



Self-Stabilizing Snapshot Objects 17

et al. [12] assume execution fairness. This assumption is allowed by our system
settings (Section 2). This is because we assume that reaching MAXINT can only
occur due to a transient fault. Thus, execution fairness, which implies all nodes
are eventually alive, is seldom required (only for recovering from transient faults).

6 Discussion

We showed how to transform the two non-self-stabilizing algorithms of Delporte-
Gallet et al. [6] into ones that can recover after the occurrence of transient
faults. This requires some non-trivial considerations that are imperative for
self-stabilizing systems, such as the explicit use of bounded memory and the
reoccurring clean-up of stale information. Interestingly, these considerations are
not restrictive for the case of Delporte-Gallet et al. [6]. As a future direction, we
propose to consider the techniques presented here for providing self-stabilizing
versions of more advanced algorithms, e.g., [13].

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40 (1993) 873–890

2. Anderson, J.H.: Multi-writer composite registers. Distributed Computing 7 (1994)
175–195

3. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17 (1974) 643–644

4. Dolev, S.: Self-Stabilization. MIT Press (2000)
5. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing

systems. J. ACM 42 (1995) 124–142
6. Delporte-Gallet, C., Fauconnier, H., Rajsbaum, S., Raynal, M.: Implementing

snapshot objects on top of crash-prone asynchronous message-passing systems.
IEEE Trans. Parallel Distrib. Syst. 29 (2018) 2033–2045

7. Alon, N., Attiya, H., Dolev, S., Dubois, S., Potop-Butucaru, M., Tixeuil, S.: Prac-
tically stabilizing SWMR atomic memory in message-passing systems. J. Comput.
Syst. Sci. 81 (2015) 692–701

8. Dolev, S., Petig, T., Schiller, E.M.: Self-stabilizing and private distributed shared
atomic memory in seldomly fair message passing networks. CoRR abs/1806.03498
(2018)

9. Georgiou, C., Lundström, O., Schiller, E.M.: Self-stabilizing snapshot objects for
asynchronous failure-prone networked systems. CoRR (2019)

10. Georgiou, C., Shvartsman, A.A.: Cooperative Task-Oriented Computing: Algorithms
and Complexity. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers (2011)

11. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
12. Awerbuch, B., Patt-Shamir, B., Varghese, G., Dolev, S.: Self-stabilization by local

checking and global reset. In: WDAG. Volume 857 of LNCS., Springer (1994)
326–339

13. Imbs, D., Mostéfaoui, A., Perrin, M., Raynal, M.: Set-constrained delivery broadcast:
Definition, abstraction power, and computability limits. In: 19th Distributed
Computing and Networking, ICDCN, ACM (2018) 7:1–7:10


