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Abstract. Shared memory emulation on distributed message-passing
systems can be used as a fault-tolerant and highly available distributed
storage solution or as a low-level synchronization primitive. Cadambe
et al. proposed the Coded Atomic Storage (CAS) algorithm, which uses
erasure coding to achieve data redundancy with much lower communi-
cation cost than previous algorithmic solutions. Recently, Dolev et al.
introduced a version of CAS where transient faults are included in the
fault model, making it self-stabilizing. But self-stabilization comes at a
cost, so in this work we examine the overhead of the algorithm by im-
plementing a system we call CASSS (CAS Self-Stabilizing). Our system
builds on the self-stabilizing version of CAS, along with several other self-
stabilizing building blocks. This provides us with a powerful platform to
evaluate the overhead and other aspects of the real-world applicability
of the algorithm.
In our case-study, we evaluated the system performance by running it on
the world-wide distributed platform PlanetLab. Our study shows that
CASSS scales very well in terms of the number of servers, the number
of concurrent clients, as well as the size of the replicated object. More
importantly, it shows (a) to have only a constant overhead compared
to the traditional CAS algorithm and (b) the recovery period (after the
last occurrence of a transient fault) is no more than the time it takes to
perform a few client (read/write) operations. Our results suggest that the
self-stabilizing variation of CAS, which is CASSS, does not significantly
impact efficiency while dealing with automatic recovery from transient
faults.

1 Introduction

Sharing a data object among decentralized servers that provide distributed stor-
age has been an active research topic for decades. We consider the problem of
emulating a shared memory in a way that appears atomic (linearizable) [1]. Early
solutions [2, 3] do not scale well when it comes to larger data objects due to the
use of full replication of the data to all servers in the system. Cadambe et al. [4]
proposed the Coded Atomic Storage (CAS) algorithm, which uses erasure coding
in order to achieve data redundancy but with much lower communication cost
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compared with algorithms that use full replication. Although CAS provides an
efficient solution that tolerates node crashes, Dolev et al. [5, 6] solve the same
problem while considering an even more attractive notion of fault-tolerance since
their solution can recover after the occurrence of transient faults. Such faults
model any violation of the assumption according to which the system was de-
signed to operate. Dolev et al. present a self-stabilizing version of CAS, which we
refer to as CASSS (CAS Self-Stabilizing). Unlike CAS, their version guarantees
recovery after the occurrence of transient faults. The authors suggests that the
variant of CAS from [5] has similar communication costs as CAS [4]. Our results
validate [5]’s prediction, but more importantly, they demonstrate the system’s
ability to recover from transient faults efficiently, while tolerating node failures.

Atomic Shared Memory Emulation. The goal of emulating a shared mem-
ory is to allow the clients to access via read and write operations a shared storage
in the network. By that, the service hides from the user low-level details, such as
message exchange between the clients and the servers. As the shared data is repli-
cated on the servers, data consistency between the replicas (data copies) must
be ensured. Atomicity (linearizability) [1] is the strongest consistency guarantee
and provides the illusion that operations on the distributed storage are invoked
sequentially, even though they can be invoked concurrently. A read (resp. write)
operation is invoked with a read (resp. write) request and it completes with a
response (e.g., an acknowledgment). There are two criteria that need to be sat-
isfied for the atomicity property: (1) Any invocation of a read operation, after a
write operation is completed, must return a value at least as recent as the value
written by that write operation. (2) A read operation that follows another read
operation will return a value at least as recent as the value returned by the first
read operation. Thus, the operations appear sequential.

Fault Model. (i) Benign failures. We consider message passing systems in
which communication failures may occur during packet transit, such as packet
loss, duplication, and reordering. However, the studied algorithms assume com-
munication fairness, i.e., if the sender transmits a packet infinitely often, the
receiver gets this packet infinitely often. The early solutions [2, 3] model node
failures as crashes and restrict the number f of failing servers (nodes) to be less
than half of the nodes in the system. We follow a similar approach but require
that in the presence of transient faults, and only then, a crashed node either
restarts (we call this a detectable restart) or is removed from the system via a
reconfiguration service [7]. Moreover, as specified in [5, 6], our restriction on the
number of crashes f is similar to the one of CAS [4].

(ii) Transient Faults. We also consider violations of the assumptions according to
which the system was designed to operate. We model their impact on the system
as arbitrary changes of the state, as long as the program code stays intact. Since
these faults are rare, our model assumes that the system starts after the last
occurrence of these transient faults. Transient faults can, for example, be soft
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errors (which are sometime called, single event upset) or the event of a CRC
code failing to detect a bit error in a transmitted packet.

(iii) Self-Stabilization. These design criteria, which requires recovery without ex-
ternal (human) intervention, provides a strong fault-tolerance guarantee in that
the system always recovers from transient faults. By the definition given by Dijk-
stra [8], the correctness proof of a self-stabilizing system needs to show recovery
within a bounded period after the last transient fault. That is, when starting
from an arbitrary system state, the system needs to exhibit legal behavior within
a bounded time.

Dolev et al. [7] proposed the following refinement of Dijkstra’s design crite-
ria of self-stabilization, which we believe to be convenient for dealing with the
asynchronous nature of distributed systems. In the absence of transient faults,
the environment is assumed to be asynchronous. Moreover, servers and clients
may at any time crash. In the presence of transient faults, it is assumed that (a)
all failing servers to recover eventually and (b) there is a sufficiently long period
(which allows recovery) in which the system run is fair, i.e., each node makes
progress infinitely often.

Related Work. Shared memory can support either a single-writer and
multi-reader (SWMR) context, e.g., ABD [2], or a multi-writer and multi-
reader (MWMR) context, e.g., MW-ABD [3]. A discussion on such non-self-
stabilizing solutions is given in [9].

The term reconfiguration refers to a change from one server configuration to
another and requires old configuration members to send the data to the new
members; the data is replicated to all configuration members. Shared memory
emulation has also been studied under such dynamic server participation, e.g.,
RAMBO [10]. See [11] for a survey on (non-self-stabilizing) reconfigurable solu-
tions to memory emulation. ARES [12] is a recent solution that supports recon-
figuration of a shared memory emulation service and is based on erasure coding.
The authors also present the first atomic memory service that uses erasure coding
with only two rounds of message exchanges for a client operation. While combin-
ing these two creates an efficient solution with respect to liveness, even during
configuration collapses, such a solution does not consider self-stabilization.

Nicolaou and Georgiou [13] did an experimental evaluation of four non-self-
stabilizing MWMR register emulation algorithms on PlanetLab. The algorithms
evaluated were SWF, APRX-SWF, CwFr and SIMPLE. Algorithm SIMPLE is
an MWMR version of ABD for quorum systems (quorums are intersecting sets
of servers), similar to the one we use in this work (called MW-ABD) to compare
its performance with CAS and CASSS.

Our Contributions. We are the first to implement, and evaluate via exper-
iments, a self-stabilizing algorithm for coded atomic MWMR shared memory
emulation. We show that the overhead associated with self-stabilization does
not really affect the efficiency advantage associated with erasure coding. We
have also implemented a (graceful) counter restart mechanism, based on prin-
ciples from [7]. The counter restart mechanism can perform a (synchronized)
global reset of the entire system while keeping the most recently written data ob-
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ject using an agreement protocol. Additionally, we implemented a self-stabilizing
reincarnation number service [5], which provides recyclable client identifiers, and
by that helps to deal with detectable client restarts.

Our experiments on PlanetLab shows that our pilot implementations of CAS
and CASSS have comparable performances with respect to operation latency.
Furthermore, the evaluation shows that our implementation of CASSS scales
very well when increasing the number of servers and clients, respectively. More
importantly, the overhead caused by self-stabilization in our experiments is only
greater than the non-self-stabilizing CAS implementation by a constant factor.
The system evaluation shows almost no slowdown for data objects up to 512 KiB,
and is only slightly slower for data objects up to 1 MiB. Last but not least, the
evaluation reveals that the counter restart mechanism is fast – it takes about the
same amount of time as three or four normal write operations. This demonstrates
CASSS’s ability to rapidly recover from transient faults. Encouraged by these
evaluation results, we believe that our pilots and their building blocks could be
used for implementing other self-stabilizing algorithms and prototypes.

2 System and Background

The system includes a network of N nodes. Each node can host clients and/or
servers. Servers use a gossip service for communicating among themselves.
Clients interact with the shared-memory service using read and write opera-
tions. These operations include multiple communication rounds of requests and
responses. Every client performs its operations sequentially, but its operations
may be interleaved arbitrarily with operations from other clients.

Servers are arranged into pairwise intersecting sets, or quorums, that together
form a quorum system. The intersection property of quorums enables information
communicated to a quorum to be passed (via the common servers) to another
quorum. Majorities (subsets containing a majority of the servers) form a simple
quorum system (used, for example, in ABD [2]). The self-stabilizing quorum
system considered in this work follows the one proposed in [5, 6]. We note that
the quorum system needs to be self-stabilizing. This is, for example, because
of the fact that client algorithms often include several phases. The clients and
the servers needs to be synchronized both with respect to the phases and the
associated object version.

Each server has access to a set of records, which are tuples of the form
(tag,data,phase). A tag has the form of (number, clientID), i.e., a pair with
a sequence number and the unique identifier of the client that is writing this
version. The data field holds either null, or a coded element of an object that is
stored in the system. The tag is used to determine the causal relationship among
operations, e.g., when retrieving the object’s most up-to-date version. The phase
field keeps track of which phase of the protocol that the data in the record have
reached.
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2.1 The CAS Algorithm

Coded Atomic Storage (CAS) is based on techniques for reducing communication
costs, such as erasure coding and an earlier algorithm [14], by avoiding full
replication, as in ABD and MW-ABD. CAS is a quorum based algorithm, where
a quorum is any subset Q of the servers, such that |Q| ≥ kthreshold = dN+k

2 e; N
is the number of servers and k is the coding parameter deciding the least amount
of needed elements to decode the object value. CAS allows for up to f server
failures. See [4] for full details.

Writer’s procedure. There are three phases: query, pre-write and finalize.
Query: The query phase is based on MW-ABD [15]’s query, but considers only
finalized records, i.e., records that has their phase field set to ‘fin′ (rather than
‘pre′).

Pre-write: pi’s client sends a message, 〈(x+ 1, i),mj , ‘pre′〉, to any server pj
and waits for a quorum of replies, where x is the maximum tag number retrieved
from the query phase and mj holds the coded element to the server at pj .

Finalize: pi sends a message 〈(x, i+1),⊥, ‘fin′〉, to all servers. After receiving
a quorum of acknowledgments, the write operation is finished. The finalize phase
hides the write operations that have not been seen by a quorum since the query
phase only looks at records with phase ‘fin’. Once the client has passed the
pre-write phase, it knows that at least a whole quorum has enough elements to
reconstruct the data and therefore it can be made visible in other operations.

Reader’s procedure. There are two phases: query and finalize. The query
phase is identical to the writer’s query phase.

Finalize: client pi sends out a message 〈tmax, mj , ‘fin′〉 to all servers, where
tmax = (x, •) is the tag retrieved from the query phase. The client waits until a
quorum has responded; each response includes a coded element corresponding to
tmax (or a null if the server stored no record corresponding to tmax). If at least
k of the responses include a coded element, the reader decodes the object value
and returns it to the application. Otherwise, it just returns as an unsuccessful
read.

Server’s events. The servers store different versions of the objects in records
of the form (t, w, label), where t is a tag, w is a coded element and label is either
‘pre’ or ‘fin’. The server’s procedures include the event handlers corresponding to
the client requests: query, pre-write and finalize (of both read and write). Note
that the algorithm clearly tolerates any writer failure (crash) whenever either
no server or a quorum receives the finalize message. To the end of establishing
the viability of a write operation that only some servers (but not a quorum)
store a finalized record, the algorithm employs a reliable gossip mechanism for
disseminating among the servers tags of finalized records. This dissemination is
invoked once for any arriving finalized message.

2.2 Self-Stabilizing CAS

The variation of CAS from [5, 6] is both self-stabilizing and privacy-preserving.
Our pilot implementation, which we call CASSS (CAS Self-Stabilizing), we only
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Algorithm 1: A description of CASSS, code for pi’s client and server

1 The client: For write(s): Query all servers for finalized tags. After hearing
from a quorum, get the maximum tag (z, j). Encode the elements w1, w2, . . .,
wN using input s, such pi ∈ P hosts a server. Send to all servers
((z + 1, j), wi, ‘pre′) and wait for a quorum of replies. For each server pj ∈ P ,
send ((z + 1, j), ‘null′, ‘fin′) and wait for a quorum of replies. The algorithm
uses the ‘FIN′ phase label for making sure that at least a quorum of servers
store the record ((z + 1, j), wi, ‘fin′). This way, the quorum intersection
property guarantees the record visibility w.r.t. prospective client operations.
Then, send for each pj ’s server ((z+ 1, j), ‘null′, ‘FIN′) and wait for a quorum
before returning. The algorithm uses the ‘FIN′ phase label for making sure
that any server that has the record ((z + 1, j), wi, ‘FIN′) knows that there is
at least a quorum of servers with the record
((z + 1, j), wi, label) : label ∈ {‘fin′, ‘FIN′} regardless of whether the client
that invoked this operation has failed or not.;

2 For read(): Query all servers for ‘pre’ tags. After hearing from a quorum, get
the maximal tag t := (z, j). For each server, send (t,⊥, ‘fin′) and wait for a
quorum of replies with the requested coded elements that are associated with
t. If at least kthreshold replies include coded elements so that it is possible to
decode them, return the decoded value. Otherwise, return ⊥;

3 The server: Upon query arrival from pj’s client to pi’s server. If pj ’s client
is a reader, acknowledge with (t,⊥, ‘qry′)), where t is the maximal tag of any
finalized stored record. Else, acknowledge using t that is the maxim tag that
any stored record.

4 Upon pre-write (t, w, ‘pre′) arrival from the pj’s writer. Make sure that the
stored record include the coded element w and acknowledge using (t,⊥, ‘pre′).

5 Upon finalize or FINALIZE (t,⊥, d) : d ∈ {‘fin′, ‘FIN′} arrival from pj’s client
to pi’s server. If (t, w, d) is stored and pj ’s client is a reader, then
acknowledge using (t, w, d). Else, acknowledge using (t,⊥, d).

6 Upon gossip (pre[j], fin[j], F IN [j]) arrival from pj’s server to pi’s server.
Integrate the arriving information with the stored one by making sure that
pre[j], fin[j] and FIN [j] are not greater than any of the tags of the stored
records with ‘pre′, ‘fin′, and respectively, ‘FIN′ phases. In case there is a
quorum of gossip records with the phase ‘fin′, update the phase label to
‘FIN′. The updated phase value later allows the servers to consider this
record as a candidate for garbage collection (when it becomes not among the
δ newest records of phase ‘FIN′). Gossip to all servers (pre[i], fin[i], F IN [i]),
where pre[i], fin[i] and FIN [i] are the greatest stored tags of stored records
with ‘pre′, ‘fin′, and respectively, ‘FIN′ phases.

focus on the algorithms self-stabilizing ability (i.e., it’s ability to recover after the
occurrence of a transient fault). This is modelled by considering transient faults
that can corrupt arbitrarily the system state (as long as the program code stays
intact). Moreover, it is assumed that the system starts after the last occurrence
of these failures [8, 16].
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1. In the starting system state, the server at node pi may store tag tmax (in a
record that has its phase set to either ‘pre’ or ‘fin’), such that due to the system
asynchronous nature, it is not retrieved by any query for an arbitrarily long
period. The challenge is to bound the number of write operations in which
stale information, such as tmax’s record, may reside at the system without
having a write that hides tmax.

2. Self-stabilizing (reliable) end-to-end communications require that the under-
lying channels have bounded capacities [16, Chapter 3.2]. Thus, in the context
of self-stabilization in asynchronous systems, the quorums that send acknowl-
edgments to the clients might complete write operations at a faster rate than
the reliable gossip service delivers. Therefore, it is not clear how the writer
can avoid blocking in a self-stabilizing system where its channels are bounded
(and still deliver all messages).

3. All variables must be bounded, including, for example, the tag values. This
means that when the system state encodes the maximum tag values, wrapping
around to value zero must not disrupt the algorithm invariants, such as the
tags’ ability to order events.

Addressing challenge (1). The servers repeatedly gossips the highest tag value
that any server has. Each server includes in these messages the maximum tag
that is part of locally stored records, such that their labels are ‘pre’ and also the
maximum tag of records with the labels ‘fin’ and ‘FIN’. Also, any write operation
queries for the highest ‘pre’ tag so that the new tag of this operation is greater
than all the (possibly corrupted) pre-write records in the system. (The read
procedure is borrowed from CAS.) The correctness proof in [5, 6] demonstrates
that this modification still preserves atomicity and thus CASSS addresses the
first challenge.

Addressing challenge (2). The proof also shows that the gossip service
does not need to guarantee the delivery of all messages and that the message’s
eventual delivery (or later messages with higher tag values) is sufficient. The
server just overwrites the last received message in the buffers when a new gossip
message arrives.

Addressing challenge (3). To bound the storage size for each server, Dolev
et al. [5] first bound the number of records each server stores and then bound
the tag size. (Note that the client state of CAS is easy to bound and the message
size is implied by the bound on its fields.)

Bounding the number of stored records is based in the assumptions that failing
clients do not restart and that each client invokes at most one instance of the
write procedure. This means that at any time, a client can have at most two
relevant records in any server storage (regardless of whether it is failing or not).
That is, one of these records might be the one that holds the most recent object
value (written by an already completed pi’s operation) and the other record
could be of an ongoing pj ’s write operation. So, any stored record older than the
two most recent records from client pi is irrelevant, because it is either obsolete
or stale. Thus, we can bound the number of relevant records by 2N , where N is
the number of clients. Dolev et al. [5] reduce this bound to N + δ+ 3 by adding
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to write procedure a fourth round, labeled by ‘FIN’, where δ is a bound on the
number of read operations that occur concurrently with a write operation.

Bounding the maximum label requires to consider the case in which the sys-
tem state includes a tag that has reached its overflow value, (MAXINT, •). Note
that by choosing MAXINT to be a very high value, say, 264−1, we can guarantee
that such an event happens only after the occurrence of a transient fault (be-
cause counting from zero to MAXINT takes much longer time than the lifetime
of all relevant practical systems). As an extension to Algorithm 1, Dolev et al. [5]
propose to let the servers detect the presence of this overflow value and then to
stop responding to queries while keeping the gossip service running. By that,
the servers disseminate the overflow values in the system while abstaining from
supporting new operations from installing pre-write records. This continues until
the servers detect, via gossip, that all of them have the same maximum final-
ized tag value, tmax. At that point, the algorithm in [5] invokes a self-stabilizing
(graceful) counter restart that allows the preservation of the object value using
an agreement protocol (Section 3.3). During the counter restart, all clients are
forced to perform also a local reset, which causes the abortion of all ongoing op-
erations. Once the agreement procedure is terminated, the servers empty their
local storages while keeping only the most recent finalized record and replacing
its tag tmax with the initial tag value before resuming operation.

3 Implementation

We call our system CASSS, for CAS Self-Stabilizing. The CASSS pilot was
implemented as a library in Python, which can be used by applications in order
to provide access to the read and write operations. Calls to the functions read()
and write(x) should behave as if the service was an actual shared memory. Calls
to these functions block the calling process until the call returns. A successful
read operation returns the data object, and a successful write operation blocks
until it is done writing the object (and returns nothing). We proceed to describe
the building blocks of the system.

3.1 Gossip and Quorum Communications

We used a self-stabilizing version of the token passing algorithm of [16, Fig-
ure 4.1] using UDP/IP as the basis for implementing the gossip and quorum
services. CASSS requires the use of a self-stabilizing gossip protocol between
servers to periodically share the largest tags for each phase. We used UDP/IP
and let the arriving gossip messages overwrite the old ones (even if the old ones
were not delivered). Our self-stabilizing quorum system follows the one in [5].
For the sake of improved performance, whenever it was required to transfer large
data objects, a new TCP/IP connection was established. Our pilot implemen-
tation simply used a configuration file for retrieving the list of available storage
servers (rather than an external directory service like DNS), for the sake of
simple presentation.
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3.2 Reincarnation Service

CAS assumes that clients cannot resume after failing. CASSS includes an exten-
sion that allows clients to reincarnate [5]. This is based on extending the client
identifier to uid, which consists of a unique hardware address and an incarnation
number.

The client algorithm performs a periodic task that starts with a query phase
to check if its current incarnation number is up to date. It does this by querying
all servers and awaits responses from a quorum of servers. The maximum value
of all received incarnation numbers is calculated, and if that number differs from
the current client incarnation number, a second phase is triggered. During the
second phase, the incarnation number is updated both at the client side and in
the quorum system. The client takes the maximum of the current incarnation
number and all received incarnation numbers, increments that by one and sends
it out to all servers. After receiving a quorum of acknowledgements, the client
knows that it has been assigned a new valid incarnation number and can thus
proceed to operate as usual by updating its uid accordingly.

3.3 Graceful Global Counter Restart

We use a graceful reset mechanism for restarting sequence numbers (of tags and
incarnation numbers). The algorithm facilitates a wraparound based on the abil-
ity to achieve agreement and thus we assume that all servers are alive, e.g., via
a self-stabilizing service for quorum reconfiguration [7]. We further borrow ideas
from [7, Algorithm 3.1] for performing a global counter restart while preserving
the recent object value and a mechanism for recovering from transient faults.
The algorithm can be extended to detect failures, and hence not requiring all
servers to be alive in order to restart, in partially synchronous settings using
the failure detection mechanism of [7]; including such discussion would make
the presentation of the algorithm more difficult to follow, without contributing
directly to our experimental evaluation.

4 Evaluation Methodology

To the end of evaluating our implementation, we have experimented on a true-
to-life distributed system (rather than injecting faults or simulating the system).
The implementation code can be accessed via www.self-stabilizing-cloud.

net.

4.1 Evaluation Criteria and Platform

A common evaluation criteria in the field is to measure operation latency — the
average time it takes for an operation to complete [13]. This includes both com-
munication delay and local processing time. The operation latency is measured
both in isolated settings (where no other client is making any requests), and

www.self-stabilizing-cloud.net
www.self-stabilizing-cloud.net
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in settings where we have different levels of base load on the servers. For com-
parison, we have implemented both CAS and CASSS, as well as a MW-ABD,
using a self-stabilizing quorum system. We used the PlanetLab-EU platform
(www.planet-lab.eu) to have a true-to-life, large-scale distributed system to
run the evaluation on.

4.2 Experiment Scenarios

In this section, we describe the experiment settings, and how we measure per-
formance before the details of each experimental scenario.

Baseline Settings. For unifying the evaluation, we often use the same base-
line for each of the experiments (unless otherwise noted). The setting that all
experiments proceed from is to have 15 machines in total, ten of which run one
server process each and five of which run one client process each. When increas-
ing the number of clients or servers beyond the number of physical machines,
multiple instances are put on the same physical machine. In order to guarantee
a fair latency between a client and a server instance, clients processes are never
placed on the same physical machine as server processes. More clients or servers
than available nodes are distributed in a round-robin fashion. Operations of a
client are invoked sequentially with a random delay in between.

The system is initialized by a 512 KiB data object with random data being
written to the quorum system before the experiments start. Each client repeats
the operation 50 times, and the fastest and slowest operations are removed in or-
der to mitigate the effect of outliers (by pre-experiment evaluations we were able
to identify 50 as a reasonable number, where experiments would complete in rea-
sonable time, while giving consistent results). The final operation latency result
is the average of every client’s average operation latency. Taking the average over
all clients accounts for local variations, which is important since different Planet-
Lab nodes have different conditions. PlanetLab servers do not have any uptime
guarantees, and we, therefore, want to allow a few servers to fail (i.e., f > 0).
But because k is bounded to be an integer value, such that 1 ≤ k ≤ N − 2f ,
the value of f cannot be chosen freely. It, therefore, stands clear that if f is
constant, N can never be chosen such that k would be forced to be less than
one. Therefore, since we want to run an experiment with as few as five servers,
we have chosen f = 2.

Client Scalability Experiment. This scenario is made to evaluate how the
read and write latencies are affected when increasing the number of writers and
readers respectively. This tests the servers’ ability to handle an increase of con-
current operations. The number of failing nodes tolerated (f) is kept constant,
i.e., the quorum size is also constant. Both the reads and writes latency is mea-
sured. For reader scalability, we consider 5, 10, 15, 20, 30 and 40 readers, while
having 10 writers and 10 servers. Corresponding numbers are used for write
operation scalability.

Server Scalability Experiment. The server scalability experiment is con-
structed to evaluate in what way the read and write latencies are affected when

www.planet-lab.eu
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increasing the number of servers. The number of failing nodes tolerated is kept
constant, i.e., the quorum grows with the number of servers. So when the servers
increase, the number of servers that a client has to access will also increase but
the coded elements will be smaller. One interesting aspect to look at when in-
creasing the number of servers is whether the effect of a higher code rate trumps
the effects of having a larger quorum. Both read and write latencies are mea-
sured. We use 5, 10, 15, 20 and 30 servers while having 10 readers and 10 writers.

Data Object Scalability Experiment. For evaluating how the read and
write latencies are affected by the object size, this experiment performs opera-
tions using increasingly large data objects. The size is increased to a maximum
of 4 MiB, which was found to be enough to demonstrate the scalability. In par-
ticular, we consider objects of size 1, 32, 128, 512, 1024, 2048 and 4096 KiB.
The number of failing nodes tolerated is kept constant (f = 2), as well as the
number of servers (10), which means that the quorum size is also constant. The
experiment is run in isolation from other client nodes, so that scalability in in-
creasing object sizes can be reliably measured. Both the read and write latencies
are measured.

Counter Restart Experiment. This scenario measures how long it takes
for the servers to restart their local state after a transient fault. Since this part
requires the participation of all servers, we do not allow any server to be unre-
sponsive (i.e., f = 0). Because some nodes on PlanetLab were highly unstable,
it was hard to run experiments for prolonged stretches of time. Therefore, we
limited the number of repetitions for the counter restart experiment (which was
expected to take longer than the other experiments) to 20 instead of 50. For the
same reason, we restricted the object size to 0.25 KiB. Having to restart the
global system state is the worst case scenario when it comes to recovery after a
transient fault. The time measured is from a client pre-write phase (with a max-
imal tag number) until a query ends successfully. As discussed, we set f = 0, in
order to know that every server has finished the reset phase, meaning the client
has to receive responses from all servers before returning.

Overhead Experiment. In this scenario, we compare the overhead of CASSS
with our implementation of CAS. In our case, the CAS implementation builds
on the CASSS implementation, but does not include the fourth round (‘FIN’)
nor does it perform any gossiping. In other words, this implementation uses the
same number of phases and gossip messages as in [4], but, for a fair comparison,
it is based on the same software components as the CASSS implementation. Here
we use 10 servers (with f = 2), one writer and one reader.

5 Evaluation Results

Client Scalability. Figure 1(a) shows the result of the experiment where the
number of concurrent readers was changed, and Figure 1(b) the corresponding
experiment for number of concurrent writers. Both charts shows a rather flat
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Fig. 1. Operation latency with respect to the number of concurrent (a) readers and
(b) writers.

curve, which indicates that none of the experiments reached a point where the
system was overwhelmed by the number of concurrent operations.

Note the difference between the operations. The fact that MW-ABD read
operation is the slowest of the four is not a surprise. Not only does MW-ABD
send larger messages, due to the lack of coding, but also its read operation ac-
tually transfers data twice: once to fetch the data from the servers, and once
during the propagation phase. The MW-ABD and CASSS complete write op-
erations in about the same amount of time. While CASSS writes has two more
communication rounds than MW-ABD writes, MW-ABD messages are larger
due to the lack of coding. It seems that, with the relatively short RTT between
PlanetLab nodes (≈ 50 ms avg ping time), the cost of two extra rounds seems
to be about as expensive as the cost of larger messages. We find that CASSS
reads are the fastest ones. This too was expected, since it has as few rounds as
MW-ABD writes, but uses coding which decreases the message size.

Server Scalability. Figure 2 presents the results of the servers scalability
experiment. Note that with five servers, both reads and writes of CASSS and
MW-ABD writes end up at more or less the same spot. That is because, with
only five servers, CASSS effectively performs full replication and the CASSS
quorum size is equal to majority quorum. While MW-ABD reads have fewer
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Fig. 2. Operation latency with respect to the number of servers. The vertical dashed
line denotes the point where the parameter f had to be changed.

Fig. 3. Operation latency with respect to the size of the data object.

Fig. 4. The time it takes for the Global Reset mechanism to complete, with respect to
the number of servers.
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Fig. 5. Comparison between the operation latency of CASSS versus the traditional
CAS algorithm. The dashed vertical line denotes the point where the parameter f had
to be changed.

rounds than CASSS writes, MW-ABD reads transfer more data. This is why it
the slowest of all operations.

Looking at the interval between five and ten servers, the operation latency of
MW-ABD increases while the operation latency of CASSS decreases or stays the
same. That is because when increasing the number of servers, the quorum size
grows but so does the code rate. So while both MW-ABD and CASSS waits for
responses from more servers, CASSS gains the advantage of decreased message
size. The used coding library has a limitation that k + m ≤ 32. Thus, f could
not be kept at 2 for quorum systems with 20 and 30 servers. For 20 servers, f
had to be at least 4, and for 30 servers it had to go all the way up to 14. The
point where f is changed is marked by the dashed vertical line.

Data Object Scalability. Figure 3 shows the results of the data object
scalability experiment. (Existing solutions [14] show how to transform ABD-like
algorithms to more suitable implementations for large data objects.) Up to ca
1 MiB, the operation latency is fairly minimal. MW-ABD begins to escalate at
512 KiB, but CASSS is reasonably fast all the way to 4 MiB. This is of course
a consequence of the coding, which reduces the message size.

Global Counter Restart. The global counter restart is triggered only after
the occurrence of a transient fault, i.e., it is invoked very rarely. Even so, it is
still important that the counter restart terminates within a reasonable amount
of time. Figure 4 shows that, for up to 20 servers, the time it takes for the
counter restart procedure to finish is equivalent to the time it takes to perform
two write operations, i.e., it takes only a few seconds. As the number of servers
increases, the likelihood of having to wait for slower servers increases too. If the
responsiveness for a server at a given time is normally distributed, the likelihood
of having one or more slow servers in the system increases exponentially.

Overhead. Figure 5 depicts the overhead that the extra communication round
and intensive gossiping have. The figure has a vertical dashed line, which indi-
cates at which point the variable f was changed due to the coding library require-
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ment discussed previously. Note that CASSS reads and CAS reads are nearly
identical. This is exactly what one would expect since CASSS has the same num-
ber of rounds for the reads as CAS. The write operations differ slightly, and with
CASSS needing one extra communication round to complete the write operation,
we expected it to be slightly slower than CAS. The average ping time between
the PlanetLab nodes was about 50 ms, so the expected cost for one round is
consistent with what we observe in Figure 5.

6 Conclusion

Our case-study is, to the best of our knowledge, the first work to practically
evaluate a system based on a self-stabilizing atomic MWMR coded shared mem-
ory emulation, with bounded storage size. We have implemented a system that
is based on several self-stabilizing building blocks. This includes both a restart
mechanism that performs a synchronized global reset of the entire system in
a graceful manner, and a reincarnation number service that provides the fail-
ing client another chance to participate. We show that the CASSS system scale
very well both in terms of the number of servers and number of concurrent
clients. It also scales well with respect to the size of the replicated object. We
see that CASSS system has a recovery period of only a few client operations.
Furthermore, it only has a constant overhead compared to the traditional CAS
algorithm. This shows that the overhead introduced by self-stabilization can be
fairly small, and in many cases negligible – especially when considering the up-
side of handling transient faults. We view this work as a promising first step
in developing an efficient self-stabilizing cloud storage service based on atomic
coded shared memory emulation.

A natural extension to our work would be the development of a reconfigurable
version of CASSS, similar to the proposal in [17]. We see such extensions of the
prototype proposed in this paper, as self-stabilizing building blocks for Cloud sys-
tems. We note the existence of other such prototypes, e.g., Renaissance [18, 19],
as well as other algorithms that we propose as prospective candidates for proto-
typing, such as self-stabilizing Byzantine tolerant replicated state-machine [20]
and self-stabilizing (Byzantine tolerant) end-to-end communications [21, 22].
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