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Abstract

IOA is a formal language for describing Input/Output automata that serves both as a formal specifi-
cation language and as a programming language [13]. The IOA compiler automatically translates IOA
specifications into Java code that runs on a set of workstations communicating via the Message Passing
Interface. This paper describes the process of compiling IOA specifications and our experiences running
several distributed algorithms, ranging from simple ones such as the Le Lann, Chang and Roberts (LCR)
leader election in a ring algorithm to that of Gallager, Humblet and Spira (GHS) for minimum-weight
spanning tree formation in an arbitrary graph [29]. Our IOA code for all the algorithms is derived from
their Input/Output automaton descriptions that have already been formally proved correct.

The successful implementation of these algorithms is significant for two reasons: (a) it is an indi-
cation of the capabilities of the IOA compiler and of its advanced state of development, and (b) to the
best of our knowledge, these are the first complex, distributed algorithms implemented in an automated
way that have been formally and rigorously proved correct. Thus, this work shows that it is possible to
formally specify, prove correct,and implement complex distributed algorithms using a common formal
methodology.

Keywords: Input/Output Automata, Automated Code Generator, Verifiable Distributed Code, IOA
Toolkit, Formal Methods.
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1 Introduction

IOA is a formal language for describing distributed computation that serves both as a formal specification
language and as a programming language [13]. The IOA toolkit supports the design, development, test-
ing, and formal verification of programs based on the Input/Output automaton model of interacting state
machines [26, 27]. I/O automata have been used to verify a wide variety of distributed systems and al-
gorithms and to express and prove several impossibility results. The toolkit connects I/O automata with
both lightweight (syntax checkers, simulators, model checkers [22, 6, 30, 10, 39, 36, 32]) and heavyweight
(theorem provers [14, 3]) formal verification tools.

The IOA compiler has recently been added to the toolkit to enable programmers to write a specification
in IOA, validate it using the toolkit, and then automatically translate the design into Java code. As a result,
an algorithm specified in IOA can be implemented on a collection of workstations running Java Virtual

∗This work is supported in part by USAF, AFRL award #FA9550-04-1-0121 and MURI AFOSR award #SA2796PO 1-
0000243658. A preliminary version of this paper has appeared in [16].
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Machines and communicating through the Message Passing Interface [33, 36, 35]. The code produced
preserves the safety properties of the IOA program in the generated Java code. This guarantee is conditioned
on the assumptions that our model of network behavior is accurate, that a hand-coded datatype library
correctly implements its semantic specification, and that programmer annotations yield specified values.
We require a further technical constraint that the algorithm must be correct even when console inputs are
delayed.

This paper describes our experiences compiling and running algorithms specified in IOA. We begin with
an overview of the challenges that were addressed in realizing the code generator and then we provide a
general description of the process of preparing and running any distributed algorithm. We next highlight
important aspects of the process by describing our experiments with algorithms from the literature. Initially,
we implemented LCR leader election in a ring, computation of a spanning tree in an arbitrary connected
graph, and repeated broadcast/convergecast over a computed spanning tree [23, 4, 5, 31]. Our IOA code for
these algorithms was derived from the I/O automaton description given for these algorithms in [24].

Finally, we have successfully implemented the algorithm of Gallager, Humblet and Spira (GHS) for
finding the minimum-weight spanning tree in an arbitrary connected graph [29]. GHS is a sufficiently com-
plicated algorithm to constitute a “challenge problem” for the application of formal methods to distributed
computing. Welch, Lamport, and Lynch formulated the algorithm using I/O automata and gave a formal
proof of correctness of that specification [38]. Our IOA implementation of GHS is derived from the I/O
automaton description by Welchet al. by performing some technical modifications described in Section 8.
In the process of realizing this task (implementing these algorithms) several complier implementation diffi-
culties arose and were successfully addressed.

The successful implementation of such a complicated algorithm is significant for two reasons: (a) it
indicates the capabilities of the IOA compiler and its advanced state of development, and (b) to the best of
our knowledge, this is the first complex, distributed algorithm implemented in an automated way, that has
been formally and rigorously proved correct. Thus, this work shows that it is possible to formally specify,
prove correctand implement complex distributed algorithms using a common formal methodology.

Paper Structure. In Section 2 we overview the challenges faced in realizing the IOA code generator.
In Section 3 we provide necessary background on Input/Output automata and present related work. In
Section 4 we present the compilation procedure and necessary technical issues. Sections 5–8 describe the
implemented algorithms and provide IOA code used for their automated implementation. In Section 9
we present experimental results we obtained from the implementation of our algorithms. We conclude in
Section 10.

2 Challenges in Realizing the IOA Compiler

The design and implementation of the IOA compiler required overcoming a number of key challenges.
Many of these challenges arise from the differences between characteristics of specifications that are easiest
to prove correct and characteristics of programs that are easiest to run. In this section, we overview these
challenges and the approach taken to addressing them.Note that several of the presented implementation
difficulties arose (and were addressed) while attempting to use the code generator in implementing the
presented distributed algorithms.For a deeper analysis of the challenges and a thorough presentation of the
actions taken in addressing them we refer the reader to Tauber’s Thesis [33].
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2.1 Program Structuring

The first major challenge needed to be addressed was how to create a system with the correct externally
visible behavior of the system without using any synchronization between processes running on different
machines. This goal was achieved by matching the formal specification of the distributed system to the
target architecture of running systems. That is, the form of the IOA programs admissible for compilation
had to be restricted. In particular, the programmer is required (rather than the compiler) to decide on the
distribution of computation; the programs submitted for compilation must be structured in anode-channel
form that reflects the message-passing architecture of the collection of networked workstations that is the
target of the compiler. Compilation then proceeds on a node-by-node basis (see Section 4.2 for specific
details). By requiring the programmer to match the system design to the target language, hardware, and
system services before attempting to compile the program, we are able to generateverifiably correct code
without any synchronization between processes running on different machines.

2.2 IOA Programs and External Services

IOA programs use external services such as communication networks and console inputs. The IOA compiler
generates only the specialized code necessary to implement an algorithm at each node in the system. At
runtime, each node connects to the external system services it uses. In the current version the compilation
target is a system in which each host runs a Java interpreter and communicates via a small subset of the
Message Passing Interface (MPI) [12]. Hence a second major challenge needed to be addressed was to
create both correctness proofs about algorithms that connect to such services and to produce correct code
that uses such external, preexisting services. The general approach we take for verifying access to an external
service consists of four phases: First model the external service as an IOA automaton; for example a subset
of MPI was modeled as an automaton (see [33, Chapter 4]). Second, identify the desired abstract service
programmers would like to use and specify that abstract service as an IOA automaton; e.g., a specification of
an abstract, point-to-point, reliable, FIFO channel was developed (see [33]). Third, write mediator automata
such that the composition of the mediator automata and the external service automaton implements the
abstract service automaton; for example see the SendMediator and ReceiveMediator automata used in this
work (in Appendix A). Fourth, prove that implementation relationship. (Specific details on the MPI-IOA
connectivity are given in Section 4.2.)

2.3 Modeling Procedure Calls

The above design for connecting to system services raises new challenges. One particularly tricky aspect of
such proofs is modeling the interfaces to services correctly. IOA itself has no notion of procedure call per
se. The Java interface to an external service is defined in terms of method invocations (procedure calls). The
approach taken to address this issue, when modeling these services, was to carefully treat method invocations
and method returns as distinct behaviors of the external service; when procedure calls may block, handshake
protocols were developed to model such blocking.

2.4 Composing Automata

The auxiliary mediator automata created to implement abstract system services must be combined with
the source automaton prior to compilation. That is, we need to compose these automata to form a single
automaton that describes all the computation local to a single node in the system. (Specific details are given
in Section 4). A tool, calledcomposer, was designed and implemented to compose automata automatically
(see [33, Part II]).
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2.5 Nondeterminism

The IOA language is inherently nondeterministic. Translating programs written in IOA into an imperative
language like Java requires resolving all nondeterministic choices. This process of resolving choices is called
schedulingan automaton. Developing a method to schedule automata was the largest conceptual challenge in
the initial design of an IOA compiler. In general, it is computationally infeasible to schedule IOA programs
automatically. Instead, IOA was augmented with nondeterminism resolution (NDR) constructs that allow
programmers to schedule automata directly and safely. (More details are given in Section 4.5).

2.6 Implementing Datatypes

Datatypes used in IOA programs are described formally by axiomatic descriptions in first-order logic. While
such specifications provide sound bases for proofs, it is not easy to translate them automatically into an
imperative language such as Java. However, the IOA framework focuses on correctness of the concurrent,
interactive aspects of programs rather than of the sequential aspects. Therefore we were not especially
concerned with establishing the correctness of datatype implementations. (Standard techniques of sequential
program verification may be applied to attempt such correctness proofs.) Hence, each IOA datatype is
implemented by a hand-coded Java class. A library of such classes for the standard IOA datatypes is included
in the compiler. Each IOA datatype (e.g.,Tree[] ) and operator (e.g.,Tree[] → Nat ) is matched with its Java
implementation class using adatatype registry[30, 36, 39], which we extended in this work (by creating
mainly new operators).

3 Background

In this section, we briefly introduce the I/O automaton model and the IOA language and set the current work
in the context of other research.

3.1 Input/Output Automata

An I/O automatonis a labeled state transition system. It consists of a (possibly infinite) set ofstates(in-
cluding a nonempty subset ofstart states); a set ofactions(classified asinput, output, or internal); and a
transition relation, consisting of a set of (state, action, state) triples (transitionsspecifying the effects of the
automaton’s actions).1 An actionπ is enabledin states if there is some triple(s, π, s′) in the transition re-
lation of the automaton. Input actions are required to be enabled in all states. I/O automata admit aparallel
compositionoperator, which allows an output action of one automaton to be performed together with input
actions in other automata. The I/O automaton model is inherently non-deterministic. In any given state of
an automaton (or collection of automata), one, none, or many (possibly infinitely many) actions may be
enabled. As a result, there may be many valid executions of an automaton. A succinct explanation of the
model appears in Chapter 8 of [24].

3.2 IOA Language

The IOA language[13] is a formal language for describing I/O automata and their properties. IOA code
may be considered either a specification or a program. In either case, IOA yields precise, direct descriptions.
States are represented by the values of variables rather than just by members of an unstructured set. IOA
transitions are described in precondition-effect (or guarded-command) style, rather than as state-action-state

1We omit discussion oftasks, which are sets of non-input actions.

4



triples. A precondition is a predicate on the the automaton state and the parameters of a transition that must
hold whenever that transition executes. An effects clause specifies the result of a transition.

Due to its dual role, the language supports both axiomatic and operational descriptions of programming
constructs. Thus state changes can be described through imperative programming constructs like variable
assignments and simple, bounded loops or by declarative predicate assertions restricting the relation of the
post-state to the pre-state.

The language directly reflects the non-deterministic nature of the I/O automaton model. One or many
transitions may be enabled at any time. However, only one is executed at a time. The selection of which
enabled action to execute is a source ofimplicit non-determinism. The chooseoperator providesexplicit
non-determinismin selecting values from (possibly infinite) sets. These two types of non-determinism are
derived directly from the underlying model. The first reflects the fact that many actions may be enabled
in any state. The second reflects the fact that a state-action pair(s, π) may not uniquely determine the
following states′ in a transition relation.

3.3 Related Work

Goldman’s Spectrum System introduced a formally-defined, purely operational programming language for
describing I/O automata [18]. He was able to execute this language in a single machine simulator. He did
not connect the language to any other tools. However, he suggested a strategy for distributed simulation
using expensive global synchronizations. More recently, Goldman’s Programmers’ Playground also uses a
language with formal semantics expressed in terms of I/O automata [19].

Cheiner and Shvartsman experimented with methods for generating code by hand from I/O automaton
descriptions [7]. They demonstrated their method by hand translating the Eventually Serializable Data
Service of Luchangcoet al. [11] into an executable, distributed implementation in C++ communicating via
MPI. Unfortunately, their general implementation strategy uses costly reservation-based synchronization
methods to avoid deadlock.

To our knowledge, no system has yet combined a language with formally specified semantics, auto-
mated proof assistants, simulators, and compilers. Several tools have been based on the CSP model [20].
The semantics of the Occam parallel computation language is defined in CSP [1]. While there are Occam
compilers, we have found no evidence of verification tools for Occam programs. Formal Systems, Ltd.,
developed a machine-readable language for CSP.

The CCS process algebra [28] and I/O automata frameworks share several similarities as well as many
differences. The work in [37] presents a semantic-based comparison of the two frameworks; the work in [15]
evaluates and compares the applicability and usability of a value-passing version of CCS with I/O automata
on specifying and verifying distributed algorithms. Cleavelandet al. have developed a series of tools based
on the CCS process algebra. The Concurrency Workbench [9] and its successor the Concurrency Factory
(CF) [8] are toolkits for the analysis of finite-state concurrent systems specified as CCS expressions. They
include support for verification, simulation, and compilation. A model checking tool supports verifying
bisimulations. A compilation tool translates specifications into Facile code. To the best of our knowledge, no
complex distributed algorithm such as GHS has been specified, verified and implemented (in an automated
way) using the “CCS-CF-Facile” framework.

4 Compiling and Running IOA

IOA can describe many systems architectures, including centralized designs, shared memory implementa-
tions, or message passing arrangements. Not every IOA specification may be compiled. An IOA program
admissible for compilation must satisfy several constraints on its syntax, structure, and semantics. Pro-
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grammers must perform two preprocessing steps before compilation. First, the programmer must combine
the original “algorithm automaton” with several auxiliary automata. Second, the programmer must provide
additional annotations to this combined program to resolve the non-determinism inherent in the underlying
I/O automaton denoted by the IOA program. The program can then be compiled into Java and thence into
an executable. At runtime the user must provide information about the programs environment as well as the
actual input to the program.

As proved elsewhere [33, 35], the system generated preserves the safety properties of the original IOA
specification provided certain conditions are met. Those conditions are that the model of the MPI communi-
cation service behavior given in [33] is accurate, that the hand-coded datatype library used by the compiler
correctly implements its semantic specification, and that programmer annotations correctly initialize the
automaton.

4.1 Imperative IOA Syntax

As mentioned in Section 3.2, IOA supports both operational and axiomatic descriptions of programming
constructs. The IOA compiler translates only imperative IOA constructs. Therefore, IOA programs submit-
ted for compilation cannot include certain IOA language constructs. Effects clauses cannot includeensuring

clauses that relate pre-states to post-states declaratively. Throughout the program, predicates must be quan-
tifier free. Currently, the compiler handles only restricted forms of loops that explicitly specify the set of
values over which to iterate.

4.2 Node-channel Form

The IOA compiler targets only message passing systems. The goal is to create a running system consisting
of the compiled code and the existing MPI service that faithfully emulates the original distributed algorithm
written in IOA. Each node in the target system runs a Java interpreter with its own console interface and
communicates with other hosts via (a subset of) the Message Passing Interface (MPI) [12, 2]. (By “console”
we mean any local source of input to the automaton. In particular, we call any input that Java treats as a data
stream — other than the MPI connection — the console.) We note that we use only four of the (myriad)
methods provided by MPI:

Isend sends a message to a specified destination and returns a handle to name the particular send.

test tests a handle to see if the particular send has completed.

Iprobe polls to see if an incoming message is available.

recv returns a message when available.

As already mentioned in Section 2, the IOA compiler is able to preserve the externally visible behavior
of the system without adding any synchronization overhead because we require the programmer to explic-
itly model the various sources of concurrency in the system: the multiple machines in the system and the
communication channels. Thus, we require that systems submitted to the IOA compiler be described in
node-channelform. The IOA programs to be compiled are the nodes. We call these programsalgorithm
automata.

As discussed before, all communication between nodes in the system uses asynchronous, reliable, one-
way, FIFO channels. These channels are implemented by a combination of the underlying MPI communi-
cation service and mediator automata that are composed with the algorithm automata before compilation.
The recvMediator automaton (Appendix A) mediates between the algorithm automaton and an incoming
channel, while thesendMediator automaton (Appendix A) handles messages to outgoing channels. Each
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of the n node programs connects to up to2n mediator automata (one for each of its channels). Figure 1
illustrates how a mediator automaton is composed with MPI to create a reliable, FIFO channel.

Figure 1: Auxiliary automata mediate between MPI and algorithm automata to yield a reliable FIFO channel.

Thus, algorithm automata may assume channels with very simple semantics and a very simpleSEND/RECEIVE

interface even though the underlying network implementation is more complex. In the distributed graph al-
gorithms we implement, the network is the graph. That is, usually, nodes map to machines and edges to
networks. (The exceptions are experiments in which we run multiple nodes on a single machine.)

4.3 Composition

The completed design is called thecomposite node automatonand is described as the composition of the
algorithm automaton with its associated mediator automata. Acomposertool [34] expands this composition
into a new, equivalent IOA program in primitive form where each piece of the automaton is explicitly
instantiated. The resultingnode automatondescribes all computation to be performed on one machine. This
expanded node automaton (annotated as described below) is the final input program to the IOA compiler.
The compiler translates each node automaton into its own Java program suitable to run on the target host.

The node automaton combining theGHSProcess and standard mediator automata is shown in the Ap-
pendix. In that automaton, theSENDandRECEIVE actions arehidden so that interfaces between algorithm and
mediator automata are not externally visible.

4.4 Input-delay Insensitivity

The I/O automaton model requires that input actions are always enabled. However, our Java implementation
is not input enabled, it receives input only when the program asks for it by invoking a method. Therefore,
each IOA system submitted for compilation must satisfy a semantic constraint. The system as a whole
must behave correctly (as defined by the programmer) even if inputs to any node from its local console are
delayed. This is a technical constraint that most interesting distributed algorithms can be altered to meet.
For this purpose, our code generator deploys input buffers; a producer/consumer style is used where the
act of consuming inputs from the buffer falsifies the precondition of the consumer so that the consuming
transition never tries to read an empty buffer. The producer can always safely append new inputs to the
buffer but there is no guarantee as to when the input will be consumed.

4.5 Resolving Non-determinism

As mentioned in Section 2.5, before compiling a node automaton, a programmer must resolve both the
implicit non-determinism inherent in any IOA program and any explicit non-determinism introduced by
choosestatements.

4.5.1 Scheduling

Execution of an automaton proceeds in a loop that selects an enabled transition to execute and then perform-
ing the effects of that transition. Picking a transition to execute includes picking a transition definition and
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the values of its parameters. It is possible and, in fact, common that the set of enabled actions in any state
is infinite. In general, deciding membership in the set of enabled actions is undecidable because transition
preconditions may be arbitrary predicates in first-order logic. Thus, there is no simple and general search
method for finding an enabled action. Even it when it is possible to find an enabled action, finding an action
that makes actual progress may be difficult.

Therefore, before compilation, we require the programmer to write a schedule. A schedule is a func-
tion of the state of the local node that picks the next action to execute at that node. In format, a schedule
is written at the IOA level in an auxiliarynon-determinism resolution language(NDR) consisting of im-
perative programming constructs similar to those used in IOA effects clauses. The NDRfire statement
causes a transition to run and selects the values of its parameters. Schedules may reference, but not modify,
automaton state variables. However, schedules may declare and modify additional variables local to the
schedule [30, 10, 36].

Conceptually, adding an NDR schedule to an IOA program changes it in three ways. The NDR schedule
adds new variables, modifies each transition to use the new variables, and provides a computablenext-action
function of the augmented state. The new state variables consist of a program counter and whatever variables
the programmer uses in the NDR schedule program. Each locally controlled action is modified in two ways.
First, the precondition is strengthened so that the action is enabled only if the program counter names the
action. Second, at the end of the effects the program counter is assigned the next action as computed by
applying the next-action function to the automaton state. The schedule annotation used to run GHS is
included in Appendix C.2.

4.5.2 Choosing

The choosestatement introduces explicit non-determinism in IOA. When achoosestatement is executed, an
IOA program selects an arbitrary value from a specified set. For example, the statement

num := choose n:Int where 0 ≤ n ∧ n < 3

assigns either 0, 1, or 2 tonum. As with finding parametrized transitions to schedule, finding values to satisfy
the where predicates ofchoosestatements is hard. So, again, we require the IOA programmer to resolve the
non-determinism. In this case, the programmer annotates thechoosestatement with an NDRdeterminator
block. The yield statement specifies the value to resolve a non-deterministic choice. Determinator blocks
may reference, but not modify, automaton state variables.

4.5.3 Initialization

The execution of an I/O automaton may start in any of a set of states. In an IOA program, there are two
ways to denote its start states. First, each state variable may be assigned an initial value. That initial
value may be a simple term or an explicit choice. In the latter case, the choice must be annotated with
a choice determinator block to select the initial value before code generation. Second, the initial values
of state variables may be collectively constrained by aninitially clause. As with preconditions, aninitially

clause may be an arbitrary predicate in first order logic. Thus, there is no simple search method for finding
an assignment of values to state variables to satisfy aninitially clause. Therefore, we require the IOA
programmer to annotate theinitially predicate with an NDR determinator block. However, unlike NDR
programs for automaton schedulesinitially determinator blocks may assign values directly to state variables.
The initially det block for GHS is included in Appendix C.2.

4.6 Runtime Preparation

As mentioned above a system admissible for compilation must be described as a collection of nodes and
channels. While each node in the system may run distinct code, often the nodes are symmetric. That is, each
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node in the system is identical up to parametrization and input. For example, the nodes in the GHS algorithm
are distinguished only by a unique integer parameter. Automaton parameters can also be used to give every
node in the system some common information that is not known until runtime; for example, the precise
topology of the network on which the system is running. If a compiled automaton is parametrized, the
runtime system reads that information from a local file during initialization. In our testbed, certain special
automaton parameters are automatically initialized at runtime. Therank of a node is a unique non-negative
integer provided by MPI. Similarly, thesize of the system is the number of nodes connected by MPI. Input
action invocations are also read from files (or file descriptors) at runtime. A description of the format for
such invocations is given in [36].

Figure 2 provides a graphical outline of the compilation procedure.

Figure 2:Given an Input/Output automaton specification of a distributed algorithm: (a) Write theprocess automaton
in IOA; one automaton per node, connected by simple send and receive interfaces to channels.(b) Compose the process
automaton with themediator automata(standard IOA library programs that provide simple FIFO-channel semantics to
the algorithm) to form thecomposite node automaton. Using the composer tool, expand the composite node automaton
to obtain thenode automaton. Annotate the node automaton with a non-determinism resolving schedule block, to
produce thescheduled node automaton. (c) Compile, using the IOA compiler, the scheduled node automaton to a Java
class. By compiling the Java class we obtain an executable program in which communication is performed via MPI.

5 Implementing LCR Leader Election

The first algorithm to be automatically compiled with the IOA Compiler was the asynchronous version of
the algorithm of Le Lann, Chang and Roberts (LCR) [23, 4] for leader election in a ring network. In LCR,
each node sends its identifier around the ring. When a node receives an incoming identifier, it compares that
identifier to its own. It propagates the identifier to its clockwise neighbor only if the incoming identifier is
greater than its own. The node that receives an incoming identifier equal to its own is elected as the leader.
Informally, it can be seen that only the largest identifier completes a full circuit around the ring and the node
that sent it is elected leader. A formal specification of the algorithm as an I/O automaton and a proof of its
correctness can be found in [24] (Section 15.1.1).

LCR Leader Election process automaton

type Status = enumerat ion o f idle, voting,
elected, announced

automaton LCRProcess(rank: Int, size: Int)
s i g n a t u r e

input vote

i npu t RECEIVE(m: Int, cons t mod(rank - 1,
size), cons t rank: Int)

output SEND(m: Int, cons t rank: Int,
cons t mod(rank+1, size))

output leader( cons t rank)
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s t a t e s
pending: Mset[Int] : = {rank},
status: Status : = idle

t r a n s i t i o n s
input vote

e f f status : = voting
i npu t RECEIVE(m, j, i) where m > i

e f f pending : = insert(m, pending)
i npu t RECEIVE(m, j, i) where m < i

i npu t RECEIVE(i, j, i)
e f f status : = elected

output SEND(m, i, j)
pre status 6= idle ∧ m ∈ pending
e f f pending : = delete(m, pending)

output leader(rank)
pre status = elected
e f f status : = announced

The automaton definition that appears in [24](Section 15.1) was used, with some minor modifications.
(Theconst keyword means that the transition parameter is going to have the same value every time the tran-
sition is fired.) For all the algorithms that follow, the nodes are automatically numbered from 0 to (size - 1).
The automataLCRProcess , LCRNode, SendMediator andReceiveMediator were written. The mediator automata
implement the channel automata integrated with MPI functionality, and can be found in Appendix A. The
LCRNode automaton, included in Appendix B.1 simply composes the mediator automata with the process
automaton. This automaton was automatically expanded and a schedule was written for the composition,
which appears in Appendix B.2. The implementation was tested on a number of different configurations,
and ran correctly in all cases.

6 Implementing Spanning Tree and Broadcast/Convergecast

6.1 Asynchronous Spanning Tree

The next algorithm we implemented was an Asynchronous Spanning Tree algorithm for finding a rooted
spanning tree in an arbitrary connected graph based on the work of Segal [31] and Chang [5]. This was
the first test of the Toolkit on arbitrary graphs, where each node had more than one incoming and outgoing
communication channels. In this algorithm all nodes are initially “unmarked” except for a “source node”
(the root of the resulting spanning tree). The source node sends asearchmessage to its neighbors. When
an unmarked node receives a search message, it marks itself and chooses the node from which the search
message has arrived as its parent. It then propagates the search message to its neighbors. If the node is
already marked, it just propagates the message to its neighbors (in other words, a parent of a nodei is the
node from whichi has received a search message for thefirst time). The spanning tree is formed by the
edges between the parent nodes with their children. The AsynchSpanningTree automaton, as defined in [24]
(Section 15.3) was used. The process automaton is listed below2. The schedule for the composition of this
automaton with the mediator ones appears in Appendix B.3.

Asynchronous spanning tree process automaton

type Message = enumerat ion o f search, null
automaton sTreeProcess(i: Int, nbrs: Set[Int])
s i g n a t u r e

input RECEIVE(m: Message,
cons t i: Int, j: Int)

output SEND(m: Message,
cons t i: Int, j: Int)

output PARENT(j: Int)
s t a t e s

parent: Null[Int] : = nil,
reported: Bool : = false,
send: Map[Int, Message] : = empty

t r a n s i t i o n s

input RECEIVE(m, i, j)
e f f

i f i 6= 0 ∧ parent = nil then
parent : = embed(j);
f o r k: Int i n nbrs - {j} do

send[k] : = search
od

f i
output SEND(m, i, j)

pre send[j] = search
e f f send[j] : = null

output PARENT(j)
pre parent.val = j ∧ ¬reported

2For an explanation of the constructs appearing in the the code (such asNull[] or embed() ) we refer the reader to [13,
Appendix A.11]
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e f f reported : = true

6.2 Asynchronous Broadcast Convergecast

The successful implementation of the spanning tree algorithm led to the implementation of an Asynchronous
Broadcast/Convergecast algorithm, which is essentially an extension of the previous algorithm: Along with
the construction of a spanning tree, a broadcast and convergecast takes place (the root node broadcasts a
message down the tree and acknowledgments are passed up the tree from the leaves with each parent sending
an acknowledgment up the tree only after receiving one from each of its children). A formal specification
and a proof of correctness is given in [24](Section 15.3). In our tests, the root was node 0, and the valuev1
(a dummy value) was broadcast on the network. The process automaton is shown below. The schedule for
the composition of this automaton with the mediator ones appears in Appendix B.4.

Broadcast-convergecast process automaton

type Kind = enumerat ion o f bcast, ack
type Val = enumerat ion o f null, v1
type BCastMsg = t u p l e o f kind: Kind, v: Val
type Message = union o f msg: BCastMsg,

kind: Kind

automaton bcastProcess(rank: Int,
nbrs: Set[Int])

s i g n a t u r e
input RECEIVE(m: Message, cons t rank,

j: Int)
output SEND(m: Message, cons t rank,

j: Int)
i n t e r n a l report( cons t rank)

s t a t e s
val: Val : = null,
parent: Null[Int] : = nil,
reported: Bool : = false,
acked: Set[Int] : = {},
send: Map[Int, Seq[Message]]

i n i t i a l l y
rank = 0 ⇒

(val = v1 ∧
( ∀ j: Int j ∈ nbrs ⇒

send[j] = {msg([bcast, val])} ))
t r a n s i t i o n s

output SEND(m, rank, j)
pre m = head(send[j])

e f f send[j] : = tail(send[j])
i npu t RECEIVE(m, rank, j)

e f f
i f m = kind(ack) then

acked : = acked ∪ {j}
e l s e

i f val = null then
val : = m.msg.v;
parent : = embed(j);
f o r k:Int i n nbrs - {j} do

send[k] : = send[k] ` m
od

e l s e
send[j] : = send[j] ` kind(ack)

f i
f i

i n t e r n a l report(rank) where rank = 0
pre acked = nbrs;

reported = false
e f f reported : = true

i n t e r n a l report(rank) where rank 6= 0
pre parent 6= nil;

acked = nbrs - {parent.val};
reported = false

e f f send[parent.val] : =
send[parent.val] ` kind(ack);

reported : = true;

7 Implementing General Leader Election Algorithms

We continued with two Leader Election algorithms on arbitrary connected graphs. The first one is an exten-
sion of the Asynchronous Broadcast/Convergecast algorithm, where each node performs its own broadcast
to find out whether it is the leader (each node broadcasts its identifier, and it receives the identifiers of all
other nodes – the one with the largest identifier is elected as the leader). The second one computes the
leader based on a given spanning tree of the graph. Our code for each of these algorithms was based on
the formal specification and a proof of correctness given in Chapter 15 of [24]. In each case, we were able,
using the IOA compiler, to automatically produce an implementation of the algorithm in Java code and run
it successfully on a network of workstations and run several experiments.

11



7.1 Leader Election Using Broadcast Convergecast

The main idea of the Leader Election Using Broadcast Convergecast algorithm [24, page 500] is to have
every node act as a source node and create its own spanning tree, broadcast its UID using this spanning tree
and hear from all the other nodes via a convergecast. During this convergecast, along with the acknowledge
message, the children also send what they consider as the maximum UID in the network. The parents gather
the maximum UIDs from the children, compare it to their own UID and send the maximum to their own
parents. Thus, each source node learns the maximum UID in the network and the node whose UID equals
the maximum one announces itself as a leader. The process automaton is given below, and the schedule for
its composition with the mediator automata in Appendix B.5. The implementation was tested on various
logical network topologies, terminating correctly every time.

Leader Election with Broadcast-convergecast process automaton

type Kind = enumerat ion o f bcast, ack
type Val = enumerat ion o f null, v1
type BCastMsg = t u p l e o f kind: Kind, v: Val
type AckMsg = t u p l e o f kind:Kind, mx: Int
type MSG= union o f bmsg: BCastMsg, amsg:

AckMsg, kind: Kind
type Message = t u p l e o f msg: MSG, source: Int

automaton bcastLeaderProcess(rank: Int, size: Int)
s i g n a t u r e

input RECEIVE(m: Message, i: Int, j: Int)
output SEND(m: Message, i: Int, j: Int)
i n t e r n a l report(i: Int, source: Int)
i n t e r n a l finished
output LEADER

s t a t e s
nbrs: Set[Int],
val: Map[Int, Int],
parent: Map[Int, Null[Int]],
reported: Map[Int, Bool],
acked: Map[Int, Set[Int]],
send: Map[Int, Int, Seq[Message]],
max: Map[Int, Int],
elected: Bool : = false,
announced: Bool : = false

i n i t i a l l y
val[j] = rank ∧
( ∀ j: Int

((0 ≤ j ∧ j < size) ⇒
rank 6= j ⇒ val[j] = nil ∧
parent[j] = -1 ∧
acked[j] = {} ∧
max[j] = rank ∧
( ∀ k:Int

((0 ≤ k ∧ k < size) ⇒
send[j,k] = {}) ∧

(k ∈ nbrs ∧ rank = j) ⇒
send[j,k] =

{[bmsg([bcast, v1]), j]}))))
t r a n s i t i o n s
output SEND(m, i, j)

pre m = head(send[m.source, j])
e f f send[m.source, j] : =

tail(send[m.source, j])
i npu t RECEIVE(m, i, j)

e f f
i f m.msg = kind(ack) then

acked[m.source] : = acked[m.source]
∪ {j}

e l s e i f tag(m.msg) = amsg then
i f max[m.source] < m.msg.amsg.mx then

max[m.source] : = m.msg.amsg.mx;
f i ;
acked[m.source] : = acked[m.source]

∪ {j}
e l s e %BcastMsg

i f val[m.source] = -1 then
val[m.source] : = m.msg.bmsg.w;
parent[m.source] : = j;
f o r k:Int i n nbrs - {j} do

send[m.source, k] : =
send[m.source, k] ` m

od
e l s e

send[m.source,j] : = send[m.source,j]
` [kind(ack), m.source]

f i
f i

i n t e r n a l finished
pre acked[rank] = nbrs ∧ ¬reported[rank]
e f f reported[rank] : = true;

i f (max[rank] = rank) then
elected : = true

f i ;
output LEADER

pre elected ∧ ¬announced
e f f announced : = true

i n t e r n a l report(i, source) where i 6= source
pre parent[source] 6= -1 ∧

acked[source] = nbrs - {parent[source]} ∧
¬reported[source]

e f f send[source, parent[source]] : =
send[source, parent[source]]
` [amsg([ack, max[source]]), source];

reported[source] : = true;
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7.2 Unrooted Spanning Tree to Leader Election

The algorithmSTtoLeader of [24](page 501) was implemented as the next test for the Toolkit. The algo-
rithm takes as input an unrooted spanning tree and returns a leader. The automaton listed below was written,
according to the description of the algorithm in [24]. The schedule for its composition with the mediator
automata appears in Appendix B.6.

Unrooted Spanning Tree to Leader Election process automaton

type Status = enumerat ion o f idle, elected,
announced

type Message = enumerat ion o f elect

automaton sTreeLeaderProcess(rank: Int,
nbrs:Set[Int])

s i g n a t u r e
input RECEIVE(m: Message, cons t

rank: Int, j: Int)
output SEND(m: Message, cons t

rank: Int, j: Int)
output leader

s t a t e s
receivedElect: Set[Int] : = {},
sentElect: Set[Int] : = {},
status: Status : = idle,
send: Map[Int, Seq[Message]]

i n i t i a l l y
size(nbrs) = 1 ⇒

send[chooseRandom(nbrs)] = {elect}
t r a n s i t i o n s

input RECEIVE(m, i, j; l o c a l t: Int)

e f f
receivedElect : = receivedElect ∪ {j};
i f size(receivedElect) =

size(nbrs)-1 then
t : = chooseRandom(nbrs -

receivedElect);
send[t] : = send[t] ` elect;
sentElect : = sentElect ∪ {t};

e l s e i f receivedElect = nbrs then
i f j ∈ sentElect then

i f i > j then status : = elected f i
e l s e

status : = elected
f i

f i
output SEND(m, i, j)

pre m = head(send[j])
e f f send[j] : = tail(send[j])

output leader
pre status = elected
e f f status : = announced

8 Implementing the GHS Algorithm

The successful implementation of the (simple) algorithms above made us confident that it would be possi-
ble, using the Toolkit, to implement more complex distributed algorithms. Our algorithm of choice to test
the Toolkit’s capabilities was the seminal algorithm of Gallager, Humblet and Spira [29] for finding the
minimum-weight spanning tree in an arbitrary connected graph with unique edge weights.

In the GHS algorithm, the nodes form themselves into components, which combine to form larger
components. Initially each node forms a singleton component. Each component has a leader and a spanning
tree that is a subgraph of the eventually formed minimum spanning tree. The identifier of the leader is
used as the identifier of the component. Within each component, the nodes cooperatively compute the
minimum-weight outgoing edge for the entire component. This is done as follows: The leader broadcasts
a search request along tree edges. Each node finds, among its incident edges, the one of minimum weight
that is outgoing from the component (if any) and it reports it to the leader. The leader then determines
the minimum-weight outgoing edge (which will be included in the minimum spanning tree) of the entire
component and a message is sent out over that edge to the component on the other side. The two components
combine into a new larger component and a procedure is carried out to elect the leader of the newly formed
component. After enough combinations have occurred, all connected nodes in the given graph are included
in a single connected component. The spanning tree of the final single component is the minimum spanning
tree of the graph.

Welch, Lamport and Lynch [38] described the GHS algorithm using I/O automata and formally proved
its correctness. We derived our IOA implementation of the algorithm from that description. Our IOA code of
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the GHS automaton (due its length) is given in Appendix C.1. Only technical modifications were necessary
to convert the I/O automata description from [38] into IOA code recognizable by the IOA compiler. First,
we introduced some variables that were not defined in the I/O automaton description as formal parameters
of the automaton in the IOA code. For example, in our implementation, information about the edges of
the graph is encoded inlinks andweights automaton parameters. In [38] that information is assumed to
be available in a global variable. Second, the I/O automaton description uses the notion of a “procedure”
to avoid code repetition. The IOA language does not support procedure calls with side-effects because call
stacks and procedure parameters complicate many proofs. Thus, we had to write the body of the procedures
several times in our code. Third, statements like “let S = {〈p, r〉 : lstatus(〈p, r〉) = branch, r 6= q}” were
converted intofor loops that computedS.

The schedule block we used to run GHS can be found in Appendix C.2. In that block, each variable
reference is qualified by the component automaton (P, SM[*] , or RM[*] ) in which the variable appears. We
also introduce new variables to track the progress of the schedule. The schedule block is structured as a loop
that iterates over the neighbors of the node. For each neighbor, the schedule checks if each action is enabled
and, if so, fires it with appropriate parametrization. As formulated in [38], individual nodes do not know
when the algorithm completes. Therefore, we terminated the algorithm manually after all nodes had output
their status. The effect of the schedule is to select a legal execution of the automaton. When an action is
fired at runtime, the precondition of the action is automatically checked.

Other than the schedule block, the changes necessary to derive compilable IOA code from the description
in [38] can be described as syntactic. It follows that our IOA specification preserves the correctness of the
GHS algorithm, as was formally proved in [38]. It follows from the correctness of the compiler as proved
in [33] that the running implementation also preserves the safety properties proved by Welchet al. provided
certain conditions are met (see Section 4).

From our IOA specification, the compiler produced the Java code to implement the algorithm, enabling
us to run the algorithm on a network of workstations. In every experiment, the algorithm terminated and
reported the minimum spanning tree correctly.

9 Performance

We have run our algorithms’ implementations (described in Sections 5–8) to demonstrate the functionality
of the generated code, measure some of its basic properties, and make some observations about the com-
pilation process. Measuring the performance (runtime and message complexity) of the running algorithms
establishes some quantitative benchmarks for comparing the current version of the compiler to future opti-
mizations or any alternative implementations3.

Our experiments exercise many features of the compiler. First and foremost, we show that distributed
message-passing algorithms run and pass messages as expected. In doing so, we employ most of the cata-
log of IOA datatypes, datatype constructors, and record types. The basic datatypes are booleans, integers,
natural numbers, characters, and strings. The type constructors are arrays, sets, multisets, sequences, and
mappings. The record types are enumerations, tuples, and unions. Of these, we use all but naturals, charac-
ters, and strings. In addition, we introduce new and enhanced datatypes not in the basic IOA language. For
example, we enhance theSet andMset datatype constructors with choice operators and introduce aNull type
constructor. We demonstrate the use of all the supported control structures in the language including loops
that iterate over the elements of finite sets.

For our experiments we used up to 24 machines from the MIT CSAIL Theory of Computation local
area network. The machine processors ranged from 900MHz Pentium IIIs to 3GHz Pentium IVs, and all
the machines were running Linux, Redhat 9.0 to Fedora Core 2. We note that the network connectivity

3Provided that the same platform and network configuration is used.
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was not optimized at all (the machines were essentially people’s desktops, interconnected via lots of routers
and switches throughout a building). The implementations were tested on a number of logical network
topologies. All the tests we report here were performed with each node running on a different machine.

9.1 Performance of Simple Algorithm Implementations

Figure 3 displays the runtime performance of our automated implementations for the algorithms LCR,
Broadcast/Convergecast, Spanning Tree to Leader Election and Broadcast to Leader Election. The runtime
values are averaged over 10 runs of the algorithm.
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Figure 3:Runtime Performance of the automated implementations of LCR, Broadcast/convergecast, Spanning Tree
to Leader Election and Broadcast to Leader Election algorithms.

LCR Runtime The theoretical message complexity of LCR depends on the order of the node identifiers
in the ring, and ranges fromO(n) to O(n2), wheren is the number of nodes in the network. In all our
configurations, the node identifiers were ordered in the most optimal way (in increasing order), thus around
2n messages were exchanged. The firstn messages can be sent simultaneously, while the lastn messages
must be linearized. Thesen linearized messages, where nodes receive the message of the largest node and
forward it to their clockwise neighbor, result in a linear runtime for the algorithm overall, because message
delay is much larger than local computation. We therefore expect LCR to perform linearly with the number
of nodes in these optimal configurations. As Figure 3 indicates, with the exception of a “spike” at 12 nodes,
the experimental runtime tends to be linear4.

4The spikes are caused by the very random underlying physical topology of the nodes in different cluster sizes, and because
the number of messages exchanged was small, the runtime had high deviation. In the case of BLE, the huge number of messages
reduced the deviation, and hence no spikes appear, as it can be observed in Figure 3.
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Broadcast/Convergecast Runtime The theoretical time complexity for the asynchronous broadcast/con-
vergecast algorithm isO(n) [24]. Our experimental results (Figure 3) once again agree with the theoretical
complexity (not considering the spikes).

Spanning Tree to Leader Election Runtime The time complexity for the leader election algorithm with
a given spanning tree is once againO(n) [24]. As Figure 3 indicates, the experimental runtime agrees with
O(n) (not considering the spikes).

Broadcast Leader Election Runtime The leader election algorithm that uses simultaneous broadcast/-
convergecast should also run withinO(n) time, however the message complexity is much larger. The
experimental results of Figure 3 agree with the time complexity. The absolute values of the running times,
however were much larger compared to the previous algorithms. This is expected since a much larger
number of messages are exchanged (on the order ofn2).

9.2 Performance of GHS Implementation

Several runtime measurements were made which can be summarized in Figure 4. The graphs plot the
execution time (left Y axis) and the total number of messages sent by all nodes (right Y axis) against the
number of participating nodes. The theoretical runtime of the algorithmc · n log n [24], is also shown
(for c = 0.25). The actual runtime seems to correspond well with the theoretical one, and an important
observation is that the execution time does not “explode” as the number of machines used increases, which
gives some indication of the possible scalable nature of the implementation. The theoretical upper bound on
the number of messages is5n log n + 2|E|, and is also plotted in the right graph. As expected, the actual
number of messages exchanged was on average lower than this upper bound.
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Figure 4:Performance of the automated GHS implementation. The theoretical complexities are also plotted.

We believe that the experimental results imply that the performance of the implementation (mainly in
terms of execution time) is “reasonable”, considering that the implementation code was obtained by an
automatic translation and not by an optimized, manual implementation of the original algorithm (and the
network connectivity was not optimized – factors like DNS resolution, for example, add a lot of latency to
the connections). Therefore, we have demonstrated that it is possible to obtain automated implementations
(that perform reasonably well) of complex distributed algorithms (such as GHS) using the IOA toolkit.
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9.3 Observations

Programming algorithms from the literature with IOA was generally a smooth process. Writing schedules
was both easier and harder than expected: For the algorithms in our case studies, schedules followed fairly
predictable patterns. The arrival of a message or an input action triggers the execution of a cascade of
transitions. The schedules for our case studies essentially loop over these possible sources of input and when
an input arrives the schedule performs the entire resulting cascade of transitions before checking for the next
input. Thus, the basic structure of a schedule turned out to be very easy to outline. On the other hand, our
experience was that most programming time was spent debugging NDR schedules. In this regard, runtime
checks on NDR generated values (e.g., precondition checks) proved valuable. Unfortunately, livelock was an
all too frequent result of a buggy schedule. Writing the conditional guards forfire statements was particularly
tricky when polling for items from queues. In particular, it was a frequent bug that a schedule never executed
any transitions.

Finally it is worth mentioning that the time required for MPI to set up all the connections and enable
nodes to initialize was not measured in the runtime results. However, when the number of nodes was large,
the time was also quite significant (around 5-10 minutes). A possible explanation for this is the following:
MPI sets up a connection between all pairs of nodes, even if these connections are not necessary. For
example, ann-node LCR needs onlyn connections, while MPI sets upΘ(n2) connections. Perhaps another
communication interface, which gives more control over these issues (e.g., Java RMI or Java Sockets with
TCP) could be used instead of MPI. As discussed in the next section, ongoing work is heading toward this
direction.

10 Conclusions

Direct compilation of formal models can enhance the application of formal methods to the development of
distributed algorithms. Distributed systems specified as message-passing IOA programs can be automati-
cally compiled when the programmer supplies annotations to resolve non-deterministic choices. As shown
elsewhere, the resulting implementations are guaranteed to maintain the safety properties of the original
program under reasonable assumptions. To the best of our knowledge, our implementation of GHS (using
the IOA Toolkit) is the first example of a complex, distributed algorithm that has been formally specified,
proved correct, and automatically implemented using a common formal methodology. Hence, this work has
demonstrated that it is feasible to use formal methods, not only to specify and verify complex distributed
algorithms, but also to automatically implement them (with reasonable performance) in a message passing
environment.

There are several future research directions that emanate from the presented work. One direction is to
investigating whether the automated translation can be optimized to improve efficiency. As mentioned in
the previous section, one can use our experiments as benchmarks for comparison with future versions of the
code generator. Furthermore, an important research exercise worth pursuing is to compare the performance
of our automated algorithm implementations with the ones obtained using a different methodology; for
example, specify and verify algorithm GHS using the CCS process algebra and then use the Concurrency
Factory approach [8] together with facile to obtain experimental data for comparison.

Recall that the code produced from the IOA code generator preserves thesafetyproperties of the IOA
specification. An important topic for future investigation is to enable the code generator to also provide some
kind of livenessguarantees. The preservation of liveness properties depends on the NDR schedules written
to resolve non-determinism. Unfortunately no formal semantics have been given for NDR. Therefore, in
order to make any claims about the liveness of the generated code, one would first need a formal model for
NDR and then investigate how NDR would preserve the liveness properties proved for the IOA specification
(before it is fed into the compiler).
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Another future research direction is to enable the automated implementation of IOA-specified algorithms
on WANs with dynamic node participation. Currently the compiler is limited to static participation and use
in LANs due to the use of MPI for communication. As explained in Section 2.2, the compiler design is
general enough to enable the use of other communication paradigms. In [17] an alternative communication
paradigm is suggested (Java Sockets with TCP) that enables the automated implementation of algorithms
that have dynamic participation (nodes may join and leave the computation at any time). Ongoing work is
attempting to incorporate this alternative paradigm into the IOA compiler.

The TIOA language (an extension of the IOA language) models distributed systems with timing con-
straints as collections of interacting state machines, called Timed Input/Output Automata (an extension of
Input/Output Automata) [21]. A TIOA toolkit is underway [25] which (so far) includes a TIOA syntax and
type checker, a TIOA simulator (with limited functionality), a model checker and a theorem prover. A very
challenging research direction is to develop a TIOA code generator, as several issues need to be addressed
in order for one to be able to incorporate time into the IOA complier.

Acknowledgments. We thank the anonymous reviewers for their constructive comments that helped us to
significantly improve the presentation of this paper.
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APPENDIX

A Mediator automata

SendMediator Automaton

type sCall = enumerat ion o f idle, Isend, test
automaton SendMediator(Msg, Node:Type, i:Node, j:Node)

assumes Infinite(Handle)
s i g n a t u r e

input SEND(m: Msg, cons t i, cons t j)
output Isend(m: Msg, cons t i, cons t j)
i npu t resp_Isend(handle:Handle, cons t i, cons t j)
output test(handle:Handle, cons t i, cons t j)
i npu t resp_test(flag:Bool, cons t i, cons t j)

s t a t e s
status: sCall : = idle,
toSend: Seq[Msg] : = {},
sent: Seq[Msg] : = {},
handles: Seq[Handle] : = {}

t r a n s i t i o n s
input SEND(m, i, j)

e f f toSend : = toSend ` m
output Isend(m,i,j)

pre head(toSend) = m;

status = idle
e f f toSend : = tail(toSend);

sent : = sent ` m;
status : = Isend

i npu t resp_Isend(handle, i, j)
e f f handles : = handles ` handle;

status : = idle
output test(handle, i, j)

pre status = idle;
handle = head(handles)

e f f status : = test
i npu t resp_test(flag, i, j)

e f f i f (flag = true) then
handles : = tail(handles);
sent : = tail(sent)

f i ;
status : = idle

ReceiveMediator Automaton

type rCall = enumerat ion o f idle, receive, Iprobe
automaton ReceiveMediator(Msg, Node: Type,

i: Node, j:Node)
assumes Infinite(Handle)
s i g n a t u r e

output RECEIVE(m:Msg, cons t i, cons t j)
output Iprobe( cons t i, cons t j)
i npu t resp_Iprobe(flag:Bool, cons t i, cons t j)
output receive( cons t i, cons t j)
i npu t resp_receive(m: Msg, cons t i, cons t j)

s t a t e s
status: rCall : = idle,
toRecv: Seq[Msg] : = {},
ready: Bool : = false

t r a n s i t i o n s
output RECEIVE(m, i, j)

pre m = head(toRecv)

e f f toRecv : = tail(toRecv)
output Iprobe(i, j)

pre status = idle;
ready = false

e f f status : = Iprobe
i npu t resp_Iprobe(flag, i, j)

e f f ready : = flag;
status : = idle

output receive(i, j)
pre ready = true;

status = idle
e f f status : = receive

i npu t resp_receive(m, i, j)
e f f toRecv : = toRecv ` m;

ready : = false;
status : = idle

B Schedule blocks

B.1 Composition automaton for LCR Leader Election

automaton LCRNode(rank: Int, size: Int)
components

P: LCRProcess(rank, size);
RM[j:Int]: ReceiveMediator(Int, Int, j, rank)

where j = mod(rank-1, size);
SM[j:Int]: SendMediator(Int, Int, rank, j)

where j = mod(rank+1, size)
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B.2 Schedule block for LCR Leader Election

schedu le
s t a t e s

left : Int : = mod((rank+size) -1,size),
right: Int : = mod(rank+1,size)

do
f i r e input vote;
whi le (true) do

i f P.pending 6= {} then
f i r e output SEND(

chooseRandom(P.pending),
rank, right)

f i ;
i f SM[right].status = idle ∧

SM[right].toSend 6= {} then
f i r e output Isend(

head(SM[right].toSend),rank,right)
f i ;
i f SM[right].status = idle ∧

SM[right].handles 6= {} then

f i r e output test(
head(SM[right].handles),rank,right)

f i ;
i f RM[left].status = idle ∧

¬RM[left].ready then
f i r e output Iprobe(rank, left) f i ;

i f RM[left].status = idle ∧
RM[left].ready then

f i r e output receive(rank, left) f i ;
i f RM[left].toRecv 6= {} then

f i r e output RECEIVE(
head(RM[left].toRecv), left, rank)

f i ;
i f P.status = elected then

f i r e output leader(rank)
f i

od
od

B.3 Schedule block for Spanning Tree formation

schedu le
s t a t e s

nb: Set[Int],
k: Int

do
whi le (true) do

nb : = nbrs;
whi le ( ¬isEmpty(nb)) do

k : = chooseRandom(nb);
nb : = delete(k, nb);
i f P.send[k] = search then

f i r e output SEND(search, rank, k)
f i ;
i f SM[k].status = idle ∧

SM[k].toSend 6= {} then
f i r e output Isend(

head(SM[k].toSend), rank, k)
f i ;
i f SM[k].status = idle ∧

SM[k].handles 6= {} then
f i r e output test(

head(SM[k].handles), rank, k)
f i ;
i f RM[k].status = idle ∧

RM[k].ready = false then
f i r e output Iprobe(rank, k)

f i ;
i f RM[k].status = idle ∧

RM[k].ready = true then
f i r e output receive(rank, k)

f i ;
i f RM[k].toRecv 6= {} then

f i r e output RECEIVE(
head(RM[k].toRecv), rank, k)

f i ;
i f P.parent = k ∧ ¬P.reported then

f i r e output PARENT(k)
f i

od
od

od

B.4 Schedule block for Broadcast/Convergecast

schedu le
s t a t e s

tempNbrs: Set[Int],
k: Int

do
whi le (true) do

tempNbrs : = nbrs;
whi le ( ¬isEmpty(tempNbrs)) do

k : = chooseRandom(tempNbrs);
tempNbrs : = delete(k, tempNbrs);
i f P.send[k] 6= {} then

f i r e output SEND(
head(P.send[k]), rank, k) f i ;

i f SM[k].status = idle ∧
SM[k].toSend 6= {} then

f i r e output Isend(
head(SM[k].toSend), rank, k) f i ;

i f SM[k].status = idle ∧
SM[k].handles 6= {} then

f i r e output test(
head(SM[k].handles), rank, k) f i ;

i f RM[k].status = idle ∧
¬RM[k].ready then

f i r e output Iprobe(rank, k) f i ;
i f RM[k].status = idle ∧

RM[k].ready then
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f i r e output receive(rank, k) f i ;
i f RM[k].toRecv 6= {} then

f i r e output RECEIVE(
head(RM[k].toRecv), rank, k) f i

od;
i f rank = 0 ∧ P.acked = nbrs ∧

¬P.reported then
f i r e i n t e r n a l report(rank) f i ;

i f rank 6= 0 ∧ P.parent 6= nil ∧
P.acked = nbrs - {P.parent.val} ∧
¬P.reported then

f i r e i n t e r n a l report(rank) f i
od

od

B.5 Schedule block for Leader Election with Broadcast/Convergecast

schedu le
s t a t e s

c: Int, % source
tempNbrs: Set[Int],
k: Int

do
whi le (true) do

c : = size;
whi le (c > 0) do

c : = c - 1;
tempNbrs : = nbrs;
whi le ( ¬isEmpty(tempNbrs)) do

k : = chooseRandom(tempNbrs);
tempNbrs : = delete(k, tempNbrs);
i f P.send[c, k] 6= {} then

f i r e output SEND(
head(P.send[c, k]), rank, k) f i ;

i f SM[k].status = idle ∧
SM[k].toSend 6= {} then

f i r e output Isend(
head(SM[k].toSend), rank, k) f i ;

i f SM[k].status = idle ∧
SM[k].handles 6= {} then

f i r e output test(
head(SM[k].handles), rank, k) f i ;

i f RM[k].status = idle ∧
¬RM[k].ready then

f i r e output Iprobe(rank, k) f i ;
i f RM[k].status = idle ∧

RM[k].ready then
f i r e output receive(rank, k) f i ;

i f RM[k].toRecv 6= {} then
f i r e output RECEIVE(
head(RM[k].toRecv), rank, k) f i

od;
i f c 6= rank ∧ P.parent[c] 6= -1 ∧

P.acked[c] = nbrs - {P.parent[c]} ∧
¬P.reported[c] then

f i r e i n t e r n a l report(rank, c) f i ;
i f c = rank ∧ P.acked[rank] = nbrs ∧

¬P.reported[rank] then
f i r e i n t e r n a l finished f i ;

i f P.elected ∧ ¬P.announced then
f i r e output LEADER

f i
od

od
od

B.6 Schedule block for Spanning Tree to Leader Election

schedu le
s t a t e s

tempNbrs: Set[Int],
k: Int

do
whi le (true) do

tempNbrs : = nbrs;
whi le ( ¬isEmpty(tempNbrs)) do

k : = chooseRandom(tempNbrs);
tempNbrs : = delete(k, tempNbrs);
i f P.send[k] 6= {} then

f i r e output SEND(
head(P.send[k]), rank, k) f i ;

i f SM[k].status = idle ∧
SM[k].toSend 6= {} then

f i r e output Isend(
head(SM[k].toSend), rank, k) f i ;

i f SM[k].status = idle ∧
SM[k].handles 6= {} then

f i r e output test(
head(SM[k].handles), rank, k) f i ;

i f RM[k].status = idle ∧
¬RM[k].ready then

f i r e output Iprobe(rank, k) f i ;
i f RM[k].status = idle ∧

RM[k].ready then
f i r e output receive(rank, k) f i ;

i f RM[k].toRecv 6= {} then
f i r e output RECEIVE(

head(RM[k].toRecv), rank, k) f i
od;
i f P.status = elected then

f i r e output leader
f i

od
od
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C GHS IOA Code

C.1 GHS algorithm automaton

type Nstatus = enumerat ion o f sleeping, find, found
type Edge = t u p l e o f s: Int, t: Int
type Link = t u p l e o f s: Int, t: Int
type Lstatus = enumerat ion o f unknown, branch,

rejected
type Msg = enumerat ion o f CONNECT, INITIATE, TEST,

REPORT, ACCEPT, REJECT,
CHANGEROOT

type ConnMsg = t u p l e o f msg: Msg, l: Int
type Status = enumerat ion o f find, found
type InitMsg = t u p l e o f msg: Msg, l: Int,

c: Null[Edge], st: Status
type TestMsg = t u p l e o f msg: Msg, l: Int,

c: Null[Edge]
type ReportMsg = t u p l e o f msg: Msg, w: Int
type Message = union o f connMsg: ConnMsg,

initMsg: InitMsg,
testMsg: TestMsg,
reportMsg: ReportMsg,
msg: Msg

%%
% automaton GHSProcess: Process of GHS Algorithm
% for min. spanning tree
% rank: The UID of the automaton
% size: The number of nodes in the network
% links: Set of Links with source = rank (L_p(G))
% weight: Maps the Links ∈ links to their weight
%%
automaton GHSProcess(rank: Int, size: Int,

links: Set[Link],
weight: Map[Link, Int])

s i g n a t u r e
input startP
i npu t RECEIVE(m: Message, cons t rank, i: Int)
output InTree(l:Link)
output NotInTree(l: Link)
output SEND(m: Message, cons t rank, j: Int)
i n t e r n a l ReceiveConnect(qp: Link, l:Int)
i n t e r n a l ReceiveInitiate(qp: Link, l:Int,

c: Null[Edge], st: Status)
i n t e r n a l ReceiveTest(qp: Link, l:Int,

c: Null[Edge])
i n t e r n a l ReceiveAccept(qp: Link)
i n t e r n a l ReceiveReject(qp: Link)
i n t e r n a l ReceiveReport(qp: Link, w: Int)
i n t e r n a l ReceiveChangeRoot(qp: Link)

s t a t e s
nstatus: Nstatus,
nfrag: Null[Edge],
nlevel: Int,
bestlink: Null[Link],
bestwt: Int,
testlink: Null[Link],
inbranch: Link,
findcount: Int,
lstatus: Map[Link, Lstatus],
queueOut: Map[Link, Seq[Message]],
queueIn: Map[Link, Seq[Message]],
answered: Map[Link, Bool]

i n i t i a l l y
nstatus = sleeping
∧ nfrag = nil
∧ nlevel = 0
∧ bestlink.val ∈ links
∧ bestwt = weight[bestlink.val]
∧ testlink = nil
∧ inbranch = bestlink.val
∧ findcount = 0
∧ ∀ l: Link

(l ∈ links ⇒
lstatus[l] = unknown
∧ answered[l] = false
∧ queueOut[l] = {}
∧ queueIn[l] = {})

t r a n s i t i o n s
input startP( l o c a l minL: Null[Link], min: Int)

e f f i f nstatus = sleeping then
%WakeUp
minL : = choose l where l.val ∈ links;
min : = weight[minL.val];
f o r tempL:Link i n links do

i f weight[tempL] < min then
minL : = embed(tempL);
min : = weight[tempL] f i ;

od;
lstatus[minL.val] : = branch;
nstatus : = found;
queueOut[minL.val] : = queueOut[minL.val]

` connMsg([CONNECT, 0]); f i
i npu t RECEIVE(m: Message, i:Int, j:Int)

e f f queueIn[[i,j]] : = queueIn[[i,j]] ` m
output InTree(l: Link)

pre answered[l] = false ∧ lstatus[l] = branch
e f f answered[l] : = true

output NotInTree(l: Link)
pre answered[l] = false ∧ lstatus[l] = rejected
e f f answered[l] : = true

output SEND(m: Message, i: Int, j: Int)
pre m = head(queueOut[[i,j]])
e f f queueOut[[i,j]] : = tail(queueOut[[i,j]])

i n t e r n a l ReceiveConnect(qp: Link, l: Int;
l o c a l minL: Null[Link], min: Int)

pre head(queueIn[qp]) = connMsg([CONNECT, l])
e f f queueIn[qp] : = tail(queueIn[qp]);

i f nstatus = sleeping then
%WakeUp

minL : = choose l where l.val ∈ links;
min : = weight[minL.val];
f o r tempL:Link i n links do

i f weight[tempL] < min then
minL : = embed(tempL);
min : = weight[tempL] f i

od;
lstatus[minL.val] : = branch;
nstatus : = found;
queueOut[minL.val] : = queueOut[minL.val]

` connMsg([CONNECT, 0]); f i
i f l < nlevel then
lstatus[[qp.t,qp.s]] : = branch;
i f testlink 6= nil then
queueOut[[qp.t,qp.s]] : =
queueOut[[qp.t,qp.s]] `
initMsg([INITIATE,nlevel, nfrag, find]);
findcount : = findcount + 1

e l s e queueOut[[qp.t,qp.s]] : = queueOut[[qp.t,qp.s]] `
initMsg([INITIATE,nlevel, nfrag, found]) f i ;

e l s e i f lstatus[[qp.t,qp.s]] = unknown then
queueIn[qp] : = queueIn[qp] ` connMsg([CONNECT, l]

e l s e queueOut[[qp.t,qp.s]] : = queueOut[[qp.t,qp.s]] `
initMsg([INITIATE, nlevel+1,

embed([qp.t, qp.s]), find]) f i f i
i n t e r n a l ReceiveInitiate(qp: Link, l:Int, c: Null[Edge], st: Status;

l o c a l minL: Null[Link], min: Int, S : Set[Link])
pre head(queueIn[qp]) =initMsg([INITIATE,l,c,st])
e f f queueIn[qp] : = tail(queueIn[qp]);

nlevel : = l;
nfrag : = c;
i f st = find then nstatus : = find
e l s e nstatus : = found f i ;
%Let S = {[p,q]:lstatus[[p,r]] =branch,r 6=q}
S := {};
f o r pr: Link i n links do

i f pr.t 6= qp.s ∧ lstatus[pr] = branch then
S := S ∪ {pr}

f i
od;
f o r k: Link i n S do
queueOut[k] : = queueOut[k] `
initMsg([INITIATE, l, c, st])

od;
i f st = find then
inbranch : = [qp.t, qp.s];
bestlink : = nil;
bestwt : = 10000000; % Infinity
%Test
minL : = nil; min : = 10000000; % Infinity
f o r tempL:Link i n links do

i f weight[tempL] < min ∧
lstatus[tempL] = unknown then
minL : = embed(tempL);

min : = weight[tempL] f i ;
od;
i f minL 6= nil then
testlink : = minL;
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queueOut[minL.val] : = queueOut[minL.val]
` testMsg([TEST, nlevel, nfrag]);

e l s e testlink : = nil;
i f findcount = 0 ∧ testlink = nil then

nstatus : = found;
queueOut[inbranch] : =

queueOut[inbranch] `
reportMsg([REPORT, bestwt]) f i f i ;

%EndTest
findcount : = size(S) f i

i n t e r n a l ReceiveTest(qp: Link, l: Int, c: Null[Edge];
l o c a l minL: Null[Link], min: Int)

pre head(queueIn[qp]) = testMsg([TEST, l, c])
e f f queueIn[qp] : = tail(queueIn[qp]);

i f nstatus = sleeping then
%WakeUp
minL : = choose l where l.val ∈ links;
min : = weight[minL.val];
f o r tempL:Link i n links do

i f weight[tempL] < min then
minL : = embed(tempL); min: = weight[tempL] f i ;

od;
lstatus[minL.val] : = branch;
nstatus : = found;
queueOut[minL.val] : = queueOut[minL.val]

` connMsg([CONNECT, 0]); f i ;
i f l > nlevel then
queueIn[qp] : = queueIn[qp] ` testMsg([TEST, l, c]);

e l s e i f c 6= nfrag then
queueOut[[qp.t, qp.s]] : =

queueOut[[qp.t, qp.s]] ` msg(ACCEPT)
e l s e i f lstatus[[qp.t, qp.s]] = unknown then

lstatus[[qp.t, qp.s]] : = rejected f i ;
i f testlink 6= embed([qp.t, qp.s]) then
queueOut[[qp.t, qp.s]] : =

queueOut[[qp.t, qp.s]] ` msg(REJECT)
e l s e %Test
minL : = nil;
min : = 10000000; % Infinity
f o r tempL:Link i n links do

i f weight[tempL] < min ∧ lstatus[tempL] = unknown then
minL : = embed(tempL);
min : = weight[tempL] f i ;

od;
i f minL 6= nil then
testlink : = minL;
queueOut[minL.val] : = queueOut[minL.val]

` testMsg([TEST, nlevel, nfrag]);
e l s e testlink : = nil;

i f findcount = 0 ∧ testlink = nil then
nstatus : = found;
queueOut[inbranch] : = queueOut[inbranch]

` reportMsg([REPORT, bestwt])
f i f i ; f i ; f i ; f i ;

i n t e r n a l ReceiveAccept(qp: Link)
pre head(queueIn[qp]) = msg(ACCEPT)
e f f queueIn[qp] : = tail(queueIn[qp]);

testlink : = nil;
i f weight[[qp.t, qp.s]] < bestwt then
bestlink : = embed([qp.t, qp.s]);

bestwt : = weight[[qp.t, qp.s]]; f i ;
i f findcount = 0 ∧ testlink = nil then
nstatus : = found;
queueOut[inbranch] : = queueOut[inbranch]

` reportMsg([REPORT, bestwt]) f i
i n t e r n a l ReceiveReject(qp: Link;

l o c a l minL: Null[Link], min: Int)
pre head(queueIn[qp]) = msg(REJECT)
e f f queueIn[qp] : = tail(queueIn[qp]);

i f lstatus[[qp.t, qp.s]] = unknown then
lstatus[[qp.t, qp.s]] : = rejected f i ;

%Test
minL : = nil; min : = 10000000; % Infinity
f o r tempL:Link i n links do

i f weight[tempL] < min ∧
lstatus[tempL] = unknown then

minL : = embed(tempL); min: = weight[tempL] f i ;
od;
i f minL 6= nil then
testlink : = minL;
queueOut[minL.val] : = queueOut[minL.val]

` testMsg([TEST, nlevel, nfrag]);
e l s e testlink : = nil;

i f findcount = 0 ∧ testlink = nil then
nstatus : = found;
queueOut[inbranch] : = queueOut[inbranch] `

reportMsg([REPORT, bestwt]) f i f i
i n t e r n a l ReceiveReport(qp: Link, w: Int)
pre head(queueIn[qp]) = reportMsg([REPORT, w])
e f f queueIn[qp] : = tail(queueIn[qp]);

i f [qp.t, qp.s] 6= inbranch then
findcount : = findcount -1;
i f w < bestwt then

bestwt : = w;
bestlink : = embed([qp.t, qp.s]) f i ;

i f findcount = 0 ∧ testlink = nil then
nstatus : = found;
queueOut[inbranch] : = queueOut[inbranch]

` reportMsg([REPORT, bestwt]) f i
e l s e i f nstatus = find then

queueIn[qp] : = queueIn[qp] ` reportMsg([REPORT, w])
e l s e i f w > bestwt then %ChangeRoot

i f lstatus[bestlink.val] = branch then
queueOut[bestlink.val] : = queueOut[bestlink.val] `

msg(CHANGEROOT)
e l s e queueOut[bestlink.val] : = queueOut[bestlink.val] `

connMsg([CONNECT, nlevel]) ;
lstatus[bestlink.val] : = branch f i f i f i

i n t e r n a l ReceiveChangeRoot(qp: Link)
pre head(queueIn[qp]) = msg(CHANGEROOT)
e f f queueIn[qp] : = tail(queueIn[qp]);

%ChangeRoot
i f lstatus[bestlink.val] = branch then
queueOut[bestlink.val] : = queueOut[bestlink.val] `

msg(CHANGEROOT)
e l s e queueOut[bestlink.val] : = queueOut[bestlink.val] `

connMsg([CONNECT, nlevel]) ;
lstatus[bestlink.val] : = branch f i
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C.2 Schedule and initialization block for GHS

s t a t e s
...
det do

P.nstatus : = sleeping;
P.nfrag : = nil;
P.nlevel : = 0;
P.bestlink : = embed(chooseRandom(links));
P.bestwt : = weight[chooseRandom(links)];
P.testlink : = nil;
P.inbranch : = chooseRandom(links);
P.findcount : = 0;
tempLinks : = links;
whi le (¬isEmpty(tempLinks)) do

tempL : = chooseRandom(tempLinks);
tempLinks : = delete(tempL, tempLinks);
P.lstatus[tempL] : = unknown;
P.answered[tempL] : = false;
P.queueOut[tempL] : = {};
P.queueIn[[tempL.t, tempL.s]] : = {};
RM[tempL.t] : = [idle, {}, false];
SM[tempL.t] : = [idle, {}, {}, {}]

od
od

...
schedu le
s t a t e s

lnks: Set[Link],
lnk : Link

do
f i r e input startP;
whi le (true) do

lnks : = links;
whi le (¬isEmpty(lnks)) do

lnk : = chooseRandom(lnks);
lnks : = delete(lnk, lnks);
i f P.queueOut[lnk] 6= {} then

f i r e i n t e r n a l SEND(head(P.queueOut[lnk]),
rank, lnk.t) f i ;

i f SM[lnk.t].status = idle ∧
SM[lnk.t].toSend 6= {} then

f i r e output Isend(head(SM[lnk.t].toSend),
rank, lnk.t) f i ;

i f SM[lnk.t].status = idle ∧
SM[lnk.t].handles 6= {} then

f i r e output test(head(SM[lnk.t].handles),
rank, lnk.t) f i ;

i f RM[lnk.t].status = idle ∧
RM[lnk.t].ready = false then

f i r e output Iprobe(rank, lnk.t) f i ;
i f RM[lnk.t].status = idle ∧

RM[lnk.t].ready = true then
f i r e output receive(rank, lnk.t) f i ;

i f RM[lnk.t].toRecv 6= {} then

f i r e i n t e r n a l RECEIVE(
head(RM[lnk.t].toRecv),
rank, lnk.t) f i ;

i f P.queueIn[[lnk.t, lnk.s]] 6= {} ∧
tag(head(P.queueIn[[lnk.t, lnk.s]])) =

connMsg then
f i r e i n t e r n a l ReceiveConnect(

[lnk.t, lnk.s],
(head(P.queueIn[[lnk.t, lnk.s]])).

connMsg.l) f i ;
i f P.queueIn[[lnk.t, lnk.s]] 6= {} ∧

tag(head(P.queueIn[[lnk.t, lnk.s]])) =
initMsg then

f i r e i n t e r n a l ReceiveInitiate(
[lnk.t, lnk.s],
(head(P.queueIn[[lnk.t, lnk.s]])).

initMsg.l,
(head(P.queueIn[[lnk.t, lnk.s]])).

initMsg.c,
(head(P.queueIn[[lnk.t, lnk.s]])).

initMsg.st) f i ;
i f P.queueIn[[lnk.t, lnk.s]] 6= {} ∧

tag(head(P.queueIn[[lnk.t, lnk.s]])) =
testMsg then

f i r e i n t e r n a l ReceiveTest([lnk.t, lnk.s],
(head(P.queueIn[[lnk.t, lnk.s]])).

testMsg.l,
(head(P.queueIn[[lnk.t, lnk.s]])).

testMsg.c) f i ;
i f P.queueIn[[lnk.t, lnk.s]] 6= {} ∧

head(P.queueIn[[lnk.t, lnk.s]]) = msg(ACCEPT) then
f i r e i n t e r n a l ReceiveAccept([lnk.t, lnk.s]) f i ;

i f P.queueIn[[lnk.t, lnk.s]] 6= {} ∧
head(P.queueIn[[lnk.t, lnk.s]]) = msg(REJECT) then

f i r e i n t e r n a l ReceiveReject([lnk.t, lnk.s]) f i ;
i f P.queueIn[[lnk.t, lnk.s]] 6= {} ∧

tag(head(P.queueIn[[lnk.t, lnk.s]])) = reportMsg
then f i r e i n t e r n a l ReceiveReport([lnk.t, lnk.s],
(head(P.queueIn[[lnk.t, lnk.s]])).reportMsg.w)

f i ;
i f P.queueIn[[lnk.t, lnk.s]] 6= {} ∧

head(P.queueIn[[lnk.t, lnk.s]]) = msg(CHANGEROOT)
then f i r e i n t e r n a l ReceiveChangeRoot(

[lnk.t, lnk.s]) f i ;
i f P.answered[lnk] = false ∧ P.lstatus[lnk] = branch

then f i r e output InTree(lnk) f i ;
i f P.answered[lnk] = false ∧ P.lstatus[lnk] = rejected

then f i r e output NotInTree(lnk) f i
od

od
od
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