
On the Application of Formal Methods
for Specifying and Verifying Distributed Protocols∗

Marina Gelastou, Chryssis Georgiou, and Anna Philippou
Dept. of Computer Science, University of Cyprus, CY-1678 Nicosia, Cyprus

{gelastoum, chryssis, annap}@cs.ucy.ac.cy

Abstract

In this paper we consider the frameworks of Process Al-
gebra and I/O Automata and we apply both towards the ver-
ification of a distributed leader-election protocol. Based on
the two experiences we evaluate the approaches and draw
initial conclusions with respect to their relative capabilities,
strengths and usability.

To the best of our knowledge, this is the first hands-on
evaluation of the two models, and we view it as the corner-
stone for a wider investigation of the strengths and weak-
nesses of the two methodologies in specifying and verifying
(distributed) protocols.

1 Introduction

Modern distributed systems are intrinsically difficult to
develop and reason about. The need for formally verifying
the correctness of distributed/parallel systems and protocols
has long been realized by the research community, both the-
oreticians and practicians. In the last two decades, the field
of formal methods for system design and analysis has dra-
matically matured and has reported significant success in
the development of theoretical frameworks for formally de-
scribing and analyzing complex systems as well as for pro-
viding methodologies and practical tools for these purposes.
More specifically, during the last twenty years, significant
research efforts were geared towards the development of
formal methodologies for system modeling and verification.
Two prominent such models are those of Input/Output Au-
tomata, IOA [10], and Process Algebra, PA [12, 2]. Both
models are equipped with precise semantics, thus provid-
ing a solid basis for understanding system behavior and rea-

∗This work was supported in part by the Cyprus Research Foundation
Grant “ΠPOO∆OΣ” and the University of Cyprus.

soning about correctness. Since their inception, they have
been the subject of extensive research and they have been
extended in various directions. Furthermore they have been
used in the literature for reasoning about a variety of proto-
cols (see, for example, [9, 3, 6, 17] and [1, 16, 18] for I/O
automata and PAs respectively).

It is fair to say that these two formalisms are important,
well-developed theories that have a lot to offer towards un-
derstanding and reasoning about complex systems. How-
ever, to date, research carried in each line of work has been
quite distinct. At the same time, new variations and exten-
sions of verification formalisms keep cropping up while a
thorough investigation into their applicability, strengths and
potentials is still missing. Indeed, recently, concerns are be-
ing raised with regards to the potentials of formal method-
ologies towards the verification of today’s complex proto-
cols and environments, see e.g. [4].

While the need of applying formal techniques for reason-
ing about protocol correctness is generally accepted, vari-
ous questions still remain open and hinder the selection and
adoption of these techniques. Questions include: Which
formalisms are appropriate to use for distributed and net-
worked protocols? Is there one that is “clearly better” for
these protocols, or classes thereof? Which one is “easier”
to learn and apply? Would a newcomer (e.g., postgraduate
student) be able to apply such methods to specify and verify
the protocols we develop?

We begin to consider these questions by verifying a typ-
ical distributed protocol in both the IOA and the PA for-
malisms. In particular we specify and verify a message-
passing leader-election protocol [24] with static member-
ship and fault-free components. The choice of the proto-
col was made based on two facts: (a) the leader election
problem is a fundamental problem in distributed comput-
ing and hence, an interesting problem to consider, and (b)

Seventh IEEE International Symposium on Network Computing and Applications

978-0-7695-3192-2/08 $25.00 © 2008 IEEE
DOI 10.1109/NCA.2008.24

195

the protocol is simple enough to focus on its specification
and verification rather than on its understanding, but at the
same time complex enough to enable us to evaluate the two
frameworks and draw conclusions. In addition, this pro-
tocol has not been verified in the past in either of the two
formalisms.

We observe the capabilities of each of the frameworks
for modeling the specific protocol. We apply the associated
proof techniques for proving the protocol’s correctness and
we evaluate them with respect to their relative capabilities,
strengths and usability. We present and compare the two
experiences. Specifically, from our case study we single-
out the following:

• Both formalisms were successful in specifying and
verifying the protocol under study. For each method,
standard/natural specification style and proof tech-
niques were employed, demonstrating that for dis-
tributed protocols of a similar nature as the one under
study, both methods are applicable.

• The correctness criterion of the protocol consisting of
a global property (a common leader is elected) as well
as its deterministic behavior, rendered the process-
calculus proof methodology very natural to apply. This
does not imply that the I/O Automata proof has been
less easy to establish; however, it required breaking
the proof into two parts, the first of which involving
the transformation of local properties into a global one
(the creation of a spanning tree).

• As reported by a newcomer to the two formalisms, the
programming style of I/O Automata specification and
the nature of the I/O Automata proofs (induction and
code inspection) enable the easier understanding and
use of this framework. This does not imply that Pro-
cess Algebras are a difficult tool to employ. It does
appear, however, that greater expertise and investment
of time is required in order to learn and apply this latter
methodology which may yield more rigorous proofs.

To the best of our knowledge, this is the first such hands-
on evaluation of the two formalisms (in general – not only
for distributed protocols). We believe that this line of work
benefits both theoreticians and practicians of the distributed
and networked community.

2 Prelimilaries

In this section we present the formalisms of IOA and PA
and the protocol to be verified.

2.1 I/O Automata

We begin with an overview of the I/O Automata formal-
ism of Lynch and Tuttle [10], focusing on notions used in
this study. For more detailed presentations we refer the
reader to [9, 10, 11].

An I/O Automaton is a labeled state transition system.
It consists of three type of atomic transitions which are
named actions: input, output and internal. The input ac-
tions of an I/O automaton are generated by the environment
and are transmitted instantaneously to the automaton. In
contrast, the automaton can generate the output and inter-
nal actions autonomously and can transmit output actions
instantaneously to its environment. Actions are described
in a precondition-effect style. An action π is enabled if
its preconditions are satisfied. Input actions are always en-
abled. A signature of an I/O automaton consists of three
disjoint sets of input, output and internal actions. The oper-
ation of an I/O automaton is described by its executions and
traces. An execution fragment of an automaton A is a finite
sequence s0, π1, s1, π2, . . . , πn, sn or an infinite sequence
s0, π1, . . . of alternating states and actions of A such that
(si, πi+1, si+1) is a transition or step of A, for every i ≥ 0.
An execution is an execution fragment that starts with an
initial state (i.e. s0 is an initial state). A fair execution is
an execution in which if the automaton enables its locally-
controlled actions infinitely often then it executes them in-
finitely often. A trace is an external behavior of an automa-
ton A that consists of the sequence of input and output ac-
tions occurring in an execution of A. I/O automata can be
composed to create more complex I/O automata. The (par-
allel) composition operator allows an output action of one
automaton to be identified with the input actions in other
automata; this operator respects the trace semantics.

Within the I/O automata framework, proving the correct-
ness of an automaton is often deduced to showing safety and
liveness properties of the automaton. Informally speaking,
a safety property specifies a property that must hold in every
state of an execution (i.e., something “bad” never happens)
and a liveness property specifies events that must eventually
be performed (i.e., something “good” eventually happens).
Liveness properties can only be satisfied by fair executions.
An invariant is a property that is true in all states of an au-
tomaton. Invariants are typically proved by induction on
the length of an execution leading to the state in question.
Several invariants are usually combined in proving (mainly)
safety properties of a given automaton. A common tech-
nique for reasoning about the behavior of a composed au-

196

tomaton is modular decomposition: first, one proves less
complex invariants for the automata of the composition, and
then it uses the composition of those invariants to reason
about the composed automaton. Another technique is the
use of simulation relations [11], which we do not discuss
here as it is not employed in this work.

2.2 The Process Algebra

Many process algebras have been proposed in the liter-
ature. For our purposes, we have found one of the most
basic ones, CCSv , to suffice. CCSv is a value-passing calcu-
lus [12, 22] which includes conditional agents. For a more
detailed presentation we refer to these works as well as [18].

We begin by describing the basic entities of the calculus.
We assume a set of constants, ranged over by v, a set of
functions, ranged over by f , operating on these constants
and a set of variables, ranged over by x. These give rise to
the set of terms of CCSv ranged over by e, in the expected
way. Moreover, we assume a set of channels,L, ranged over
by a, b. Channels provide the basic communication and
synchronization mechanisms in the language. A channel a

can be used in input position, denoted by a, and in output
position, denoted by a. This gives rise to the set of actions
Act of the calculus, ranged over by α, β, containing (1) the
set of input actions which have the form a(ṽ) representing
the input along channel a of a tuple ṽ, (2) the set of output
actions which have the form a(ṽ) representing the output
along channel a of a tuple ṽ, and (3) the internal action
τ , which arises when an input action and an output action
along the same channel are executed in parallel. We say that
an input action and an output action on the same channel are
complementary actions. Finally, we assume a set of process
constants C, denoted by C. We assume that each constant C

has an associated definition of the form C〈x̃〉 def= P , where
the process P may contain occurrences of C, as well as
other constants. The syntax of CCSv is given as follows:

P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | P\L |
cond (e1 � P1, . . . , en � Pn) | C〈ṽ〉.

Process 0 represents the inactive process. Process α.P de-
scribes the process which first engages in action α and then
behaves as process P . Process P1 + P2 represents the non-
deterministic choice between processes P1 and P2. Pro-
cess P‖Q describes the parallel composition of P and Q:
the component processes may proceed independently or in-
teract with one another while executing complementary ac-
tions. The conditional process cond (e1 �P1, . . . , en �Pn)
presents the conditional choice between a set of processes:

assuming that all ei are closed terms, it behaves as Pi, where
i is the smallest integer for which ei evaluates to true. In
P\F , where F ⊆ L, the scope of channels in F is restricted
to process P : components of P may use these channels to
interact with one another but not with P ’s environment. Fi-
nally, process constants provide a mechanism for including
recursion in the process calculus.

The semantics of the calculus is given by structural op-
erational semantics: each operator is given precise mean-
ing via a set of rules which, given a process P , prescribe
the possible transitions of P , where a transition of P has
the form P

α−→ P ′, specifying that P can perform action
α and evolve into P ′. These transitions give rise to a la-
beled directed graph whose vertices are the possible states
of the process and where an edge (s, α, s′) signifies that it
is possible to evolve from s to s′ by executing action α.
Based on this transition relation, we write P

α=⇒ P ′ for
P (τ−→)∗ α−→ (τ−→)∗P ′.

Processes are analyzed and compared on the basis of
their state graphs. One common method of performing
this is the use of observational equivalences. Observa-
tional equivalences are based on the idea that two equivalent
systems exhibit the same behavior at their interfaces with
the environment. This requirement was captured formally
through the notion of bisimulation [12, 14]. Bisimulation is
a binary relation on processes. Two processes are bisimilar
if, for each step of one, there is a matching (possibly mul-
tiple) step of the other, leading to bisimilar states. In this
work we employ our study on weak bisimulation, ≈. We
refer the reader to [13] for the full details.

Another concept used in our study is the notion of con-
fluence. A process is confluent if, from each of its reach-
able states, “of any two possible actions, the occurrence
of one will never preclude the other” [13]. As shown
in [13, 12] for pure CCS, and generalized in other calculi
(e.g. [7, 22, 8, 15, 19, 18]), confluence implies determi-
nacy and semantic-invariance under internal computation,
and it is preserved by several system-building operators.
These facts make it possible to reason compositionally that
a system is confluent and to exploit this fact while reasoning
about its behavior. In particular, for a certain class of con-
fluent processes, in order to check that a property is satisfied
in every execution of the system it suffices to show that it is
satisfied by a single (arbitrary) execution.

2.3 The Leader-Election Protocol

The protocol we consider, hereafter called LE, is the
static version of a distributed leader-election protocol pre-

197

sented in [24]. It operates on an arbitrary topology of nodes
with distinct identifiers and it elects as the leader of the net-
work the node with the maximum identifier.

In brief, the protocol operates as follows. In its initial
state, a network node may initiate a leader-election compu-
tation (note that more than one node may do this) or accept
leader-election requests from its neighbors. Once a node
initiates a computation, it triggers communication between
the network nodes which results into the creation of a span-
ning tree of the graph: each node picks as its parent the
node from which it received the first request, forwards the
request to all of its remaining neighbors and ignores all sub-
sequent received requests, with an exception described be-
low. Consequently, each node awaits to receive from each of
its children the maximum identifier of the subtrees at which
they are rooted and, then, it forwards to its parent the maxi-
mum identifier of the subtree rooted at the node. Naturally,
this computation begins at the leaves of the tree and pro-
ceeds towards the root. Once this information is received
by the root all necessary information to elect the leader is
available. Thus, the root broadcasts this information to its
neighbors who in turn broadcast this to their neighbors, and
so on.

Note that if more than one node initiates a leader-election
computation then only one computation survives which is
the one originating from the node with the maximum iden-
tifier. This is established by associating each computation
with a source identifier. Whenever a node already in a com-
putation receives a request for a computation with a greater
source, it abandons its original computation and it restarts
executing a computation with this new identifier.

3 Specification and Verification in IOA

3.1 Specification

The specification of protocol LE in I/O automata is the
composition of the LENODEi automata and the Channel au-
tomata Ci,j , ∀ i, j ∈ I . The data types, identifiers, sig-
nature, and states of the LENODEi automaton are given in
Fig. 1 and its transitions (actions) in Fig. 2. Automaton Ci,j

is the one typically used for non-lossy channels and can be
found in [5].

3.2 Correctness Proof

The correctness proof is divided into two main parts. We
first show that a unique spanning tree is built, and using this

Data Types and Identifiers:

I: total ordered set of processes’ identifiers

M: messages

m = 〈type, maxid, leaderid, srcid, mychild〉 ∈ M, where

type ∈ {election, ack, leader};maxid, leaderid, srcid ∈ I ∪ {⊥};

mychild: Boolean

i, j ∈ I

Signature:

Input:
receive(m)j,i

Output:
send(m)i,j

Internal:
beginComputationi
setAcktoParenti

setLeaderi

States:

maxi ∈ I ∪ {⊥}, initially ⊥
srci ∈ I ∪ {⊥}, initially ⊥
leaderi ∈ I ∪ {⊥}, initially ⊥
parenti ∈ I ∪ {⊥}, initially ⊥
Nbrsi ∈ 2I : Neighbors of i

inElectioni : Boolean, initially false

sentAcktoParenti : Boolean, initially true

toBeAckedi ∈ 2I , initially ∅
tosendi , a vector of queues of messages, initially tosendi [j] = null, ∀j ∈ I

Figure 1. The LENODEi automaton’s types, identifiers
and states.

fact we show that a unique common node (the one with the
highest id) is elected as the leader. For each part safety and
liveness properties are stated. The technique of modular de-
composition is used for the final conclusions. Due to space
limitations, full proofs are not presented, but can be found
in [5]. Invariants are proved by induction on the length of
the execution.

3.2.1 A Unique Spanning Tree is Built

We state the safety and liveness properties that lead to the
conclusion that protocol LE builds a unique spanning tree.

Safety Properties

The first invariant states that once a node enters a leader-
election computation, it adopts a parent and a source (root)
of a potential spanning tree.

Invariant 1 Given any execution of LE, any state s, and
any i ∈ I ,

(a) if s.inElectioni = false and s.leaderi = ⊥ then
s.srci = ⊥ and s.parenti = ⊥.

(b) if s.inElectioni = true then s.srci = ⊥ and
s.parenti = ⊥.

198

Transitions:

input receive(m)j,i

Effect:
if m.type = election then

if (inElectioni=false ∨ (inElectioni=true ∧ m.srcid>srci)) then
srci := m.srcid

for all k ∈ Nbrsi − {j} do
enque m to tosendi [k]

toBeAckedi := Nbrsi − {j}
sentAcktoParenti := false

inElectioni := true

parenti := j

maxi := i

elseif (sentAcktoParenti = false ∧ srci = m.srcid) then
enque 〈ack, maxi , ∗, srci , false〉 to tosendi [j]

elseif m.type = ack then
if sentAcktoParenti = false ∧ m.srcid = srci then

remove j from toBeAckedi

if m.mychild = true ∧ m.maxid > maxi then
maxi := m.maxid

elseif m.type = leader then
if sentAcktoParenti = true ∧ inElectioni = true

∧m.srcid = scri then
leaderi := m.leaderid

inElectioni := false

for all k ∈ Nbrsi − {j} do
enque m to tosendi [k]

output send(m)i,j

Precondition:
m first on tosendi [j]

j ∈ Nbrsi
Effect:

deque m from tosendi [j]

internal beginComputationi

Precondition:
inElectioni = false ∧ leaderi = ⊥

Effect:
scri = i

for all k ∈ Nbrsi do
enque 〈election, ∗, ∗, srci , ∗〉 to tosendi [k]

toBeAckedi := Nbrsi
sendAcktoParent := false

inElectioni := true

parenti := i

maxi := i

internal setAcktoParenti

Precondition:
toBeAckedi = ∅ ∧ srci �= i ∧ sentAcktoParenti = false

Effect:
sentAcktoParenti = true

enque 〈ack, maxi , ∗, srci , true〉 to tosendi [parenti]

internal setLeaderi
Precondition:

toBeAckedi = ∅ ∧ srci = i ∧ sentAcktoParenti = false

Effect:
sentAcktoParenti = true

inElectioni = false

leaderi = maxi

for all k ∈ Nbrsi do
enque 〈leader, ∗, leaderi , srci , ∗〉 to tosendi [k]

Figure 2. The LENODEi automaton’s transitions.

The next lemma states that source nodes do not appear
“out of the blue”. The proof is by code inspection and use
of Invariant 1.

Lemma 3.1 In any given state s of an execution of LE, for
any i, j ∈ I if s.srci = j, then there exists a step (s1, π, s2),
s1 < s, s2 ≤ s and π = beginComputationj .

Let execi0 be any execution of LE where only a single
node i0 begins computation. We call i0 the initiator of the
computation. The next invariant states that once a process
enters a computation with a unique initiator, it becomes part
of the spanning tree rooted at the initiator.

Invariant 2 Given any execution execi0 of LE, any state s,
and for all i ∈ I such that s.parenti = ⊥, then the edges
defined by all s.parenti variables form a spanning tree of
the subgraph of G rooted at i0.

The following invariant states that a node adopts a new
source only if it is higher than its current source.

Invariant 3 For any process i ∈ I and for any two states
s, s′ s.t. s < s′ of any execution of LE, if s′.srci = s.srci,
then s′.srci > s.srci.

Liveness Properties

This lemma states that in executions with a single initiator
a unique spanning tree is eventually built rooted at the ini-
tiator.

Lemma 3.2 In any fair execution execi0 , all nodes i ∈ I

eventually belong to a unique spanning tree rooted at i0.

Proof. For any node j ∈ I , let Dj denote the length (in
terms of hops) of the longest loop-free path from i0 to j. We
show that eventually j belongs to the spanning tree rooted
at i0. The proof is by induction on Dj and uses Lemma 3.1
and Invariant 2. �

If more than one beginComputationi actions occur, let
ismax be the node with the maximum i value among them.
The following theorem, the core result of this section, shows
that a unique spanning tree is eventually built.

Theorem 3.3 Protocol LE eventually builds a unique
spanning tree rooted at ismax.

Proof. The proof makes use of Lemma 3.2 and Invariant 3.
The idea is that if more than one initiators begin computa-
tion, by Invariant 3, only the computation with the highest
id survives and as per Lemma 3.2 a unique spanning tree
rooted at that node is eventually built. �

199

3.2.2 A Unique Common Leader is Elected

We now state the safety and liveness properties that lead to
the correctness of protocol LE.

Safety Properties

The following invariant states that a node adopts a new max
value only if it is higher than its current one.

Invariant 4 For any node i ∈ I and for any two states s, s′

s.t. s′ < s of any execution of LE, if s.srci = s′.srci and
s.maxi = s′.maxi, then s′.maxi > s.maxi.

The following lemma states that each child propagates to
its parent the maximum value of its subtree. The proof is by
code inspection and use of Invariant 4.

Lemma 3.4 In any state s of an execution of LE, if
s.toBeAckedi = ∅ and s.sentAcktoParenti = f alse

then s.maxi is the greatest value among i and the values
that i has “seen” from its children.

Let imax denote the process with the maximum value i.
The next theorem (which is actually an invariant) states that
if a node elects a leader, this can only be imax.

Theorem 3.5 For any node i and state s of any execution
of LE, if s.leaderi = ⊥, then s.leaderi = imax.

Liveness Properties

We now give the main result that states that protocol LE
indeed solves the Leader Election problem.

Theorem 3.6 Given a fair execution of LE there exists a
state s where ∀ i ∈ I , s.leaderi = imax.

Proof. The proof makes use of Theorem 3.3 stating that a
unique spanning tree is built. Then it proceeds by induc-
tion on the depth of the spanning tree and by making use
of Lemma 3.4 it is shown that eventually the max value is
propagated to the root of the tree. Then it is argued that the
leader message sent by the root is eventually received by
all nodes and by Theorem 3.5 all nodes elect imax as the
leader, as desired. �

4 Specification and Verification in PA

4.1 Specification

In this section we give a description of the LE pro-
tocol in CCSv . We assume a set K consisting of the

node unique identifiers and a set of channels F =
{electioni,j, ack0i,j, ack1i,j, leaderi,j | i, j ∈ K, i = j}
where xi,j refers to the channel from node i to node j of
type x. The system is described as the following parallel
composition of its constituent nodes:

P0
def= (

∏

k∈K

NoLeader〈uk, Nk〉)\F

Initially, all nodes are of type NoLeader〈i, N〉 but may
evolve into processes InComp〈i, f, s, N, S, R, A, max〉,
LeaderMode〈i, s, N〉 and ElectedMode〈i, s, N, S, l〉,
where i represents the identifier of the process, N the set
of its neighbors, f and s are the father of the node and the
source of the computation, respectively, S the set of request
messages the node has still to send, R the set of potential
children of the node from which it is waiting to hear and A

the set of acknowledgement messages the process has still
to send. The specification of these processes can be found
in Fig. 3.

NoLeader〈i, N〉 def
= τ. InComp〈i, i, i, N, N, N, ∅, i〉

+
∑

j∈N electionj,i(s). InComp〈i, j, s, N, N − {j}, N − {j}, ∅, i〉

InComp〈i, f, s, N, S, R, A, max〉 def
=∑

j∈S electioni,j (s). InComp〈i, f, s, N, S − {j}, R, A, max〉
+

∑
j∈A ack0i,j(s). InComp〈i, f, s, N, S, R, A − {j}, max〉

+
∑

j∈N ack0j,i(s
′).

cond ((s = s′) � InComp〈i, f, s, N, S, R − {j}, A, max〉,
true � InComp〈i, f, s, N, S, R, A, max〉)

+
∑

j∈N ack1j,i(s
′, max′).

cond ((s = s′ ∧ max′ > max) � InComp〈i, f, s, N, S, R−{j}, A, max′〉,
(s = s′ ∧ max′ ≤ max) � InComp〈i, f, s, N, S, R−{j}, A, max〉,
true � InComp〈i, f, s, N, S, R, A, max〉)

+
∑

j∈N electionj,i(s
′).

cond ((s′ > s) � InComp〈i, j, s′, N, N − {j}, N − {j}, ∅, i〉,
(s′ = s) � InComp〈i, f, s, N, S, R, A ∪ {j}, max〉,
true � InComp〈i, f, s, N, S, R, A, max〉)

InComp〈i, f, s, N, ∅, ∅, ∅, max〉 def
=

ack1i,f (s, max). LeaderMode〈i, s, N〉

InComp〈i, i, i, N, ∅, ∅, ∅, max〉 def
=

leader(max). ElectedMode〈i, i, N, N, max〉

LeaderMode〈i, s, N〉 def
=∑

j∈N leaderj,i(s
′, max′).

cond ((s = s′) � ElectedMode〈i, s, N, N − {j}, max′〉,
true � LeaderMode〈i, s, N〉)

ElectedMode〈i, s, N, S, l〉 def
=∑

j∈S leaderi,j(s, l). ElectedMode〈i, s, N, S − {j}, l〉
+

∑
j∈N leaderj,i(s

′, l′). ElectedMode〈i, s, N, S, l〉

Figure 3. The node process

4.2 Correctness Proof

The correctness criterion of our protocol is expressed as
the following bisimulation equivalence between the system

200

and its specification. The specification consists of the pro-
cess that elects as a leader the node with the maximum iden-
tifier and terminates.

Theorem 4.1 P0 ≈ leader(max).0 where max =
max{ui| i ∈ K}.

The proof is established in two phases. In the first phase
we consider a simplification of P0 where a single initiator
begins computation and where the spanning tree on which
the protocol operates is pre-determined. We show, by em-
ploying the notion of confluence, that this restricted system
satisfies the above correctness requirement. It then remains
to establish a correspondence between the general system
P0 and these restricted type of agents which leads to the de-
sired result. Due to space limitations, full proofs are omitted
but can be found in [5].

The restricted type of systems employed in the first phase
of the proof uses the following processes:

NoLeader′〈i, f, N, l〉 def
= electionf,i(s).

InComp′〈i, f, s, N, N − {f}, N − {f}, ∅, i〉
InComp′〈i, f, s, N, S, R,A, max〉 def

= . . .

+
∑

j∈N electionj,i(s
′).

InComp′〈i, f, s, N, S, R,A ∪ {j}, max〉
. . .

LeaderMode′〈i, s, N〉 def
=

∑
j∈N leaderj,i(s

′, max′).
ElectedMode〈i, s, N, N − {j}, max′〉

Thus, NoLeader′ is similar to NoLeader except that it
may only be activated by a signal from a specified node,
f . Similarly, InComp′ and LeaderMode′ are similar to
InComp and LeaderMode, respectively, except that they
do not take into account the source node of incoming leader

and election messages.
Let T be the set of agents of the form

T0
def= (

∏
i∈K−{ν} NoLeader′〈i, fi, Ni, li〉 |

InComp′〈ν, ν, ν, Nν, Nν , Nν , ∅, ν〉)\F

where {(i, fi)|i ∈ K − {ν}} is a spanning tree of the net-
work rooted at node ν, for some ν ∈ K . Our first result
shows that T0 has an execution where the maximum node is
elected as a leader.

Lemma 4.2 T0
leader(max)

=⇒ ≈ 0.

Proof. The proof consists of the construction of an appro-
priate execution. The execution considered follows the in-
tuitive break down of the protocol in its three phases and
involves an induction on the height of the tree. �

Lemma 4.3 T0 is confluent.

Proof. We may check that processes NoLeader′, InComp′,
LeaderMode′ and ElectedMode, are confluent by con-
struction. By compositionality results (see [5]) the claim
follows. �

From these two results we have that T0 satisfies the pro-
tocol correctness criterion.

Corollary 4.4 T0 ≈ leader(max).0 where max =
max{ui|i ∈ K}.

Having used confluence to analyze the behavior of T0,
we can now relate it to that of P0. Let P range over deriva-
tives of P0 and T range over derivatives of T0. First, we in-
troduce a notion of similarity between derivatives of P0 and
T0. We say that P and T are similar if the computation ini-
tiator in T coincides with the maximum source node present
in P and, additionally, the set of nodes in P that have this
source form a subtree of the spanning tree of T . All such
nodes are in the same state in both P and T whereas the
remaining nodes are idle in T no matter their status in P .

Lemma 4.5 {〈T, P 〉|P and T are similar} is a strong
simulation.

Proof. The proof is a case analysis of the possible actions
of the form T

α−→ T ′. �

By Corollary 4.4 and Lemma 4.5 we have that

P0
leader(max)

=⇒ 0. Our final result establishes a correspon-
dence between P0 and agents T0 ∈ T .

Lemma 4.6 If P0
w=⇒ P then there exists T0 such that,

T0
w=⇒ T and P and T are similar.

Proof. The proof is by induction of the length of the transi-
tion P0

w=⇒ P . �

We can now prove our main theorem. We have seen

that P0
leader(max)

=⇒ 0. Further, suppose that P0
α=⇒ with

α = leader(max). Then, there exists T0 such that T0
α=⇒.

However, this is in conflict with Corollary 4.4. Finally, for
the same reason, it is not possible that P0 =⇒ P ′

1 −→. This
implies that P0 ≈ T0, as required.

5 Framework Evaluation

In this section we evaluate the two approaches taken for
reasoning about the LE protocol and draw conclusions re-
garding their applicability and relative strengths. We begin
with some general observations on the two frameworks and

201

then we evaluate them based on our experiences of specify-
ing and verifying our case study.

One may observe that work in I/O Automata and Pro-
cess Algebras was mostly carried out independently and
that focus on each of them has been quite distinct. Work
on PAs has concentrated on enhancing the expressive power
of the associated languages, developing their semantic the-
ories, and constructing automated analysis tools. On the
other hand, work on I/O automata placed emphasis on ap-
plication of the basic model and its proposed extensions to
prove by hand the correctness of protocols. One of the few
cross-points between the two lines of work was [23] where
the semantic relationship between the formalisms was in-
vestigated. In that paper, I/O automata are recasted as a
De Simone calculus and it is shown that, due to the input-
enabledness of input actions and the non-blocking prop-
erties of the output actions, certain trace equivalences are
substitutive for IOA. This fact also enables reasoning about
fairness within I/O automata. In contrast, to provide compo-
sitional theories for typical PAs, it is necessary to consider
the branching structure of processes. Thus, process alge-
bras are typically given bisimulation or failure equivalence
semantics based on which algebraic/compositional theories
are built.

5.1 Specification

Beginning with the specifications developed in the two
frameworks, we note that they have many similarities as
well as points of distinction. For instance, they both con-
sider the system as the parallel composition of the con-
stituent components described as processes/automata. The
nature of these processes/automata does not include any in-
ternal concurrency. Although this was expected in the I/O
automata model, in process algebra there was an alternative
option of firing all acknowledgement and election messages
in processes concurrently to the main body of a node pro-
cess. It turned out that the imposition of sequentiality and
the maintenance of sets containing this information enabled
the trackability of the system derivatives and a smoother
proof. On the other hand, the models depart from each other
in a number of ways.

Language syntax. The languages of the two formalisms
differ substantially. The main differences concern the lan-
guage constructs, the granularity of the actions, and the
methodology used for describing flow of behavior. On the
one hand, process algebras are based on a set of primitives
and a fairly large and expressive set of constructs with the

notions of communication and concurrency at the core of
their languages (as it can be observed in Fig. 3). A system
is modeled as a process which itself can be a composition of
subprocesses representing further constituent components.
Action granularity is very fine: actions can be input or out-
put on channels and internal actions.

On the other hand, I/O automata feature a more “relaxed”
type of language, quite close to imperative programming
(as it can be observed in Fig. 2). It enables a limited (in
comparison to PAs) set of operators: renaming and parallel
composition. A system in this formalism is described as an
I/O automaton which, as with process algebras, is built as
the parallel composition of the system’s sub-components.
However, in contrast to PAs, an I/O automaton possesses a
state and its behavior is prescribed by the set of actions the
automaton may engage in. Input actions are always enabled,
and output and internal actions cannot be prevented from
arising. The effect of an action can be a complex behavior
described as a sequence of simple instructions that involve
operating on the automaton’s state. This may result in a less
fine granularity of actions in comparison to PA’s.

State. As noted above, the I/O automata model builds on
the notion of a state. The state of an automaton consists
of a set of variables which can be accessed and updated by
the automaton’s actions even if these constitute a set of in-
dependent parallel threads. In the context of process alge-
bras, the presence of independent parallel threads sharing a
common set of variables creates the need to build mecha-
nisms for state maintenance or resort to alternative means
of structuring the model which can be quite taxing. In our
case-study there were no parallel threads needing to access
the same set of variables, which rendered such mechanisms
unnecessary. Instead, processes carried and updated their
store within process constant names as, for example, pro-
cess constant InComp〈i, f, s, N, ∅, ∅, ∅, max〉.
Execution flow. Moving on, we note that the CCS model
imposes a sequential structure to a node that captures its
flow of execution: in the protocol’s model, a node normally
proceeds through the sequence of processes NoLeader,
InComp, LeaderMode, ElectedMode. As computation
proceeds the possible behaviors a process may engage in are
explicitly encoded in the process’s description. On the other
hand, in the I/O automata model, the flow of execution is
determined by the state of an automaton: any action whose
precondition is satisfied, may take place. Thus, one has to
look into the code carefully to build the node’s behavior
as a flow diagram which can increase the effort required to
debug the specification. For example, the execution flow of

202

the above-mentioned CCS sequence of processes is realized
in IOA with the following values of the state-variable tuple
〈leaderi, inElection, sentAcktoParent〉: NoLeader ≡
〈⊥, false, true〉, InComp ≡ 〈⊥, true, false〉,
LeaderMode ≡ 〈⊥, true, true〉, and ElectedMode ≡
〈maxi, false, true〉. Obviously, one needs to carefully
check the IOA specification to observe this flow, as opposed
to the PA specification where it is straightforward.

Channels. Another interesting point is that the two for-
malisms differ in their adoption of channels: In CCS, chan-
nels are a first-class entity (see set F in the PA specifica-
tion) and communication between processes is carried out
by a handshake mechanism over their connecting channels.
This means that if one needs to employ a more involved
type of a channel (e.g. buffer or lossy channel), then special
processes need to be described for connecting the original
sender and receiver. In contrast, in the I/O automata model,
channels are modeled as automata which execute comple-
mentary actions with their source and destination. For sim-
ple types of channels, this machinery is standard and be-
comes almost invisible to the main body of an application
but has as a consequence that in a proof one needs to as-
sume the proper delivery of messages, assuming of course
that channels are intended to be reliable (as was the case in
the IOA proofs presented in this paper).

Learning curve. A newcomer to both of the formalisms
who was involved in the development of the two specifica-
tions reported the I/O automata model to be easier to un-
derstand and use. This is mainly due to the programming
style of I/O automata which does not place great demands
on a newcomer as opposed to the unfamiliar nature of PAs
(language and semantics).

5.2 Verification

Moving on to the verification we again observe that the
two proofs build on a number of common ideas (e.g. both
proofs consider the case that the protocol contains a unique
initiator before moving on to the general case). However,
the approaches taken are quite distinct.

Global vs. local properties and Proof methods. As it
can be observed in Section 4.2, the PA proof is based on
the use of bisimulation for establishing the equivalence be-
tween the system and its perceived intended behavior (The-
orem 4.1). As already noted, bisimulations place the em-
phasis on the behavior a system exhibits on the interface
with its environment, that is, on global system properties.
With regards to the establishment of the correctness crite-

rion, the PA proof took advantage of the nature of the pro-
tocol: it is a deterministic protocol that essentially concerns
the computation of a global function (election of the maxi-
mum leader). Given this, efforts were geared towards estab-
lishing the confluence of the system and demonstrating that
there exists an execution where the desired leader election
is observed.

On the other hand, as it can be observed in Section 3.2,
the I/O proof uses assertional techniques for the proof of
a number of safety and liveness properties which establish
that in every execution, eventually, all processes will know
a common leader. To achieve this, the global criterion had
to be decomposed into local properties of the constituent
components of the system. This task required a careful con-
sideration of the protocol’s behavior and some ingenuity on
behalf of the prover. As a result, the proof had to be broken
into two parts: in the first part, the internal state of the nodes
was “transformed” into to a global system behavior (by the
existence of a globally common spanning tree) and then, in
the second part, the uniqueness of the leader was shown.

A general conclusion that emanates from this observa-
tion is that process algebras are especially suited for appli-
cations where the correctness requirement can be expressed
as a global property of a system, whereas I/O Automata can
more naturally handle the establishment of local properties
of the component automata, or, where the overall require-
ment can be easily decomposed into such properties.

One may argue that perhaps it would be possible to
use different IOA proof methods geared towards reasoning
about global properties, e.g. simulation relations [11]. For
the specific protocol, our experience tells us that this would
be laborious to establish. It would be interesting to look
into whether a notion similar to confluence would aid such
reasoning. Nonetheless, we feel that it is questionable that
it would result in easier-to-produce or more comprehensible
proofs.

Proof style and Applicability. Looking at Sections 3.2
and 4.2, one may argue that the process calculus proof ap-
pears to be more technical in comparison to the IOA one.
While, the PA proof took advantage of compositionality re-
sults for facilitating the verification process, it took some
effort for the newcomer to become familiar with them as
well as some ingenuity for choosing and adopting them. On
the other hand, the IOA proof was more intuitive, closer to
the “way of thinking” of the protocol, and did not require
any specialized techniques, thus it seemed easier to apply.
The challenge being to identify the appropriate safety and
liveness properties (which for the specific protocol were not

203

very difficult), the rest of the process was guided by check-
ing for missing information towards reaching the intended
goal and subsequently expressing it as additional lemmas
and invariants. The proofs were mainly carried out by in-
duction and code investigation. However, the verbose style
employed in the IOA liveness proofs (which is the typical
style generally used for such proofs in IOA) could allow a
less mature prover to fall into pitfalls. In contrast, in the
process-algebraic proof, safety and liveness properties are
paired together and their proof follows the formal nature of
the semantics. This results in a continuous rigidity in the
proof as well as a higher awareness on the part of the prover
when an argument is becoming “loose”.

Learning curve. From the above discussion, perhaps it is
not a surprise that the newcomer reported that the process of
carrying out the proof within the I/O automata framework
seemed easier than in the PA framework.

References

[1] R. M. Amadio and S. Prasad. Modelling IP mobility.
In Proceedings of CONCUR’98, LNCS 1466, pages
301–316, 1998.

[2] J. A. Bergstra, A. Ponse, and S. A. Smolka. Handbook
of Process Algebra. North-Holland, 2001.

[3] S. Dolev, S. Gilbert, N. A. Lynch, E. Schiller, A. A.
Shvartsman, and J. L.Welch. Virtual mobile nodes for
mobile ad hoc networks. In Proceedings of DISC’04,
LNCS 3274, pages 230–244, 2004.

[4] R. Fuzzati and U. Nestmann. Much ado about noth-
ing? Electronic Notes of Theoretical Computer Sci-
ence, 162:167–171, 2005.

[5] M. Gelastou, Ch. Georgiou, and A. Philippou. On the
application of formal methods for specifying and ver-
ifying distributed protocols. Technical Report UCY-
TR-07-04, Dept. of Computer Science, University of
Cyprus. (Available at http://www.cs.ucy.ac.
cy/∼annap/nca-full.pdf.)

[6] Ch. Georgiou, N. A. Lynch, P. Mavrommatis, and J. A.
Tauber. Automated implementation of complex dis-
tributed algorithms specified in the IOA language. In
Proceedings of PDCS’05, pages 128–134, 2005.

[7] J. F. Groote and M. P. A. Sellink. Confluence for
process verification. In Proceedings of CONCUR’95,
LNCS 962, pages 152–168, 2005.

[8] X. Liu and D. Walker. Confluence of processes and
systems of objects. In Proceedings of TAPSOFT’95,
LNCS 915, pages 217–231, 1995.

[9] N. A. Lynch. Distributed Algorithms. Morgan Kauf-
mann, 1996.

[10] N. A. Lynch and M. R. Tuttle. An introduction to In-
put/Output Automata. CWI-Quarterly, 2(3):219–246,
1989.

[11] N. A. Lynch and F. W. Vaandrager. Forward and back-
ward simulations part I: Untimed systems. Informa-
tion and Computation, 121(2):214–233, 1995.

[12] R. Milner. A Calculus of Communicating Systems.
Springer, 1980.

[13] R. Milner. Communication and Concurrency.
Prentice-Hall, 1989.

[14] S. Nanz and C. Hankin. Static analysis of routing
protocols for ad hoc networks. In Proceedings of
WITS’04, pages 141–152, 2004.

[15] U. Nestmann. On Determinacy and Non-determinacy
in Concurrent Programming. PhD thesis, University
of Erlangen, 1996.

[16] U. Nestmann, R. Fuzzati, and M. Merro. Modeling
consensus in a process calculus. In Proceedings of
CONCUR’03, LNCS 2671, pages 393–407, 2003.

[17] C. Newport. Consensus and collision detectors in
wireless ad hoc networks. Master’s thesis, MIT, 2006.

[18] A. Philippou and G. Michael. Verification tech-
niques for distributed algorithms. In Proceedings of
OPODIS’06, LNCS 4305, pages 172–186, 2006.

[19] A. Philippou and D. Walker. On confluence in the π-
calculus. In Proceedings of ICALP’97, LNCS 1256,
pages 314–324, 1997.

[20] B. C. Pierce and D. N. Turner. Pict: A programming
language based on the π-calculus. In Proof, Language
and Interaction: Essays in Honour of Robin Milner,
pages 455–494. MIT Press, 2000.

[21] M. Sanderson. Proof Techniques for CCS. PhD thesis,
University of Edinburgh, 1982.

[22] C. Tofts. Proof Methods and Pragmatics for Parallel
Programming. PhD thesis, Univ. of Edinburgh, 1990.

[23] F. W. Vaandrager. On the relationship between pro-
cess algebra and input/output automata. In Proceed-
ings of LICS’91, pages 387–398. IEEE Computer So-
ciety, 1991.

[24] S. Vasudevan, J. Kurose, and D. Towsley. Design and
analysis of a leader election algorithm for mobile ad
hoc networks. In Proceedings of ICNP’04, pages 350–
360. IEEE Computer Society, 2004.

204

