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Abstract. Practical implementations of atomically consistent read/write mem-
ory service are important building blocks for higher level applications. This is 
especially true when data accessibility and survivability are provided by a dis-
tributed platform consisting of networked nodes, where both nodes and connec-
tions are subject to failure. This work presents an experimental evaluation of the 
practicality of an atomic memory service implementation, called RA M B O , which 
is the first to support multiple reader, multiple writer access to the atomic data 
with an integrated reconfiguration protocol to replace the underlying set of rep-
licas without any interruption of the ongoing operations. Theoretical guaran-
tees of this service are well understood; however, only rudimentary analytical 
performance along with limited LAN testing were performed on the implemen-
tation of RA M B O – neither representing any realistic deployment setting. In order 
to assess true practicality of the RA M B O service, we devised a series of experi-
ments tested on PlanetLab – a planetary-scale research WAN network. Our ex-
periments show that RA M B O ’s performance is reasonable (under the tested  
scenarios) and under the somewhat extreme conditions of PlanetLab. This 
demonstrates the feasibility of developing dependable reconfigurable sharable 
data services with provable consistency guarantees on unreliable distributed  
systems. 

Keywords: Atomic Memory Service, Distributed Architecture, Performance 
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1   Introduction 

Implementation of services that ensure data survivability and consistency in highly dy-
namic environments, where transient and permanent changes and failures may occur, is 
critical to many important applications. An example of such application is sharing in-
formation about the physical environment and status of the shared objectives in civilian 
operations that follow natural disasters and in military operations in hostile territories. In 
both of these cases, computer networks are created hastily and the computing, commu-
nicating devices (to which we refer as nodes) are often susceptible to physical damage 
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and network irregularities. To this end, theoretical groundwork has been laid by re-
searchers who have addressed this problem in numerous works [10, 3, 22, 2, 16]. 

In order to achieve survivability in dynamic networks several replicas of data must 
be stored and maintained at different network locations. This approach introduces paral-
lelism issues such as memory failure, message loss, and dynamic node participation. By 
dynamic participation we mean that old nodes may depart and fail,and new nodes may 
join the computation. Therefore, replication of data raises challenges of maintaining 
consistency among the replicas, handling their manipulation by dynamic sets of data 
owners as well as accommodating atomic operations on the data. Providing practical 
implementations of such services is a separate but equally challenging undertaking. 

A reconfigurable distributed (linearizable) atomic data service for dynamic systems, 
called RAMBO, was introduced by Lynch and Shvartsman [17]. RAMBO’s novelty origi-
nates from the fact that it is the first specification supporting multiple reader, multiple 
writer (MRMW) access to the atomic data with an integrated reconfiguration protocol 
to replace the underlying set of data owners without any interruption of the ongoing 
operations. The authors of RA M BO [17] consciously traded mathematical elegance and 
simplicity of presentation for an inefficient implementation. To make implementation 
of RAMBO algorithm robust and practical a series of extensions followed [11, 18, 
6,8] that improve the efficiency of the service and focused on reducing communica-
tion complexity, a better use of computational resources, and improving system live-
ness in various deployment settings. Implementation of RA M BO algorithm and its 
extensions were produced by Musial [19, 18] along with preliminary empirical per-
formance results [18]. Additional experimental performance comparison of versions 
of RA M BO were carried out by Georgiou et al. [9].  However, the empirical results in 
[18, 9] are obtained by evaluations carried out in LAN settings and do not reflect de-
lays and failures experienced in more realistic deployments. Therefore, in order to 
asses the practicality of a distributed shareable data service with provable consis-
tency guarantees, such as RA M BO , its performance must be evaluated in a dynamic 
environment where net- work delays and node availability fluctuate over time. In  
this work PlanetLab [4, 20], a planetary-scale network, is used as the experimental  
platform. 

Contributions. Shareable data services providing consistency guarantees, such as atom-
icity (linearizability), make building distributed systems easier. This reason, and the 
observation made in the preceding paragraph are precisely the motivation of this work. 
To the best of our knowledge, the RAMBO framework is the latest and most versatile 
specification of an atomic MRMW service for dynamic environments. In addition, 
implementation of RAMBO algorithms have been verified to preserve correctness 
[18]. Therefore, there is a need to analyze the performance of RA M BO implementa-
tion in a realistic deployment setting and asses its true practical utility. To this end 
we con- duct a series of experiments executed on the PlanetLab research network, 
where we test RA M BO implementation tolerance to node failures, message loss, and 
sensitivity of geographical distribution of RAMBO nodes on the overall performance 
of the service. The experiments measure system responsiveness to user requests in 
terms of system throughput – including read/write operation throughput, reconfigu-
ration throughput, and join request throughput where each of these operation types is 
discussed in later sections. 
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The takeaway from our experiments is that RAMBO implementation can perform 
well in a realistic setting and copes well with failures of individual sites and local 
communication interrupts. However, in order to achieve good performance some pre-
computation is necessary, and we had to parameterize RAMBO implementation with 
information about network delays and node failure rate. These computations were 
performed manually based on observation of the target deployment system (i.e., 
Planet- Lab) behaviors (see Section 4 for details). Our experiments provide a com-
plementary understanding of RA M BO system throughput for the supported operations 
in an actual and non-controlled deployment environment where many different  
variables contribute to operation latency. An equivalent theoretical analysis can be 
daunting. An analytical analysis was performed in [17] where under assumption of a 
steady-state, such that nor- mal timing behavior exists (or eventually reached) and all 
messages are delivered within a bounded time δ that is unknown to the algorithm, and 
that all locally performed actions take zero time. Result of that analysis is that the 
expected read/write operation latency is bounded by 8δ in the presence of concurrent 
failures and infrequent reconfigurations, regardless of how many nodes participate in 
the execution. Our experiments demonstrate that the latency of operations is a func-
tion of the number of participants, level of activity, and is influenced by constraints of 
the deployment platform. However operation latency on its own does not provide an 
accurate picture of system behavior. Therefore, our results are expressed as RA M BO 

system throughput, which is computed using collected averages of the measured  
operations on the participating in the experiment nodes. 

2   Background 

Atomic Memory Services. Several approaches have been used to implement consistent 
data in (static) distributed systems. Starting with the work of Gifford [10] and Tho-
mas [21], many algorithms have used collections of intersecting sets of object replicas 
(such as quorums) to solve the consistency problem. Upfal and Wigderson [22] use 
majority sets of readers and writers to emulate shared memory. Vitányi and Awerbuch 
[3] use matrices of registers where the rows and the columns are written and respec-
tively read by specific processors. Attiya, Bar-Noy and Dolev [2] use majorities of 
processors to implement shared objects in static message passing systems. Extension 
for limited reconfiguration of quorum systems have also been explored [7, 16]. These 
systems have limited ability to support long-lived data when the longevity of proces-
sors is confined. Virtually synchronous services [5], and group communication services 
(GCS) in general [1], can also be used to implement consistent data services, e.g., by 
implementing a global totally ordered broadcast. While the universe of processors in 
a GCS can evolve, in most implementations, forming a new view takes a substantial 
time [13], and client operations are delayed during view formation. 

RAMBO (Reconfigurable Atomic Memory for Basic Objects), introduced by Lynch 
and Shvartsman [16], is the first to support multiple reader, multiple writer access to 
the atomic data combined with a reconfiguration protocol to replace the underlying 
set of data owners, where this is accomplished without any interruption to the ongo-
ing operations. To achieve survivability, data (represented as an abstract object) are 
replicated at several locations. To maintain consistency in the presence of small and 
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transient changes, RAMBO uses configurations of nodes, each of which consists of a 
set of members plus sets of quorum sets (with specific intersection properties [10]). 
In order to accommodate larger and more permanent changes, the algorithm supports 
reconfiguration, by which the set of members and the sets of quorums are modified. 
Redundant configurations can be removed from the system without interfering with the 
ongoing read and write operations. The algorithm ensures atomicity and consistency  
of data despite occurrence of arbitrary patterns of asynchrony, node failure, and mes-
sage loss. However, without (active) reconfiguration and in the presence of dynamic 
system behaviors and arbitrary delays read and write operations may not terminate or 
may experience indefinite delays. Note that consensus algorithms can be used directly 
to implement an atomic data service by allowing participants to agree on a global total 
ordering of all operations [14]. In contrast, RAMBO uses consensus to agree only on 
the sequence of installed configurations, where the non-termination of consensus does 
not affect the termination of read and write operations. 

PlanetLab. PlanetLab is a distributed overlay network for deployment and assessment 
of distributed planetary-scale network services [4, 20]. As of March 2009, PlanetLab is 
composed of 977 machines spanning 484 locations worldwide provided by academic 
and industry institutions. Its resources are divided into slices where each can be viewed 
as a network of virtual machines. Up to 32 nodes can be assigned to a slice, whilst 
a fraction of that node’s resources (CPU, local disk space, network bandwidth) is al- 
lowed to be consumed by a slice. The allocated resources are controlled on a per-slice, 
per-node basis. Slices expire after one month of their first creation (removing all the 
slice associated data), but can be renewed an unlimited number of times on a monthly 
basis. Malicious and buggy services can affect the communication infrastructure and 
other’s slices performance; therefore, strict terms and conditions for providing secu-
rity and stability in the PlanetLab are enforced. Access to PlanetLab nodes is feasible 
through SSH, providing encrypted and secure communication. Nodes may be installed 
or rebooted at any time turning the disk into a temporary form of storage, providing no 
guarantee regarding their reliability. 

3   The RAM B O Algorithm 

Following is only a brief foray of the cocktail of RA M BO extensions used in our im-
plementation. The complete details of these specifications can be omitted as they are 
not integral to this work and we direct the interested reader to [16, 18]. We begin with 
the failure model assumed in the RA M BO framework. 

Failure model. Assumed failure model is asynchronous dynamic distributed system of 
communicating nodes, where each node has a unique identifier. Nodes may experience 
stop-failures and arbitrary delays between processor steps, and a non-failed proces-
sor performs steps according to the input program. Messages may be lost, arbitrarily 
delayed, and delivered out of order, but are not duplicated or corrupted. We assume 
existence of abstract point-to-point (as opposed to physical) communication channels 
that allow each node to send a direct message to any other node in the system. 

Read and Write protocol. As aforementioned, data survivability in the RAMBO 

framework is ensured via replication, where data is replicated and maintained at a 
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number of networked nodes. The caveat here is to ensure consistency while support-
ing atomic read and write operations. Atomicity of operation access is provided by use 
of quorum systems. The RA M BO algorithm uses configurations that consist of a set 
of data owners, and a set of quorum sets imposed on these data owners. We now  
describe how these configurations are used to implement atomic read and write  
operations. 

Both read and write operations are implemented in phases. First phase is called a 
query phase and is identical for both operations. During query phase a node contacts 
and awaits responses from some complete quorum set. Responses contain replica 
information that is timestamped (using a Lamport clock). When enough replies are 
collected, the initiating node chooses the value of a replica that is associated with the 
highest timestamp. Now the node is ready to enter the second phase called a propaga-
tion phase. In case of the read operation, a node will propagate the replica information 
with the highest timestamp to some quorum set. Again, when enough responses have 
been received, then the operation terminates with a read acknowledgment. In case of 
the write operation, a node will increment the highest timestamp and associate value 
being written with the new timestamp. The new replica information is then propagated 
to some complete quorum set, then the writer awaits appropriate responses from that 
set that once received are followed by a write acknowledgment. All configurations that 
have been installed but not yet removed from the system that have been discovered 
during an ongoing phase are used to complete that phase. 

Reconfiguration protocol. Dynamic system behavior and failures may result in con-
figurations that are unresponsive or slow. This means that read and write operations 
may be blocked or delayed. To avoid reaching this point, RAMBO algorithms imple-
ment re- configuration, which is a process of replacing old configurations with new 
ones, where new configuration consists of healthy nodes. 

Reconfiguration is a three-phase [6] process, and uses an optimized variant of 
Paxos [15]. Each phase requires a coordinated effort lead by a leader node – an active 
node with the highest identifier. The three phases are: a prepare phase, during which 
a ballot is made ready, a propose phase, during which the new configuration is pro- 
posed, and a propagate phase, during which the results are distributed. The prepare 
phase accesses some quorum set of the current configuration, thus learning about any 
earlier ballots. When the leader concludes the prepare phase, it chooses a configuration 
to propose: if no configurations have been proposed to replace the current configu-
ration, the leader can propose its own preferred configuration; otherwise, the leader 
must choose the previously proposed configuration with the largest ballot. The propose 
phase then begins, accessing some quorum set of the current configuration. This serves 
two purposes: it requires that the nodes in the current configuration vote on the new 
configuration, and it collects the most recent replica information. Finally, the 
propagate phase accesses some quorum set from the current configuration; this en-
sures that enough nodes are aware of the new configuration to ensure that any concur-
rent recon- figuration requests obtain the desired result, and at the same time current 
configuration is being marked as being obsolete. It has been shown in [18] that  
reconfiguration has very little effect on operation latency. 

Putting everything together. In our experiments we use an implementation of RA M BO 

framework that is a cocktail of Long-lived RAMBO  [8], Domain-RA M BO  [9],  
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Pax-RAMBO  [6], and RAMBO  w/restricted gossip pattern [12]. Where collectively 
these improvements attempt to constrain RAMBO’s all-to-all gossip, reduce size of mes-
sages, remove trailing configurations, and remove the overhead associated with main-
taining a multi-cell atomically consistent memory system. Techniques that allow us to 
claim that our concoction of RAMBO extensions implements an atomic, reconfigur-
able memory service in dynamic systems can be found in [18], hence we forgo the 
details of correctness proofs in this document. From this point on whenever we refer 
to a RAMBO algorithm, we mean an algorithm that implements the RA M BO framework 
and supports the improvements stated above. RAMBO node specification consists of 
two kinds of components. The first is the Joiner component that implements a simple 
join protocol. Specifically, the new node broadcasts a join request to nodes that it 
believes to be active participants of the RAMBO service and awaits at least one ac-
knowledgment of this request. The second is the Reader-Writer component that im-
plements read, write, and reconfiguration operation protocols (described above). 

Implementation.  RA M BO algorithms used in this work are implemented in Java [18]. 
The individual memory locations of the implemented atomic memory system are repre-
sented as Java Objects, but in the experiments these memory locations are instantiated 
as Java Integers. Hence, a read and a write operation to a memory location is equivalent 
to reading an integer value and writing an integer value, respectively. 

RAMBO algorithms are specified as a composition of non-deterministic automata. 
Automata, as state machines, can be executed using theoretical models, where there is 
no enforcement of when certain events (transitions) occur in any given state. Of course, 
in the implementation of RAMBO progress is important, hence fair scheduling tech-
niques are used to execute (enabled) transitions. 

Communication between RAMBO nodes is implemented using Java Sockets and 
TCP/IP. Messages in RA M BO fluxuate in size over the execution of the algorithm, there 
is no limit on the message size, and each state message contains many individual bits of 
information that describe the state of the local replica. The characteristics of messages 
in RAMBO make use of TCP/IP and Java Sockets to be a reasonable candidate, since 
messages can be marshalled as Java Objects and an entire object is then included as data 
of the message, and the process is reversed on the receiving end. Unfortunately, TCP/IP 
does not allow message broadcasts, hence the periodic all-to-all gossip is implemented 
as a sequence of direct messages. 

User interacts with the RAMBO system either through a command prompt or a 
graphical user interface. Through these interfaces a user can initiate read, write, and 
reconfiguration requests – configuration information must be provided manually to 
RAMBO. For the purpose of the experiments user interface was augmented to automate 
invocation of operations along with means to collect operation latency information. 

4   Experiments 

In this section we describe and analyze each of the experiments conducted by running 
our RAMBO implementation on PlanetLab. We begin with a description of the experi-
mental environment and practical issues that had to be taken into consideration. We 
conclude the section with presentation of six scenarios that were designed to test per-
formance and robustness of RAMBO implementation under various system demands.  
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Preparation and limitations.  PlanetLab as a planetary research network is exposed to 
node failures, message loss, varying processing and communication demands. De-
ployment of RA M BO implementation on PlanetLab required preparations and pre-
computations in order to reach acceptable performance. Precomputations involve 
parameterization of the implementation in order to best utilize the required resources 
– specifically bandwidth and memory. 

The PlanetLab environment is unstable which is attributed to the fluctuation in the 
utilization of its resources by other slices, hardware, software, and network fail-
ures.During our experiments we observed node failures as well as node hangups.  In 
particular, on average 10% of the nodes would fail or hangup during execution. How-
ever, since RAMBO tolerates failures and delays up to the point of quorum systems be-
ing disabled, experiments were able to terminate despite the observed adversities. 
(The presented results incorporate these node failures and hangups.) 

Memory allocation was also an issue. Limitations imposed by PlanetLab on the 
amount of memory used by RAMBO system dictated which extensions should be used. 
For instance, use of restricted gossip pattern reduces communication complexity, but 
also reduces the amount of memory needed to buffer incoming messages that cannot 
be processed immediately. Of course, such limitations can be averted to a point, and 
eventually these will prohibit RAMBO system from being able to expand.  

Communication delays.  RA M BO uses point-to-point messaging to share replica in-
formation among its participants and during replica access operations. Hence, the dura-
tion of any operation is dependent on the average network message latency. We have 
measured the ping latency on PlanetLab to be 139 milliseconds. However, the actual 
message delay between individual RA M BO nodes is larger since TCP and sockets are 
used. Furthermore, RAMBO’s messages vary in size and require marshaling and unmar-
shaling on send and receive. 

Data points.  Each presented scenario was run five times and took a period of three 
to four hours (for all 5 runs). We observed that deviation of the results collected for 
each scenario and each run was very small, and decided that five runs for each scenario 
suffices. Therefore, each data point found on the graphs that follow represent an average 
for each of the five runs. 

Performance of the RA M BO system is expressed in terms of throughput – number 
of operations per second. Specifically, we test the system for each of the supported 
operation types: read and write, reconfigure, and join. However, we test these in isola-
tion, meaning that for each scenario only one operation type is being invoked by the 
selected service participants. At each node we measure the average operation latency, 
where each operation is performed 400 times 
per each run. The averages are used to com-
pute the system average throughput. 

4.1   Scenario 1: Single Reader/Writer 

In this scenario 18 nodes join the RA M BO 

system and do not depart voluntarily. During  
the experiment the number of nodes partici-
pating in the configuration is increased from Fig. 1. Single reader/writer scenario 
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one to the maximum possible, and majority  quorum  system  is used. A single node  
is used to issue  read requests, then separately write requests. The memory system 
consists of two cells. The reads are performed on the first cell and the writes on the 
second cell. Fig. 1 depicts average system throughput for both read and write  
operations. 

Since redundancy introduces communication overhead we expected to observe de-
crease in throughput as configuration size increases. Reason being that the termination 
of each operation depends on ability to communicate with some majority of the con-
figuration members. Hence, larger configurations consist of larger majorities and re-
quire more message exchanges. This expectation is validated by the experimental data. 

However, it is interesting to observe that the rate of throughput degradation de- 
celerates after configuration size 10. We conjecture that in this scenario the operation 
throughput reflects the average communication throughput between the node initiating 
operations and the configuration members. In fact we expect that the operation through- 
put will stabilize until the point when the initiating node will become a communication 
bottleneck. However, since only 18 Planet-
Lab machines were available to us, this con- 
jecture is unsupported by experimental data. 

4.2   Scenario 2: Multiple Readers/ 
Writers 

This experiment tests RAMBO’s sensitivity 
to different system loads as well as opera-
tion concurrency. This is accomplished by 
gradu- ally increasing the number of nodes 
initiating read and write requests. This time, we used two configurations, one with 
configuration of size one (consists of one node), and then with configuration of size 
eighteen (denoted as C1 and C18 respectively). As in the previous experiment, RA M BO 

is used to implement two-cell memory system. Each node initiates read and write re-
quests as was described in the previous scenario (reads in the first object and writes 
on the second). Hence, as the number of readers (resp. writers) increases so does the 
read and write operation concurrency. Fig. 2 depicts the average system throughput for 
C1 and C18. 

The communication load experienced by the replica owners increases with addi- 
tion of readers and writers. However, we do not expect this fact to be of significance 
since the number of nodes participating in the experiment is modest; therefore, the only 
member of configuration C1 will not be a bottleneck. Moreover, we expect that system 
throughput when C18 is used will be less than that of C1, since the node performing 
an operation must wait for responses from some majority (at least nine nodes). This 
speculation is supported by the experimental data. 

It was expected that while using C1 the system throughput would increase with the 
number of nodes performing operations, however, this pattern is expected to stop as the 
only configuration member of C1 eventually becomes overwhelmed by the communi- 
cation burden. In comparison, system throughput remains constant when C18 is used. 
The behavior in Fig. 4.2 can be explained by the following two observations: (a) replica 
owners experience light communication load since there are few reader/writers, and (b) 

Fig. 2. Multiple readers/writers scenario 
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since at least nine nodes need to be contacted per each communication round the system 
throughput is dependent on the average communication throughput of PlanetLab. We 
do not expect this to hold as the number of reader/writers is drastically increased. 

4.3   Scenario 3: Random Operations with Multiple Readers/Writers 

In the previous scenarios read and write operations are conducted separately and are 
performed on fixed cells, meaning that a node repeatedly invokes reads on memory 
cell one, and later invokes write operations on cell two. In the first scenario there is no 
concurrency. In the second scenario, concurrency is limited to overlapping read (resp. 
write) operations that are invoked in parallel at different nodes. 

In this experiment we test a more realistic setting by allowing each node to initiate 
read and write request at random to each memory cell. Note that each node can initiate 
only one operation at the time (either a read or a write). This approach allows read and 
write operations to overlap in time and possibly on the same cell. Additionally, experi- 
ment is performed using C1 and C18 in order to compare the observed system behaviors 
to that of Scenario 2. Fig. 3 depicts the average system throughput, performing read 
/write randomly and concurrently. 

One would expect concurrency to in- 
crease the average execution time, as an op- 
eration request would possibly “delay” 
some other operation request (especially 
with over-lapping read and write requests). 
However, our experiments suggest that 
RAMBO’s performance is not affected by 
operation concurrency, where the results 
plotted in Fig. 3 do not deviate from the 
ones presented in Fig. 2, except for the run 
with eight client nodes and configuration C1. However, this discrepancy can be ex-
plained by the fact that experiments were conducted at different times and other ap-
plications could have contributed to the additional communication and processing 
burden on the PlanetLab nodes. The observed behavior is supported by the design of 
RAMBO, where read and write operations are “treated equally”: (a) write and read 
requests have equal prior- ity, (b) both operations require two communication rounds. 
Hence there is no essential difference if two read (or write) requests overlap as  
opposed to having a read request overlap with a write request. 

Finally, experimental data supports our intuition about system throughput when dif- 
ferent configuration sizes are used. However, this is not the case for the conditional 
theoretical analysis of [17] as explained in the Introduction; it was shown that each 
read/write operation is expected to complete by 8δ (δ being the maximum message de- 
lay) regardless of the configuration size and number of readers – and under the assump- 
tion of a steady state. Since system throughput is computed using average operation 
latencies, the above assumption would imply that system throughput should increase 
with the number of readers and writers regardless of the configuration size. We don’t 
want to minimize the importance of results in [17], but rather emphasize that experi- 
mental results on global scale encompass many variables that are difficult to consider 
in theoretical analysis. 

Fig. 3. Full concurrency scenario 
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4.4   Scenario 4: Multiple Objects 

This experiment tests whether the number of data objects (memory cells) constituting 
the memory system implemented by RAMBO influence its performance. The operation 
requests, per node, are invoked to random objects in the memory system. In addition, a 
node decides to perform a read or a write operation based on a random “coin flip.” As 
in previous scenarios, configurations C1 and C18 are utilized. The number of objects 
in the memory was increased from two to eight. Fig. 4 depicts the collected average 
system throughput for each set of experiments. 

 

Fig. 4. Increasing number of memory cell and readers/writers scenario, C1 (left) and C18 
(right) 

In this experiment we expect the system throughput to degrade with the number 
of objects in the domain. Reason being that maintenance of each object introduces pro- 
cessing overhead. This expectation is supported by the experimental data. The overhead 
cost is made evident in the experiment involving C1, where with the number of objects 
system throughput decreased. However, the throughput variations in the experiment in- 
volving C18 is surprising, as one would expect lesser throughput gap between domain 
of size 2 and 8. One possible explanation for this behavior is the influence of periodic 
gossip on communication latency. Each gossip message exchanged between replicas in- 
cludes information about the entire domain and with bigger messages operation latency 
may be negatively impacted. 

4.5   Scenario 5: Reconfiguration 

Reconfiguration is different from read and 
write operations in respect that any number 
of concurrent read and write operations can 
be performed at any given time where there 
these are independent. Reconfiguration 
requires consensus and configurations are 
installed in a specific sequence. Therefore, 
reconfiguration results are presented in 
terms of frequency rather than throughput. 
Recon- figuration duration is computed at 
the node that proposes the next configuration and it is defined as an interval from 
the proposal of the new configuration until the correspond- ing reconfiguration-
request acknowledgment is received. 

Fig. 5. Reconfiguration scenario 
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The experiment was conducted with participation of 20 nodes that periodically gos- 
siped in the background.  Each proposed configuration has the same size as the exist-
ing one, and consists of a disjoint set of nodes. For example, in the case of configura-
tion of size 10, a node not belonging to the existing configuration proposes a new  
configuration consisting of the other 10 nodes – participating in the system (including 
itself). Fig. 5 depicts the average reconfiguration frequency for different configuration 
sizes. 

Phases involved in reconfiguration require communication with some majority of 
configuration being replaced and the configuration being installed. Therefore, we expect 
the reconfiguration throughput to decrease as the size of configuration increases. 

The experimental data demonstrate that the reconfiguration frequency is indeed in- 
fluenced by the size of involved configurations. As explained in Section 3, the recon- 
figuration protocol requires three phases during which majority quorums are contacted. 
As the size of configurations is increased so is the size of the contained within quorums. 
Since progress of each reconfiguration phase depends on members of the current and 
the future configuration being updated (via message exchange), the resulting commu- 
nication burden causes an increase in the reconfiguration duration for the larger sized 
configurations.     

As it is the case with read and write operations, the increase in the observed recon- 
figuration frequency for the larger size configurations was expected. Again, this is not 
the case for the conditional theoretical analysis of reconfiguration latency in [17]. 

4.6   Scenario 6: Joining 

This scenario seeks to determine whether 
the increasing configuration size affects the 
average join time of the system. The join 
throughput is the rate at which nodes join 
the RAMBO  system, where the duration 
of the join request is measured from the 
time a join request is sent to the set of 
seeds until the join-acknowledgment is re- 
ceived. Furthermore, join time was assessed 
with the participation of twenty nodes. Ini-
tially, 10 nodes joined the system, and the remaining 10 joined RAMBO  one at a 
time. Fig. 6 depicts the join throughput while in- creasing the size of configuration 
(each plot point is averaged over 5 runs). 

As in the previous scenarios the through put of join operations is expected to de-
crease with the size of configuration. This is consistent with the collected experimen-
tal data. According to [6], during the join request, a node attempting to join the service 
submits join requests to the local Reader-Writer component and awaits an acknowl-
edgment from some active RA M BO node. Thus, the augment in the size of configura-
tion increases the number of communication complexity attributed to the periodic gos-
sip, and thereby increases communication latency of the system and hence the join 
throughput decreases. 

Fig. 6. Join scenario 
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5   Conclusions 

Our experiments with RAMBO implementation demonstrate its behavior in a realis- 
tic dynamic environment. The implementation deals well with the somewhat extreme 
conditions of PlanetLab; this is unsurprising as it was designed to cope with dynamic 
behaviors, delays, and failures. However, our experiments demonstrate its sensitivity to 
communication delays. This observation in itself is intuitive, but was not made evident 
by the prior theoretical analyses. In summary, our results demonstrate that read and 
write operation throughput is unaffected by concurrency, throughput decreases with the 
number of participants and when large size configurations are used, RA M BO is sensi- 
tive to the load demands where its performance scales well with these demands (for the 
tested scenarios), and estimation of average network delays is necessary in order to best 
throttle periodic gossip. Deploying RA M BO implementation on PlanetLab provided us 
with a better understanding of how RA M BO will behave in deployments outside of the 
controlled lab environment. Overall, this case-study demonstrates the feasibility of de- 
veloping efficient and dependable reconfigurable sharable data services with provable 
consistency guarantees on unreliable distributed systems. 
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