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Abstract

In this paper, we introduce the problem of Continuous Gossip in which rumors are continually
and dynamically injected throughout the network. Each rumor has a deadline, and the goal
of a continuous gossip protocol is to ensure good “Quality of Delivery,” i.e., to deliver every
rumor to every process before the deadline expires. Thus, a trivial solution to the problem of
Continuous Gossip is simply for every process to broadcast every rumor as soon as it is injected.
Unfortunately, this solution has a high per-round message complexity. Complicating matters,
we focus our attention on a highly dynamic network in which processes may continually crash
and recover. In order to achieve good per-round message complexity in a dynamic network,
processes need to continually form and re-form coalitions that cooperate to spread their rumors
throughout the network. The key challenge for a Continuous Gossip protocol is the ongoing
adaptation to the ever-changing set of active rumors and non-crashed process. In this work
we show how to address this challenge; we develop randomized and deterministic protocols for
Continuous Gossip and prove lower bounds on the per-round message-complexity, indicating
that our protocols are close to optimal.
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1 Introduction

Disseminating information lies at the core of distributed computing. Gossiping is a fundamental
mechanism for achieving efficient data dissemination [21]. The Gossip problem is typically defined
as follows: a set of n processes each receive an initial piece of information, called a rumor; each
process wants to learn all the other rumors. Gossip protocols have been used as building blocks
in numerous areas of distributed computing, including distributed consensus [6, 13, 14], database
consistency [9], cooperative task computing [15], failure detection [24], group communication [2,
12, 19], and resource location [18].

Continuous Gossip. In this paper, we focus on a generalized gossip problem, Continuous Gossip,
that we believe better captures the requirements of data dissemination in large-scale, dynamic
distributed systems. Continuous gossip differs from traditional gossip in the following ways:

Continuous: Most gossip algorithms tend to focus on single-shot versions of the data dissemination
problem. In this paper, we study Continuous Gossip where rumors are injected dynamically, at
any process, at any time. By contrast to traditional gossip, an execution is of unbounded duration,
and there is no bound on the number of rumors that may be injected during the execution.

Real-time: We focus on a real-time variant of the gossip problem: every rumor has a strict deadline
by which it must be delivered. Some rumors may have short deadlines, and need to be delivered in
O(1) time; other rumors may have longer deadlines allowing for slower delivery.

Targeted: Most gossip protocols distribute every rumor to every process. In this paper, each rumor
has a specified set of destinations that may be much smaller. For example, in a video streaming
system, the source may wish to send a stream (i.e., a set of rumors) to a certain set of viewers.

Of course, the obvious solution to continuous gossip might seem to be repeatedly running instances
of classical, static gossip. However, one runs into a variety of problems. First, it is hard for processes
to synchronize their instances of static gossip, as processes crash and restart with no knowledge of
the global time (and agreeing on the time is non-trivial in such a model). This does not necessarily
lead to an efficient solution for a variety of reasons. First, processes need to synchronize their static
gossip procedures; if processes do not have access to a common global clock (which is non-trivial
to implement in a crash-restart model) this approach may not succeed. In addition, rumors may
have different sized destination sets, while static gossip tends to deliver rumors to everyone.

Continuous gossip can be used as a basic building block for designing distributed services. For
example, consider implementing a publish-subscribe service in which there are a set of topics, each
associated with a group of processes that subscribe to that topic: whenever a message is published,
the publisher injects a rumor with the specified group as the set of destinations; different topics
may have different deadlines—for example, a topic representing a video stream may have short
deadlines, while a topic representing an e-mail listerv may have longer deadlines.

Fault Tolerance. The efficiency of gossip is greatly affected by faults. The fault-tolerance of
gossip protocols has been widely studied in the context of process crashes, link failures, transient
disconnections, message omission faults, Byzantine failures, etc. (See, for example, [16, 20, 21].)
Here, we focus on a dynamic network in which processes may crash and restart at any time. Such
networks are particularly challenging since there is no guarantee that any given subset of processes
will remain active. In fact, we assume no lower bound on the number of active processes; at any
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given time, all the active processes may fail!

Metrics. There is a trivial solution to the problem of continuous gossip: each rumor is sent
immediately to the desired set of destinations. When there are not many rumors in the system, or
when each rumor is destined for only a small number of destinations, this simple “protocol” may
be quite efficient, requiring only one message per rumor-destination. And for rumors with a very
short deadline (e.g., one round), there may be no other feasible solution.

However, when there are a large number of rumors and a large number of destinations, such a
simple approach may require quadratic (w.r.t the number of processes) Θ(n2) messages per round.
Thus, our goal is to develop a continuous gossip protocol that minimizes the per-round message
complexity, i.e., the maximum number of messages sent in any round. (Notice that since we are
considering an unbounded execution and an unbounded number of rumors, it does not make sense
to consider total message complexity, as that may also be unbounded.) As hinted above, the
per-round message complexity will depend significantly on the length of the deadline: very short
deadlines will lead to (unavoidably) high per-round message complexity, while longer deadlines
allow for more efficient data dissemination.

Contributions. To the best of our knowledge, this paper is the first to consider the complexity
of gossip subject to dynamic crashes and restarts and dynamic injection of deadline-based rumors.
To summarize our contributions:

1. Problem Definition: We formulate the Continuous Gossip problem, and define an acceptable
Quality of Delivery (QoD) that defines the correctness of Continuous Gossip.

2. Lower Bounds: We prove lower bounds on the per-round message complexity of continuous
gossip: if rumors have a deadline of d, then every deterministic protocol has a per-round message
complexity of Ω(n1+1/d/d); every randomized protocol has, with high probability, a per-round
message complexity of Ω(n1+1/d/d2). These lower bounds imply that the message complexity
is strongly related to the length of the deadline of the rumors: for very short deadlines, linear
per-round message complexity is impossible; yet for slightly longer deadlines, the lower bound
is compatible with achieving subquadratic per-round message complexity. The randomized and
deterministic algorithms we develop are close to optimal with respect to these lower bounds. In
fact, for d = logO(1)(n), they are optimal within log factors.

3. Randomized Algorithm: We develop an efficient randomized algorithm for continuous gossip that
sends at most O(n1+5

√
2/dm logO(1)(n)) messages per-round, where dm is the minimum deadline of

any rumor active in the system. The key to achieving good efficiency is for processes with active
rumors (i.e., those whose deadline has not expired) to collaborate, sharing the work of distributing
the rumors. Thus, the algorithm relies on two random mechanisms that execute concurrently:
the first mechanism discovers other collaborators, i.e., processes with active rumors; the second
mechanism distributes the rumors to their destinations. At any given time, any (or all) of the
collaborating processes may crash, and the remaining processes must finish the job.

Notice that a key challenge here is coping with crashes and restarts. In the absence of failures,
continuous gossip is easy: one process is designated as the coordinator, which collects and distributes
the rumors so as to meet all the deadlines. Even simple crash failures are easier to tolerate. For
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example, gossip algorithms typically attempt to build a low-degree overlay on top of the fully
connected network, enabling efficient dissemination of information. As the number of failures
increases, in order to prevent the overlay from becoming disconnected, protocols typically increase
the degree of the overlay, i.e., increase the amount of communication among the surviving processes.
As long as the increase in messages is slower than the rate of failures, good message complexity
can be maintained. This strategy fails entirely when processes can restart: if processes send more
messages to compensate for failures, the failed nodes may also restart, overwhelming the network
with messages. Since an execution of continuous gossip may be arbitrarily long, it does not make
sense to bound the number of crash failures; hence we must cope with the case where processes can
restart.

4. Adaptivity: We show that the randomized algorithm is adaptive. When there are a large
number of rumors or a large number of destinations, the per-round message complexity is always
O(n1+5

√
2/dm logO(1)(n)); yet when there are a small number of rumors or a small number of

destinations-per-rumor, the trivial “direct transmission” protocol where each source sends its own
rumors directly to the destinations may be better. Our randomized protocol adapts to these
“sparse” situations, achieving a per-round message complexity that is almost as good as the “direct
transmission” solution. More specifically: if {ρ1, ρ2, . . . , ρk} are the set of active rumors in some
round, and if ρj .D is the set of destinations for rumor ρj , then our algorithm never sends more

than O
(∑k

j=1 |ρj .D| logO(1)(n)
)

messages.
This property of adaptivity is hard to achieve precisely because of dynamic rumor injection: if

rumors are only injected at a single process, then the optimal behavior of that process is to simply
send the rumor directly to everyone. By contrast, if rumors are injected widely throughout the
network, then processes must perform a cooperative protocol to reduce the message complexity.
Unfortunately, to distinguish these cases, the processes need to exchange information amongst
themselves, leading to increased message complexity. In order to adapt to the message injection
pattern, the algorithm we present is efficient in its search for collaborating processes, and in the
sharing of work among collaborators, introducing relatively little message overhead.

5. Deterministic Algorithm: We show how to de-randomize the algorithm above, replacing the
random choices with expander graphs. This leads to a deterministic algorithm that sends at most
O(n1+6/ 3√dm logO(1)(n)) messages per round, where dm is the minimum deadline of any rumor active
in the system. (While the deterministic version can also be made adaptive, we omit that aspect.)
We show a new property of the specified expander graphs relevant to the crash-restart environment.
The resulting protocol is quite involved, as in a deterministic environment it is significantly harder
to coordinate collaborating processes: due to failures, they may not be as well connected; it is also
harder to evenly distribute the work of disseminating rumors among the collaborators.

Other related work. There is a large amount of literature dedicated to fault-tolerant gossip in
different settings; we limit our discussion only to the most relevant prior work.

The gossip problem has frequently been considered in relation to random, epidemic communica-
tion (see for example [11, 17, 18, 19]). In this context, the problem is also know as rumor spreading
and the protocols usually use a simple epidemic approach: each process periodically sends its
rumor—along with any new rumors it has learned—to another randomly selected process. Karp
et al [17] showed, using a synchronous round-based epidemic protocol (a process sends a rumor to
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one other process in each round), that a single rumor can be disseminated in O(log n) rounds using
O(n log log n) messages with high probability, n being the number of processes.

The best (to-date) deterministic synchronous crash-tolerant algorithm (for a complete commu-
nication network) for one-shot n-rumor gossip is due to Chlebus and Kowalski [7]. Their algorithm
achieves O(log3 n) time complexity and O(n log4 n) total message complexity, even if up to n − 1
processes may crash. In [20], Kowalski and Strojnowski studied the impact of faults on the total
message complexity of n-rumor deterministic gossip problem under several failure classes: crashes,
message omissions, authenticated Byzantine and Byzantine faults. Focusing on solutions with con-
stant time complexity, they showed that crashes cost more messages than non-faulty processes,
however polynomially fewer messages than more severe types of failures like omission and (authen-
ticated) Byzantine. According to our knowledge, restarts were not considered in the context of
the complexity of one-shot distributed gossip. The survey by Pelc [21] together with the book by
Hromkovic et al. [16] provide a presentation of gossiping in fault-prone distributed networks (under
various network topologies).

As in the present work, for the purposes of their algorithms, Chlebus and Kowalski [7] and
Kowalski and Strojnowski [20] defined and used graphs with specific fault-tolerant properties. Dif-
ferent kinds of graphs with expansion properties were studied before in the context of fault-tolerant
communication in message-passing systems and networks [5, 6, 7, 10, 15] and shared memory [8].
In this work we study a new fault-tolerant property of expander graphs, in the context of a trade-
off between the initial number of non-faulty nodes and the diameter of the connected component
induced by some large subset of non-faulty nodes.

The collect problem [25] can be considered the counter-part of the gossip problem in the shared-
memory model: n processes in a shared-memory system must each learn the values of n registers.
Although the goal is the same, the perspective and the techniques involved are rather different
mainly due to the different communication model (see for example [25, 1, 8]).

Paper organization. In Section 2 we present a model of computation, and in Section 3 we
formulate the notion of quality of delivery and define the Continuous Gossip problem. In Section 4
we present lower bounds on the per-round message complexity for randomized and deterministic
continuous gossip. In Section 5 we present an efficient randomized algorithm for continuous gossip.
In Section 6 we show how expander graphs can be used to derandomize our randomized algorithm.
We conclude in Section 7.

2 Model

In this section we present the model of computation considered in this work.

Distributed Setting. We consider a synchronous, message-passing system of n crash-prone
processes (where n is fixed and known a priori). Processes have unique ids from the set
[n] = {1, 2, . . . , n}. Each process can communicate directly with every other process (i.e., the
underlying communication network is a complete graph); messages are not lost or corrupted.

Rounds. The computation proceeds in synchronous rounds. In each round, each process can:
(i) send point-to-point messages to selected processes, (ii) receive a set of point-to-point messages
sent in the current round, and (iii) perform some local computation (if necessary). We assume
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that there is no global clock available to the processes, i.e., rounds are not globally numbered. Any
reference to a global round number is only for the purpose of presentation or algorithm analysis.

Crashes/Restarts. Processes may crash and restart dynamically as an execution proceeds. Each
process is in one of two states: either alive or crashed. When a process is crashed, it does not
perform any computation, nor does it send or receive any messages. Processes have no durable
storage, and thus when a process restarts, it is reset to a default initial state consisting only of the
algorithm and [n]. Each process can only crash or restart once per round.

When a process p crashes in round t, some of the messages sent by p in round t may be delivered,
and some may be lost. Similarly, when a process p restarts in round t, some of the messages sent
to p may be delivered and some may be lost. (Recall that no message is sent/received by a process
that is crashed during the whole round.)

We denote by crash(p, t,X) the crash event for process p in round t, where X is the (possibly
empty) set of processes that are allowed to receive messages from p in round t. We denote by
restart(p, t, Y ) the restart event for process p in round t, where Y is the (possibly empty) set of
processes that are allowed to deliver messages to p in round t.

We say that a process p is continuously alive in the period [ta, tb] if: (a) process p is alive
at the beginning of round ta and at the end of round tb, and (b) for every t ∈ [ta, tb], there are no
crash(p, t, ·) events.

Rumors. Rumors are dynamically injected into the system as the execution proceeds. A rumor
ρ consists of a 4-tuple 〈z, D, d, p〉, where z is the data to be disseminated, D ⊆ [n] is the set of
processes to which z must be sent (destination set), d is the deadline duration by which the rumor
must be delivered, and p is the process at which the rumor is injected; we call p the source of
rumor ρ. We denote by inject(ρ, t) the event where rumor ρ is injected in round t. We say that
rumor ρ is active in round t if it was injected no later than round t and has a deadline after or
during round t.

We assume that at most one rumor per round is injected at each process. Rumors are injected
at the beginning of a round, and only at processes that are alive throughout the round. The basic
expectation is that a rumor 〈z, D, d, p〉 injected in round t should be delivered by the end of
round t + d to all processes in D that are alive. Due to continuous crashes and restarts, this goal
(delivery to all processes in D that are alive) must be specified in more detail; see Section 3.

Adversary. We model crash/restarts and rumor injection via a Crash-and-Restart-Rumor-
Injection (CRRI) adversary. Adversary CRRI consists a set of adversarial patterns A =
{F , R}, where F denotes a set of crash/restart events and R denotes a set of rumor injection
events.

We assume that every adversarial pattern A ∈ CRRI satisfies natural well-formedness con-
ditions, e.g., a crash(p, t,X) event cannot occur if p is already crashed in round t, and a
restart(p, t, Y ) event cannot occur if p is already alive. We also assume that the adversary
“knows” the algorithm being executed by the processes, meaning that the set of adversarial pat-
terns may depend on the algorithm. However, in the case of randomized algorithms, the adversary
is not aware of the random choices made during the execution. That is, the adversary is oblivious:
it chooses the adversarial pattern prior to the execution (and cannot change the pattern once the
execution begins). This implies that failures and rumor injections are independent of the random
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choices made during the execution. (For deterministic algorithms, there is no distinction between
adaptive and oblivious adversary, as the adversary knows a priori how a deterministic algorithm
would behave under a specific adversarial pattern.)

Complexity Metrics. Typically, message complexity accounts for the total number of point-to-
point messages sent during a given computation. (A multicast to k processes counts as k point-to-
point messages.) However, in this work we allow for computations to have unbounded duration,
and rumors may be injected into the system over an unbounded time period; thus counting the
total number of messages sent in the entire computation is not meaningful. Instead, we focus on
the number of messages sent per round.

More formally, let Det be a deterministic algorithm operating under adversary CRRI. For an
adversarial pattern A ∈ CRRI, define Mt(Det,A) to be the number of messages sent by Det in
round t. We say that algorithm Det has per-round message complexity at most M(Det) if ∀t,
∀A ∈ CRRI, Mt(Det,A) ≤M(Det).

Similarly, the per-round message complexity for a randomized algorithm is a bound on the
number of messages that, with high probability, are sent in a round. More formally, we say that a
randomized algorithm Rand operating under adversary CRRI has per-round message complexity
at most M(Rand), if for every round t, for every A ∈ CRRI, with high probability (i.e., 1 −
1/nΩ(1)), Mt(Rand,A) is at most M(Rand). (We specify the precise probability when analyzing
such algorithms.)

3 Quality of Delivery (QoD) and Continuous Gossip

We now describe the desired quality-of-delivery (QoD), that is, the requirements on when a rumor
will be delivered. Ideally, we would like every rumor ρ injected in the system to be learned by all
processes in ρ.D. Moreover, each rumor should be delivered before it expires. However, this is not
always possible: for example, a process q ∈ ρ.D may be crashed throughout the duration of a
rumor’s lifetime.

A natural (weaker) quality-of-delivery guarantee is as follows: if ρ = 〈z, D, d, p〉 is a rumor
injected in round t, and if p is continuously alive in the period [t+ 1, t+ d], then ρ is delivered to
every process q ∈ D that is continuously alive in at least one round in the period [t+1, t+d]. While
it is possible to achieve such a strong quality-of-delivery guarantee, unfortunately this unavoidably
requires high message complexity in our context. This is due to the following fact:

Fact 3.1 Any deterministic or randomized algorithm that guarantees strong QoD under adversary
CRRI must disseminate each injected rumor immediately.

Otherwise, if process p does not immediately send the rumor injected in round t to every other
process in the rumor’s destination set in round t+ 1 (i.e., as soon as possible), then, for example,
a process q that was alive in round t + 1, but not in the period [t + 2, t + d], will not receive the
rumor, violating the strong QoD requirement. Thus, any such protocol will have high per-round
message complexity. For example, if we assume that the adversary injects only rumors that need to
be sent to all processes in the system, then the above naive protocol may have per-round message
complexity of Θ(n2).

Instead, we say that a rumor ρ = 〈z, D, d, p〉 injected at p in round t is admissible for
q ∈ D if both p and q are continuously alive in the period [t + 1, t + d]. We say that a protocol
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ensures satisfactory quality-of-delivery or simply quality of delivery (QoD) if it delivers
every rumor ρ = 〈z, D, d, p〉 injected at p in round t that is admissible for q ∈ D to process q by
the end of round t+ d.

Basically, for a rumor to be admissible, the adversary needs to leave a sufficiently large “window
of opportunity” for p to deliver the rumor to q. This yields more efficient (and more practical)
protocols. Note that for randomized algorithms, it is natural to expect the QoD guarantee to hold
with probability 1. In other words, we expect both deterministic and randomized algorithms to
guarantee QoD in any execution.

We say that an algorithm Alg (randomized or deterministic) solves the Continuous Gossip
problem if it guarantees QoD under any adversarial pattern A ∈ CRRI. Our goal is to design
randomized and deterministic algorithms for the Continuous Gossip problem with subquadratic
message complexity (that is, M(Alg) = o(n2)).

4 Lower Bounds

We begin our study of efficient solutions (with respect to message complexity) for the Continuous
Gossip problem by looking at lower bounds. We focus on adversarial patterns in which the adversary
CRRI injects rumors that must be delivered to all processes (that is, the destination set is [n]) and
with uniform deadlines (that is, all rumors have the same deadline)1. We first show a lower bound
for deterministic and then a lower bound for randomized algorithms.

Theorem 4.1 Every deterministic algorithm Det guaranteeing QoD for rumors with destination
set [n] and deadline d with at most M(Det) per-round message complexity must have M(Det) =
Ω(n1+1/d/d).

Proof: If d > n/4, it is obvious that the message complexity must be Ω(1), and hence the
bound holds. Assume d ≤ n/4. Consider a continuous gossip algorithm Det, and let M denote
an upper bound on the per-round message complexity of the algorithm. Our goal is to show that
M ≥ (n/2)1+1/d/d. Consider the following adversarial strategy:

In the first round, a single rumor is injected with deadline d at each process. In each of the
following d rounds, the adversary crashes each process that receives at least (n/2)1/d messages in
a round. The adversary does not restart any processes in these rounds. It follows that the number
of crashed processes in the considered part of the execution is at most M

(n/2)1/d
· d.

A straightforward induction argument shows that since each non-crashed process receives less
than (n/2)1/d messages at any round j, for 2 ≤ j ≤ d + 1, it knows less than

∏d+1
j=2(n/2)1/d =

(n/2)d·1/d ≤ n/2 rumors by the end of round d+ 1. It follows that the number of processes crashed
during the first d+1 rounds must be at least n−n/2 = n/2; otherwise QoD is not guaranteed, as each
non-crashed process does not collect at least n/2 admissible rumors. Hence, we get M ·d

(n/2)1/d
≥n/2,

which implies M≥(n/2)1+1/d/d. �

Theorem 4.2 Every randomized algorithm Rand guaranteeing QoD for rumors with destination
set [n] and deadline d with at most M(Rand) per-round message complexity with probability bigger
than 1−min{1/(2d), 2/n}, must have M(Rand) = Ω(n1+1/d/d2).

1Although these “restricted” adversarial patterns conduce a special case of the general Continuous Gossip problem
defined in the previous section, the derived lower bounds hold for the general Continuous Gossip problem.
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Proof: We show that M ≥ (n/2)1+1/d/(4d2). As in the proof of Theorem 4.1 we may assume that
d ≤ n/4. Since adversary CRRI is oblivious, it needs to perform a simulation of the algorithm in
order to specify its adversarial pattern before the real computation starts. It knows that it will
inject a single rumor at each process in the first round. The simulation proceeds for the subsequent
d rounds, and for the currently considered round it computes an expected number of received
messages for each non-crashed process, under fixed behavior in the previous rounds. Then, the
adversary crashes those that are to receive at least (n/4)1/d/(2d) messages in expectation. The
number of crashed processes in a round is therefore at most M

(n/2)1/d/(2d)
with probability bigger

than 1− 1/(2d).
It can be easily shown that this can be continued throughout the considered d rounds, and finally

gives at most M
(n/2)1/d/(2d)

·d = M ·2d2
(n/2)1/d

crashes with probability bigger than 1−d·1/(2d) = 1/2. As in
the analysis for Theorem 4.1, a single non-crashed process at the end of round d+1 knows less than∏d+1
j=2(n/2)1/d = (n/2)d·1/d ≤ n/2 other rumors, with probability bigger than 1− d · 1/(2d) = 1/2.

Therefore, by the probabilistic method, there is a determined execution E with the following two
properties at the end of round d + 1: the total number of crashed processes is at most M ·4d2

(n/2)1/d
,

and there is a non-crashed process knowing less than n/2 rumors. Therefore, M ·4d2
(n/2)1/d

must be
at least n − n/2 = n/2, to guarantee QoD for rumors of non-crashed processes, which implies
M ≥ (n/2)1+1/d/(4d2). �

From Theorems 4.1 and 4.2 it can be observed that the per-round message complexity of ran-
domized algorithms can be slightly smaller than in the case of deterministic algorithms, leaving
open the possibility that a randomized algorithm could perform slightly better than a deterministic
algorithm. On the other hand, the fact that the gap between the lower bounds is relatively small
could suggest that randomization does not help much.

Also observe that the above lower bound results suggest that for small deadlines, a superlinear
per-round message complexity is inevitable. (This is in contrast to the model with no failures.)
Furthermore, this has motivated our search for randomized and deterministic continuous gossip
solutions with subquadratic per-round message complexity. The randomized and deterministic
algorithms we develop in the following two sections achieve such subquadratic complexity.

5 Randomized Solution

We now describe and analyze a randomized algorithm, called rand-gossip, for the Continuous Gossip
problem. We begin in Section 5.1 with an overview of our solution. In Section 5.2, we present the
rand-gossip protocol. In Section 5.3, we show that rand-gossip achieves O(n1+5

√
2/dm logO(1)(n))

per-round message complexity, with high probability, where dm is the minimum deadline of any
rumor active in the system. We then discuss the issue of adaptivity, and show that the per-round
message complexity of rand-gossip is adaptive to the number of active rumors and their destinations.

5.1 Basic Strategy

Rumors may be injected in any round, at any process, with different deadlines and different sets
of destinations. We partition these rumors, as they are injected, into sets of rumors that were: (i)
injected in the same round; (ii) have approximately equal deadlines; and (iii) have approximately
the same number of destinations. For each such set of rumors, we spawn a separate instance of
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1 procedure rand-gossip(rumor ρ)i
2 dline ← min{25 log2 n, ρ.d}
3 dline ← 2blog dlinec

4 dsize ← 2dlog |ρ.D|e

5 spawn fixed-rand-gossip(ρ, dline, dsize, α)

Algorithm 1: Main randomized continuous gossip routine at process i.

routine fixed-rand-gossip. We ensure that there are at most O(log4 n) instances of fixed-rand-gossip
running in each round, and hence this partitioning increases the per-round message complexity by
at most a polylogarithmic factor2.

The pseudocode for the main rand-gossip routine is described in Algorithm 1. The rumor’s
deadline is rounded down to the nearest power of two, and truncated at Θ(log2 n). (Every rumor
is delivered within Θ(log2 n) rounds, regardless of the deadline – there is no benefit to deadlines
longer than Θ(log2 n).) The size of the rumor’s destination set is rounded up to the nearest power
of two. The process then spawns a new instance of fixed-rand-gossip. Thus, there may be many
instances of fixed-rand-gossip running in parallel. Messages from each instance are distinguished
by adding certain control bits (such as dline and dsize). For clarity, we treat each instance as
exchanging messages on its own private network. Therefore, for the remainder of this section, we
present and analyze a single instance of the fixed-rand-gossip routine, concluding with an analysis
of the per-round message complexity of the entire randomized algorithm in Theorem 5.6.

5.2 Randomized Algorithm Description

We now describe the randomized algorithm fixed-rand-gossip. The pseudocode can be found in
Algorithm 2. The basic idea is as follows: The “participants” in each “instance” of fixed-rand-gossip
repeatedly choose two random graphs defined by the edgesets Na and Nb; the variable dguess
controls the degree of these graphs. When the degree is sufficiently large, two things happen:
first, the participants are connected in Na by a small diameter graph, and hence they can rapidly
exchange information on the edges of Na; second, the participants are collectively connected to
every process in the system via Nb, and hence can cooperatively deliver all their rumors. If there
are too few participants, then dguess may never get sufficiently large, in which case each process
simply sends its rumor directly to the specified destinations.

We now proceed to describe the pseudocode in more detail. The algorithm takes four param-
eters: a rumor ρ, a deadline dline that is no greater than ρ.d, a destination set size dsize that is
at least as large as |ρ.D|, and a factor α controlling the growth of variable dguess. Consider some
process i executing the fixed-rand-gossip routine in an attempt to distribute rumor ρ.

The goal of the main loop from lines 11–24 is to guess the right number of messages to send
in each round, i.e., the right degree for the random graphs Na and Nb. The loop terminates for
a process i in two cases. Case 1: Process i learns that its rumor was successfully sent to every
destination, in which case 1 is finished. The variable sent [p] tracks which rumors have been sent to
process p, and when ρ ∈ sent [p] for every p ∈ ρ.D, then i can be sure that ρ has been successfully
delivered (see line 23). Case 2: The variable dguess reaches, approximately, dsize. In the latter

2Some log-factor improvements can be gained by avoiding this partitioning, but the resulting protocol is signifi-
cantly more complicated.
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1 dguess : integer
2 Na, Nb : set of neighbors
3 R : set of rumors
4 done : boolean
5 sent [] : array of sets of rumors, indexed by [n]

6 procedure fixed-rand-gossip(rumor ρ, integer dline, integer dsize, integer α)i
7 R← {ρ}
8 if (i ∈ ρ.D) then deliver(ρ)
9 dguess ← 1

10 done ← false
11 while (done = false) and (dguess ≤ dsize/α4) do:

12 let Na ← {n4 logα(dsize)/dline · dguess processes chosen uniformly at random from [n]}
13 send(nbr, i) to every process in Na
14 for every (nbr, `) message received : Na ← Na ∪ {`}
15 repeat 3dline/(4 logα(dsize)) rounds:
16 let Nb ← {dguess processes chosen uniformly at random from [n]}
17 send(rumors, R, sent) to every process in Na ∪Nb
18 for every p ∈ Na ∪Nb, for every rm ∈ R : sent [p]← sent [p] ∪ {rm}
19 for every (rumors, R′, sent ′) message received :
20 for every ρ′ ∈ R′ : if (i ∈ ρ′.D) then deliver(ρ′)
21 R← R ∪R′
22 for every p ∈ [n] : sent [p]← sent [p] ∪ sent ′[p]
23 if (∀p ∈ ρ.D : ρ ∈ sent [p]) then done ← true
24 dguess ← α · dguess
25 if (done = false) then
26 send(rumors, R) to every process in ρ.D
27 for every (rumors, R′) message received :
28 for every ρ′ ∈ R′ : if (i ∈ ρ′.D) then deliver(ρ′)

Algorithm 2: The fixed-rand-gossip routine at process i for specific values of dline and dsize.

case, process i can abort the loop and simply send the rumor directly to the destinations ρ.D (lines
25–28), as there are no more than dsize such destinations.

Recall that the variable dguess controls the degree of the random graph Na, in which the par-
ticipants communicate with each other, and the graph Nb, in which the participants communicate
with the other processes. In both cases, the protocol succeeds in delivering rumors and terminating
when dguess is sufficiently large (lines 12–22). That is, if there are k non-failed participants in
these instances of fixed-rand-gossip, then when dguess is about (n/k) log2 n, the protocol completes.

We will later show that, in this case, the random graph Na, when restricted to the participants,
has a small (logarithmic) diameter; thus the participants can communicate efficiently with each
other by exchanging messages along edges of Na. (The graph Na is selected in line 12, and lines
13–14 ensure that it is undirected.) Similarly, the subgraph of Nb induced by the participants
(line 16) has roughly Θ(n log2 n) outgoing random edges, i.e., enough to ensure that every possible
destination in [n] can be reached by one of the participants. Thus, once dguess is sufficiently large,
the following steps take place (lines 12–23): (1) after the first O(log n) rounds, all the participants
learn about all the rumors; (2) in the next rounds, every rumor is sent to every destination; and (3)
in the final O(log n) rounds, all the participants again exchange information and learn that their
rumors have been delivered (line 23), allowing them to terminate. (Of course, this description is
somewhat simplified, as participants may fail during the protocol.)
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5.3 Algorithm Analysis

We analyze the algorithm assuming that dline ≥ 64 and that α = max(n1/
√

dline , 2). The analysis
also relies on the following fact, whose proof is relatively standard (see for example [3]) and can be
found in the appendix.

Fact 5.1 Given c, n, k, γ: Let V = [n], and let V ′ ⊆ V where k = |V ′|. For each v ∈ V ′, choose
16c(n/k)γ log2 n neighbors in V , resulting in an edgeset E. Then graph G = (V ′, E) has diameter
at most logγ k with probability at least 1− 1/nc.

5.3.1 Analysis: Correctness

We first argue that the rand-gossip protocol is correct, i.e., it delivers every admissible rumor by
the deadline.

Theorem 5.2 The rand-gossip protocol delivers every admissible rumor by the specified deadline.

Proof: Fix some rumor ρ that is injected in round t at process q; recall from Algorithm 1
that dline is set equal to 2blog ρ.dc and dsize to 2dlog |ρ.D|e. We analyze the execution of
fixed-rand-gossip(ρ, dline, dsize, α) that begins in round t. Assume that process q does not fail
until after the deadline, as otherwise rumor ρ is not admissible for any ` ∈ ρ.D. This implies that
process q remains alive until at least round t+ dline.

We will first show that every rumor is eventually delivered. Observe that either process q
learns that ρ has been sent to every destination (line 23), or it sends the rumor ρ directly to every
destination (lines 25–28). We need to argue that if process q skips lines 25–28, it is the case that
indeed rumor ρ has been sent to all processes in ρ.D. For process q to skip executing lines 25–28
it means that q has finished its execution (wrt rumor ρ) with variable done set to true (line 25).
It follows from line 23 that ∀p ∈ ρ.D, ρ ∈ sentq[p]. For contradiction, assume that for a process
z ∈ ρ.D, ρ ∈ sentq[z], but no process has sent ρ to z. First observe that ρ ∈ Rq (line 7) and
no rumor is ever removed from any R or sent (for the given execution of fixed-rand-gossip). Now
observe that q would include ρ in sentq[z] in two cases:

• Process q sends ρ to z. This happens if z is in Na ∪ Nb in some round (lines 17–18). So
assume this is not the case (otherwise we are done).

• Process q is informed by another process that ρ was sent to z (lines 19–22). In particular,
q receives a message from some process w in which ρ ∈ sentw[z], and hence, per line 22, ρ
will be included in sentq[z]. By a simple reverse inductive argument, it follows that w has
indeed sent ρ to z or it was informed by another process that ρ was sent to z (the reverse
induction eventually ends at the first bullet above — z learns about ρ from a neighboring
process that is aware of ρ). Otherwise we reach a contradiction to the fact that in our model
of computation messages are not fabricated or processes do not exhibit a byzantine behavior
(in which case a process could lie of sending a rumor to another process).

Therefore, every rumor is indeed eventually delivered. It now remains to ensure that every rumor
is sent by round t + dline. Notice that the main loop (lines 11-24) executes at most logα(dsize)
times, and each iteration takes 3dline/4 logα(dsize) + 1 rounds (i.e., one round for lines 13–14, and
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the remaining rounds for the loop on lines 15–22). Lines 25–28 require one additional round. Thus,
the total number of rounds is:

logα(dsize) ·
(

3dline
4 logα(dsize)

+ 1
)

+ 1

Recall that α ≥ n1/
√

dline , and also that dsize ≤ n. This implies that:

logα(dsize) ≤ log dsize
logα

≤
√

dline log dsize
log n

≤
√

dline

We also observe that since size dline ≥ 64, we conclude (easily) that 4 ≤ 4
√

dline and that
8
√

dline ≤ dline. We then bound the number of rounds as follows:

logα(dsize) ·
(

3dline
4 logα(dsize)

+ 1
)

+ 1 ≤ 3dline + 4 logα(dsize) + 4
4

≤ 3dline + 4
√

dline + 4
4

≤ 3dline + 8
√

dline
4

≤ 3dline + dline
4

≤ dline

Thus rumor ρ is delivered by round t+ dline, as desired. �

5.3.2 Analysis: Message Complexity

We now examine the message complexity of our randomized continuous gossip protocol. We first fix
a round t, a deadline dline, and a size dsize, and analyze the messages sent by every invocation of
fixed-rand-gossip(·, dline, dsize, α). We also fix the set of rumors {ρ1, ρ2, . . . , ρk} that are associated
with these invocations of fixed-rand-gossip. Define k to be the number of such rumors, and P to be
the set of k processes where these rumors are injected.

The basic idea underlying the fixed-rand-gossip protocol is that as soon as dguess is sufficiently
large to discover enough “collaborating” processes, then all the rumors injected at those processes
are disseminated and the gossip protocol terminates. To that end, we begin by examining an
iteration of lines 11–24, arguing that if dguess ≥ 16c(n/k) log2 n, then the protocol completes.
(Notice that since rounds are synchronous, processes that begin the gossip protocol in the same
round also execute the protocol in lockstep, and hence processes execute the same line in the same
round.)

Lemma 5.3 Consider a single iteration of lines 11–24 of fixed-rand-gossip(·, dline, dsize, α) by pro-
cesses in P . Let P ′ be the set of processes that: (i) do not set done = true prior to the beginning
of the iteration, and (ii) do not fail by the end of the iteration. Let k′ = |P ′|. Let dguess ′ be the
value of dguess for every process in P at the beginning of the iteration. (Notice that every process
in P that is not complete has the same value of dguess, as each increases it by the same factor α
in each round.) If dguess ′ ≥ 16c(n/k′) log2 n, then every process in P completes or fails by the end
of the iteration, with probability at least 1− 1/nc−1.

Proof: Consider the (undirected) graph among nodes in P ′ induced by the neighbor set Na selected
in line 12. We refer to this graph asG = (P ′, Na). Notice that this graphG is formed by each node in
P ′ choosing n4 logα(dsize)/dline ·dguess ′r neighbors in [n], i.e., at least n4 logα(dsize)/dline ·16c(n/k′) log2 n
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neighbors in [n] (by assumption on the size of dguess ′). By Fact 5.1, we conclude that this graph
has diameter at most log(k′)dline/4 log(n) logα(dsize). Since k′ ≤ n, this implies that the diameter
of G is at most dline/4 logα(dsize).

Notice that lines 16–22 are repeated 3dline/4 logα(dsize), i.e., sufficiently frequently for infor-
mation to propagate the diameter of the graph G at least 3 times. Fix an arbitrary rumor ρ′ that
was injected at a process in P ′. Whenever a process pj that has rumor ρ′ ∈ R sends a message, all
the neighbors of pj in G learn ρ′. We thus conclude that by the end of the first dline/4 logα(dsize)
iterations of lines 16–22, every process in P ′ has received rumor ρ′; more generally, every rumor
injected at a process in P ′ is known by every other process in P ′ at this point.

Next, consider the first iteration of lines 16–22 after every rumor injected at a process in P ′ is
known by every other process in P ′ at this point. We consider the sets Nb chosen by the processes
in P ′. Notice that, collectively, the processes in P ′ choose k′ · dguess ′ random processes in [n]. By
assumption, k′ · dguess ′ ≥ 16cn log2 n. Thus, with probability at least (1 − 1/nc), every process
in [n] is chosen by at least one process in P ′. Thus, within one round, every rumor injected at a
process in P ′ has been sent to every process in [n], with probability at least 1− 1/nc. (Recall that
none of the process in P ′ fail by the end of the iteration.) Specifically, for every rumor ρ′ injected
at a process in P ′, and for every process p` ∈ [n], there is some process pj that has ρ ∈ sent [p`].

Finally, in the next dline/4 logα(dsize) of lines 16–22, the information regarding which rumors
were sent to which processes is propagated to every process in P ′. As such, by the end of the
last iteration of lines 16–22, for every process pj ∈ P ′ with rumor ρ′, for every p` ∈ [n], rumor
ρ′ ∈ sent [p`] of p`. Thus, in line 23, process pj sets done = true, completing the protocol. Thus by
the end of lines 11–24, every process in P has either completed or failed. By a union bound, the
two probabilistic events (i.e., the small diameter of the graph and the distribution in lines 16–22)
occur with probability at least (1− 1/nc − 1/nc) ≥ 1− 1/nc−1. �

We can now analyze the overall performance, bounding the per-round message complexity.

Lemma 5.4 The per-round message complexity of fixed-rand-gossip, beginning in round t, asso-
ciated with parameter dline and dsize, is at most O

(
n1+5/

√
dline log2 n

)
, with probability at least

(1− 1/nc−1).

Proof: There are two cases to consider, depending on whether any iteration of lines 11–24 satisfy
the assumptions of Lemma 5.3. Assume first that there is some iteration of lines 11–24 where:

• Let P ′ be the set of processes that: (i) do not set done = true prior to the beginning of the
iteration, and (ii) do not fail by the end of the iteration. Let k′ = |P ′|. Let dguess ′ be the
value of dguess for every process in P at the beginning of the iteration;
• k′ · dguess ′ ≥ 16cn log2 n.

Then, by Lemma 5.3, every process completes by the end of the iteration, with probability at
least (1− 1/nc−1). Moreover, the maximum per-round message complexity is achieved in this final
iteration; we now bound this message complexity.

Since this is the first iteration satisfying the assumptions of Lemma 5.3, we can conclude that in
the immediately preceding iteration, if k′′ and dguess ′′ are defined as expected, then k′′ · dguess ′′ <
16cn log2 n. Since dguess is incremented by a factor of α in each iteration, and since k′ ≤ k′′, we
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conclude that in the final iteration, dguess ′ < 16cαn log2 n/k′. Thus, the number of messages sent
in each round during the final iteration is:

k′(|Na|+ |Nb|) ≤ O
(
k′ · n4 logα(dsize)/dlinedguess ′

)
≤ O

(
n4
√

dline/dline · 16cαn log2 n
)

≤ O
((

2 + n1/
√

dline
)
n1+4/

√
dline log2 n

)
≤ O

(
n1+5/

√
dline log2 n

)
.

Since there are no messages sent after this final iteration, this concludes the first case, yielding the
desired per-round message complexity.

We now focus on the second case: in every iteration of lines 11–24, k′ · dguess ′ < 16cn log2 n
(where k′ and dguess are defined as described in the statement of Lemma 5.3). Thus, for each
iteration, we can bound the per-round message complexity of lines 11–24 exactly as above:

k′(|Na|+ |Nb|) = O
(
k′ · n4 logα(dsize)/dlinedguess ′

)
≤ O

(
n4
√

dline/dline · 16cn log2 n
)

≤ O
(
n1+4/

√
dline log2 n

)
It remains to bound the per-round message complexity of lines 25–28. (Unlike the previous case,
there may be processes that do not complete during iterations of lines 11–24.) Each process that
has not yet completed sends dsize messages, and hence if k′ is the number of processes remaining
at the beginning of the final iteration of lines 11–24, then the per-round messages complexity of
lines 25–28 is at most k′dsize.

We have also assumed, for this case, that in all iterations (and, in particular, in the final
iteration) of lines 11–24: k′ · dguess ′ < 16cn log2 n. In addition, in the final iteration, dguess ′ ≥
(dsize/α4)/α; otherwise after increasing dguess ′ by a factor of α, there would be another iteration
of lines 11–24. Putting these two facts together, we get that:

k′ · dsize ≤ 16cn log2 n · dsize
dguess ′

≤ 16cn log2 n

1/α5
≤ 16c(2 + n5/

√
dline)n log2 n ≤ O

(
n1+5/

√
dline log2 n

)
.

This completes the proof. �

5.3.3 Adaptive Per-Round Message Complexity

When there are relatively few rumors, or when there are relatively few destinations-per-rumor, it
may be more efficient for each process to send its rumor directly to the destination, rather than
participating in the gossip protocol. In order to obviate this scenario, we have designed the gossip
protocol to always be as efficient, within logO(1)(n) factors, as sending rumors directly. In particular,
notice that dguess is bounded by dsize; thus no process ever sends more than dsize messages in a
round.

Lemma 5.5 The per-round message complexity of the fixed-rand-gossip protocol beginning in
round t associated with parameter dline and dsize is at most O

(∑k
j=1 |ρj .D|

)
(with probability

1).
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Proof: Fix a specific rumor ρj injected at a process pj . We examine the messages sent by process
pj . First, observe that on lines 25–28, process pj sends at most |ρj .D| messages. It remains to
bound the number of messages sent in each round by lines 11–24.

For each iteration of the loop from lines 11–24, process pj sends (|Na| + |Nb|) messages per
round. Since (as was shown in the proof of Theorem 5.2) logα(dsize) ≤

√
dline, the per round

message complexity for process pj is bounded by:

(|Na|+ |Nb|) ≤ dguess(n4 logα(dsize)/dline) + dguess ≤ (2dsize/α4)(n4 logα(dsize)/dline)

≤ (2dsize/n4/
√

dline)n4/
√

dline ≤ 4|ρj .D|

Summing over all rumors at all processes pj ∈ P yields the desired bound. �

Lemmas 5.4 and 5.5 together yield our main result.

Theorem 5.6 The per-round message complexity of algorithm rand-gossip is at most

O

min

n1+5
√

2/dm log6 n,

k∑
j=1

|ρj .D| log4 n


 ,

with probability at least 1−1/nc−2; dm is the minimum deadline of any rumor active in the system.

Proof: In any given round, there are at most log(dsize) · log(dline) different instances of
fixed-rand-gossip being initiated. Each instance of fixed-rand-gossip lasts at most 25 log2 n rounds (as
we truncate each deadline after this point). Thus, in any given round, there are at most O(log4 n)
ongoing instances of fixed-rand-gossip. The total message complexity in a given round for rand-gossip
is the sum of the per-round message complexities of these instances.

For a given round t, let R1, . . . , Rlog4 n be the sets of rumors associated with each of the O(log4 n)
instances of fixed-rand-gossip. By Lemmas 5.4 and 5.5, each instance induces the minimum of
O
(
n1+5
√

2/dm log2 n
)

messages and
∑

ρ∈R` |ρ.D| messages. (Recall that for every rumor ρ, the
calculated deadline dline > ρ.d/2, and ρ.d/2 ≥ dm/2 by definition.)

Consider the instance ` of fixed-rand-gossip that generate the largest number of messages in round
t. Clearly, the total number of messages generated by the O(log4 n) instances is the minimum
of O

(
n1+5
√

2/dm log6 n
)

messages and
∑

ρ∈R` |ρ.D| log4 n messages, for some instance `. Since∑
ρ∈R` |ρ.D| ≤

∑
ρ∈

⋃
R`
|ρ.D|, the result follows. �

Remark 5.7 If we restrict adversary CRRI in adversarial patterns in which all rumors must be
sent to all processes in the system (that is, for every rumor ρ, ρ.D = [n]) then it is easy to see that
the rand-gossip algorithm has per-round message complexity of O(n1+5/

√
dline logO(1)(n)). When this

is contrasted with the lower bound result of Theorem 4.2 one can conclude that algorithm rand-gossip
is close to optimal. In fact, for dline = Θ(logO(1)(n)) algorithm rand-gossip is optimal within log
factors.
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6 Deterministic Solution

In this section we show how to obtain a deterministic algorithm achieving message complexity only
slightly larger than the randomized solution. For clarity of presentation, we focus on the case
dsize = n (thus automatically holding for all dsize = O(n)), and we do not address the issue of
adaptivity. We call this algorithm det-gossip. We first present the basic theory behind expander
graphs and prove their fault-tolerant properties; we then show how to deploy them in a similar
scheme as seen in Section 5. Note that this de-randomization is not straightforward, as apart
of using expander graphs with specific fault-tolerant properties, additional mechanisms assuring
sufficient level of deterministic synchronization and collaboration must be introduced.

6.1 Fault-Tolerance of Expanders

Let Ga, for an integer 1 ≤ a ≤ n, be a fixed regular a-expansion graph of n nodes, c.f., [23].
Formally, an a-expander, for a positive integer a, is defined as a simple graph with set of nodes V
of size n ≥ a and such that if W1 and W2 are any sets of nodes, each of size at least a, then there
is a node w1 in W1 and another node w2 in W2 such that {w1, w2} is an edge in the graph. Let ∆a

stand for the maximum node degree of graph Ga.
The following result, due to Pinsker [22], describes dependency between expansion parameter a

and the maximum node degree ∆a (it can be proved using a standard probabilistic argument).

Fact 6.1 [22] For any positive integers a and n, with a ≤ n, there exists an a-expander with
n nodes and of a maximum node degree O((n/a) log n).

The best explicitly constructed a-expanders, for any integer a, are due to Ta-Shma, Umans
and Zuckerman [26], who showed how to efficiently construct regular a-expanders with node degree
O((n/a) logO(1)(n)).

We now prove a fault-tolerant property of a-expander graphs, stating that for sufficiently large
number of non-faulty nodes there is a subset of at least a nodes that induce a subgraph of arbitrarily
small diameter. Assume α ≥ 2 is an integer, and let β = logα/2 a. Consider a regular a-expander
G. Let Q be a subset of nodes of size at least α · a, and let H denote the subgraph of G induced
by nodes in Q. We use N j

H(W ) to denote the set of nodes v such that v is of distance at most j in
graph H from some node in W . Note that N j+1

H (W ) = NH(N j
H(W )), where NH(W ) abbreviates

N1
H(W ). We also write N j

H(w), instead of N j
H({w}), if W = {w} is a singleton.

Lemma 6.2 If a set W ⊆ Q has size of at least a, then there exists a node w ∈ W such that the
set Nβ

H(w) is of a size larger than a.

Proof: The set NH(W ) = NG(W ) ∩Q has size larger than (α/2) · a, since |NG(W )| > n− a and
|Q| ≥ α · a ≥ a+ (α/2) · a. Hence, by the pigeonhole principle, there is a set W1 ⊆W of a size a

α/2

such that NH(W1) is of a size larger than a. We will extend this argument to show the existence
of sets of nodes Wj ⊆ W for j = 1, . . . , β, with the following properties: (a) |Wj | = a

(α/2)j
and

(b) |N j
H(Wj)| > a.

This can be done by induction. The set W1 has just been shown to exist. Suppose we have a
set Wj with the required properties (a)-(b), for j < β. Observe that |N j+1

H (Wj)| > (α/2) · a. This
is because N j+1

H (Wj) = NG(N j
H(Wj))∩Q, where set Q has size at least α · a ≥ a+ (α/2) · a, while
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set NG(N j
H(Wj)) has size bigger than n−a, due to expansion property and invariant (b) applied to

N j
H(Wj). By the pigeonhole principle, there is a set Wj+1 ⊆ Wj such that |Wj+1| = |Wj |

α/2 and the

inequality |N j+1
H (Wj+1)| > a holds. This completes the proof of the invariant. It implies that the

set Wβ is comprised of a single element w ∈ W , by definition of β, and set Nβ
H(w) has size larger

than a. �

The following states the fault-tolerant property required by the expander graphs used in the
deterministic algorithm presented in the next Section.

Theorem 6.3 Let G be an a-expander and α ≥ 4. For every set Q of at least α · a nodes there is
a subset Q∗ ⊆ Q of at least a nodes such that the subgraph of G induced by set Q∗ has diameter of
at most 2β = 2 logα/2 a.

Proof: Apply Lemma 6.2 to W = Q and define Q∗ as Nβ
H(w), where w is the node such that

|Nβ
H(w)| > a. By definition, every two nodes in Q∗ are connected by a path of length at most 2β

in graph Ga through nodes in Q∗, and in particular through node w. �

6.2 Deterministic Algorithm Description

In this section we present a description of det-gossip (Algorithm 3) and fixed-det-gossip (Algo-
rithm 4). For similar reasons as in Section 5, we may assume that rumors were injected in the same
round and they have approximately equal deadlines. Recall also that in this section we consider
only destination sets of size n, i.e., broadcast requests; if they are smaller, algorithm det-gossip
simply delivers the rumor to a larger set of all processes.

As in the case of the rand-gossip algorithm, the high-level det-gossip routine is simply a wrapper
for the fixed-det-gossip routine: each deadline ρ.d is rounded to the closest power of 2 that is larger
than ρ.d and no greater than Θ(log3

α/2 n), before invoking fixed-det-gossip; each fixed-det-gossip
instance is invoked with three parameters: ρ, dline and α, where parameter α controls the growth of
dguess and dexcess (its role and optimal value is slightly different from its randomized counterpart).

As in fixed-rand-gossip, the main idea underlying fixed-det-gossip is that all processes at which
a rumor is injected cooperate to distribute the rumors. Instead of sending messages to random
sets of processes, as in fixed-rand-gossip, the processes communicate by sending/receiving messages
from processes corresponding to its neighbors in carefully chosen expander graphs. By choosing
these graphs with suitable expansion and node degree, we guarantee efficient delivery within the
deadline. Let G(x), for an integer 1 ≤ x ≤ n of the form αj for some non-negative integer j,
be a (n/x)-expander graph of maximum node degree ∆(x) = Θ(x logO(1)(n)). We also assume
that G(αj) is a subset of G(αj+1), as otherwise we could take a union of these two graphs and
get a (n/αj+1)-expander of degree Θ(αj+1 logO(1)(n)) as required. An additional challenge is to
synchronize activities of processes; for example, different processes may be using different expander
graphs at the same time in the algorithm, as we do not assume a global clock. Such synchronization
also allows to recognize quickly if a process crashes and restarts in a short period of time.

We refer to each iteration of the main loop of the algorithm as an epoch (lines 12–35). The
main parameter associated with an epoch is dguess, which attempts to guess the size of the group
of similar processes to be potential collaborators in rumor distribution. This parameter stays the
same for the whole epoch, except its very last line 35 when it is increased by factor α.

17



1 procedure det-gossip(rumor ρ)i
2 dline ← min{21 log3

α/2 n, ρ.d}
3 dline ← 2blog dlinec

4 spawn fixed-det-gossip(ρ, dline, α)

Algorithm 3: Main deterministic continuous gossip routine at process i.

1 rcount , dguess, dexcess, col rounds: integer
2 N : set of neighbors
3 R : set of rumors
4 done, cont : boolean
5 Col , Close Col , W : set of processes’ ids

6 procedure fixed-det-gossip(rumor ρ, integer dline, integer α)i
7 R← {ρ}
8 rcount ← 1
9 dguess ← 1

10 done ← false
11 while (done = false) and (dguess ≤ n/α) do: // Iterating epochs

12 W ← [n] \ {i}
13 Na ← the set of neighbors of node i in graph G(dguess)
14 dexcess ← 1
15 cont ← true
16 while (cont = true) and (dguess · dexcess ≤ n/α) do: // Iterating stages

17 Col← {i}
18 Close Col← {i}
19 for col rounds ← 1 to 10 logα/2(n) do: // Lines 20-25: Collaborating period

20 send(collaborate, (rcount , dguess, dexcess), R,Col ,Close Col) to every process in Na
21 for every (collaborate, (t, g, x), R′, Col′, Close Col′) message received and such that

(t, g, x) = (rcount , dguess, dexcess) :
22 R← R ∪R′ and deliver(R′)
23 Col ← Col ∪ Col ′

24 if col rounds > 8 logα/2(n) then Close Col ← Close Col ∪ Close Col ′

25 rcount ← rcount + 1
26 if dexcess ≥ α then W ←W \ {neighbors of nodes in Col in graph G(dguess · dexcess/α)}
27 if |Close Col| < n

dguess
then (cont ← false) else // Lines 27-31: Working period

28 Nb ← the set of neighbors of node i in graph G(dguess · dexcess) intersected with W
29 send(rumors, R) to every process p in Nb
30 for every (rumors, R′) message received : deliver(R′)
31 W ←W \Nb
32 rcount ← rcount + 1
33 dexcess ← α · dexcess
34 if W = ∅ then done ← true
35 dguess ← α · dguess
36 if (done = false) then
37 send(rumors, R) to every process
38 for every (rumors, R′) message received : deliver(R′)

Algorithm 4: The deterministic routine fixed-det-gossip at process i for a specific value of dline.
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The main part of an epoch is an inner loop (line 16), each iteration of which we refer to as a
stage (lines 17–33). (Additional local computation within an epoch (lines 12-15 and 34-35) can be
accounted to a single round of a stage.) In each stage, the variable dexcess is increased by a factor
of α (line 33), increasing the degree of graph G(·) used to defining set Nb (c.f., line 28).

A stage consists of two parts, called collaborating and working periods. In the collaborating
period (19–25), each process communicates 10 logα/2 n times with its neighbors in graph G(dguess)
having the same local round counter, epoch and stage number. The goal of this communication is
to build two sets Close Col ⊆ Col consisting of nodes with the same local round counter, epoch and
stage number within distance at most 2 logα/2 n and 10 logα/2 n, respectively, in graphG(dguess); we
often refer to these nodes as close collaborators and collaborators, respectively. Since collaborators
must have been alive in the previous stage, the process may assume that they informed the processes
they were supposed to inform in the previous stage, and thus it can update this knowledge in its
progress set W (line 26). Nodes with sufficiently large sets of close collaborators will send messages
in the succeeding working period, while the remaining ones will switch to the next epoch (c.f.,
line 27). Summarizing, collaborators are for recording the progress in rumor propagation, while
close collaborators are to decide whether we have enough collaborators in the close neighborhood in
G(dguess) and may continue with the current epoch or we should switch to the next epoch instead,
looking for more accurate set of (close-)collaborators (in graph G(dguess · α)).

The set W initially stores all the destinations for rumors, and is re-initialized in the beginning of
each epoch (line 12); as processes are sent rumors, they are removed from W (see lines 26 and 31).
In the second part of the stage, which we refer to as the working period (lines 27–31), each
participant that has enough close collaborators (line 27) sends all the rumors it knows to processes
in its set Nb, which consists of its neighbors in graph G(dguess ·dexcess) that are still in set W (lines
28-29). The rumors are then delivered to the destinations and the progress in delivering rumors is
recorded by the sender (lines 30-31). Even though the degree of graph G(dguess ·dexcess) increases
in every stage, the size of set Nb, and thus the number of rumors messages sent in the working
period, does not necessarily grow substantially, since a process only sends messages to the neighbors
that remain in W ; actually, we show in the analysis that the amortized number of such messages
per collaborator is bounded by dguess · logO(1)(n).

Finally, the last step of the routine is exactly as in fixed-rand-gossip: if a process cannot ensure
that its rumor has been delivered, it simply sends its rumor directly to everyone (lines 36–38).

6.3 Algorithm Analysis

We first show that det-gossip guarantees QoD under any (worst-case adaptive3) adversarial pattern
of adversary CRRI, and then we analyze its per-round message complexity. For this purpose, we
fix α such that α = n3/

3√
dline ≥ 4 and

(
(10 logα/2 n+ 1) · logα n

)
logα n+ 1 ≤ dline. Such value of

α exists if dline is sufficiently large, for example dline ≥ 100; therefore we assume it in our analysis.
In each round, we conceptually split processes into groups associated with a unique triple (t, g, x),

corresponding to their values of (rcount , dguess, dexcess). We say that a triple (t, g, x) is valid if it
can be associated with some non-empty group of processes at some point of some execution. Let
Xp,t denote the value of a variable X in process p at the end of round t.

In the analysis, of both correctness and complexity, we usually focus on processes that are
3Recall that for deterministic algorithms, there is no distinction between adaptive and oblivious adversary, as the

adversary knows a priori how a deterministic algorithm would behave under a specific adversarial pattern.
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associated with the same triple in every single round of the period considered in the analysis. We
use the following methodology in different parts of the analysis: we fix a round and restrict to
processes associated with some triple (t, g, x) in this round; then we proceed by analyzing some
preceding round. By the update rules of rcount (lines 25 and 32), if processes are associated with
the same triple (t, g, x) in a given round then their round counters rcount are also the same and
decrease by one in each of t−1 preceding rounds. (Note that this might not be true if we considered
rounds succeeding the fixed round, as some of these processes might be crashed and restarted in
the future, and thus their variables rcount would be reset; however we don’t consider succeeding
rounds in our analysis.) Therefore we may skip the first coordinate of the triple from consideration,
and instead we may focus on the last two coordinates, i.e., to argue in terms of pairs (g, x). The
value t of round counter rcount — common for all the processes considered in the analysis — can
be however useful as a reference to the round, instead of introducing round numbering according
to some existing global clock (recall that although it exists, due to synchronization assumption,
processes don’t know it). Finally, since round counters of the analyzed processes are synchronized,
so are the starting and ending points of consecutive stages, as each of them has the same length
10 logα/2 n + 1 and they altogether constitute a partition of the execution. Observe however that
this is not the case for the starting points of epochs, since epochs may consists of different number
of stages, and thus of different numbers of rounds.

6.3.1 Analysis: Correctness

We start by showing that removing elements from set W is consistent with the progress of delivering
the rumor of the removing process in its current epoch. This fact is fundamental for the correctness
argument and among the crucial properties, together with the fault-tolerance of expander graphs,
needed for estimating the message complexity of the algorithm.

Lemma 6.4 If a process p removes the id of another process q from its set W during an epoch
(lines 26 and 31) then the current rumor of p has been sent to process q in some round of the
current epoch of process p.

Proof: Suppose, to the contrary, that p removes id of another process q during one of its epochs
but q has not been sent a rumor of p since the beginning of the current epoch of process p. If
the removal happened during execution of line 31 by process p, then, by the actions defined in the
preceding lines 29 and 30, process p would send its rumor to process q directly. This would be a
contradiction.

The only remaining case is when process p removes the id of process q from W while executing
line 26. Denote by t the value of rcount at process p in the round when id of process q was removed
from set W stored at p. Let j be the stage number of this round. Note that j > 1, since the
condition in line 26 is satisfied only in stages bigger than 1, i.e., for dexcess ≥ α.

Consider the period corresponding to the current epoch of process p up to the working period
of stage j of process p. We construct a sequence of processes q0, q1, . . . , qj∗ , for some 1 ≤ j∗ ≤ j−1,
satisfying the following properties:

(i) each process qj′ , for 0 ≤ j′ ≤ j∗, is associated with the same pair (g, x) and has the same
round counter as process p in every round from the beginning of the current epoch of p till
the end of stage j − j′ of p in the current epoch;
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(ii) each process qj′ , for 0 ≤ j′ ≤ j∗, has received the rumor of p before its working period in
stage j − j′ of the current epoch of process p;

(iii) each process qj′ , for 0 ≤ j′ ≤ j∗, removes id of process q from its set W in the working period
of stage j − j′ of the current epoch of process p while executing line 26;

(iv) process qj∗ removes id of process q from its set W in the working period of stage j− j∗ of the
current epoch of process p while executing line 31.

We start with setting q0 = p. Note that process q0 = p satisfies properties (i)-(iii), as requested,
though property (iv), to be satisfied by the last element of the constructed sequence, is not relevant
(by definition) to process q0. Therefore we continue construction of consecutive processes qj′ , for
1 ≤ j′ ≤ j − 1, until the property (iv) becomes satisfied by some node qj∗ .

Suppose we already constructed the sequence up to process qj′ , for some 0 ≤ j′ < j− 1, and all
these processes satisfy properties (i)-(iii). We show how to define process qj′+1. By property (iii) of
process qj′ and the specification of line 26 executed by qj′ in its stage j−j′ (note that it is the same
stage number as in process p, by property (i)), q was a neighbor of some process in set Colqj′ ,tj′ in
graph G(dguess · dexcess) used in the working period in the previous stage, where tj′ is the counter
of the last round of stage j − j′; we call this process qj′+1.

We argue that node qj′+1 satisfies property (i). First we show that qj′+1 is associated with
the same triple as qj′ in this and all preceding stages of the current epoch. Indeed, it is true in
stage j − j′ of process qj′ , by a simple inductive argument based on the condition in line 21 and
the update rule of set Col in line 23. It is also true in the preceding stages of the epoch, since
within the same parameter g associated with an epoch, stage parameter x changes simultaneously
by the same rate in all processes that progress their stage (unless they crash, but this is not the
case by stage j − j′ by the choice of qj′ , qj′+1). The round counter in both processes qj′ and qj′+1

are obviously the same in all the considered rounds. Recall that, by property (i) of process qj′ ,
triple (t, g, x) associated with process qj′ is the same as the corresponding triple associated with
process p, in each round of this period. Hence qj′+1 satisfies property (i).

We now argue that process qj′+1 satisfies property (ii). More precisely, that qj′+1 knows the
rumor of p before its working period in stage j − (j′ + 1) of the considered epoch. Consider stage
j−j′ of process qj′ . By the update rule in line 23 and the condition in line 21, there must be a chain
of processes having the same triple (t′, g, x) as qj′ for every round counter t′ within this stage such
that: qj′+1, qj′ are the end-points of this chain, its length is at most 10 logα/2 n, and collaborate
messages were propagated via the subsequent processes in the chain in the collaborating period
of the considered stage. Since j − j′ > 1 and by the fact that variable dexcess is updated only
in line 33, which is in-between consecutive stages of the same epoch, all processes in this chain
have been associated with the same pair (g, x/α) during every round of the previous stage (within
the same epoch), and their round counters rcount have been synchronized in this period. By the
acceptance condition in line 21, a message from qj′ has been propagated backwards this chain to
process qj′+1 in the collaboration period of that stage (recall again that the length of this period
10 logα/2 n is not smaller than the length of the chain). Hence, during the collaborating period of
this stage j − (j′+ 1), process qj′+1 has received a set of rumors R that was in qj′ in the beginning
of this stage. By property (ii) of process qj′ , this set of rumors contained the rumor of p at that
time. This proves property (ii) for process qj′+1.

By the definition of process qj′+1, it has q as a neighbor in graph G(dguess ·dexcess) used in the
working period in stage j − (j′ + 1) (note that these graphs are the same in both qj′ and qi′+1, as
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they are associated with the same triple in each round of this stage). There are two cases. If process
qj′+1 removed q from its set W while executing line 31 of this stage then we finish our construction
and set j∗ = j′ + 1, as qj′+1 satisfies properties (i), (ii) and (iv). Otherwise, we proceed with the
inductive construction, as qj′+1 satisfies properties (i)-(iii).

In order to complete the construction of the desired sequence, we need to show that the con-
struction terminates after some step, i.e., that we will find a process qj∗ , for some 1 ≤ j∗ ≤ j − 1,
satisfying properties (i), (ii) and (iv). Suppose, to the contrary, that we did not find such a
process. It follows from the inductive step of the construction that we can construct a sequence
q0, q1, . . . , qj−1 of processes satisfying properties (i)-(iii). By property (iii), process qj−1 removes
an element, mainly q, from its set W in the working period of stage j − (j − 1) = 1 of process p of
the current epoch, which, by property (i), is also stage 1 of qj−1. This is however a contradiction,
since process qj−1 has dexcess = 1 in its first stage and thus the condition allowing execution of
the update in line 26 is not satisfied.

Having defined sequence q0, q1, . . . , qj∗ , for some 1 ≤ j∗ ≤ j−1, as specified above, observe that
process qj∗ knows the rumor of p before the working period of its stage j− j∗ ≥ 1 of the considered
epoch, by property (ii). Therefore it removed q from its set W while executing line 31 in this stage.
This means that process qj∗ had sent its known rumors, including the rumor of p, to process q
directly in this period. Since this period is earlier than stage j of the current epoch of process p,
we get a contradiction with the assumption from the beginning of the proof. �

We now show the correctness of algorithm det-gossip.

Theorem 6.5 Given any adversarial pattern A ∈ CRRI, algorithm det-gossip guarantees QoD.

Proof: First, we note that all delivered rumors respect the deadline, since a single run of routine
fixed-det-gossip lasts at most dline rounds: Simple calculation reveals that the length of routine
fixed-det-gossip is at most

(
(10 logα/2 n+ 1) · logα n

)
logα n + 1 rounds, since there are at most

logα n epochs, each containing at most logα n stages of 10 logα/2 n + 1 rounds each. Additionally
there is a possibility of an extra round (lines 37-38). Since we perform this analysis for α satisfying
((10 logα/2 n + 1) · logα n) logα n + 1 ≤ dline, and since dline ≤ ρ.d, the algorithm delivers each
rumor ρ by its deadline ρ.d.

It remains to show that each rumor is successfully delivered to all other processes that this
rumor is admissible for, during a single run of the routine fixed-det-gossip. First observe that if
a process executes lines 37-38 then its rumor is sent directly to all processes and thus received
by all admissible ones. We prove that rumors of processes that skip lines 37-38 are also delivered
to all admissible processes in the execution. More precisely, since an admissible process must be
non-faulty within the deadline period, and thus also during the run of routine fixed-det-gossip for
this rumor, it is enough to show that the rumor has been sent to this process in some message.

Assume that p skips lines 37-38. It follows that p finishes its execution with variable done
set to true. Consequently, its set W has been emptied in the last epoch of this execution (c.f.,
line 34). Note that set W was re-initialized to [n] \ {p} in the beginning of this epoch (line 12). By
Lemma 6.4, each of these processes has been sent the rumor of p during the considered last epoch
of p. This completes the proof of the theorem. �
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6.3.2 Analysis: Message Complexity

We now proceed to analyze the message complexity of algorithm det-gossip. Consider a valid
triple (t, g, x). We proceed by counting the number of messages sent in a round by processes
associated with this triple. In particular, we will show that this is O(α2n logO(1)(n)). Combining
this with the upper bound O(log5

α n) on the number of different valid triples, and with the bound
dline = O(log3

α n), we get the final result on the message complexity, c.f., Theorem 6.8. LetQ(t, g, x)
be the number of processes that are alive and are associated with triple (t, g, x) at the end of the
considered (global) round of an execution, which is also round t of their routines fixed-det-gossip.

Lemma 6.6 There are no more than logα n · α2 · (n/g) processes associated with a triple (t, g, x)
in a single round.

Proof: Consider a round of the computation and a triple (t, g, x), for some valid integers t, g, x.
Denote set Q(t, g, x) by Q. There are two cases. For α ≤ g ≤ α2 the lemma is obvious. Consider
g > α2. Note that this implies that the current epoch is bigger than 2. Suppose that the statement
of the lemma is incorrect, and assume that the considered round is the earliest for which it does
not hold. We argue that round t must be the first round of an epoch. Otherwise we would have
Q(t, g, x) ⊆ Q(t − 1, g, x/α) or Q(t, g, x) ⊆ Q(t − 1, g, x), respectively, depending whether t is the
first round of a stage or not (recall that starting points of stages are synchronized for processes
with the same round counter), as only processes associated with the same triple with round counter
t − 1 could simultaneously upgrade their variables dexcess within an epoch. This however would
contradict the choice of round counter t; therefore, processes in Q must all be in the beginning of
their epoch corresponding to dguess = g when having the round counter t.

Consider the collaborating rounds of the previous stage of processes in Q; they are alive during
this period, as round t is in epoch bigger than 2. The considered period is also in the previous
epoch, hence the second coordinate of the triple was g/α in each process in Q in every round of the
considered period. The first coordinate — corresponding to the local round counter — is trivially
the same in all processes in Q in any round of this period. Note however that some processes in Q
may have pairwise different third coordinates in the considered stage. By the choice of t, we have
that any subset of Q associated with the same triple in the considered period was of size at most
logα n · α2 · n

g/α = logα n · α
3·n
g . However, if any of these subsets, say Q′, was bigger than α2 · n/g,

in the round with counter t − 1 (i.e., in the last round of the previous epoch), we would have the
following.

By Lemma 6.3 applied to graph G(g/α) of (α ·n/g)-expansion, used in the collaborating period
of the epoch preceding round t, there is a subset of at least α · n/g processes in Q′ such that the
subgraph of G(g/α) induced by these processes has diameter at most 2 logα/2 n. This implies that
their sets Close Colp,t−2 of close collaborators at the end of the collaborating period preceding
round t−1, containing all these processes within distance 2 logα/2 n, would be large enough (i.e., at
least n/(g/α)) to make these processes p stay in the previous epoch instead of increasing it at the
end of round t−1 (see the update of the loop stopping condition in line 27). This is a contradiction
with the fact that all elements in Q change their epochs at the end of round with counter t− 1.

This proves that each subsets of Q associated with the same triple in the round with counter
t − 1 is of size at most α2 · n/g. There are at most logα n of such disjoint subsets, as the second
coordinate of a triple is the same in all processes in Q (i.e., equal to g/α), while there are at
most logα n of different values on the third coordinate. Hence, |Q| ≤ logα n · α2 · n/g, which is a
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contradiction with the choice of the first round with counter t contradicting the lemma and the
fact that Q = Q(t, g, x). �

We now consider the progress in propagating rumors during the working period — the last round
of a stage. This is important for bounding the number of rumors messages sent by processes with
the same triple (t, g, x).

Lemma 6.7 Consider triple (t, g, x) such that x ≥ α and all processes in Q(t, g, x) execute line 27
during their round with counter t. The union U of sets W taken over processes p in Q(t, g, x)
satisfying |Close Colp,t| ≥ n/g (i.e., processes p that send some rumors messages in the working
period, during the succeeding line 29), taken before sending any rumors message in line 29, is of
size smaller than α · n/(g · x).

Proof: Let Q′ be the set of processes satisfying the conditions of the lemma in the definition of
set U . Note that if Q′ is empty then set U is also empty. Assume Q 6= ∅. Suppose, to the contrary,
that set U is of size at least α ·n/(g · x). Consider process p in Q′. By definition of set Q′, we have
|Close Colp,t| ≥ n/g. By expansion of graph G(g · x/α) used in the working period of the previous
stage, there is an edge between sets Close Colp,t and U in this graph. Therefore, while executing
line 26 in the current stage, process p removes some element of U , call it u, from its set W .

Consider any process q ∈ Q′ different than p (if there are no such element then we would get
an immediate contradiction with the definition of U , as p removed u from its set W , which in this
case is equal to U). Consider set Close Colp,t. By definition of Q′, we have |Close Colq,t| ≥ n/g.
Again by expansion of graph G(g · x/α) used in the working period of the previous stage, there
is an edge between sets Close Colp,t and set Close Colq,t. Since both sets are still alive after
the first 8 logα/2 n rounds of the coordinating period of the current stage, by specification of close
neighborhoods in the pseudo code (lines 18 and 24), and both have diameter at most 4 logα/2 n,
we observe the following behavior during the collaborating period. Processes in set Close Colp,t
exchange messages among themselves during the first at most 5 logα/2 n rounds of this period, then
one of them will propagate it to some node in Close Colq,t in one round, and finally node q gets it
as it gathers info from processes in Close Colq,t during the last 2 logα/2 n rounds of the considered
period. All this information about processes is propagated inside variables Col. Consequently,
process q removes all neighbors of processes in Colq,t ⊇ Close Colp,t in graph G(g · x/α) from its
set W in line 26 before executing line 27. In particular, it removes process u, by definition of u. It
follows that every process in Q′ removes u ∈ U from its set W before executing line 27 in round t,
which contradicts the definition of U . Hence, U must be smaller than α · n/(g · x). �

We are now ready to bound the message complexity of algorithm det-gossip.

Theorem 6.8 The per-round message complexity of algorithm det-gossip is at most

O
(
n1+6/ 3√dm logO(1)(n)

)
,

dm being the minimum deadline of any rumor active in the system.

Proof: Fix a valid triple (t, g, x). Consider a single round of the computation. It follows from
Lemma 6.6 and by the specification of ∆(·), that there are at most O(logα n · α2 · (n/g) ·∆(g)) =
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O(logα n ·α2 ·n logO(1)(n)) collaborate messages sent in this round by processes associated with
the considered triple.

Recall that rumors messages are sent only if t corresponds to a working period or to the last
round of fixed-det-gossip spent on executing lines 27-31. Now we estimate the number of rumors
messages sent in the considered round when x ≥ α. By Lemma 6.7, the union of sets W in the
processes with triple (t, g, x) that want to send rumors messages is at most α ·n/(g ·x). It follows,
by the node degree of graph G(g · x) used for sending messages in the considered round, that
each process in such union is sent at most ∆(g · x) rumors messages in the considered round, and
therefore the total number of such messages sent/received in this round is O(α ·n/(g ·x) ·∆(g ·x)) =
O(α · n logO(1)(n)).

Now we estimate the number of rumors messages sent in the considered round when x = 1.
In this case, the size of set Colp,t must be not bigger than logα n · α2 · n/g, by Lemma 6.6. Hence,
the total number of rumors messages sent in round number t by processes associated with triple
(t, g, x) is O(logα n ·α2 ·(n/g) ·∆(g ·x)) = O(logα n ·α2 ·(n/g) ·∆(g ·1)) = O(logα n ·α2 ·n logO(1)(n)).

It remains to estimate the number of rumors messages if t is the last round of the routine
fixed-det-gossip when lines 37-38 are executed. We must have g = n then, as it was upgraded from
n/α at the end of the previous round (line 35). By Lemma 6.6, the number of processes associated
with the same triple having n on its second coordinate is at most logα n · α2. The number of
rumors messages sent by a process in lines 37-38 is n, hence the total number of such messages is
at most logα n · α2 · n.

Summarizing all three cases concerning rumors messages, the total number of rumors mes-
sages sent/received in a round is O(logα n · α2n logO(1)(n)).

Finally, there are O((logα n)2·log3
α n) = O(log5

α n) valid triples: there are at most logα n different
values g of dguess and at most logα n different values x of dexcess for fixed g, while the total length
of a run of the routine fixed-det-gossip is O(log3

α n), as we argued in the beginning of the analysis
section.

Summarizing, the number of messages sent (and thus also received) in one round is at most(
O(logα n · α2n logO(1)(n)) +O(logα n · α2n logO(1)(n))

)
·O(log5

α n) = O(α2n logO(1)(n) · log6
α n) .

Observe that dline is not smaller than the upper bound on the length of the run of the routine
fixed-det-gossip, which, as we showed, is O(log3

α n), or more precisely, at most(
(10 logα/2 n+ 1) · logα n

)
logα n+ 1 ≤ 21 log3

α n .

Consequently, logα n ≤ 3
√
dm/21, for α ≥ 4, and the number of messages per round is

O(n1+2/ logα n logO(1)(n) · log6
α n) ≤ O(n1+6/ 3√dm logO(1)(n) · d2

m) .

If dm = O(log3 n) than this is bounded from above by

O(n1+6/ 3√dm logO(1)(n)) .

On the other hand, we may deliver all rumors by time O(log3
α n) ≤ O(log3 n), for dm = Ω(log3 n),

which means that the number of messages in such case can be bound from above by O(n logO(1)(n)).
This completes the proof. �
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Remark 6.9 When the above upper bound result is contrasted with the lower bound result of
Theorem 4.1 one can conclude that algorithm det-gossip is close to optimal. In fact, for dm =
Θ(logO(1)(n)) algorithm det-gossip is optimal within log factors.

7 Conclusion and Future Work

In this paper we have introduced and studied a novel version of the gossip problem, called Continu-
ous Gossip, where n crash-and-restart-prone processes are continuously subject to injected rumors.
Rumors have deadlines and the goal is for all rumors, subject to a condition that we call quality-
of-delivery (QoD), to be disseminated. We first presented lower bounds on the per-round message
complexity of randomized and deterministic continuous gossip and then we described and analyzed
an efficient (close to optimal) randomized algorithm and its de-randomized version that guarantee
QoD in every execution. We note that our algorithms can be implemented in such a way that
each message sent carries only rumors and at most O(n2) additional bits. (Hence if the rumors are
large, the per-round bit complexity of the algorithms is essentially the per-round message complex-
ity times the size of the rumors.) It would be interesting to investigate whether the bit complexity
of the algorithms can be reduced even further.

Several future research directions emanate from this work. For example, it would be interesting
to investigate whether it is possible to close the gap between our presented lower and upper bound
results. Also, there is the question of whether it is possible to obtain subquadratic per-round
message complexity for rumors with very short deadlines, i.e., d < 64 for randomized and d < 100
for deterministic gossip. Our algorithms operate under the assumption that processes do not have
access to a global clock. We believe that it is possible to further improve the complexity of our
algorithms (or devise new algorithms) if a global clock is assumed; then the computation could be
appropriately divided into epochs of a certain size and the messages could be spread over many
rounds. The global clock would help synchronize the processes over epochs. The main open
challenge here is to determine the size of the epochs.

Other interesting future directions involve variants of the model we have introduced. For ex-
ample, perhaps, other types of QoD could be considered. Along with message complexity, we
could also consider latency as an efficiency measure, especially for long deadlines (e.g., of duration
Ω(logO(1)(n))); it would be interesting to study the tradeoffs between deadlines, message complexity
and latency. An even more challenging research direction would be to consider partially-synchronous
continuous gossip, perhaps in an analogous manner as the one-shot n-rumor gossip problem was
considered in [14]. Last but not least, we would like to use our continuous gossip algorithms as a
building block in improving the communication cost of other related problems such as “continuous”
consensus and “continuous” cooperative task computing.
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Appendix

Proof of Fact 5.1. Choose some node s ∈ V ′, and fix s for the remainder of the proof. Let
Ns(G, i) be all the nodes in V ′ within distance i of s in graph G. We argue that Ns(G, logγ k) = k,
which implies that the diameter is at most logγ k.

For each v ∈ V ′, we (arbitrarily) divide the edges selected by v into two sets EA(v) and EB(v),
each of size 8c(n/k)γ log2 n. Let EA be the union of edges EA(v) for every v ∈ V ′; let EB be the
union of edges EB(v) for every v ∈ V ′. Let GA = (V ′, EA), and let GB = (V ′, EB).

We first examine graph GA and argue that Ns(GA, logγ k− 1) ≥ k/4, i.e., there are at least k/4
nodes within distance logγ k − 1 of s.

Assume, for the sake of contradiction, that Ns(GA, logγ k−1) < k/4. Let Bi be the set of nodes
that are in Ns(GA, i) but are not in Ns(GA, i− 1). That is, Bi = {v ∈ Ns(GA, i) \Ns(GA, i− 1)}.
Define B0 = {s}. Note that B0 ∪ B1 ∪ . . . ∪ Bi = Ns(GA, i). Notice that the assumption that
Ns(GA, logγ k − 1) < k/4 also implies that |Blogγ k−1| < k/4.

We now prove the following invariant: |Bi| ≥ γi for all i < logγ k; this leads to a contradiction,
as it implies that Blogγ k−1 ≥ k/2. The base case for B0 is clear; we proceed by induction. Assume,
for the sake of induction, that |Bi| ≥ γi.

We now examine the outgoing edges from the nodes in Bi in EA; observe that there are at
least |Bi| · 8c(n/k)γ log2 n ≥ 8c(n/k)γi+1 log2 n such edges. If these edges do not induce a set Bi+1

containing more than γi+1, then there must be some set S of size γi+1 such that every one of these
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edges leads to a node in S or Ns(GA, i) or V \V ′. The probability of this event can be bounded as:

≤ (# of possible sets S of size γi+1) · Pr(one edge hits S or Ns(GA, i) or V \ V ′)8c(n/k)γi+1 log2 n

≤
(
k −Ns(GA, i)

γi+1

)
·
(

1− k/2
n

)8c(n/k)γi+1 log2 n

≤ kγi+1
2−4cγi+1 log2 n ≤ 1/n4c.

Thus, with high probability, |Bi+1| > γi+1. Taking a union bound over each of the logγ k steps,
we conclude that this holds for all i < logd k with probability at least 1 − 1/n2c. Since this is a
contradiction, we conclude that Ns(GA, logγ k) > k/4 with high probability.

We now argue that every node v ∈ V ′ \Ns(GA, logγ k) has an edge in EB connecting it to some
w ∈ Ns(GA, logγ k−1). Fix some v ∈ V ′ \Ns(GA, logγ k−1). Note that since there are at least k/4
nodes in Ns(GA, logγ k), there are 2cnγ log2 n edges to examine. Each edge hits v with probability
1/n, and hence the probability that v does not have a neighbor in Ns(GA, logγ k − 1) is bounded
as:

≤ (1− 1/n)2cnγ log2 n ≤ 1/n2c.

Thus, with probability 1 − 1/nc, graph G = (V ′, EA ∪ EB) has diameter at most logγ k, as every
node in V ′ is within distance logγ k of s. �
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