
Confidential Gossip

Chryssis Georgiou
University of Cyprus
chryssis@cs.ucy.ac.cy

Seth Gilbert
National University of Singapore

seth.gilbert@comp.nus.edu.sg

Dariusz R. Kowalski
University of Liverpool

D.Kowalski@liverpool.ac.uk

Abstract—Epidemic gossip has proven a reliable and efficient
technique for sharing information in a distributed network.
Much of this reliability and efficiency derives from processes
collaborating, sharing the work of distributing information. As
a result of this collaboration, processes may receive information
that was not originally intended for them. For example,
some process may act as an intermediary, aggregating and
forwarding messages from some set of sources to some set of
destinations.

But what if rumors are confidential? In that case, only
processes that were originally intended to receive the rumor
should be allowed to learn the rumor. This blatantly contradicts
the basic premise of epidemic gossip, which assumes that
processes can collaborate. In fact, if only processes in a
rumor’s “destination set” participate in gossiping that rumor,
we show that high message complexity is unavoidable. A
natural approach is to rely on cryptography, for example,
assuming that each process has a well-known public-key that
can be used to encrypt the rumor. In a dynamic system, with
changing sets of destinations, such a process seems potentially
expensive.

In this paper, we propose a scheme in which each rumor
is broken into multiple fragments using a very simple coding
scheme; any given fragment provides no information about the
rumor, while together, the fragments can be reassembled into
the original rumor. The processes collaborate in disseminating
the rumor fragments in such a way that no process outside
of a rumor’s destination set ever receives all the fragments of
a rumor, while every process in the destination set eventually
learns all the fragments. Notably, our solution operates in an
environment where rumors are dynamically and continuously
injected into the system and processes are subject to crashes
and restarts. In addition, the scheme presented can tolerate a
moderate amount of collusion among curious processes without
too large an increase in cost.

Keywords-Confidentiality, Collusion, Randomized gossip,
Fault-tolerance, Dynamic rumor injection, Message complexity.

I. INTRODUCTION

Collaboration is as the heart of distributed computing:
when a network of devices cooperates to solve a problem,
the resulting computation is often more robust and more
efficient than if each device had worked independently. A
classic example of the benefits of collaboration can be found
in the paradigm of epidemic gossip. Consider, for example,
a set of n devices that want to share information. If each
device communicates independently with the other devices
in the network, then the message complexity for the protocol
may be O(n2). By contrast, if the devices collaborate to

share the information, each communicating with a small
number of random devices in each round, then the message
complexity for the protocol can be reduced to O(n log n).
At the same time, the resulting protocol is quite robust,
tolerating a constant fraction of the devices crashing.

Yet there are some drawbacks to collaboration. One sig-
nificant cost is privacy: by collaborating with other devices
to solve a problem, it is often the case that private infor-
mation is divulged. Consider again n devices that want to
share information—however the information is potentially
confidential and should only be shared among specified
groups of recipients. For example, a user may want to
share an engineering blueprint with her colleagues, but not
with her competitors. Or a psychiatrist may want to send
an e-mail to a group of patients, but not to everyone.
Unfortunately, standard distributed protocols for efficiently
sharing information do not satisfy these requirements. For
example, if the users rely on epidemic gossip to distribute
their information, then all confidentiality is lost: every device
in the system may learn every piece of information.

In this paper we consider protocols designed to toler-
ate honest, but curious processes. This concept has at-
tracted considerable attention as a model of processes in
distributed applications that need limited anonymity and
privacy, c.f., [29], [13] (see more in related work below).
It is not our protocol’s intent to be secure against truly
malicious parties: for data that must be kept secure in all
circumstances, a more expensive solution is needed. For
everyday transactions, however, where privacy is desired,
we can ensure that no process ends up in possession of
information that it is not intended to learn. Moreover, we
can achieve this additional at relatively limited cost (in terms
of message complexity), even if a moderate number of the
participants may be colluding (i.e., sharing information).

Results. Thus the question we ask in this paper is whether
we can achieve the benefits of collaboration—i.e., robustness
and efficiency—without sacrificing confidentiality. We focus
our attention on the problem of Continuous Gossip, a long-
lived version of information sharing (introduced in [12])
that has three notable properties: (1) any process can inject
a rumor at any time; (2) each rumor specifies a set of
recipients that should receive the rumor; and (3) each rumor
has a deadline specifying by when it should be received.

In this paper, we present a continuous gossip protocol that
guarantees all of the following desirable attributes: Confi-
dentiality: Only the specified recipients of a rumor learn the
contents of the rumor, even if processes outside the specified
recipients may collude. Timeliness: Every rumor is delivered
by the deadline. Efficiency: The maximum per-round mes-
sage complexity, with high probability, and in the absence of
collusions, is O((n1+48/

√
dmin + n1+6/

6√
dmin) polylog n),

where dmin is the shortest deadline of any active rumor
(that is, a rumor whose deadline has not expired); note that
for rumors with deadline of Ω(log6 n), this results in per-
round message complexity of O(n polylog n). When up to
τ processes may collude then we show that the maximum
per-round message complexity is increased by a factor τ2.
Robustness: Processes may crash and restart at any time;
there is no bound on the number of crashed processes at
any given time. Moreover, failures are adaptive: they may
depend on the execution and the random choices made by
the individual processes.

Our approach. The major challenge underlying confidential
gossip is reconciling the need for collaboration to achieve
efficiency, and the inherent loss of confidentiality created by
collaboration. At first glance, it seems that only recipients
of a rumor can help in its dissemination. Yet, if we limit
all information regarding the rumor to its recipients, then it
is impossible to achieve good message complexity. As we
show in Theorem 1, if we limit messages regarding a rumor
ρ to the destination set ρ.D, then the per-round message
complexity is Ω(n(3/2)−ε/dmax), for any ε > 0 (dmax is
the longest deadline of any active rumor). Thus it seems that
confidentiality and efficiency are inherently at odds.

We circumvent this seeming impossibility via a simple
insight: each rumor can be divided into multiple independent
fragments; each fragment provides no information regarding
the original rumor, and yet together they can be combined
to re-assembled the original rumor. (This is the basic idea
underlying cryptographic secret sharing [32], [34], though
we require only the simplest instantiation of this idea.) All
the processes in the system can now collaborate to distribute
the rumor fragments, as long we as ensure that no process
collects all the fragments. (In fact, we can rely on existing
gossip protocols as a black box, as long we restrict their
communication to processes that are allowed to receive
the specific message fragments.) In this way, we gain the
benefits of collaboration without sacrificing confidentiality.

A second challenge we address is the possibility that
failures are not independent and history-oblivious. We as-
sume that processes may crash and restart at any time,
and we model failures as being caused by an adaptive and
omniscient adversary that can fail processes based on the
random choices made by the protocol. For example, every
time a source sends a rumor (or rumor fragment) to another
process, the adversary may choose to immediately crash

that recipient, entirely preventing the dissemination of that
rumor. We address this challenge by having processes col-
laborate, exchanging metadata that contains no information
on rumors. This information allows processes to determine
which other processes are failed (or have failed recently),
and which processes are being isolated (both in terms of
sending and receiving information). Using this metadata,
processes can target their messages better, and processes
can adjust the number of messages they are sending. By
collaborating on metadata, rather than rumors, processes
can still overcome an adaptive adversary without giving
up confidentiality. (While some information is leaked via
the metadata, we discuss in Section VI how to avoid this
problem.)

Alternative approaches. There are several possible cryp-
tographic approaches to solving the problem of confidential
gossip, many of which exist under the rubric of multicast se-
curity (e.g., [5], [11], [24], [27], [30], [32]). If a system must
be secure against truly malicious parties (i.e., not simply
“honest-but-curious” processes), then these cryptographic
solutions are the only method of achieving confidentiality.

The basic idea, in many cases, is that each process holds
some subset of the cryptographic keys; by encrypting the
message with appropriate subsets of the keys, the sender
can ensure that the message can only be decrypted by
the intended recipients. For example, the processes may be
arranged as leaves on a binary tree, where each internal node
of the tree contains a cryptographic key; each process is
given access to every key found on the root-to-leaf path end-
ing at the leaf owned by the process. When the destination
set of a rumor aligns well with the grouping of processes
in the tree, such a scheme can be quite efficient; when the
destination set contains processes distributed throughout the
leafset, then such a scheme can be quite expensive.

Many such solutions (e.g., [2], [26], [33], [35]) focus on
a single source communicating confidentially with a single
group of processes. The source establishes a shared key with
the group, and then updates it as the group changes. Often,
a tree-like scheme (as above) is used to make the re-keying
more efficient.

In general, the cryptographic solutions will be more effi-
cient when the groupings are stable. That is, when some pro-
cesses want to communicate with a fixed set of destinations,
these cryptographic solutions can be made quite efficient
by ensuring that the fixed set of processes share a single
cryptographic key. Even when there are occasional changes
to the destination set, such solutions work reasonably well.
However, we are not aware of any sub-quadratic, in terms
of message complexity, cryptographic approach to guarantee
confidential gossip when the groups are changing rapidly,
or when there are no fixed groups, i.e., when each rumor
has a different destination set. In many cases, the best
solution appears to be encrypting the message individually

for each process in the destination set, thereby significantly
increasing the amount of data to be sent. Furthermore, there
is the question on how efficient secret key maintenance
would be in the presence of dynamic crashes and restarts,
especially when restarted processes have no memory of the
computation prior to restarting (as assumed in our model).
As we show, our confidential gossip protocol is efficient even
under such dynamic adverse conditions.

Other related work. The gossip problem has frequently
been considered in relation to random, epidemic commu-
nication (e.g., [10], [17], [18], [19]). In this context, the
problem is also know as rumor spreading and the proto-
cols usually use a simple epidemic approach: each process
periodically sends its rumor—along with any new rumors
it has learned—to another randomly selected process. This
approach can lead to efficient rumor dissemination while
tolerating benign failures ([17]).

The gossip problem has been considered in a variety of
fault-prone environments, ranging from crash failures to ma-
licious/Byzantine ones (e.g., [6], [15], [21], [23], [25]). The
survey by Pelc [31] together with the book by Hromkovic et
al. [16] overview solutions for the gossip problem in fault-
prone distributed networks.

Another line of work related to ours is the one considering
the problem of constructing scalable overlays of topic-based
Publication/Subscribe systems (e.g., [1], [7], [8], [28]). The
aim is to design an overlay network for each pub/sub topic,
so that for each topic, the subgraph induced by the nodes
interested in the topic will be connected; such overlays
are called topic-connected. New events for each topic can
then be routed from publishers only to interested sub-
scribers using such topic-connected overlays. If destination
sets are viewed as topics, then a topic-connected overlay
could provide a confidential way of distributing a rumor
to its destination set. Unfortunately, we don’t know how to
maintain topic-connected overlays in a dynamic setting (i.e.,
for changing destination sets), and even the static case is
NP-complete [8], [28]. Theorem 1 (Section III) effectively
implies that topic-connected overlays cannot be used to
support efficient confidential gossip.

The honest-but-curious model, also refered as the semi-
honest model [4] is a standard cryptographic adversarial
model [13]. This model has been widely considered in
the problem of multi-party privacy-preserving computation
of some function [36], [13]. The usual demand is for the
function to be computed collectively by the computing
entities without leaking any information about the entities’
inputs, except that revealed by the algorithm’s output. Var-
ious computations have been considered in the context of
computations on sets, such as set union, intersection, element
reduction (c.f., [20]), on graphs (c.f., [4]), in the are of
data mining (c.f., [22], [3]), majority voting (c.f.,[29]), as
well as private predicate computation in mobile population

protocols [9].
Our solution to the confidential gossip problem can be

viewed as a tool in the process of computing these functions
when the privacy of inputs (in the form of rumors) could be
kept within groups of processes (i.e., certain rumors would
have as their destination set a specific group). For example,
a number of group of social networking websites, wishing
to efficiently calculate aggregate statistics such as degrees
of seperation and average number of acquaintances without
compomising the in-group privacy, could use as a building
block our confidential gossip algorithm.

Paper organization. In Section II we present the model of
computation and the confidential continuous gossip problem.
In Section III we show that if only the processes of a rumor’s
destination set collaborate in disseminating the rumor, then
high message complexity is unavoidable. In Section IV we
present and analyze an efficient randomized algorithm for
confidential continuous gossip assuming no collusion. In
Section V we show the effect of collusion on the problem
under consideration and we modify our algorithm to tolerate
collusions. We conclude in Section VI. Omitted details and
proofs can be found in the optional Appendix (to be read at
the discretion of the program committee).

II. MODEL AND DEFINITIONS

We consider a distributed system consisting of n syn-
chronous processes that can communicate via message-
passing over a reliable network, where each process can
communicate directly with each other process. Message are
not lost or corrupted in transit. Processes have unique ids
from the set [n] = {1, . . . , n}.

The computation proceeds in synchronous rounds. In each
round, each process can: (i) send point-to-point messages
to selected processes, (ii) receive a set of point-to-point
messages sent in the current round, and (iii) perform some
local computation (if necessary). We assume that processes
have access to a global clock, that is, rounds are globally
numbered.

Processes may crash and restart dynamically as an exe-
cution proceeds. Each process is in one of two states: either
alive or crashed. When a process is crashed, it does
not perform any computation, nor does it send or receive
any messages. We assume that processes have no durable
storage, and thus when a process restarts, it is reset to
a default initial state consisting only of the algorithm to
execute and [n]. Each process can only crash or restart once
per round. We denote by crash(p, t) the event in which
process p crashes in round t. The event restart(p, t) is
defined similarly. We say that a process p is continuously
alive in the period [ta, tb] if: (a) process p is alive at the
beginning of round ta and at the end of round tb, and (b)
for every t ∈ [ta, tb], there are no crash(p, t, ·) events.

When a process p crashes in round t, some of the
messages sent by p in round t may be delivered, and some

may be lost. Similarly, when a process p restarts in round t,
some of the messages sent to p may be delivered and some
may be lost.

Rumors are dynamically injected into the system as
the execution proceeds. A rumor ρ consists of a triplet
〈z, d, D〉, where z is the data to be disseminated, D ⊆ [n]
is the set of processes that z must be sent (destination set),
and d is the deadline duration by which the rumor must
be delivered. We denote by Inj (ρ, t, p) the event in which
rumor ρ is injected to process p in round t. We will be
referring to p as the source process of rumor ρ. We assume
that at most one rumor is injected at each process per round.

We model crash/restarts and rumor injection via a Crash-
and-Restart-Rumor-Injection adversary, or CRRI adver-
sary for short. In each round, the adversary determines which
processes to fail, which processes to restart, and which
rumors to inject. The adversary is adaptive in the sense that
it can make decisions in a round t based on the events in
all prior rounds < t, as well as the random choices being
made in round t itself. We refer to an adversarial pattern
A ∈ CRRI as a set of crash, restart and injection events
caused by adversary CRRI .

Definition 1 (Quality of Delivery): We say that a gossip
protocol guarantees quality of delivery if every rumor ρ
injected in round t at a process p is delivered no later than
round t + ρ.d to every process in ρ.D that is continuously
alive for [t, t+d], if p is also continuously alive for [t, t+d].

Definition 2 (Confidentiality): We say that a gossip pro-
tocol is confidential if every rumor ρ is delivered only to
processes in ρ.D, in every execution of the protocol.

Definition 3 (Per-round Message Complexity): We say
that a randomized algorithm Rand operating under
adversary CRRI has per-round message complexity at
most M(Rand), if for every round t, for every A ∈ CRRI ,
the following holds with high probability: the number of
messages sent Mt(Rand,A) by Rand in round t, is at
most M(Rand).

Essentially, for randomized algorithms we require to
guarantee Quality of Delivery (that is, admissible rumors
are delivered with probability 1) and confidentiality with a
probabilistic bound on the per-round message complexity.
More on the rationale of Quality of Delivery and in general
on the continuous gossip problem can be found in [12].

III. THE LIMITATIONS OF STRONG CONFIDENTIALITY

We say that a gossip protocol is strongly confidential if
for every rumor, no message causally dependent on that
rumor is ever sent to a process that is not in the destination
set of that rumor. This essentially implies that only the
processes in the destination set of a rumor can collaborate
for that rumor’s dissemination. As the following theorem
states, such collaboration incurs high per-round message

complexity, even against an oblivious adversary that can
only arrange the rumors destination sets prior to the start
of the computation.

Theorem 1: For any constant ε > 0, every randomized
strongly confidential gossip algorithm has a maximum per-
round message-complexity of at least Ω(n(3/2)−ε/dmax),
with probability 1, even against an oblivious adversary,
where dmax is the longest deadline of the injected rumors.

Proof: (sketch) Let x = n1/2−2/c and let c =
d2/εe. Suppose that only rumors with uniform deadlines
dmax are injected. We show a lower bound nx

2c·dmax =
Ω(nx/dmax) ⊇ Ω(n(3/2)−ε/dmax). Suppose that each
process receives one rumor with random set of destinations
in the beginning of the computation, defined independently
over processes and in such a way that for each process
it is decided independently with probability x/n whether
it belongs to this destination set (or not, otherwise). The
crucial argument is that under this scenario, with probability
at least 1 − x2c+2/nc−1, no message can carry more than
c rumors. Having this, observe that the number of pairs
(source process, destination process) is at least nx/2,
with probability at least 1−e−nx/8 ≥ 1−1/e, by the Cher-
noff bound. It follows that the total number of rumor copies
carried out by messages is at least nx/2. Therefore, the total
number of messages during delivering these rumors is at
least nx

2c , with probability at least 1− 1/e− x2c+2/nc−1 ≥
1 − 1/e − n−2 ≥ 1 − 2/e > 0. By probabilistic argument,
there is a configuration of destination sets that the above
arguments are satisfied (i.e., at most c rumors per message,
at least nx/2 pairs in communication schedule), and so
the conclusion of at least nx

2c messages to deliver all these
rumors. This must be accomplished within dmax rounds,
thus there must be a round with at least nx

2c·dmax messages.
Since we do not need crashes/restarts and the destination
sets can be computed offline, the adversary is oblivious.

In view of the upper bound O(n1+6
3√
dmin polylog n) on

continuous gossip without confidentiality assumptions [12]
(against an adaptive adversary), we obtain a polynomial,
in n, price of strong confidentiality, in terms of per-round
message complexity (for sufficiently long deadlines, i.e.,
with minimum deadline dmin > 24). The above result has
motivated our study of the weaker version of confidential
gossip that allows processes outside a rumor’s destination
set to receive a message related to this rumor, as long as the
rumor datum is not revealed.

IV. GOSSIPING CONTINUOUSLY AND CONFIDENTIALLY

In this section we present and analyze a continuous gossip
algorithm, called CONGOS, that guarantees that the content
of rumors remains confidential under adversary CRRI . For
simplicity, we assume no collusion. In Section V, we show
how to extend the approach here when processes collude. We

first describe the algorithm (Section IV-A) and then we show
its correctness and analyze its performance (Section IV-B).

A. Algorithm CONGOS

In a nutshell, when a rumor is injected at a process pi,
the algorithm repeats the following procedure log n times
concurrently: Step 1: Process pi splits the rumor into two
fragments such that only a process with both fragments
can reconstruct the rumor. (In Section V-B, when processes
collude, we will split each rumor into more fragments.) The
processes are partitioned (deterministically) into two equal-
sized groups. Step 2: Since process pi itself belongs to one
of the two groups, it uses a black-box continuous gossip
service to share one of the half rumors with its own group.
It uses a Proxy Service to distribute the other half rumor
to the other group, with which it cannot gossip directly.
At the end of the second step, each non-failed process has
received one of the two half rumors. Step 3: The rumor
fragments are sent to their appropriate final destinations
using the GroupDistribution service. That is, the fragments
for rumor ρ are sent to process in the destination set ρ.D.
The algorithm guarantees that no process outside a rumor’s
destination set gets both fragments of the rumor, while all
processes in the rumor’s destination set (for which the rumor
is admissible) deliver the rumor by the specified deadline.
(A pseudocode-based description of the algorithm is given
in Appendix A.)

We now proceed to present the technical details of the
above outline.

1) Preliminary Issues: For the purposes of the algorithm
description, we fix a deadline dline and focus on rumors
with deadlines in the range [dline/2, dline]. We then execute
Θ(log log n) instances of the protocol, each for a specified
range of deadlines. When given a rumor with some deadline
d ∈ [1,Θ(log6 n)], we inject that rumor into the instance
with the appropriate deadline range. When given a rumor
with some deadline > Θ(log6 n), we truncate the deadline
and inject it into the instance with the largest deadline.
(There is no benefit to deadlines longer than Θ(log6 n).)

We present algorithm CONGOS as a set of composed
distributed services. Each service is implemented by a
protocol that is executed in a distributed fashion over all the
processes in the system. This allows us to leverage existing
distributed protocols as a black box, without delving into
the underlying implementation details. We assume that the
system consists of the following services:
• Network: We model the communication network as one
such distributed service, with local input port send and a
local output port receive at each process.

• GroupGossip[`]: We assume the availability of an ex-
isting Continuous Gossip service, albeit, one that does
not guarantee confidentiality. It does ensure, however, that
every rumor injected is delivered by the specified dead-

line, and it bounds the per-round message complexity
by O(n1+6

3√
dmin polylog n), with high probability, where

dmin is the shortest deadline of any active rumor (see [12]).
We assume there are log n instantiations of this continuous

gossip service, GroupGossip[`] for ` ∈ {1, . . . , log n}. The
instance GroupGossip[`] is associate with partition ` of
the network, which we define shortly. Every message sent
by GroupGossip[`] is filtered before being sent over the
network: if a process pi is a member of some group P ′

in partition `, then every message sent by GroupGossip[`]
at process pi to a process not in P ′ is dropped; every
message sent by GroupGossip[`] at process pi to a process
in P ′ is relayed to the Network and sent. From the
perspective of the instance GroupGossip[`], the processes
that cannot be reached due to the filter are effectively failed.

• AllGossip: We assume a single continuous gossip service,
AllGossip, that is not filtered. That is, it is allowed to
communicate with all processes in the system.

The algorithm is composed into seven services, run-
ning in parallel at each process, and communicating via
local ports. These are Network, GroupGossip, AllGossip,
Filter, ConfidentialGossip, Proxy, and GroupDistribution.
The ConfidentialGossip service is the main service that
controls the flow of the algorithm and it coordinates the other
services. We describe it next. (Figure 1 in Appendix A de-
picts the interaction of the various services at a process pi.)

2) Main Control: ConfidentialGossip Service: Rumors
are injected in the ConfidentialGossip service. In order to
ensure confidentiality, each rumor ρ is divided into two frag-
ments ρ0 and ρ1. Both fragments maintain certain metadata,
such as the rumor’s destination set, but each fragment on
its own provides no information as to the original rumor
datum ρ.z; yet together, they allow the original rumor to
be reconstructed. There are a variety of simple schemes
for accomplishing this: for example, let ρ0.z be a random
binary string, and let ρ1.z = (ρ.z xor ρ0.z). In this way, we
have reduced the problem of confidentiality to ensuring that
no process, except those in the destination set, learn both
fragments of the rumor. All the processes in the system are
partitioned into two components, and one rumor fragment is
distributed to each half.

It is not sufficient, however, to carry out this splitting-
and-partitioning process only once: the adversary, being
adaptive, may kill all the processes in one of the groups
in the partition. We thus define, a priori, log n different
partitions. Each partition is based on a specified bit in the
binary representation of a process’s identifier. Let pj [`] be
the `th bit in pj’s binary representation. Then partition `
is defined by the two sets P0,` = {pj : pj [`] = 0} and
P1,` = {pj : pj [`] = 1}. For each partition, rumor ρ is
divided into two fragments ρ0,` and ρ1,`.

Therefore, the ConfidentialGossip service, running at each

Outline of ConfidentialGossip service at pi:
• Do in parallel for each ` = 1, . . . , logn:

1) Split rumor ρ into a pair 〈ρ0,`, ρ1,`〉.
2) If pi is in group b of partition `, inject ρb,` into

GroupGossip[`], and inject ρ1−b,` into Proxy[`]. To-
gether, these two services ensure that each rumor frag-
ment is delivered to every non-failed process in the
appropriate group of the partition.

3) For each rumor fragment received from
GroupGossip[`] or Proxy[`], inject the fragment
into GroupDistribution[`].

4) Save every fragment received from
GroupDistribution[`], and reassemble and deliver
rumors as fragments become available.

• Whenever a message from AllGossip confirms that, for some
partition `, both fragments of a rumor ρ, initiated at pi, have
been sent to every destination in ρ.D, confirm that ρ has been
delivered.

• Whenever a deadline is about to expire for some rumor ρ
initiated at pi, and there is no confirmation that ρ has been
delivered, send ρ directly to every process in ρ.D.

process pi, “spawns” ` instances of the other services. We
will be using the notation ServiceName[`] to denote the
instance of a service for partition `. (The service AllGossip
runs one instance for all partitions, as its purpose is to
gossip information to all processes. This is also the case
for the Network service.) Above is a high-level outline of
the ConfidentialGossip at a process pi. (Detailed pseudocode
is given in Figure 2 in Appendix A.)

Time is divided into blocks of dline/4 rounds. A rumor
injected during some block B is split into fragments during
block B (step 1, above); the fragments are distributed to
their respective groups during block B + 1 (step 2, above);
the fragments are reassembled in block B + 2 (step 3 and
4, above); and the source verifies that its rumor has been
delivered during block B+3. If it cannot verify that its rumor
has been delivered when the deadline expires, it simply sends
its rumor directly (last bullet above).

A notable aspect of the above protocol is that a process
cannot directly distribute both rumors. If a process pi is in
group P0,`, it cannot directly participate in gossip with group
P1,`; if it did, it might risk learning rumor fragments asso-
ciated with the other group. The Proxy service is designed
to circumvent this problem.

Another notable aspect occurs at the end of the protocol,
when a process attempts to confirm that its rumors have been
delivered. Each process, as part of the GroupDistribution
service (see below), initiates a gossip (via AllGossip) in-
dicating which rumor fragments have been distributed to
which processes. Of course, a process cannot divulge the
contents of the rumor that have been distributed; however,
it can safely indicate a unique identifier that was appended
by the source, when the rumor was split. In this way, the
source can ensure that, for at least one partition, both rumor
fragments were successfully delivered. (Note that it would
not be sufficient for recipients to send an acknowledgment,

as the source does not know which processes have remained
alive throughout the interval.) We now outline the Proxy
service and the GroupDistribution service.

3) Proxy Service: The goal of the proxy service is to
deliver rumor fragments safely across group boundaries.
Essentially, the proxy service for partition ` at process pi
repeatedly samples processes from the other group (i.e., the
group that pi does not belong to), requesting that these pro-
cesses act as proxy for pi in distributing its rumor fragments.
The potential proxies then participate in GroupGossip[`],
attempting to distribute the rumor fragments, as requested.
If they succeed, they send an acknowledgment to pi. Other-
wise, process pi needs to try again.

The challenge, here, is that the adversary may (adaptively)
crash processes as soon as they receive proxy requests. (In
fact, for some partitions, the adversary may crash all the
members of a given group.) Even worse, at any given time,
most of the members of a group may be failed, requiring
pi to send a very large number of queries to find a proxy.
To avoid this problem, the processes in the same group
collaborate on finding proxies. At the same time, pi does
not share any information on the fragments it is attempting
to distribute in the other group with processes in the same
group with which it is collaborating. The Proxy service for
partition ` proceeds as follows (detailed pseudocode is given
in Figure 3 in Appendix A):

Outline of Proxy[`] at pi:
• Time is divided into blocks of length dline/4.
• At the beginning of a block, collect all the fragments that

have been injected since the last block began, and set status
to active.

• Each block is divided into iterations of
√

dline + 2 rounds.
In each iteration, we maintain a set collaborators of the
active processes in the same group as pi. We also keep track
of failed-proxies , i.e., those that we have already learned
(in previous iterations) have failed in this block. For each
iteration, repeat:

– Round 1: send every rumor fragment associated with
the other group to n1+48/

√
dline logn/|collaborators|

processes chosen uniformly at random from the other
group, excluding processes in failed-proxies . (Notice
that as long as the set collaborators is a good estimate
of the set of collaborators, this ensures a good bound
on the message complexity of this step.) Every process
that receives a request to be a proxy for the other group
caches the received rumor fragments.

– Rounds 2, . . . ,
√

dline + 1: initiate a GroupGossip[`]
in which processes in the same group as pi share the
set of failed-proxies , as well as establish the set of
collaborators , i.e., members of the group that are still
active. Processes also share all the rumor fragments
received from the other group. (The deadline for rumors
in GroupGossip[`] here is

√
dline .)

– Round
√
dline+ 2: Any process that was asked to be a

proxy for the other group sends an acknowledgment that
proxying was successful. Any process that sent a request,
and does not receive an acknowledgment, adds the non-
acknowledging processes to the set of failed-proxies .

4) GroupDistribution Service: The goal of the
GroupDistribution[`] service is to distribute rumor
fragments to their final destination. To this point, for a
partition `, the rumor fragment ρ0,` has been distributed
to processes in P0,`, and the rumor fragment ρ1,` has
been distributed to processes in P1,`. Now, group P0,`

collaborates to send the fragment ρ0,` to ρ0,`.D, while P1,`

does the same for fragment ρ1,`. Of course there may be
many different fragments active in each group, each with a
different destination set.

The basic operation of the GroupDistibution is similar
to that of the Proxy Service. Each process chooses a
set of recipients at random, and sends each of them a
message carefully composed to only include appropriate
rumor fragments. The processes then gossip within their
group (via GroupGossip[`]), sharing information on which
processes have already been notified, and which remain to be
notified. At the same time, processes calculate the number of
processes active in a group, which allows them to determine
the appropriate number of messages to send. Below we give
an outline of the GroupDistribution service for partition `
(detailed pseudocode is given in Figure 4 in Appendix A.)

B. Algorithm Analysis

We begin the analysis of algorithm CONGOS by stating
its correctness (i.e., confidentiality is not violated and all
admissible rumors are delivered on time). Due to space
limitation, its formal proof is deferred to Appendix B.

Theorem 2 (Correctness): Algorithm CONGOS correctly
solves the Confidential Continuous Gossip problem under
adversary CRRI .

In the next few lemmas, we state important properties
needed for analyzing the message complexity of the algo-
rithm. Full or omitted proofs can be found in Appendix B.

Lemma 3: Given rumor ρ, injected at time t: if there are
at least 2 processes that remain alive throughout the interval
[t, t + ρ.d], then for some partition `, there is at least one
process in P0,` and one process in P1,` that remain alive
throughout the interval [t, t+ ρ.d].

Proof: Let pi and pj be the two processes hypothesized
to remain alive throughout the specified interval. Since
identifiers are unique, let ` be some bit where the identifier
of pi and pj differ. The claim follows for partition `.

Lemma 4: In each block, the Proxy[`] service and the
GroupDistribution[`] service execute at least

√
dline/8 it-

erations, if dline > 4.

Proof: Each block is of length dline/4, and each
interval is of length at most

√
dline + 2 ≤ 2

√
dline .

Lemma 5: In each round, the Proxy[`] service
and the GroupDistribution[`] service send at most
O(n1+48/

√
dline log n) messages.

Outline of GroupDistribution[`] at pi:
• Time is divided into blocks of length dline/4.
• At the beginning of the second round of a block, collect all

the fragments that have been injected since the first round
of the block, and set status to active. (The first round of the
block is spent waiting for rumor fragments from the previous
block.)

• Each block is divided into iterations of
√

dline+2 rounds. In
each iteration, we maintain a set collaborators of the active
processes in the same group as pi. We also keep track of
a set hitSet of processes that have been sent a message in
this block. Each process in this set was sent all the rumor
fragments for this block. For each iteration, repeat:

– Round 1: wait for rumor fragments to be injected.
– Round 2: send every “appropriate” rumor fragment

to n1+48/
√

dline logn/|collaborators| processes chosen
uniformly at random from the other group, excluding
processes in hitSet . By appropriate we mean that if
pj is a process chosen randomly by pi, then pi sends
to pj only the rumor fragments in which pj is in the
destination set. (Recall that each partial rumor con-
tains the target destination set as part of the metadata.)
Every process that receives rumor fragments can now
reconstruct the rumor and return it to its user (via the
ConfidentialGossip service).

– Rounds 3, . . . ,
√

dline + 2 rounds: initiate an instance
of GroupGossip[`] (with deadline

√
dline) in which

processes in the same group as pi share their hitSets,
as well as count how many members of the group are
still active.

• In the last round of the block, initiate an instance of AllGossip
(with deadline dline/4 − 1). Each process pi gossips the
information in its hitSet , but without including the rumor
fragments themselves. That is, if the hitSet of process pi

indicates that some rumor fragment ρ0,` was sent to some
process pj , and if ρ0,` has identifier r, then pi gossips
that the fragment 0 for partition ` of the rumor associated
with identifier r was sent to pj . This provides sufficient
information for the source to determine whether the rumor
was delivered, without revealing the contents of the rumor.
(See the description of the ConfidentialGossip service, above,
for how this information is used.)

Proof: (sketch) In Proxy[`] and GroupDistribution[`],
each process sends n1+48/

√
dline logn

|collaborators| messages in, respec-
tively, the first and second round of an iteration. The bound
on collaborators implies the desired result. In Proxy[`],
each process that received a proxy request sends a response
at the end of an iteration. Each response is the result of
an earlier request in the first round of the iteration, and
we have already bounded the message complexity of the
first round of an iteration, leading here too to a bound of
O(n1+48/

√
dline log n).

The challenge of showing the next lemma lies on the
fact that the adversary is adaptive. If the adversary were
oblivious, then we could simply analyze the random choices
as independent. But because the adversary is adaptive and
can schedule according to the random choices, there is subtle
correlation among the random choices, and hence we have

to show that the requisite properties hold despite all possible
adversarial choices.

Lemma 6: Given rumor ρ, injected at time t at process pi:
if at least one process in P0,` and one process in P1,` remain
alive throughout the interval [t, t+ ρ.d], then every process
in P0,` that remains alive throughout the interval [t, t+ ρ.d]
receives ρ0,`, and every process in P1,` that remains alive
throughout the interval [t, t+ ρ.d] receives ρ1,` by time t+
2dline/4− (t mod dline), with high probability.

Proof: (sketch) Fix ` to be the partition identified in
Lemma 3. Assume w.l.o.g. that pi ∈ P0,`. (The alternate
case is symmetric.) Since pi injects rumor fragment ρ0,`

into the GroupGossip[`] service with deadline
√

dline , it
is guaranteed to reach every process in P0,` that remains
alive throughout the interval. It remains to show that each
process in P0,` succeeds in finding a proxy in P1,`, while
executing Proxy[`] during the first complete block after
rumor ρ is injected beginning at time t + dline/4 − (t
mod dline). Let Z = n48/

√
dline . The crucial argument is

that in every pair of iterations, one of the three following
events occurs: (i) At least a (1− 1/Z) fraction of processes
in P0,` that were alive at the beginning of the first iteration
fail by the end of the second iteration; (ii) At least a
(1−1/Z) fraction of processes in P1,` that were alive at the
beginning of the first iteration fail by the end of the second
iteration; (iii) In the second iteration, at least a (1 − 1/Z)
fraction of processes in P0,` succeed in finding a proxy.
From this claim and by the lemma assumptions, we can
conclude that by the end of 3 logZ(n) pairs of iterations,
every process in P0,` has succeeded in finding a proxy.
Note that since logZ(n) =

√
dline/48, this process finishes

within 6 logZ(n) ≤
√

dline/8 iterations, as required. Once
a process has succeeded in finding a proxy, it follows from
the guarantees of GroupGossip that its rumor fragment is
distributed to every non-failed process in the other group.

Lemma 7: Given rumor ρ, injected at time t at process pi:
if at least one process in P0,` and one process in P1,` remain
alive throughout the interval [t, t+ ρ.d], then every process
pj ∈ ρ.D receives fragment ρ0,` and fragment ρ1,` by time
t+ 3dline/4− (t mod dline), with high probability.

Proof: (sketch) Due to Lemma 6, it remains to show
that during the following block of rounds, for every process
pj ∈ ρ.D, at least one process from each group sends its
rumor fragment to pj . W.l.o.g. we focus on group P0,`. Let
Z = n48/

√
dline . The crucial observation is that in each pair

of iterations of the GroupDistribution[`] service, one of the
following two events occurs: (i) At least a (1−1/Z) fraction
of processes in P0,` that were alive at the beginning of the
first iteration fail by the end of the second iteration; (ii)
For every process pk active throughout both iterations, the
set of processes [n] \ hitProcsk decreases by a factor of Z
by the end of the second iteration.(hitProcsk = {pq ∈ [n] :

〈pq, ·〉 ∈ hitSetk}.) From this claim, we conclude that within
2 logZ n pairs of iterations, either every process in P0,` fails,
or every process has been added to hitProcs . Hence we
conclude that by the end of 4 logZ n ≤

√
dline/8 iterations,

every process has been sent all of its rumor fragments.

Lemma 8: Given rumor ρ, injected at time t at process pi:
if pi does not fail by time t+ρ.d, then by round t+ρ.d−1,
process pi receives confirmation that rumor ρ was delivered,
with high probability.

Proof: By Lemma 3, we know that if rumor ρ has even
one admissible destination 6= pi, then there is some partition
` where there is at least one process in P0,` and one process
in P1,` that does not fail in [t, t + ρ.d]. By Lemma 7, we
know that by time t+3dline/4−(t mod dline), with high
probability, rumor ρ has been delivered to every destination
in ρ.D by the GroupDistribution[`] service. Moreover, since
at least one process p0 in P0,` and one process p1 in P1,`

does not fail during [t, t+ ρ.d], we conclude that p0 and p1

complete the block in which the rumor fragments for ρ are
delivered to their destinations. At the end of the last round
of the block, processes p0 and p1 inject sanitized versions
of the hitSets as rumors into the AllGossip service with
deadline dline/4− 1, thus ensuring that process pi receives
this information no later than round t+ ρ.d− 1. Process pi
then marks rumor ρ confirmed.

Theorem 9 (per-round message complexity): The per-
round message complexity of CONGOS is:

O
(

(n1+48/
√

dline + n1+6/
6√
dline) polylog n

)
.

Proof: From Lemma 8 we have that for a given
rumor ρ injected at process pi, with high probability
the rumor is confirmed prior to the deadline expiring.
Since each process is injected at most one rumor per
round (hence there can be O(n polylog n) active rumors
in the system at any given time), with high probability, no
source process sends any messages directly to the desti-
nations. From Lemma 5, the per-round message complex-
ity for each instance of Proxy[`] and GroupDistribution[`]
is O(n1+48/

√
dline log n), leading to a per-round message

complexity of O(n1+48/
√

dline log2 n). Each instance of
continuous gossip, invoked with rumors at least

√
dline ,

has message complexity O(n1+6/
6√
dline polylog n). There

are log n+ 1 such instances of continuous gossip.

V. GOSSIPING IN THE PRESENCE OF COLLUSION

In this section we extend our investigation of the confiden-
tial gossip problem by additionally assuming that processes
outside of a rumor’s destination set may collude in an
attempt to learn the rumor.

More formally, given a rumor ρ injected in the system
at a process pi, we denote by Cρ the collusion set of ρ. In
particular, Cρ may contain any process q 6∈ ρ.D ∪ {pi}.

We assign adversary CRRI with the additional task of
“selecting” the colluding processes in an adaptive way
during the execution. We will be referring as CRRI(τ)
the subset of the adversarial patterns of CRRI for which
|Cρ| ≤ τ for any rumor ρ injected in the system. Finally,
we will be calling τ -collusion-tolerant an algorithm that
it is designed to solve confidential gossip under adversary
CRRI(τ).

A. Lower Bound

We prove that a class of algorithms generalizing our
algorithm CONGOS suffers from collusion, in terms of
message complexity. We say that a gossip algorithm is
partition-based if it allows only two operations tampering
with the content of the rumors: splitting, which allows to
split a given initial rumor into disjoint smaller fragments,
and merging, which allows to merge given fragments of the
same rumor into a larger fragment of this rumor1. Otherwise,
the protocol must treat the rumor (and its fragments) as
nonmalleable tokens.

The effect of collusion, as demonstrated by the following
theorem, might be significant (especially for large number
of colluders), even against an oblivious adversary that can
only arrange the rumors destination sets and identify the
colluding processes prior to the start of the computation.

Theorem 10: For any constant ε > 0, every random-
ized, τ -collusion-tolerant, partition-based algorithm solving
confidential gossip has a maximum per-round message-
complexity of at least Ω(min{nτ, n(3/2)−ε}/dmax), with
probability 1, against an oblivious adversary, where dmax
is the longest deadline of the injected rumors.

Proof: We assume the same initial setting of parameters
and rumors, including their destination sets and deadlines, as
considered in the proof of Theorem 1, which are as follows.
We may assume that n is sufficiently large (in fact, n ≥ 8 is
sufficient). Let c be a constant and x be a parameter, to be
specified in the same way as in the proof of Theorem 1,
depending on ε. Suppose that only rumors with uniform
deadlines dmax are injected, all at the same time. Moreover,
assume that each process is injected one rumor with the same
destination set as in the proof of Theorem 1.

Now consider a single execution of a given algorithm in
this setting. Let a rumor interval be a set of rumor fragments
such that any set of fragments sufficient to reconstruct
the rumor includes one fragment from the rumor interval.
(Informally a rumor interval corresponds to a sub-sequence
of rumor bit-string representation and to all rumor fragments
that contain this sub-sequence.) Two cases are possible:
Case 1: More than half of the rumors satisfy the following
property each: there is a rumor interval such that none of its

1Notice that this does not allow other algebraic manipulation of the
rumor, as in “network coding” techniques.

contained fragments is ever transmitted to a process outside
the destination set.

It follows that such a rumor interval, each destination
process receives some rumor fragment in this rumor interval
directly from the rumor’s source (the process that the rumor
was injected at) or relayed entirely through the processes in
the destination set. Therefore, the messages carrying rumor
fragments in this rumor interval altogether suffer from the
same constraints as it would an original rumor propagated
within its destination sets only. By Theorem 1, the number of
such messages is proportional to the size of the destination
set, for the considered setting of destination sets, and since
there are more than n/2 such rumors, we get the lower
bound Ω(n(3/2)−ε) on the total number of such messages in
the considered period of length dmax . Hence, the per round
message complexity in this case is Ω(n(3/2)−ε/dmax).
Case 2: At least half of the rumors satisfy the following
property each: fragments of the rumor transmitted outside
the destination set cover the whole original rumor.

In this case for each such rumor there are at least τ + 1
processes outside its destination set that receive a fragment
of the rumor directly from some processes in the destination
set or the rumor’s source (the process that the rumor was
injected at); otherwise at most τ such outside processes
could collude and get fragments covering the whole rumor,
thus violating the definition of confidentiality (which must
hold for every execution). We call such at least τ + 1
fragments border fragments. Therefore there are at least τ+1
point-to-point messages sent from some processes in the
destination set or the rumor’s source to the considered at
least τ + 1 outside processes. Call these messages border
messages. It follows that there are at least (τ + 1)n/2
copies of border fragments sent via border messages. Recall
the property of the considered configuration of destination
sets as proved in Theorem 1: each process is in at most
c destination sets, where c is a constant. It follows that
a process sends at most c border fragments per border
message, which gives at least (τ+1)n/2

c = Ω(nτ) border
messages. Hence the per-round message complexity in this
case is Ω(nτ/dmax).

In each case, the message complexity is
Ω(min{nτ, n(3/2)−ε}/dmax). This bound holds for
any execution of the algorithm. The adversary is oblivious,
as it uses the same setting as in the proof of Theorem 1 and
does not need to specify colluding processes. To justify the
latter, observe that both cases hold regardless of the choice
of colluding processes, and the only place the adversary
threads the algorithm by possibility of collusion is in Case 2
when it enforces at least τ + 1 border messages; but for
this it does not need to specify online the set of colluding
processes, and the argument says only that if the algorithm
broke it, the adversary could choose a set of colluders
violating confidentiality.

B. Algorithm

We modify algorithm CONGOS in the following way.
Instead of log n partitions used in algorithm CONGOS, we
use cτ log n partitions given as a part of the input of the
algorithm, for an appropriate choice of constant c. Each
partition contains τ+1 groups, instead of the originally used
2 groups. For this purpose, rumors are now divided into τ+1
fragments. If we view τ = 1 as a collusion of a process with
itself, then the original algorithm CONGOS can be viewed
as 1-collusion-tolerant confidential gossip algorithm.

The set of cτ log n partitions needs to satisfy the following
properties, for appropriate choice of constants c and c′:
• In each partition, each group contains at least one

process.
• For every set S of at least 2c′τ log n processes, there

exists a partition such that every group in the partition
contains at least one process in S.

The first property ensures well-formedness, i.e., that the
partition is a proper division of the processes into non-empty
groups. The second property ensures good performance:
as long as there are Ω(τ log n) processes alive, then one
partition has live processes in every group and hence can
be used to distribute the rumor fragments. We now argue
that there exists a good set of partitions that meets these
requirements:

Lemma 11: If τ < n/ log2 n, then there is a set of
cτ log n partitions satisfying the above conditions, for some
constants c, c′ > 0.

Proof: We proceed via the probabilistic method: first,
we randomly select the groups for each partition, and
then we show that with some positive probability, the two
properties are satisfied. We begin by assuming that for each
partition, each process is independently assigned, uniformly
at random, to one of the τ + 1 groups in that partition.

We begin by examining the first required property. For
each group g, the probability that a process chooses group
g is 1/(τ+1). Thus the probability that a given group is not
chosen by any process is at most (1−1/(τ+1))n ≤ 2− log2 n.
In total, there are (τ + 1) · (cτ log n) ≤ 2cn2 groups, and
thus by a union bound, the probability that any group is not
chosen by some process is at most 2−(log2 n−log (2cn2)) <
1/2, for sufficiently large n.

We now examine the second required property. We fix
some set S of size 2c′τ log n. For a given partition, for
a given group in that partition, the probability that no
process in set S is assigned to that partition is at most
(1−1/(τ+1))2c

′τ logn ≤ 1/nc
′
. Thus, by a union bound, the

probability that any group in the partition does not contain
a process in S is at most (τ + 1)/nc

′ ≤ 1/nc
′−1.

Since each partition is selected independently, the proba-
bility that for every one of the cτ log n partitions, at least one
group is empty is at most (1/nc

′−1)cτ logn ≤ n−c·c′τ logn/2.

Now, consider all
(

n
2c′τ logn

)
choices of the set S. There

are at most n2c′τ logn such sets S. Taking a union bound
over all the sets S, the probability that there exists a set S
for which every partition has at least one empty group is
at most n−(c·c′τ logn/2−2c′τ logn) < 1/2, for appropriately
large n and choice of c and c′.

Thus, the probability that the selected partition does not
satisfy the two requisite properties is smaller than 1, and
hence, by the probabilistic method, a partition satisfying the
two desired properties exists.

We leave the polynomial time construction of partitions
satisfying the required conditions as future work.

Overview of collusion-tolerant CONGOS: In a nutshell, the
modified version of algorithm CONGOS operates as follows
for a newly injected rumor ρ at a process pi. Procedure
ConfidentialGossip is called in which the rumor, for each dif-
ferent partition `, is divided into the fragments ρ0,`, . . . , ρτ,`
such that all fragments (from the same partition) are needed
in order for ρ to be re-assembled. (A way to do this is
as follows: Let ρ0,`, . . . , ρτ−1,` be different random binary
strings and set ρτ,` = (ρ xor ρ0,` xor . . . xor ρτ−1,`). Then
ρ can be computed when all τ + 1 fragments are received.
Note that this scheme makes the algorithm partioned-based.)

Say that in partition `, process pi belongs in group x.
Then it injects fragment ρx,` in GroupGossip[`] and all other
fragments into Proxy[`]. Via procedure GroupGossip[`], the
fragment ρx,` is gossiped in the members of group x and
via Proxy[`] each other fragment is gossiped into every
other corresponding group (such that every other group
learns a different fragment of the rumor). Then procedure
GroupDistribution[`] is called so that the processes in each
group collaborate in sending their corresponding fragment of
the rumor only to the processes of the rumor’s destination
set. These processes receive all fragments and hence can
reassemble the rumor. Lemma 11 assures the existence of
at least one partition ` in which all admissible rumors are
received by the live processes of the rumor’s destination set.
Detailed outlines of the procedures are given in Appendix C.

We now give the main result of this section.

Theorem 12: The modified version of algorithm CON-
GOS solves the confidential gossip problem under adversary
CRRI(τ) with per-round message complexity of

O
(

(n1+48/
√

dline + n1+6/
6√
dline)τ2 polylog n

)
.

Proof: (sketch) The correctness follows by similar
arguments as for algorithm CONGOS, since the partitions
used for the modified algorithm (with the properties proved
in Lemma 11) satisfy the same conditions explored in the
analysis as the partitions used in the original algorithm
CONGOS.

The message complexity increases by a factor τ2, com-
pared to the complexity of the original algorithm CONGOS,

because of the following two observations.
First, for all rounds but the last one of the considered

deadline period the amount of inter-group communication
(that is, the last round in procedure GroupDistribution)
increases by a factor of at most τ + 1, as the number
of groups is now τ + 1 instead of 2. The communication
is increased by another factor Θ(τ) due to the fact that
now there are Θ(τ log n) partitions instead of log n. Thus
each message sent in the original algorithm CONGOS is
multiplied by at most Θ(τ2) different copies.

Second, in the last round of ConfidentialGossip (shooting
directly to processes in the destination set) there is no
communication if the number of processes alive in the
whole period is at least 2c′τ log n (that is, all rumors have
been confirmed to be delivered); this follows by the second
property of the set of partitions and by the same argument
as in the analysis of the original algorithm CONGOS. In
the case where the number of alive processes is smaller
than 2c′τ log n, the number of point-to-point messages sent
is bounded by 2c′τn log n due to the fact that only these
processes that remain alive throughout may send messages
in the last round (each sending at most n messages). This
completes the proof.

Observe from Theorem 12 that when dline = Θ(log6 n)
the per-round message complexity is O(nτ2 polylog n).
When contrasted with Theorem 10 it follows that for τ <
n1/4, the per-round message complexity is within a factor
of τ polylog n of the lower bound. (For τ = O(polylog n)
the algorithm is optimal within log factors.)

VI. DISCUSSION

In this paper we have considered the problem of confiden-
tial gossip, where each rumor is learned only by processes in
the rumor’s specified destination set. Assuming an adaptive
and omniscient adversary that dynamically and continuously
injects rumors into the system and causes process crashes
and restarts, we have designed an efficient (w.r.t. per-
round message complexity) algorithm which we call algo-
rithm CONGOS. As an alternative to cryptographic schemes,
which can be expensive in such a dynamic environment,
the algorithm deploys a simple rumor splitting technique
that enables an efficient “all-process” collaboration while
guaranteeing confidentiality. For this purpose, the algorithm
combines, in a non-trivial way, a black-box efficient non-
confidential continuous gossip service with other auxiliary
services (namely, Filter, Proxy, GroupDistribution). While
we have focused on continuous gossip, we believe that the
same techniques apply to other gossip variants (e.g., single-
instance gossip, etc.).

We have also discussed the problem of collusion, and
shown how to tolerate a moderate amount of collusion at
a limited cost. An interesting open question is whether we
can tolerate higher levels of collusion if the adversary is

oblivious, or if we allow some small probabilistic violation
of confidentiality.

In addition, as currently presented, the algorithm guaran-
tees the confidentiality of rumors, but various other metadata
is released. For example, processes learn of the existence of
rumors, roughly how many rumors are active, the source of
each rumor, a sequence number of each rumor, and the set
of destinations for each rumor. Some of this information can
be readily hidden. For example, the sequence number can be
replaced with a pseudorandom identifier. Other information
appears more difficult to hide, for example, the proxies learn
precisely who is requesting that they act as a proxy, and this
seems, to some extent, unavoidable.

The destination set associated with each rumor can be
hidden, without increasing the overall message complexity,
but at the cost of increasing the message size (significantly).
When a rumor ρ is injected at process pi, the source creates
n new rumors, each with a single process in its destination
set. For every process in ρ.D, the new rumor contains a
copy of the injected rumor’s content. For the remaining new
rumors, the contents of the new rumor are chosen at random.
The source then proceeds to distribute this entire collection
of rumors. Only the processes in the destination set can
determine whether a rumor contains real content or simply
a random string, and hence processes cannot determine the
real destination set.

Similarly, the very existence of rumors can be hidden
by the continual injection of fake content-free rumors, at
the cost of wasted messages. In this way, a process cannot
determine how many real rumors are currently active.

Finally, an interesting open question is whether we can
tolerate truly malicious processes, i.e., those that do not
follow the protocol. In fact, we believe that the approach for
tolerating collusion may be extended to deal with malicious
processes, if the adversary is oblivious. In that case, we can
tolerate some groups misbehaving and failing to deliver their
message fragments.

REFERENCES

[1] S. Baehni, P.T. Eugster, and R. Guerraoui. Data-Aware Mul-
ticast. In DSN 2004, pages 233–242.

[2] A.J. Ballardie. A New Approach to Multicast Communication
in a Datagram Network, Ph.D. Thesis, University College
London, 1995.

[3] A. Beimel, K. Nissim, and E. Omri. Distributed Private Data
Analysis. In CRYPTO 2008, pages 451–468.

[4] J. Brickell and V. Shmatikov. Privacy-preserving Graph Algo-
rithms in the Semi-honest Model. In ASIACRYPT 2005, pages
236–252.

[5] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B.
Pinkas. Multicast Security: A Taxonomy and Some Efficient
Constructions. In INFOCOM 1999, pages 708–716.

[6] B.S. Chlebus and D.R. Kowalski. Time and Communication
Efficient Consensus for Crash Failures. In DISC 2006, pages
314–328.

[7] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg. Spi-
derCast: A Scalable Interest-Aware Overlay for Topic-Based
Pub/Sub Communication. In DEBS 2007, pages 14–25.

[8] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg. Con-
structing Scalable Overlays for Pub/Sub with Many Topics.
In PODC 2007, pages 109–118.

[9] G. Delposte-Gallet, H. Fauconnier, R. Guerraoui, and E.
Ruppert. Secretive Birds: Privacy in Population Protocols. In
OPODIS 2007, pages 329–342.

[10] B. Doerr, T. Friedrich, and T. Sauerwald. Quasirandom Rumor
Spreading: Expanders, Push vs Pull, and Robustness. In
ICALP 2009, pages 366–377.

[11] A. Fiat and M. Naor. Broadcast Encryption. In CRYPTO 1993,
pages 480–491.

[12] Ch. Georgiou, S. Gilbert, and D.R. Kowalski. Meeting the
Deadline: On the Complexity of Fault-Tolerant Continuous
Gossip. In PODC 2010, pages 247–256.

[13] O. Goldreich. Foundations of Cryptography: Volume II (Basic
Applications). Cambridge University Press, 2004.

[14] I. Gupta, A.M. Kermarrec, and A.J. Ganesh. Efficient
Epidemic-style Protocols for Reliable and Scalable Multicast.
In SRDS 2002, pages 180–189.

[15] Havard D. Johansen, Andre Allavena, and Robbert van Re-
nesse. Fireflies: Scalable Support for Intrusion-tolerant Net-
work Overlays. In EuroSys 2006, pages 3–13.

[16] J. Hromkovic, R. Klasing, A. Pelc, P. Ruzika, and W.
Unger. Dissemination of Information in Communication Net-
works: Broadcasting, Gossiping, Leader Election, and Fault-
Tolerance, Springer-Verlag, 2005.

[17] R. Karp, C. Schindelhauer, S. Shenker, B. Vocking. Random-
ized Rumor Spreading. In FOCS 2000, pages 565–574.

[18] D. Kempe, J. Kleinberg, and A. Demers. Spatial Gossip and
Resource Location Protocols. Journal of the ACM, 51:943–
967, 2004.

[19] A. Kermarrec, L. Massoulie, A. Ganesh. Probabilistic Reli-
able Dissemination in Large-scale Systems. IEEE Transac-
tions on Parallel and Distributed Systems, 14(3):248–258,
2003.

[20] L. Kissner and D. Song. Privacy-preserving Set Operations.
In CRYPTO 2005, pages 241–257.

[21] D. R. Kowalski and M. Strojnowski. On the Communication
Surplus Incurred by Faulty Processors. In DISC 2007, pages
328–342.

[22] Y. Lindell and B. Pinkas. Privacy Preserving Data Mining. J.
Cryptology, 15(3):177–206, 2002.

[23] D. Malkhi, Y. Mansour, and M.K. Reiter. Diffusion Without
False Rumors: On Propagating Updates in a Byzantine Envi-
ronment. Theoretical Computer Science, 299:289–306, 2003.

[24] D. Micciancio and S. Panjwani. Corrupting One Vs. Corrupt-
ing Many: The Case of Broadcast and Multicast Encryption.
In ICALP 2006, pages 70–82.

[25] Y.M. Minsky and F.B. Schneider. Tolerating Malicious Gos-
sip. Distributed Computing, 16:49–68, 2003.

[26] S. Mittra. Iolus: A Framework for Scalable Secure Multi-
casting. SIGCOMM Comput. Commun. Rev., 27(4):277–288,
1997.

[27] Multicast Security. http://datatracker.ietf.org/wg/msec/

[28] M. Onus and A.W. Richa. Minimum Maximum Degree
Pub/Sub Overlay Network Design. In INFOCOM 2009, pages
882–890.

[29] J. Pang and C. Zhang. How to Work with Honest but Curious
Judges? In Proc. 7th International Workshop on Security
Issues in Concurrency, pages 31–45, 2009.

[30] S. Panjwani. Tackling Adaptive Corruptions in Multicast
Encryption Protocols. In TCC 2007, pages 21–40.

[31] A. Pelc. Fault-tolerant Broadcasting and Gossiping in Com-
munication Networks. Networks, 28: 143–156, 1996.

[32] A. Shamir. How to Share a Secret. Communications of the
ACM, 22(11):612–613, 1979.

[33] A.T. Sherman and D.A. McGrew. Key Establishment in Large
Dynamic Groups Using One-Way Function Trees. IEEE
Transactions on Software Engineering, 29(5):444–458, 2003.

[34] D.R. Stinson. Cryptography: Theory and Practice, CRC
Press, 3rd edition, 2005.

[35] C.K.Wong, M. Gouda, and S. Lam. Secure Group Com-
munications Using Key Graphs. IEEE/ACM Transactions on
Networking, 8(1):16–30, 2000.

[36] A.C. Yao. Protocols for Secure Computations. In FOCS 1982,
pages 160–164.

APPENDIX A.
DETAILED PSEUDOCODE OF ALGORITHM CONGOS

Figure 1 depicts the interaction of the various services at a process i for a partition `. Figures 2–5, present the detailed
pseudocode of these services.

APPENDIX B.
FULL PROOFS

Proof of Theorem 1.: We may assume that n is sufficiently large (in fact, n ≥ 8 is sufficient). Let c be a constant
and x be a parameter, to be specified later. Suppose that only rumors with uniform deadlines dmax are injected. Suppose
that each process receives one rumor with a random set of destinations in the beginning of the computation, defined
independently over processes and in such a way that for each process it is decided independently with probability x/n
whether it belongs to this destination set (or not, otherwise). We argue that under this scenario (of the adversary), with
probability at least 1−x2c+2/nc−1, no message can carry more than c rumors. Having this, observe that the number of pairs
(source process, destination process) is at least nx/2, with probability at least 1− e−nx/8 ≥ 1− 1/e, by the Chernoff
bound. It follows that the total number of rumor copies carried out by messages is at least nx/2. Therefore, the total number
of messages needed to deliver all these rumors is at least nx

2c = Ω(nx), with probability at least 1− 1/e− x2c+2/nc−1.
Setting x to n1/2−2/c, the above probability is at least 1 − 1/e − n−2 ≥ 1 − 2/e > 0. For any given ε, we can set

c = d2/εe, which implies that the total number of messages needed to deliver the rumors is Ω(nx) ⊇ Ω(n(3/2)−ε), with
a positive probability. It follows, by applying the probabilistic argument, that there is a configuration of destination sets of
size x such that Ω(n(3/2)−ε) messages is necessary, and this holds in any determined execution of any algorithm under such
scenario. Hence, even randomized algorithms require total message complexity of Ω(n(3/2)−ε) with probability 1, which
in view of the deadline dmax gives Ω(n(3/2)−ε/dmax) per-round message complexity with probability 1. Note that the
suitable destination sets can be computed by the adversary up-front of the computation, the injection round is the same for
all the rumors, and no crashes/restarts are needed to enforce this lower bound — hence the adversary is oblivious.

It remains to prove that with a positive probability, no message can carry more than c rumors, for some constant c, in the
scenario of random destination sets, and to define parameters x and c. Consider any c + 1 processes. The probability that
there are at least two processes in the intersection of destination sets of their rumors is at most

n2 · (x/n)c+1 · (x/n)c+1 = x2c+2/n2c .

Here we used the union bound, where n2 is the upper bound on the number of pairs in the destination set for the given set
of c+ 1 rumors and (x/n)c+1 · (x/n)c+1 is the probability that for a given such pair of different processes they are both in
all destination sets. Therefore, with this probability, the rumors of these processes cannot be sent together in one message
(as there is no other process in the common destination for these rumors). The number of such (c+ 1)-tuples of processes
is at most nc+1. Consequently, by the union bound, we get that with probability of at most

x2c+2/n2c · nc+1 = x2c+2/nc−1

there are c + 1 processes with at least two processes in the intersection of the destination sets of their rumors. Recall that
this event is a superset of the event that more than c+ 1 rumors can be carried out by some message in the execution. �

Proof of Theorem 2.: The proof of the theorem follows directly from the following two lemmas.

The first lemma states that confidentiality is not violated.

Lemma B1 (Confidentiality) In any execution of algorithm CONGOS, and for any rumor ρ, if q 6∈ ρ.D, then at no point
during the execution q learns ρ.z.

Proof: Consider a rumor ρ injected at a processes p at round t of an execution of algorithm CONGOS. Also consider a
process q 6∈ ρ.D. Assume that both p and q are continuously alive for the lifetime of rumor ρ (other cases, for example q
not being continuously alive, are dealt in a similar fashion). We will show by investigating the flow of the algorithm that at
no point will process q learn ρ.z, or be able to re-construct it.

Once ρ is injected in process p, based on the description of ConfidentialGossip at process p, and focusing on a partition
`, the rumor is split into ρ0,` and ρ1,`. We consider the case where both processes are in the same group in partition `. The
other case is symmetric.

Without loss of generality, say that they belong in group P0,`. Per the description of ConfidentialGossip, ρ0,` is
disseminated, using GroupGossip[`], only to processes in group P0,` (this is guaranteed by Filter[`]). Furthermore, since

Figure 1. The interaction between the services at process i, for a partition `.

service ConfidentialGossip(dline)i

1 state
2 delivered-rumors, rumors-parts ⊆ R //R denotes the set rumors
3 r , r0 , r1 ∈ R

4 rumor-cache ⊂ R× Z× Z
5 hitSetM [1 . . . log n][0 . . . 1] is a two dimensional matrix where each element is a tuple in [n]× Z.
6 counter ∈ Z

7 //Time is divided into blocks of dline/4 rounds.
8 //When a rumor is injected, in the first block it is split, in the second block the fragments are distributed via GroupGossip and the Proxy,
9 //in the third block the fragments are reassembled via GroupDistribution, and in the fourth block the sender receives confirmation.

10 //Upon a recovery from failure, the process retrieves the round number from the global clock and proceeds analogously.

11 input rumor-inject(r) //This marks the beginning of round 1 of a new block
12 counter ← counter + 1
13 for every ` ∈ {1, . . . , log n} do in parallel
14 〈r0 , r1 〉 ← random-split(r, counter ,

√
dline, [n])

15 rumor-cache ← rumor-cache ∪ 〈r, counter , round〉
16 if i[`] = 0 then // i[`] represents the `-th bit of the binary representation of i.
17 GroupGossip[`].gossip(r0) //Gossip the rumor fragment in group
18 Proxy.distribute[`](r1) //Find a proxy to distribute the other rumor fragment in the other group
19 else
20 GroupGossip[`].gossip(r1)

21 Proxy[`].distribute(r0)

22

23 input Proxy[`].return(R)
24 GroupDistribution[`].distribute(R)

25

26 input GroupGossip[`].deliver(R)
27 GroupDistribution[`].distribute(R)

28

29 input GroupDistribution[`].return(R)
30 rumor-parts ← rumor-parts ∪R

31 for every r1, r2 ∈ rumor-parts do
32 if merge(r1, r2) = 〈success, r〉 then
33 if r /∈ delivered-rumors then
34 delivered-rumors ← delivered-rumors ∪ r
35 return(r)

36 rumor-parts ← rumor-parts \ {r1, r2}
37

38 input AllGossip.deliver(R)
39 for every (〈distribution, j, partition, h〉, ∗, ∗) ∈ R do
40 hitSetM [partition, j[partition]]← hitSetM [partition, j[partition]] ∪ {h}
41 for every 〈r, c, t〉 ∈ rumor-cache do
42 if ∃` ∈ [1, . . . , log n] where:
43 {〈pk, c〉 : pk ∈ r.D} ⊆ hitSetM [`, 0]
44 and
45 {〈pk, c〉 : pk ∈ r.D} ⊆ hitSetM [`, 1]
46 then rumor-cache ← rumor-cache \ {〈r, c, t〉}

47 In every round:
48 if ∃〈r, c, t〉 ∈ rumor-cache where round = t + r.d then
49 for every j ∈ r.D do
50 Network.send(〈shoot, r〉, i, j)
51

52 input Network.receive(m, src, dest)

53 If m = 〈shoot, r〉 then return(r)

Figure 2. Main protocol at process i.

service Proxy(dline, `)i

1 state
2 failed-proxies, current-proxies, proxy-ack , collaborators ⊆ [n]

3 status ∈ {idle, active}
4 my-rumors, waiting-rumors, proxy-buffer ⊆ R

5 r ∈ R

6 wakeup ∈ Z

7 //Time is divided into blocks of dline/4 rounds.
8 //Each block is divided into iterations of

√
dline + 2 rounds.

9 //Each iteration consists of 1 sending round, 1 gossip instance of
√

dline rounds, and 1 acknowledging round.

10 On recovery from failure:
11 wake-up ← round // the value of round is retrieved from the global clock
12 status ← idle
13

14 At the beginning of round 1 of a new block:
15 if |round − wakeup| ≥ dline/4 then
16 my-rumors ← waiting-rumors

17 waiting-rumors ← ∅
18 if my-rumors 6= ∅ then
19 status ← active
20 failed-proxies, partial-rumors, proxy-buffer , proxy-ack ← ∅
21 collaborators ← {j ∈ [n] : j[`] = i[`]}
22

23 At the beginning of round 1 of an iteration:
24 if status = active then
25 current-proxies ← Θ(n1+48/

√
dline log n)/|collaborators| processes chosen uniformly at random

from {j ∈ [n] : j[`] 6= i[`]} \ failed-proxies

26 for every j ∈ current-proxies do Network.send(〈proxy, my-rumors〉, i, j)

27

28 At the beginning of round 2 of an iteration:
29 collaborators ← ∅
30 if status = active then GroupGossip[`].gossip(〈proxy-buffer , failed-proxies, i〉,

√
dline, [n])

31

32 At the beginning of the last round of an iteration:
33 if status = active then for every j ∈ proxy-ack do Network.send(proxy-ack, i, j)

34

35 At the end of the last round of a block:
36 ConfidentialGossip[`].return(partial-rumors)

37

38 input ConfidentialGossip[`].distribute(r)
39 waiting-rumors ← waiting-rumors ∪ {r}
40

41 input GroupGossip[`].deliver(R)
42 for every (〈m, F, j〉, ∗, ∗) ∈ R do
43 failed-proxies ← failed-proxies ∪ F
44 if status 6= idle then collaborators ← collaborators ∪ {j}
45 partial-rumors ← partial-rumors ∪m
46

47 input Network.receive(〈proxy, m〉, src, dest)
48 proxy-buffer ← proxy-buffer ∪ {m}
49 proxy-ack ← proxy-ack ∪ {src}
50

51 input Network.receive(proxy-ack, src, dest)
52 status ← idle

Figure 3. Proxy search at process i for partition `.

service GroupDistribution(dline, `)i

1 state
2 partials, waiting-partials ⊆ [n]×R
3 target-procs, collaborators, hitProcs ⊆ [n]

4 hitSet ⊆ [n]× Z
5 target-msg ⊆ R×R× · · ·R× [n]
6 wakeup ∈ Z
7 status ∈ {idle, active}

8 //Time is divided into blocks of dline/4 rounds.
9 //Each block is divided into iterations of

√
dline + 2 rounds.

10 //Each iteration consists of one initialization round, one distribution round and one gossip instance of
√

dline rounds.

11 On recovery from failure:
12 wakeup ← round

13 status ← idle
14

15 At the beginning of round 2 of a block:
16 if |round − wakeup| ≥ 2dline/3 then
17 status ← active
18 partials ← waiting-partials

19 hitSet , waiting-partials ← ∅
20 collaborators ← {j ∈ [n] : j[`] = i[`]}
21

22 At the beginning of round 2 of an iteration:
23 if status = active then
24 hitProcs = {p ∈ [n] : 〈p, ·〉 ∈ hitSet}
25 target-procs ← Θ(n1+48/

√
dline log n/|collaborators|) processes chosen uniformly at random

from {j ∈ [n] : j[`] 6= i[`]} \ hitProcs

26 for every j ∈ target-procs do
27 target-msg ← {rk ∈ partials : j ∈ rk.z.D}
28 hitSet ← hitSet ∪ {〈j, rk.z.cnt〉 : rk ∈ target-msg}
29 Network.send(〈partials, target-msg〉, i, j)
30

31 At the beginning of round 3 of an iteration:
32 collaborators ← ∅
33 if status = active then GroupGossip[`].gossip(〈share, hitSet , i〉,

√
dline, [n])

34

35 At the end of the last round of a block:
36 AllGossip.gossip(〈distribution, i, `, hitSet〉, dline/4− 1, [n])

37

38 input ConfidentialGossip[`].distribute(r)
39 waiting-partials ← waiting-partials ∪ {r}
40

41 input GroupGossip[`].deliver(〈share, h, j〉)
42 if status = active then
43 collaborators ← collaborators ∪ {j}
44 hitSet ← hitSet ∪ h

45

46 input Network.receive(m, src, dest)
47 if m = 〈partials, r1, r2, . . .〉 then for every rk ∈ m do ConfidentialGossip[`].return(rk)

Figure 4. Rumor distribution between groups at process i for partition `.

service Filter(`)i

1 input GroupGossip[`].send(m, src, dest)

2 if i[`] = src[`] then Network.send(m, src, dest)
3

4 input Network.receive(m, src, dest)

5 GroupGossip[`].receive(m, src, dest)

Figure 5. Filter ` at process i.

both p and q are continuously alive, GroupGossip[`] guarantees (as shown in [12]) that q will indeed receive ρ0,`. Similarly,
ρ1,` is disseminated, using Proxy[`], only to processes in group P1,`. This can be seen by the description of Proxy[`]: For
any iteration and any block, in the first round the processes in group P0,` send rumor fragments x1,` (including ρ1,`) to
processes in the other group (i.e., P0,`) and then GroupGossip[`] is used to disseminate these rumor fractions in group P1,`

only. Hence, up to this point, process q knows only ρ0,`.
Next, using the GroupDistribution[`] service, processes in P0,` collaborate in sending (among other rumor fragments)

ρ0,` to each process w ∈ P1,` where w ∈ ρ.D (this knowledge is retrieved using the mentioned metadata). Similarly, the
processes in P1,` disseminate ρ1,` to processes in P0,` that belong in ρ.D. By assumption q 6∈ ρ.D and hence no process
in P1,` ever sends ρ1,` to process q. The exchange of hitSets does not reveal any information on the rumor fragments and
so does not the instance of AllGossip used in the last round of the last iteration of each block in GroupDistribution[`]. So
process q still knows only ρ0,`.

Finally, if the deadline of rumor ρ is about to expire, and there is no confirmation that ρ has been delivered (see the last
two bullets in the outline of ConfidentialGossip), then the process p sends ρ directly to every process in ρ.D. Again, since
q 6∈ ρ.D, p does not send ρ to q. Note that after this phase or if p receives a confirmation that ρ has been delivered, no
further message is exchanged with respect to ρ and hence q never gets to learn ρ. As q cannot construct ρ only from ρ0,`

or any combination of different partitions of ρ in the various group partitions (that run in parallel), the thesis of the lemma
follows. �

We now show that algorithm CONGOS delivers admissible rumors before they expire.

Lemma B2 (Correctness wrt QoD) In any execution of algorithm CONGOS, and for any rumor ρ injected at a process p
at round t of the execution, if p and q ∈ ρ.D are continuously alive for the lifetime of the rumor, then q learns ρ by round
t+ ρ.D.

Proof: Fix ρ = 〈z, d,D〉 injected at process p at round t, and consider process q ∈ ρ.D. Both p and q are continuously
alive for the rumors lifetime. Hence ρ is admissible for q. We show that q will learn, with probability 1, rumor ρ by time
t+ ρ.d.

From the last two bullets in the outline of ConfidentialGossip we have that if the deadline of rumor ρ is about to expire,
and there is no confirmation that ρ has been delivered, then process p sends ρ directly to every process in ρ.D, including q.
Hence, what remains to be proved is that if p receives confirmation that ρ was delivered before the rumor has expired, then
q has indeed learned ρ (i.e., it has learned both fragments of ρ is some partition `). Process p will confirm that ρ has been
delivered, if a message from AllGossip confirms that, for some partition `, both fragments of a rumor ρ have been sent to
every destination in ρ.D (including q). Then the thesis of the lemma follows from these observations:
• No process will include q in its hitSet if it has not sent its partial rumor to q in the GroupDistribution service of some

partition `.
• Say w is a process that has included q in its hitSet . The dissemination of hitSet takes place after rumor fragments

to the processes being “hit” are sent. If w would fail prior than hitting q, then its hitSet containing q would not have
been disseminated through the AllGossip service. Hence, when p receives a hitSet (from AllGossip) containing q, it is
the case that q was indeed hit.

• Messages sent from non-faulty processes to non-faulty processes are not lost (unless they go through the filter, which
is not the case here).

This completes the proof. �

Proof of Lemma 5.: We first observe that, throughout a block, every process pi that is sending messages remains in
the collaborators set for every other pj in the same group of partition `: Initially, collaborators contains every process; in
each iteration. If pi and pj both remain alive to proceed in a later iteration, it means they both sent a rumor in the previous
iteration indicating that they were alive. By the guarantees of GroupGossip, this rumor must have been delivered, and hence
pi ∈ collaboratorsj (and vice versa). Notice that if a process is restarted, it does not begin sending messages again until
the next block.

In Proxy[`] and GroupDistribution[`], each process sends n1+48/
√

dline log n/|collaborators| messages in, respectively,
the first and second round of an iteration. The bound on collaborators implies the desired result.

In Proxy[`], each process that received a proxy request sends a response at the end of an iteration. Each response is the
result of an earlier request in the first round of the iteration, and we have already bounded the message complexity of the
first round of an iteration, leading here too to a bound of O(n1+48/

√
dline log n). �

Proof of Lemma 6.: Fix ` to be the partition identified in Lemma 3 such that at least one process remains alive
throughout the interval in both groups of the partition. Assume, without loss of generality, that pi ∈ P0,`. (The alternate case
is symmetric.) Since pi injects rumor fragment ρ0,` into the GroupGossip[`] service with deadline

√
dline , it is guaranteed

to reach every process in P0,` that remains alive throughout the interval. It remains to analyze the behavior of the Proxy[`]
service, focusing on the first complete block after rumor ρ is injected beginning at time t+ dline/4− (t mod dline).

We need to show that each process in P0,` succeeds in finding a proxy in P1,`. Let Z = n48/
√

dline . We will argue that
in every pair of iterations, one of the three following events occurs:

1) At least a (1− 1/Z) fraction of processes in P0,` that were alive at the beginning of the first iteration fail by the end
of the second iteration.

2) At least a (1− 1/Z) fraction of processes in P1,` that were alive at the beginning of the first iteration fail by the end
of the second iteration.

3) In the second iteration, at least a (1− 1/Z) fraction of processes in P0,` succeed in finding a proxy.
Notice that from this claim, we can conclude that by the end of 3 logZ(n) pairs of iterations, either every process in one
of the two groups has failed, or every process in P0,` has succeeded in finding a proxy. Since by assumption there is at
least one process alive in both groups of partition `, and since logZ(n) =

√
dline/48, we conclude that by the end of

6 logZ n ≤
√

dline/8 iterations, every process in P0,` has succeeded in finding a proxy. And once a process has succeeded
in finding a proxy, it follows from the guarantees of GroupGossip that its rumor fragment is distributed to every non-failed
process in the other group.

We now argue that in each iteration, one of the three events described above occurs. Fix a pair of iterations, let A be the
set of processes in P0,` still active at the beginning of the first iteration, and let B be the set of processes in P1,` still active
at the beginning of the first iteration. Assume the neither event (1) nor event (2) occur, i.e., that at the end of the iteration
there are at least |A|/Z processes still active in P0,` and |B|/Z processes still active in P1,`.

We now calculate the probability that a process in A successfully finds a proxy in B that does not fail by the end of
the second iteration. In the second iteration, each process in A has an estimate of the size of A that is at most |A|. Thus,
every process in A sends at least c(n/|A|) · Z log n proxy requests, for some constant c. Moreover, in the first iteration,
each process adds every process not in B to its set of failed-proxies , so we can conclude that every proxy request is sent
to some process in B.

Fix some subset A′ ⊆ A of size at least |A|/Z, and fix some subset B′ ⊆ B of size at least |B|/Z. We now calculate
the probability that a given process in A′ fails to send a message to some process in B′ as:

(1− |B′|/|B|)cnZ logn/|A| ≤ (1− 1/Z)cnZ logn/|A|

≤ (1/e)cn logn/|A|

The probability that every one of the at least |A|/Z processes in A′ fails to send a message to some process in B′ is at
most e−cn logn/Z .

We now take a union bound over all possible sets A′ and B′. Specifically, there are at most |A||A|/Z ≤ e(|A|/Z) log |A|

possible sets A′; there are at most |B||B|/Z ≤ e(|B|/Z) log |B| possible sets B′. Thus, the probability that there exists any set
A′ and any set B′ where every process in A; misses every process in B′ is at most:

e(|A|/Z) log |A|+(|B|/Z) log |B|

ec(n/Z) logn
≤ e(n/Z) logn+(n/Z) logn

ec(n/Z) logn

≤ e−(c−2)(n/Z) logn

Thus, for sufficiently large c, with high probability at most |A|/Z processes do not successfully find proxies, as required. �

Proof of Lemma 7.: By Lemma 6, we know that if there is at least one process alive in both groups of partition `,
then every active process has received an appropriate rumor fragment. It remains to show that during the following block of
rounds, for every process pj ∈ ρ.D, at least one process from each group sends its rumor fragment to pj . Fix some process
pj ∈ ρ.D for the remainder of the proof. Without loss of generality, we focus on process in P0,`; the case for the other
group is symmetric. We now examine the behavior of the GroupDistribution service.

Let Z = n48/
√

dline . We argue that in each pair of iterations of the GroupDistribution[`] service, one of the following
two events occurs:

1) At least a (1− 1/Z) fraction of processes in P0,` that were alive at the beginning of the first iteration fail by the end
of the second iteration.

2) For every process pk active throughout both iterations, the set of processes [n] \ hitProcsk decreases by a factor of Z
by the end of the second iteration. (hitProcsk = {pq ∈ [n] : 〈pq, ·〉 ∈ hitSetk}.)

From this claim, we conclude that within 2 logZ n pairs of iterations, either every process in P0,` fails, or every process has
been added to hitProcs . Since a process is only added to hitProcs after it has been send all the available rumor fragments
in P0,`, and since we have assumed that at least one process in P0,` remains alive throughout the block, we conclude that
by the end of 4 logZ n ≤

√
dline/8 iterations, every process has been sent all of its rumor fragments.

We now proceed to prove that one of the two above events occurs. Fix a pair of iterations, let A be the set of processes
in P0,` still active at the beginning of the first iteration, and let H be the set of processes in [n]\hitProcsk at the beginning
of the first iteration, for the process pk with the largest set hitProcsk at the beginning of the first iteration, where pk is
active through both iterations. Assume that event (1) does not occur, i.e., there are at least |A|/Z processes still active in
P0,` at the end of the second iteration.

In the second iteration, each process in A has an estimate of the size of A that is at most |A|. Thus, every process in A
sends at least c(n/|A|) · Z log n messages. Moreover, during the first iteration, processes share their hitSets, and hence in
the second iteration, messages are only sent to processes that were not in hitSetk.

For a given subset A′ ⊆ A of |A|/Z processes, for a given subset H ′ ⊆ H of |H|/Z processes, we calculate the probability
that no process in A′ sends a message to some process in H ′:

(1− 1/Z)c(n/|A|)(|A|/Z)·Z logn ≤ (1/e)c(n/Z) logn

There are at most
(|A|
|A|/Z

)
≤ e(|A|/Z) log |A| possible subsets A′, and at most

(|H|
|H|/Z

)
≤ e(|H|/Z) log |H| subsets H ′. Thus,

by a union bound over all possible subsets, the probability that any subset of |A|/Z processes does not hit some subset of
|H|/Z processes is at most:

e(|A|/Z) log |A|+(|B|/Z) log |B|

ec(n/|A|) logn
≤ e2(n/Z) logn

ec(n/Z) logn
≤ e−(c−2)(n/Z) logn

From this we conclude that the set H decreases by a factor of Z with high probability, concluding our proof. �

APPENDIX C.
SERVICE OUTLINES FOR ALGORITHM WITH COLLUSIONS

Differences from algorithm CONGOSare included in a box and annotated with boldface text.

Outline of ConfidentialGossip service at pi:
• Do in parallel for each ` = 1, . . . , cτ logn :

1) Split rumor ρ into a sequence 〈ρ0,`, ρ1,`, . . . , ρτ,`〉.
2) If pi is in group b of partition `, inject ρb,` into GroupGossip[`], and inject all ρa,`, a 6= b, into Proxy[`]. Together, these

two services ensure that each rumor fragment is delivered to every non-failed process in the appropriate group of the partition.
3) For each rumor fragment received from GroupGossip[`] or Proxy[`], inject the fragment into GroupDistribution[`].
4) Save every fragment received from GroupDistribution[`], and reassemble and deliver rumors as fragments become available.

• Whenever a message from AllGossip confirms that, for some partition `, all τ + 1 fragments of a rumor ρ, initiated at pi, have
been sent to every destination in ρ.D, confirm that ρ has been delivered.

• Whenever a deadline is about to expire for some rumor ρ initiated at pi, and there is no confirmation that ρ has been delivered,
send ρ directly to every process in ρ.D.

Outline of Proxy[`] at pi:
• Time is divided into blocks of length dline/4.
• At the beginning of a block, collect all the fragments that have been injected since the last block began, and set status to active.
• Each block is divided into iterations of

√
dline +2 rounds. In each iteration, we maintain a set collaborators of the active processes

in the same group as pi. We also keep track of failed-proxies , i.e., those that we have already learned (in previous iterations) have
failed in this block. For each iteration, repeat:

– Round 1: for each other group, send every rumor fragment associated with that group to n1+48/
√

dline logn/|collaborators|
processes chosen uniformly at random from that group, excluding processes in failed-proxies . (Notice that as long as the set
collaborators is a good estimate of the set of collaborators, this ensures a good bound on the message complexity of this step.)
Every process that receives a request to be a proxy for some other group(s) caches the received rumor fragments.

– Rounds 2, . . . ,
√

dline+1: initiate a GroupGossip[`] in which processes in the same group as pi share the set of failed-proxies ,
as well as establish the set of collaborators , i.e., members of the group that are still active. Processes also share all the rumor
fragments received from the other groups. (The deadline for rumors in GroupGossip[`] here is

√
dline .)

– Round
√
dline+2: Any process that was asked to be a proxy for the other groups sends an acknowledgment that proxying was

successful. Any process that sent a request, and does not receive an acknowledgment, adds the non-acknowledging processes
to the set of failed-proxies .

Outline of GroupDistribution[`] at pi:
• Time is divided into blocks of length dline/4.
• At the beginning of the second round of a block, collect all the fragments that have been injected since the first round of the block,

and set status to active. (The first round of the block is spent waiting for rumor fragments from the previous block.)
• Each block is divided into iterations of

√
dline +2 rounds. In each iteration, we maintain a set collaborators of the active processes

in the same group as pi. We also keep track of a set hitSet of processes that have been sent a message in this block. Each process
in this set was sent all the rumor fragments for this block. For each iteration, repeat:

– Round 1: wait for rumor fragments to be injected.
– Round 2: for each other group, send every “appropriate” rumor fragment to n1+48/

√
dline logn/|collaborators| processes

chosen uniformly at random from that other group, excluding processes in hitSet . By appropriate we mean that if pj is a
process chosen randomly by pi, then pi sends to pj only the rumor fragments in which pj is in the destination set. (Recall that
each partial rumor contains the target destination set as part of the metadata.) Every process that receives rumor fragments can
now reconstruct the rumor and return it to its user (via the ConfidentialGossip service).

– Rounds 3, . . . ,
√

dline + 2 rounds: initiate an instance of GroupGossip[`] (with deadline
√

dline) in which processes in the
same group as pi share their hitSets, as well as count how many members of the group are still active.

• In the last round of the block, initiate an instance of AllGossip (with deadline dline/4−1). Each process pi gossips the information
in its hitSet , but without including the rumor fragments themselves. That is, if the hitSet of process pi indicates that some rumor
fragment ρ0,` was sent to some process pj , and if ρ0,` has identifier r, then pi gossips that the fragment 0 for partition ` of the
rumor associated with identifier r was sent to pj . This provides sufficient information for the source to determine whether the rumor
was delivered, without revealing the contents of the rumor. (See the description of the ConfidentialGossip service, above, for how
this information is used.)

