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Abstract

Epidemic gossip has proven a reliable and efficient technique for sharing information in a distributed network.
Much of this reliability and efficiency derives from processes collaborating, sharing the work of distributing infor-
mation. As a result of this collaboration, processes may receive information that was not originally intended for
them. For example, some process may act as an intermediary, aggregating and forwarding messages from some set
of sources to some set of destinations.

But what if rumors are confidential? In that case, only processes that were originally intended to receive the
rumor should be allowed to learn the rumor. This blatantly contradicts the basic premise of epidemic gossip, which
assumes that processes can collaborate. In fact, if only processes in a rumor’s “destination set” participate in gossiping
that rumor, we show that high message complexity is unavoidable. A natural approach is to rely on cryptography,
for example, assuming that each process has a well-known public-key that can be used to encrypt the rumor. In a
dynamic system, with changing sets of destinations, such a process seems potentially expensive.

In this paper, we propose a scheme in which each rumor is broken into multiple fragments using a very simple
coding scheme; any given fragment provides no information about the rumor, while together, the fragments can be
reassembled into the original rumor. The processes collaborate in disseminating the rumor fragments in such a way
that no process outside of a rumor’s destination set ever receives all the fragments of a rumor, while every process
in the destination set eventually learns all the fragments. Notably, our solution operates in an environment where
rumors are dynamically and continuously injected into the system and processes are subject to crashes and restarts.
In addition, the presented scheme can tolerate a moderate amount of collusions among curious processes without a
substantial increase in cost; curious processes are non-malicious processes that are not in a rumor’s destination set,
and still want to learn the rumor (that is, collect all fragments of the rumor).

Keywords: Confidentiality, Collusion, Randomized gossip, Fault-tolerance, Dynamic rumor injection, Message com-
plexity.

1 Introduction
Collaboration is as the heart of distributed computing: when a network of devices cooperates to solve a problem, the
resulting computation is often more robust and more efficient than if each device had worked independently. A classic
example of the benefits of collaboration can be found in the paradigm of epidemic gossip. Consider, for example, a
set of n devices that want to share information. If each device communicates independently with the other devices in
the network, then the message complexity for the protocol may be O(n2). By contrast, if the devices collaborate to
share the information, each communicating with a small number of random devices in each round, then the message
complexity for the protocol can be reduced to O(n log n) (when message size is unbounded). At the same time, the
resulting protocol is quite robust, tolerating a constant fraction of the devices crashing.

Yet there are some drawbacks to collaboration. One significant cost is privacy: by collaborating with other devices
to solve a problem, it is often the case that private information is divulged. Consider again n devices that want to share
information—however the information is potentially confidential and should only be shared among specified groups
of recipients. For example, a user may want to share an engineering blueprint with her colleagues, but not with her
competitors. Or a psychiatrist may want to send an e-mail to a group of patients, but not to everyone. Unfortunately,
standard distributed protocols for efficiently sharing information do not satisfy these requirements. For example, if the
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users rely on epidemic gossip to distribute their information, then all confidentiality is lost: every device in the system
may learn every piece of information.

In this paper we consider protocols designed to tolerate honest, but curious processes. This concept has attracted
considerable attention as a model of processes in distributed applications that need limited anonymity and privacy,
c.f., [15, 31, 38] (see more in related work below). It is not our protocol’s intent to be secure against truly malicious
parties: for data that must be kept secure in all circumstances, a more expensive solution is needed. For everyday
transactions, however, where privacy is desired, we can ensure that no process ends up in possession of information that
it is not intended to learn. Moreover, we can achieve this at relatively limited cost (in terms of message complexity),
even if a moderate number of the participants may be colluding (i.e., sharing information).

Results. Thus the question we ask in this paper is whether we can achieve the benefits of collaboration—i.e., robust-
ness and efficiency—without sacrificing confidentiality. We focus our attention on the problem of Continuous Gossip,
a long-lived version of information sharing (introduced in [13]) that has three notable properties:

(1) any process can inject a rumor at any time;

(2) each rumor specifies a set of recipients that should receive the rumor; and

(3) each rumor has a deadline specifying by when it should be received.

In this paper, we present a continuous gossip protocol that guarantees all of the following desirable attributes:

Confidentiality: Only the specified recipients of a rumor learn the contents of the rumor, even if processes outside
the specified recipients may collude.

Timeliness: Every rumor is delivered by the deadline.

Efficiency: The maximum per-round message complexity, with high probability, and in the absence of collusion is
O((n1+48/

√
dmin + n1+6/

6√
dmin)polylog n), where dmin is the shortest deadline of any active rumor (that is, a

rumor whose deadline has not expired); note that for rumors with deadline of Ω(log6 n), this results in per-round
message complexity of O(npolylog n). When up to τ processes may collude, then we show that the maximum
per-round message complexity is, with high probability, increased by a factor τ2.

Robustness: Processes may crash and restart at any time; there is no bound on the number of crashed processes at
any given time. Moreover, failures are adaptive: they may depend on the execution and the random choices made
by the individual processes. However, only the specified recipients that were continuously alive (formally defined
later) are required to receive the rumor.

Our approach. The major challenge underlying confidential gossip is reconciling the need for collaboration to
achieve efficiency, and the inherent loss of confidentiality created by collaboration. At first glance, it seems that only
recipients of a rumor can help in its dissemination. Yet, if we limit all information regarding the rumor to its recipients,
then it is impossible to achieve good message complexity. As we show in Theorem 1, if we limit messages regarding
a rumor ρ to the destination set ρ.D, then the per-round message complexity is Ω(n(3/2)−ε/dmax ), for any ε > 0
(dmax is the longest deadline of any rumor). Thus it seems that confidentiality and efficiency are inherently at odds.

We circumvent this seeming impossibility via a simple insight: each rumor can be divided into multiple indepen-
dent fragments; each fragment provides no information regarding the original rumor, and yet together they can be
combined to re-assembled the original rumor. This is the basic idea underlying cryptographic secret sharing [34, 36],
though we require only the simplest instantiation of this idea. All the processes in the system can now collaborate
to distribute the rumor fragments, as long we as ensure that no process collects all the fragments. (In fact, we can
rely on existing gossip protocols as a black box, as long we restrict their communication to processes that are al-
lowed to receive the specific message fragments.) In this way, we gain the benefits of collaboration without sacrificing
confidentiality.

A second challenge we address is the possibility that failures are not independent and history-oblivious. We as-
sume that processes may crash and restart at any time, and we model failures as being caused by an adaptive and
omniscient adversary that can fail processes based on the random choices made by the protocol. For example, every
time a source sends a rumor (or rumor fragment) to another process, the adversary may choose to immediately crash
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that recipient, entirely preventing the dissemination of that rumor. We address this challenge by having processes
collaborate, exchanging metadata that contains no information on rumors. This information allows processes to deter-
mine which other processes are failed (or have failed recently), and which processes are being isolated (both in terms
of sending and receiving information). Using this metadata, processes can target their messages better, and processes
can adjust the number of messages they are sending. By collaborating on metadata, rather than rumors, processes
can still overcome an adaptive adversary without giving up confidentiality. (While some information is leaked via the
metadata, we discuss in Section 7 how to avoid this problem.)

Alternative approaches. There are two key limitations to our approach which may lead one to prefer a cryptographic
approach. First, if a system must be secure against truly malicious parties (i.e., not simply “honest-but-curious”
processes), then an alternate approach is needed for guaranteeing confidendtiality.

Second, the basic premise of gossip protocols is that by merging or aggregating rumors into a single message, we
can gain efficiency. By collecting several rumors, it may defray some of the overhead of sending a message. Or it may
be possible to combine rumors (e.g., if they are both measurements of the same phenomenon). However, if the rumors
cannot be merged, then gossip protocols may not be efficient. On the other side, our protocols do introduce overhead
to manage the correct delivery of all the rumors. If rumors are large, this seems reasonable. If rumors are small, this
overhead may be significant. (It is unclear how the costs compare with cryptographic protocols, which have their own
overheads; a more carefully optimized implementation of both approaches would be required to resolve this question.)

There are several possible cryptographic approaches to solving the problem of confidential gossip, many of which
exist under the rubric of multicast security (e.g., [5, 12, 26, 29, 32, 34]). The basic idea, in many cases, is that each
process holds some subset of the cryptographic keys; by encrypting the message with appropriate subsets of the keys,
the sender can ensure that the message can only be decrypted by the intended recipients. For example, the processes
may be arranged as leaves on a binary tree, where each internal node of the tree contains a cryptographic key; each
process is given access to every key found on the root-to-leaf path ending at the leaf owned by the process. When
the destination set of a rumor aligns well with the grouping of processes in the tree, such a scheme can be quite
efficient; when the destination set contains processes distributed throughout the leafset, then such a scheme can be
quite expensive. Many such solutions (e.g., [2,28,35,37]) focus on a single source communicating confidentially with
a single group of processes. The source establishes a shared key with the group, and then updates it as the group
changes. Often, a tree-like scheme (as above) is used to make the re-keying more efficient.

In general, the cryptographic solutions will be more efficient when the groupings are stable. That is, when some
processes want to communicate with a fixed set of destinations, these cryptographic solutions can be made quite
efficient by ensuring that the fixed set of processes share a single cryptographic key. Even when there are occasional
changes to the destination set, such solutions work reasonably well. However, we are not aware of any sub-quadratic, in
terms of message complexity, cryptographic approach to guarantee confidential gossip when the groups are changing
rapidly, or when there are no fixed groups, i.e., when each rumor has a different destination set. In many cases, the best
solution appears to be encrypting the message individually for each process in the destination set, thereby significantly
increasing the amount of data to be sent. Furthermore, there is the question on how efficient secret key maintenance
would be in the presence of dynamic crashes and restarts, especially when restarted processes have no memory of the
computation prior to restarting (as assumed in our model). As we show, our confidential gossip protocol is efficient
even under such dynamic adverse conditions.

Other related work. The gossip problem has frequently been considered in relation to random, epidemic communi-
cation (e.g., [10,19–21]). In this context, the problem is also know as rumor spreading and the protocols usually use a
simple epidemic approach: each process periodically sends its rumor—along with any new rumors it has learned—to
another randomly selected process. This approach can lead to efficient rumor dissemination while tolerating benign
failures (e.g., [19]).

The gossip problem has been considered in a variety of fault-prone environments, ranging from crash failures
to malicious/Byzantine ones (e.g., [6, 14, 17, 23, 25, 27]). Notably, solutions in Byzantine networks tend to focus on
distributing rumors along disjoint paths to ensure that they have not been corrupted by Byzantine processes along
the way. The survey by Pelc [33] together with the book by Hromkovic et al. [18] overview solutions for the gossip
problem in fault-prone distributed networks.

Another line of work related to ours is the one considering the problem of constructing scalable overlays of topic-
based Publication/Subscribe systems (e.g., [1,7,8,30]). The aim is to design an overlay network for each pub/sub topic,
so that for each topic, the subgraph induced by the nodes interested in the topic will be connected; such overlays are
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called topic-connected. New events for each topic can then be routed from publishers only to interested subscribers
using such topic-connected overlays. If destination sets are viewed as topics, then a topic-connected overlay could
provide a confidential way of distributing a rumor to its destination set. Unfortunately, we don’t know how to maintain
topic-connected overlays in a dynamic setting (i.e., for changing destination sets), and even the static case is NP-
complete [8, 30]. Theorem 1 (Section 3) effectively implies that topic-connected overlays cannot be used to support
efficient confidential gossip.

The honest-but-curious model, also refered as the semi-honest model [4] is a standard cryptographic adversarial
model [15]. This model has been widely considered in the problem of multi-party privacy-preserving computation of
some function [15, 39]. The usual demand is for the function to be computed collectively by the computing entities
without leaking any information about the entities’ inputs, except that revealed by the algorithm’s output. Various
computations have been considered in the context of computations on sets, such as set union, intersection, element
reduction (c.f., [22]), on graphs (c.f., [4]), in the are of data mining (c.f., [3, 24]), majority voting (c.f., [31]), in Cloud
computing (c.f., [38]), as well as private predicate computation in mobile population protocols [9].

Our solution to the confidential gossip problem can be viewed as a tool in the process of computing these functions
when the privacy of inputs (in the form of rumors) could be kept within groups of processes (i.e., certain rumors would
have as their destination set a specific group). For example, a number of group of social networking websites, wishing
to efficiently calculate aggregate statistics such as degrees of seperation and average number of acquaintances without
compromising the in-group privacy, could use as a building block our confidential gossip algorithm.

In line with the above discussion, the work in [11] considers a variant of gossip, termed social gossip, which is
motivated by the sharing of recommendations in a social network. The processes (users of the social network) require
a rumor to be substantiated by multiple, independent sources in order to adopt it. Specifically, a user accepts a gossip
message (recommendation) only if it has been received over f + 1 disjoint gossip paths, for some parameter threshold
f . The purpose of this requirement is to protect the network from spammers. Since a message needs to be carried over
f + 1 non-overlapping simple paths to be validated, then recommendations from bad sources are presumed impossible
to reinforce. So, this work shares in spirit our approach of using different paths to disseminate information over
the network. However, our objectives are somewhat different, as we spread over the network different pieces of a
rumor, to prevent unauthorized processes to collect the whole rumor, while using these processes as relays for faster
dissemination.

Paper organization. In Section 2 we present the model of computation and the confidential continuous gossip
problem. In Section 3 we show that if only the processes of a rumor’s destination set collaborate in disseminating the
rumor, then high message complexity is unavoidable. In Section 4 we present and analyze an efficient randomized
algorithm for confidential continuous gossip assuming no collusion and in Section 5 we provide its analysis. In
Section 6 we show the effect of collusion on the problem under consideration and we modify our algorithm to tolerate
collusions. We conclude in Section 7.

2 Model and Definitions
Processes. We consider a distributed system consisting of n synchronous processes that can communicate via
message-passing over a reliable network, where each process can communicate directly with each other process.
Message are not lost or corrupted in transit. Processes have unique ids from the set [n] = {1, . . . , n}.

Synchronous communication. The computation proceeds in synchronous rounds. In each round, each process can:
(i) send point-to-point messages to selected processes, (ii) receive a set of point-to-point messages sent in the current
round, and (iii) perform some local computation (if necessary). We assume that processes have access to a global
clock, that is, rounds are globally numbered.

Crash and restart. Processes may crash and restart dynamically as an execution proceeds. Each process is in one of
two states: either alive or crashed. When a process is crashed, it does not perform any computation, nor does it
send or receive any messages. We assume that processes have no durable storage, and thus when a process restarts, it is
reset to a default initial state consisting only of the algorithm to execute and [n]. Each process can only crash or restart
once per round. We denote by crash(p, t) the event in which process p crashes in round t. The event restart(p, t) is
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defined similarly. We say that a process p is continuously alive in the period [ta, tb] if: (a) process p is alive at the
beginning of round ta and at the end of round tb, and (b) for every t ∈ [ta, tb], there are no crash(p, t, ·) events.

When a process p crashes in round t, some of the messages sent by p in round t may be delivered, and some may
be lost. Similarly, when a process p restarts in round t, some of the messages sent to p may be delivered and some
may be lost.

Rumors. Rumors are dynamically injected into the system as the execution proceeds. A rumor ρ consists of a triplet
〈z, d, D〉, where z is the data to be disseminated, D ⊆ [n] is the set of processes that z must be sent (destination set),
and d is the deadline duration by which the rumor must be delivered. For ease of notation, we will be referring to ρ.z,
ρ.d and ρ.D to the corresponding part of rumor ρ = 〈z, d, D〉. We denote by Inj (ρ, t, p) the event in which rumor ρ
is injected at process p in round t. We will be referring to p as the source process of rumor ρ. We assume that at most
one rumor is injected at each process per round. We say that rumor ρ is active in round t if it was injected no later than
round t and has a deadline after or during round t.

Adversary. We model crash/restarts and rumor injection via a Crash-and-Restart-Rumor-Injection adversary, or
CRRI adversary for short. In each round, the adversary determines which processes to fail, which processes to
restart, and which rumors to inject. The adversary is adaptive in the sense that it can make decisions in a round t based
on the events in all prior rounds before t, as well as the random choices being made in round t itself. We refer to an
adversarial pattern A ∈ CRRI as a set of crash, restart and injection events caused by adversary CRRI .

Delivery guarantees. Ideally, we would like every rumor ρ injected into the system to be learned by all processes
in ρ.D; moreover it should be delivered before the deadline. However, as argued in [13], this is not always possible:
for example, a process q ∈ ρ.D may be crashed throughout the duration of a rumor’s lifetime. Following [13], we
consider admissible rumors: we say that a rumor ρ = 〈z, d, D〉 injected at process p in round t is admissible for
q ∈ ρ.D if both p and q are continuously alive in the period [t, t+ d]. This leads to the following definition of Quality
of Delivery (introduced in [13]) that essentially requires admissible rumors to be delivered.

Definition 1 (Quality of Delivery) We say that a gossip protocol guarantees quality of delivery if every rumor ρ
injected in round t at a process p is delivered no later than round t+ ρ.d to every process in ρ.D that is continuously
alive for [t, t+ d], if p is also continuously alive for [t, t+ d].

Confidentiality. We now formalize the notion of confidentiality, a property that was not considered in [13].

Definition 2 (Confidentiality) We say that a gossip protocol is confidential if every rumor ρ is delivered only to
processes in ρ.D, in every execution of the protocol.

Message complexity. Typically, message complexity accounts for the total number of point-to-point messages sent
during a given computation. However, in this work we allow for computations to have unbounded duration, and rumors
may be injected into the system over an unbounded time period; thus counting the total number of messages sent in the
entire computation is not meaningful. Instead, following [13], we focus on the number of messages sent per round.

Definition 3 (Per-round Message Complexity) We say that a randomized algorithm Rand operating under adver-
sary CRRI has per-round message complexity at most M(Rand), if for every round t, for every A ∈ CRRI , the
following holds with high probability: the number of messages sent Mt(Rand,A) by Rand in round t, is at most
M(Rand).

We allow messages to be of arbitrary size. Gossip protocols gain their efficiency by combining many rumors in a
single message. In many cases, rumors can be merged or aggregated efficiently (e.g., when they are measurements of
the same phenomenon). However, in other cases, if rumors are large and cannot be merged, this may result in large
messages. At the same time, there is additional protocol overhead.

Essentially, for randomized algorithms our goal is to deterministically guarantee Quality of Delivery, that is, admis-
sible rumors are delivered with probability 1, and confidentiality; we will guarantee the per-round message complexity
with high probability. More on the rationale of Quality of Delivery and in general on the continuous gossip problem
can be found in [13].
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3 The Limitations of Strong Confidentiality
We say that a gossip protocol is strongly confidential if for every rumor, no message causally dependent on that rumor
is ever sent to a process that is not in the destination set of that rumor. This essentially implies that only the processes
in the destination set of a rumor can collaborate for that rumor’s dissemination. As the following theorem states, such
collaboration incurs high per-round message complexity, even against an oblivious adversary that can only arrange the
rumors destination sets prior to the start of the computation.

Theorem 1 For any constant ε > 0, every randomized strongly confidential gossip algorithm has a maximum per-
round message-complexity of at least Ω(n(3/2)−ε/dmax ), with probability 1, even against an oblivious adversary,
where dmax is the longest deadline of the injected rumors.

Proof: We may assume that n is sufficiently large (in fact, n ≥ 8 is sufficient). Let c be a constant and x be a parameter,
to be specified later. Suppose that only rumors with uniform deadlines dmax are injected. Suppose that each process
receives one rumor with a random set of destinations in the beginning of the computation, defined independently over
processes and in such a way that for each process it is decided independently with probability x/n whether it belongs
to this destination set (or not, otherwise).

We argue that under this scenario where all the rumors are injected simultaneously, with probability at least 1 −
x2c+2/nc−1, no message can carry more than c rumors. The intuition here (to be formalized later) is that a message
from a process pi to a process pj can only contain a rumor that has both pi and pj in its destination set: otherwise,
confidentiality has been violated. However, we can construct a set of rumors to inject so that no subset of c+ 1 rumors
contains two (or more) nodes in the intersection of their destination sets. Hence, there is no pair of nodes pi and pj
where pi could send a message to pj that contains that set of c+ 1 messages without violating confidentiality.

Having this, observe that the number of (source process, destination process) pairs is at least nx/2, with
probability at least 1−e−nx/8 ≥ 1−1/e, by a Chernoff bound. It follows that the total number of rumor copies carried
by messages is at least nx/2 (e.g., count the rumors received by the destination processes). Therefore, the total number
of messages needed to deliver all these rumors is at least nx2c = Ω(nx), with probability at least 1−1/e−x2c+2/nc−1.

Setting x to n1/2−2/c, the above probability is at least 1− 1/e− n−2 ≥ 1− 2/e > 0. For any given ε, we can set
c = d2/εe, which implies that the total number of messages needed to deliver the rumors is Ω(nx) ⊇ Ω(n(3/2)−ε),
with a positive probability. It follows, by applying the probabilistic method, that there is a configuration of destination
sets of size x such that Ω(n(3/2)−ε) messages is necessary, and this holds in any fixed execution of any algorithm under
such scenario. Hence, even randomized algorithms require total message complexity of Ω(n(3/2)−ε) with probability
1. In view of the deadline dmax , this implies a Ω(n(3/2)−ε/dmax ) per-round message complexity with probability 1.

Note that the suitable destination sets can be computed by the adversary prior to the computation, the injection
round is the same for all the rumors, and no crashes/restarts are needed to enforce this lower bound — hence the
adversary is oblivious.

It remains to prove that with a positive probability, no message can carry more than c rumors, for some constant c,
in the scenario of random destination sets, and to define parameters x and c.

Consider any c + 1 processes. The probability that there are at least two processes in the intersection of the
destination sets of their rumors is at most

n2 · (x/n)c+1 · (x/n)c+1 = x2c+2/n2c .

Here we used the union bound, where n2 is the upper bound on the number of pairs in the destination set for the
given set of c + 1 rumors and (x/n)c+1 · (x/n)c+1 is the probability that for a given such pair of different processes
they are both in all destination sets. Therefore, with this probability, the rumors of these processes cannot be sent
together in one message (as there is no other process in the common destination for these rumors). The number of
such (c+ 1)-tuples of processes is at most nc+1. Consequently, by the union bound, we get that with probability of at
most

x2c+2/n2c · nc+1 = x2c+2/nc−1

there are c + 1 processes with at least two processes in the intersection of the destination sets of their rumors. Recall
that this event is a superset of the event that more than c + 1 rumors can be carried out by some message in the
execution. �
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In view of the upper bound O(n1+6/
3√
dmin polylog n) on continuous gossip without confidentiality assump-

tions [13] (against an adaptive adversary), we obtain a polynomial, in n, price of strong confidentiality, in terms of
per-round message complexity (for sufficiently long deadlines, i.e., with minimum deadline dmin > 24). The above
result has motivated our study of the weaker version of confidential gossip that allows processes outside a rumor’s
destination set to receive a message related to this rumor, as long as the rumor datum is not revealed.

4 Gossiping Continuously and Confidentially
In this section we present a continuous gossip algorithm, called CONGOS, that guarantees that the content of rumors
remains confidential under adversary CRRI . For simplicity, we assume no collusion. In Section 6, we show how
to extend the approach here when processes collude. In this section, we describe the algorithm, and in Section 5, we
show its correctness and analyze its performance.

In describing the algorithm, for clarity of presentation, we focus on how the algorithm operates on a collection
of rumors that were injected in the same round and have the same deadline. In the beginning of Section 4.2, we
explain how to partition the active rumors into O(polylog n) sets where all the rumors in a set satisfy this criterion (by
trimming the deadlines in a way that does not impact the asymptotic performance).

4.1 Overview of Algorithm CONGOS

In a nutshell, when a rumor is injected at a process pi, the algorithm executes the following procedure (several times,
in parallel):

Step 1: Process pi splits the rumor into two fragments such that only a process with both fragments can recon-
struct the rumor. (In Section 6.2, to cope with processes that collude, we will split each rumor into more than
two fragments.) The processes are partitioned (deterministically) into two equal-sized groups.

Step 2: Since process pi itself belongs to one of the two groups, it uses a black-box continuous gossip service
to share one of the half rumors with its own group. It uses a Proxy Service to distribute the other half rumor to
the other group, with which it cannot gossip directly. At the end of the second step, each non-failed process has
received one of the two half rumors.

Step 3: The rumor fragments are sent to their appropriate final destinations using the GroupDistribution service.
That is, the fragments for rumor ρ are sent to processes in the destination set ρ.D.

In more detail, rumors are injected in the ConfidentialGossip service. In order to ensure confidentiality, each rumor
ρ is divided into two fragments ρ0 and ρ1. Both fragments maintain certain metadata, such as the rumor’s destination
set, but each fragment on its own provides no information as to the original rumor datum ρ.z; yet together, they allow
the original rumor to be reconstructed.

There are a variety of simple schemes for accomplishing this. For example, let ρ0.z be a random binary string, and
let ρ1.z = (ρ.z xor ρ0.z). It is a simple observation that any process that learns ρ0 or ρ1 (but not both) cannot deduce
anything about the contents of the original rumor.

In this way, we have reduced the problem of confidentiality to the problem of ensuring that no process, except
those in the destination set, learn both fragments of the rumor. In Lemma 3, we show that this guarantee is maintained,
and hence that we achieve confidentiality.

A key to this guarantee is that all the processes in the system are partitioned into two components, and one rumor
fragment is distributed to each half. It is not sufficient, however, to carry out this splitting-and-partitioning process
only once: the adversary, being adaptive, may kill all the processes in one of the groups in the partition. We thus
construct log n different partitions. For each partition `, we construct a different (ρ0, ρ1) pair and send one fragment
to each half of partition `. We show in Lemma 5 that if at least two processors remain alive, then there is some partition
that separates them into to groups. This fact implies that at least one partition will survive and work properly if the
sender and target of a rumor are both still alive, i.e., the rumor is admissible.

The algorithm guarantees that no process outside a rumor’s destination set gets both fragments of the rumor (for
any partition), while all processes in the rumor’s destination set (for which the rumor is admissible) deliver the rumor
by the specified deadline.
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4.2 High-level Construction
We now describe the overall structure of the algorithm, including the management of deadlines, the partitions, and the
basic modules out of which the algorithm is constructed.

At any given time, each process executes many instances of the protocol, each designed for rumors injected in a
specific round and with the same deadline. First, we trim the deadlines that are unnecessarily big. When a rumor has a
deadline bigger than c log6 n for some constant c > 0, we truncate the deadline to c log6 n. This does not increase the
asymptotic message complexity of the protocol. Thus, at any given time, the active rumors were injected in at most
O(log6 n) different rounds. Next, we further truncate each deadline by rounding down to the nearest power of 2, i.e.,
a rumor with deadline dline has its deadline reduced to 2blognc. Again, this does not increase the asymptotic message
complexity of the protocol. Therefore, for rumors injected in the same round, there are at most O(log log n) different
possible deadlines. So in order to support all possible rumors, we run Θ(log log n log6 n) instances of the protocol in
parallel. From now on, we can focus on rumors that were injected in the same round with the same deadline. This
increases the per round message complexity by at most an O(polylog n) factor.

Now, for each instance of the protocol, we construct log n partitions. Each partition is based on a specified bit in
the binary representation of a process’s identifier. Let pj [`] be the `th bit in pj’s binary representation. Then partition
` is defined by the two sets P0,` = {pj : pj [`] = 0} and P1,` = {pj : pj [`] = 1}.

Each instance of the protocol consists of three basic modules, which will be described in further detail in the rest
of the section:

• ConfidentialGossip: This is the main protocol that coordinates the distribution of messages. When a rumor is
injected, this module divides it into fragments and initiates its distribution via the other services. Further details
are given in Section 4.3.

• Proxy[`]: The proxy safely hands messages from one group in partition ` to another, whereupon they can be
distributed using the GroupDistirbution[`] service. Further details are given in Section 4.4.

• GroupDistribution[`]: This component distributes the rumor fragments, for partition `, to their final destination
set. Further details are given in Section 4.5.

The algorithm CONGOS also relies on a collection of pre-existing distributed services. We will treat these existing
distributed protocols as a block box, without delving into the underlying implementation details. We assume that the
system consists of the following services:

• Network: We model the communication network as one such distributed service, with local input port send
and a local output port receive at each process. As already described in Section 2, any pair of processes can
communicate and communication is reliable (i.e., messages are not lost) and synchronous.

• GroupGossip[`]: We assume the availability of an existing Continuous Gossip service, albeit, one that does not
guarantee confidentiality. It does ensure, however, that every admissible rumor is delivered (with probability 1)
by the specified deadline, and it bounds the per-round message complexity byO(n1+6/

3√
dmin polylog n), where

dmin is the shortest deadline of any active rumor.

This service can be realized by the deterministic gossip algorithm developed for continuous gossip in [13].
This algorithm begins with a classical gossip approach and derandomizes it by replacing random choices with
carefully chosen expander graphs. In order to achieve good per-round efficiency, it relies on two mechanisms
that execute concurrently: the first mechanism discovers other collaborators, i.e., processes with active rumors
(rumors whose deadline has not expired); the second mechanism distributes the rumors to their destination sets
(for which the rumor is admissible). At any given time, any (or all) of the collaborating processes may crash,
and the remaining processes must finish the job. As the details are a bit involved, and to avoid a restatement of
the results, we refer the reader to [13] for details. For our purposes is enough to treat this service as a black box.

We assume there are log n instances of this continuous gossip service, GroupGossip[`] for ` ∈ {1, . . . , log n}.
The instance GroupGossip[`] is associated with partition ` of the network which divides the network into two
parts. Every message sent by GroupGossip[`] is filtered before being sent over the network: if a process pi is a
member of some group P ′ in partition `, then every message sent by GroupGossip[`] at process pi to a process
not in P ′ is dropped; every message sent by GroupGossip[`] at process pi to a process in P ′ is relayed to the
Network and sent. From the perspective of the instance GroupGossip[`], the processes that cannot be reached
due to the filter are effectively failed. (The continuous gossip service can tolerate arbitrary failures.)
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Figure 1: The interaction between the services at process i, for a partition `.

• AllGossip: We assume a single continuous gossip service, AllGossip, that is not filtered. That is, it is allowed to
communicate with all processes in the system.

Figure 1 depicts the interaction of the various services at a process i for a partition `.

4.3 Main Protocol
We now describe the procedure taken when a rumor is injected in the ConfidentialGossip service. Figure 2 provides a
high-level outline of the ConfidentialGossip service at a process pi. (A more detailed pseudocode is given in Figure 8
in the Appendix.)

The protocol consists of four main parts, and the timing of the process is as follows: Time is divided into blocks of
dline/4 rounds. A rumor injected during some block B is split into fragments during block B (step 1); the fragments
are distributed to their respective groups during block B + 1 (step 2); the fragments are reassembled in block B + 2
(step 3 and 4); and the source verifies that its rumor has been delivered during block B + 3. If it cannot verify that its
rumor has been delivered before the deadline expires, then it simply sends its rumor directly (last bullet).

A notable aspect of the above protocol is that a process cannot directly distribute both rumors. If a process pi is
in group P0,`, it cannot directly participate in gossip with group P1,`; if it did, it might risk learning rumor fragments
associated with the other group. The Proxy service is designed to circumvent this problem.

Another notable aspect occurs at the end of the protocol, when a process attempts to confirm that its rumors have
been delivered. Each process, as part of the GroupDistribution service (see below), initiates a gossip (via AllGossip)
indicating which rumor fragments have been distributed to which processes. Of course, a process cannot divulge the
contents of the rumor that have been distributed; however, it can safely indicate a unique identifier that was appended
by the source, when the rumor was split. In this way, the source can ensure that, for at least one of the fragment
pairs, both rumor fragments were successfully delivered. (Note that it would not be sufficient for recipients to send
an acknowledgment to the sender, as the source does not know which processes have remained alive throughout the
interval.) This fallback delivery mechanism is used in the proof of Lemma 4 where we show that every admissible
rumor is delivered within the deadline.
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Outline of ConfidentialGossip service at pi:

• Do in parallel for each ` = 1, . . . , log n:

1. Split rumor ρ into a pair 〈ρ0,`, ρ1,`〉.
2. If pi is in group b ∈ {0, 1} of partition `, inject ρb,` into GroupGossip[`], and inject ρ1−b,` into Proxy[`].

Together, these two services ensure that each rumor fragment is delivered to every non-failed process in
the appropriate group of the partition.

3. For each rumor fragment received from GroupGossip[`] or Proxy[`], inject the fragment into
GroupDistribution[`].

4. Save every fragment received from GroupDistribution[`], and reassemble and deliver rumors as fragments
become available.

• Whenever a message from AllGossip confirms that, for some partition `, both fragments of a rumor ρ, initiated
at pi, have been sent to every destination in ρ.D, confirm that ρ has been delivered.

• Whenever a deadline is about to expire for some rumor ρ initiated at pi, and there is no confirmation that ρ has
been delivered, send ρ directly to every process in ρ.D. (A simple optimization would be to only send rumors
to destinations for which no confirmation was received. Since this is a low probability event, it has little impact
on performance.)

Figure 2: Outline of ConfidentialGossip service at pi.

4.4 Proxy Service
The goal of the proxy service is to deliver rumor fragments safely across group boundaries. Essentially, the proxy
service for partition ` at process pi repeatedly samples processes from the other group P1−pi[`],` (i.e., the group that
pi does not belong to), requesting that these processes act as proxy for pi in distributing its rumor fragments. The
potential proxies then participate in GroupGossip[`], attempting to distribute the rumor fragments, as requested. If
they succeed, they send an acknowledgment to pi. Otherwise, process pi needs to try again.

The challenge, here, is that the adversary may (adaptively) crash processes as soon as they receive proxy requests.
(In fact, for some partitions, the adversary may crash all the members of a given group.) Even worse, at any given
time, most of the members of a group may be failed, requiring pi to send a very large number of queries to find a proxy.
To avoid this problem, the processes in the same group collaborate on finding proxies. At the same time, pi does not
share any information on the fragments it is attempting to distribute in the other group P1−pi[`],` with processes in the
same group Ppi[`],` with which it is collaborating. The Proxy service for partition ` is outlined in Figure 3 (a detailed
pseudocode is given in Figure 9 in the Appendix).

For correctness, there is one key guarantee that the Proxy service provides:

[PROXY:CONFIDENTIAL]: The Proxy service ensures confidentiality, i.e., a process pi never sends a fragment
ρ0,` to a process in group P1,`, and never sends a fragment ρ1,` to a process in group P0,`. This is immediately
true by construction, and is used in Lemma 3.

For message complexity there are two key guarantees that the Proxy service provides:

[PROXY:MESSAGES]: The Proxy service does not send too many messages, i.e., it sends at most
O(n1+48/

√
dline log n) messages per round, by all the nodes collectively (excluding messages sent by

GroupGossip). We show this in Lemma 7, and it follows immediately by construction because each collab-
orator sends messages to at most O(n1+48/

√
dline log n/|collaborators|)).

[PROXY:DELIVERY]: The Proxy service guarantees that each admissible rumor fragments received by the ser-
vice is distributed to every process in the opposite group that has been alive throughout the relevant period within
dline/4 time, with high probability. This is proven in Lemma 8. The key difficulty in the proof is showing that
the processes in one group successfully collaborate to find a non-failed proxy in the other group, which can then
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Outline of Proxy[`] at pi:

• Time is divided into blocks of length dline/4.

• At the beginning of a block, if has been alive for at least dline/4 rounds, then collect all the fragments that have
been injected since the last block began, and if there is at least one such fragment, then set status to active.

• Each block is divided into iterations of
√
dline + 2 rounds. In each iteration, we maintain a set collaborators

of the active processes (i.e., processes with status active) in the same group as pi, i.e., Ppi[`],`. We also keep
track of failed-proxies , i.e., those that we have already learned (in previous iterations) have failed in this block.
For each iteration, repeat (the following are executed if status = active):

– Round 1: send every rumor fragment associated with the other group (i.e., rumor fragment ρ1−pi[`],`)
to Θ(n1+48/

√
dline log n/|collaborators|) processes chosen uniformly at random from group P1−pi[`],`,

excluding processes in failed-proxies . (Notice that as long as the set collaborators is a good estimate of
the set of collaborators, this ensures a good bound on the message complexity of this step.) Every process
that receives a request to be a proxy for the other group caches the received rumor fragments.

– Rounds 2, . . . ,
√
dline + 1: initiate a GroupGossip[`] in which processes in Ppi[`],` share the set of

failed-proxies , as well as establish the set of collaborators , i.e., members of the group that still have
status active. Processes also share all the rumor fragments received from group P1−pi[`],`. (The deadline
for rumors in GroupGossip[`] here is

√
dline .)

– Round
√
dline+2: Any process that was asked to be a proxy for the other group sends an acknowledgment

that proxying was successful. Any process that sent a request, and does not receive an acknowledgment,
adds the non-acknowledging processes to the set of failed-proxies .

• Upon recovering from a failure, obtain the round number from the global clock, set status = idle and wait until
a new block begins.

Figure 3: Outline of Proxy[`] at pi

distribute the message using the GroupGossip service (as a black box). The basic idea is that in every round of
collaboration, either a large fraction of processes in one of the two groups fail, or there is a good probability of
finding a non-failed proxy; hence by repeating a small number of times, the protocol will succeed.

4.5 GroupDistribution Service
The goal of the GroupDistribution[`] service is to distribute rumor fragments to their final destination. To this point,
for a partition `, the rumor fragment ρ0,` has been distributed to processes in P0,`, and the rumor fragment ρ1,` has
been distributed to processes in P1,`, provided that the rumor is admissible. Now, group P0,` collaborates to send the
fragment ρ0,` to ρ.D, while P1,` does the same for fragment ρ1,`. Of course there may be many different fragments
active in each group, each with a different destination set.

The basic operation of the GroupDistibution is similar to that of the Proxy Service. Each process chooses a set of
recipients at random, and sends each of them a message carefully composed to only include appropriate rumor frag-
ments. The processes then gossip within their group (via GroupGossip[`]), sharing information on which processes
have already been notified, and which remain to be notified. At the same time, processes calculate the number of pro-
cesses active in a group (have status = active), which allows them to determine the appropriate number of messages
to send. Here, for a process to have status active, is enough to have been alive at the beginning of the second round of
a block for a sufficient number of rounds, regardless if it has rumor fragments or not (as opposed to Proxy[`]). Figure 4
outlines the GroupDistribution service for partition ` (a detailed pseudocode is given in Figure 10 in the Appendix).
For correctness, there are two key guarantees that the GroupDistribution service provides:

[GD:CONFIDENTIAL]: The GroupDistribution service ensures confidentiality, i.e., a process pi only sends a
fragment ρ∗,` to processes in the destination set for rumor ρ. This is immediately true by construction, and is
used in Lemma 3.
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Outline of GroupDistribution[`] at pi:

• Time is divided into blocks of length dline/4.

• At the beginning of the second round of a block, if has been alive for at least 2dline/3 rounds, then collect all
the fragments that have been injected since the first round of the block, and set status to active. (The first round
of the block is spent waiting for rumor fragments from the previous block.)

• Each block is divided into iterations of
√
dline + 2 rounds. In each iteration, we maintain a set collaborators

of the active processes (i.e., processes with status active) in the same group as pi, i.e., Ppi[`],`. We also keep
track of a set hitSet of processes that have been sent a message in this block; each process in this set was sent
all the rumor fragments for this block. For each iteration, repeat (as long as status = active):

– Round 1: wait for rumor fragments to be injected.

– Round 2: send every “appropriate” rumor fragment to Θ(n1+48/
√
dline log n/|collaborators|) processes

chosen uniformly at random from group P1−pi[`],`, excluding processes in hitSet . By appropriate we mean
that if pj is a process chosen randomly by pi, then pi sends to pj only the rumor fragments in which pj
is in the destination set. (Recall that each partial rumor contains the target destination set as part of the
metadata.) Every process that receives rumor fragments can now reconstruct the rumor and return it to its
user (via the ConfidentialGossip service).

– Rounds 3, . . . ,
√
dline + 2 rounds: initiate an instance of GroupGossip[`] (with deadline

√
dline) in which

processes in group Ppi[`],` share their hitSets, as well as count how many members of the group are still
active (have status = active).

• In the last round of the block, initiate an instance of AllGossip (with deadline dline/4 − 1). Each process pi
gossips the information in its hitSet , but without including the rumor fragments themselves. That is, if the
hitSet of process pi indicates that some rumor fragment ρ0,` was sent to some process pj , and if ρ0,` has
identifier r, then pi gossips that the fragment 0 for partition ` of the rumor associated with identifier r was sent
to pj . This provides sufficient information for the source to determine whether the rumor was delivered, without
revealing the contents of the rumor. (See the description of the ConfidentialGossip service, above, for how this
information is used.)

• Upon recovering from a failure, obtain the round number from the global clock, set status = idle and wait until
a new block begins.

Figure 4: Outline of GroupDistribution[`] at pi.

[GD:CONFIRM]: The GroupDistribution only initiates an AllGossip containing metadata on a rumor fragment
ρ∗,∗ if that rumor fragment has been sent to all the processes in the destination set for ρ. This property is proved
in Lemma 4.

For message complexity there are two key guarantees that the GroupDistribution service provides:

[GD:MESSAGES]: The GroupDistribution service does not send too many messages, i.e., it sends at
most O(n1+48/

√
dline log n) messages per round, by all the nodes collectively (excluding messages sent by

GroupGossip and AllGossip). We show this in Lemma 7, and it follows immediately by construction because
each collaborator sends messages to at most O(n1+48/

√
dline log n/|collaborators|)).

[GD:DELIVERY]: The GroupDistribution service guarantees the following: if R is the set of admissible rumor
fragments received by every process in a group that is alive during the relevant period, then every rumor ρ ∈ R
is received by everyone in ρ’s destination set within dline/4 time, with high probability. This is proven in
Lemma 9. The lemma proves that members of the second group collaborate to distribute the rumor to the
destination processes in the first group. The argument proceeds much like the argument for the proxy, showing
that in each round of collaboration, either a large fraction of collaborators fail or a large fraction of destinations
are informed.
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Together, [PROXY:DELIVERY] and [GD:DELIVERY] (i.e., Lemma 8 and Lemma 9) show that every admissible rumor
fragment is first distributed to both groups within dline/4 time by the Proxy service, and then is sent to the proper
destination sets by the GroupDestination service.

5 Algorithm Analysis
The proof is divided into two parts. First, we focus on correctness, which follows essentially by construction: the
algorithm explicitly prevents any process not in the destination set from receiving the rumor (i.e., both fragments in
a pair), and it ensures that the deadline is met by sending the message directly if delivery has not been confirmed on
time. The second and more critical part of the proof has to do with the message complexity. To that end, we carefully
count the messages (and ensure that the rumors are delivered fast enough) to keep the message complexity low.

Throughout the analysis we assume that dline > 48. If it is not, then the desired bound can be trivially met simply
by sending rumors directly to their destination sets by the source.

5.1 Correctness
We begin the analysis of algorithm CONGOS by stating its correctness, i.e., confidentiality is not violated and all
admissible rumors are delivered on time.

Theorem 2 (Correctness) Algorithm CONGOS correctly solves the Confidential Continuous Gossip problem under
adversary CRRI .

The proof of the theorem follows directly from the following two lemmas. The first lemma states that confiden-
tiality is not violated.

Lemma 3 (Confidentiality) In any execution of algorithm CONGOS, and for any rumor ρ, if q 6∈ ρ.D, then at no
point during the execution q learns ρ.z. This occurs with probability 1.

Proof: Consider a rumor ρ injected at a processes p at round t of an execution of algorithm CONGOS. Also consider
a process q 6∈ ρ.D. We will show by investigating the flow of the algorithm that at no point will process q learn ρ.z, or
be able to re-construct it.

Once ρ is injected at process p, based on the description of ConfidentialGossip at process p, and focusing on a
partition `, the rumor is split into ρ0,` and ρ1,`. We consider the case where both processes are in the same group in
partition `. The other case is symmetric. If p fails before distributing the fragments, then clearly confidentiality is
maintained.

Without loss of generality, say that they belong in group P0,`. Per the description of ConfidentialGossip, ρ0,` is
disseminated, using GroupGossip[`], only to processes in group P0,` (this is guaranteed by Filter[`]).

Proxy Confidentiality. We will focus on ensuring that q does not receive fragment ρ1,`, which is disseminated, using
Proxy[`], only to processes in group P1,`. This follows due to the [PROXY:CONFIDENTIAL] property, which follows
from the description of Proxy[`]: For any iteration and any block, in the first round the processes in group P0,` send
rumor fragments x1,` (including ρ1,`) to processes in the other group (i.e., P1,`) and then GroupGossip[`] is used to
disseminate these rumor fractions in group P1,` only. Hence, up to this point, process q knows (at most) only ρ0,`.

GD Confidentiality. Next, the [GD:CONFIDENTIAL] property ensures that the confidentiality is maintained by
the GroupDistribution service. Specifically, using the GroupDistribution[`] service, processes in P0,` collaborate in
sending (among other rumor fragments) ρ0,` to each process w ∈ P1,` where w ∈ ρ.D (this knowledge is retrieved
using the mentioned metadata). Similarly, the processes in P1,` disseminate ρ1,` to processes in P0,` that belong in
ρ.D. By assumption q 6∈ ρ.D and hence no process in P1,` ever sends ρ1,` to process q. The exchange of hitSets does
not reveal any information on the rumor fragments, nor does the instance of AllGossip used in the last round of the last
iteration of each block in GroupDistribution[`]. So process q still knows only ρ0,`.

Finally, if the deadline of rumor ρ is about to expire, and there is no confirmation that ρ has been delivered (see
the last two bullets in the outline of ConfidentialGossip), then the process p sends ρ directly to every process in ρ.D.
Again, since q 6∈ ρ.D, p does not send ρ to q. Note that after this phase or if p receives a confirmation that ρ has been
delivered, no further message is exchanged with respect to ρ and hence q never gets to learn ρ. As q cannot construct
ρ only from ρ0,` or any combination of different partitions of ρ in the various group partitions (that run in parallel),
the thesis of the lemma follows. �
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We now show that algorithm CONGOS delivers admissible rumors before they expire.

Lemma 4 (Correctness wrt QoD) In any execution of algorithm CONGOS, and for any rumor ρ injected at a process
p at round t of the execution, if p and q ∈ ρ.D are continuously alive for the lifetime of the rumor, then q learns ρ by
round t+ ρ.D. This occurs with probability 1.

Proof: Fix ρ = 〈z, d,D〉 injected at process p at round t, and consider process q ∈ ρ.D. Both p and q are continuously
alive for the rumors lifetime. Hence ρ is admissible for q. We show that q will learn, with probability 1, rumor ρ by
time t+ ρ.d.

From the last two bullets in the outline of ConfidentialGossip we have that if the deadline of rumor ρ is about to
expire, and there is no confirmation that ρ has been delivered, then process p sends ρ directly to every process in ρ.D,
including q. Hence, what remains to be proved is that if p receives confirmation that ρ was delivered before the rumor
has expired, then q has indeed learned ρ (i.e., it has learned both fragments of ρ is some partition `).

Process p will confirm that ρ has been delivered if a message from AllGossip confirms that, for some partition `,
both fragments of a rumor ρ have been sent to every destination in ρ.D (including q). Thus, it remains only to prove
that the GroupDistribution service satisfies the [GD:CONFIRM] property, which follows from these observations:

• No process will include q in its hitSet if it has not sent its partial rumor to q in the GroupDistribution service of
some partition `.

• Say w is a process that has included q in its hitSet . The dissemination of hitSet takes place after rumor
fragments to the processes being “hit” are sent. If w would fail prior to hitting q, then its hitSet containing
q would not have been disseminated through the AllGossip service. Hence, when p receives a hitSet (from
AllGossip) containing q, it is the case that q was indeed hit.

• Messages sent from non-faulty processes to non-faulty processes are not lost (unless they go through the filter,
which is not the case here).

We therefore conclude that the initiator of a rumor only gets a confirmation of the rumor when it was delivered; this
completes the proof. �

5.2 Message Complexity
The remainder of the proof focuses on message complexity. In the next few lemmas, we state important properties
needed for analyzing the message complexity of the algorithm.

First, we need to show that at least one of the partitions is “good,” i.e., has at least one process in each group that
is alive. (Otherwise, the subservices will surely fail.)

Lemma 5 Given rumor ρ, injected at time t: if there are at least 2 processes that remain alive throughout the interval
[t, t + ρ.d], then for some partition `, there is at least one process in P0,` and one process in P1,` that remain alive
throughout the interval [t, t+ ρ.d].

Proof: Let pi and pj be the two processes hypothesized to remain alive throughout the specified interval. Since
identifiers are unique, let ` be some bit where the identifier of pi and pj differ. Thus in partition `, processes pi and pj
are divided between the two groups and remain alive throughout the specified interval. �

Next, we can bound the length of time that the Proxy and GroupDistribution services will take for each block. This
will be important for proving [PROXY:DELIVERY] and [GD:DELIVERY], once we show that each service successfully
delivers the fragments in a block.

Lemma 6 In each block, the Proxy[`] service and the GroupDistribution[`] service execute at least
√
dline/8 itera-

tions, if dline > 4.

Proof: Each block is of length dline/4, which is divided into iterations of length
√
dline + 2 ≤ 2

√
dline . Thus each

block contains at least (dline/4)/(2
√
dline) ≥

√
dline/8 iterations. �
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We can now prove that the Proxy service satisfies the [PROXY:MESSAGES] property and the GroupDistribution
service satisfies the [GD:MESSAGES] properties. Since the two services behave in a very similar manner, we prove
the two properties together.

Lemma 7 In each round, the Proxy[`] service and the GroupDistribution[`] service send at most
O(n1+48/

√
dline log n) messages per round. (This occurs with probability 1.)

Proof: We first observe that, throughout a block, every process pi that is sending messages remains in the
collaborators set for every other pj in the same group of partition `: Initially, collaborators contains every pro-
cess; in each iteration. If pi and pj both remain alive to proceed in a later iteration, it means they both sent a rumor
in the previous iteration indicating that they were alive. By the (deterministic) guarantees of GroupGossip, this rumor
must have been delivered, and hence pi ∈ collaboratorsj (and vice versa). Notice that if a process is restarted, it does
not begin sending messages again until the next block.

In Proxy[`] and GroupDistribution[`], each process sends n1+48/
√
dline log n/|collaborators|messages in, respec-

tively, the first and second round of an iteration. Since the collaborators set is at least as large as the set of processes
performing this step, the desired result follows.

In Proxy[`], each process that received a proxy request sends one additional message, i.e., a response, at the
end of an iteration. Each response is the result of an earlier request in the first round of the iteration, and we
have already bounded the message complexity of the first round of an iteration, leading here too to a bound of
O(n1+48/

√
dline log n). �

Next, we will prove that each admissibile rumor fragment is distributed to all the (non-failed) processed in the
proper group. For rumor fragments that are created in the same group to which they belong, this follows in a straight-
forward fashion from the continuous gossip service.

For rumor fragments that need to be distributed to the opposite group, we depend on the Proxy service, and specif-
ically, the [PROXY:DELIVERY] property. The challenge of showing the next lemma lies on the fact that the adversary
is adaptive. If the adversary were oblivious, then we could simply analyze the random choices as independent. But
because the adversary is adaptive and can schedule according to the random choices, there is subtle correlation among
the random choices, and hence we have to show that the requisite properties hold despite all possible adversarial
choices.

Lemma 8 Given admissible rumor ρ, injected at time t at process pi: if for some group k in partition `, at least
one process in Pk,` remains alive throughout the interval [t, t + ρ.d], then every process in Pk,` that remains alive
throughout the interval [t, t + ρ.d] receives ρk,` by time t + 2dline/4 − (t mod dline), with high probability. That
is, for any constant c, it will succeed with probability at least 1− 1/nc.

Proof: Fix ` and k so that at least one process in Pk,` remains alive throughout the interval. Assume that the initiator
pi ∈ Pk′,` for some group k′.

If k = k′, then the claim follows immediately from the property of the GroupGossip service: Since pi injects
rumor fragment ρk,` into the GroupGossip[`] service with deadline

√
dline , it is guaranteed to reach every process in

Pk,` that remains alive throughout the interval.
Assume that k 6= k′. It remains to analyze the behavior of the Proxy[`] service, focusing on the first complete

block after rumor ρ is injected beginning at time t+ dline/4− (t mod dline).
We need to show that each process in Pk′,` succeeds in finding a proxy in Pk,`. Let Z = n48/

√
dline . We will

argue that in every pair of iterations, one of the three following events occurs:

1. At least a (1− 1/Z) fraction of processes in Pk,` that were alive at the beginning of the first iteration fail by the
end of the second iteration.

2. At least a (1 − 1/Z) fraction of processes in Pk′,` that were alive at the beginning of the first iteration fail by
the end of the second iteration.

3. In the second iteration, at least a (1− 1/Z) fraction of processes in Pk′,` succeed in finding a proxy, with high
probability.
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Notice that from this claim, we can conclude that by the end of 3 logZ(n) pairs of iterations, either every process in
one of the two groups has failed, or every process in Pk′,` has succeeded in finding a proxy. Since by assumption there
is at least one process alive in both groups k and k′ of partition `, and since logZ(n) =

√
dline/48, we conclude that

by the end of 6 logZ n ≤
√
dline/8 iterations, every process in Pk′,` has succeeded in finding a proxy. And once a

process has succeeded in finding a proxy, it follows from the (deterministic) guarantees of GroupGossip that its rumor
fragment is distributed to every non-failed process in the other group.

We now argue that in each iteration, one of the three events described above occurs. Fix a pair of iterations, let A
be the set of processes in Pk′,` still active at the beginning of the first iteration, and let B be the set of processes in
Pk,` still active at the beginning of the first iteration. Assume the neither event (1) nor event (2) occur, i.e., that at the
end of the iteration there are at least |A|/Z processes still active in Pk′,` and |B|/Z processes still active in Pk,`.

We now calculate the probability that a process in A successfully finds a proxy in B that does not fail by the end of
the second iteration. In the second iteration, each process in A has an estimate (for its set of collaborators) of the size
of A that is at most |A|. Recall that each process sends some Θ((n/|A|) · Z log n) proxy messages. Fix the constant
in the asymptotic notation to be at least (c+ 3). Thus, every process in A sends at least (c+ 3)(n/|A|) ·Z log n proxy
requests, for some constant c.

Moreover, in the first iteration, each process adds every process not in B to its set of failed-proxies , so we can
conclude that every proxy request is sent to some process in B.

Fix some subset A′ ⊆ A of size at least |A|/Z, and fix some subset B′ ⊆ B of size at least |B|/Z. We now
calculate the probability that a given process in A′ fails to send a message to some process in B′ as:

(1− |B′|/|B|)(c+3)nZ logn/|A| ≤ (1− 1/Z)(c+3)nZ logn/|A| ≤ (1/e)(c+3)n logn/|A|

Similarly, the probability that every one of the at least |A|/Z processes in A′ fails to send a message to some process
in B′ is at most e−(c+3)n logn/Z .

We now take a union bound over all possible sets A′ and B′. Specifically, there are at most |A||A|/Z ≤
e(|A|/Z) log |A| possible sets A′; there are at most |B||B|/Z ≤ e(|B|/Z) log |B| possible sets B′. Thus, the probabil-
ity that there exists any set A′ and any set B′ where every process in A′ misses every process in B′ is at most:

e(|A|/Z) log |A|+(|B|/Z) log |B|

e(c+3)(n/Z) logn
≤ e(n/Z) logn+(n/Z) logn

e(c+3)(n/Z) logn
≤ e−(c+1)(n/Z) logn ≤ 1/nc+1 .

Taking a union bound over the (at most)
√
dline/8 iterations, we conclude that with probability at least 1 − 1/nc,

|A|/Z processes do not successfully find proxies in each such pair of iterations, as required. �

We next prove the key claim that admissible rumor fragments are delivered to every process in the proper des-
tination set. Having already proved [PROXY:DELIVERY], the key missing piece (and the bulk of the proof) is the
analogous property, [GD:DELIVERY], for the GroupDistribution service. This shows that if the fragments are deliv-
ered to a group, then the GroupDistribution service will delivery them to the proper destination set.

Lemma 9 Given admissible rumor ρ, injected at time t at process pi: if for some group k in partition `, at least one
process in Pk,` remains alive throughout the interval [t, t+ρ.d], then every process pj ∈ ρ.D receives fragment ρk,` by
time t+ 3dline/4− (t mod dline), with high probability. That is, for any constant c, it will succeed with probability
at least 1− 2/nc.

Proof: By Lemma 8, we know that if there is at least one process alive in group k of partition `, then every active
process in Pk,` has received the rumor fragment with probability at least 1− 1/nc. It remains to show that during the
following block of rounds, for every process pj ∈ ρ.D, at least one process from Pk,` sends the rumor fragment to pj .
Fix some process pj ∈ ρ.D for the remainder of the proof. Without loss of generality, we focus on processes in Pk,`;
the case for the other group is symmetric. We now examine the behavior of the GroupDistribution service.

Define hitProcsr = {pq ∈ [n] : 〈pq, ·〉 ∈ hitSetr} to be the set of processes that have already been successfully
sent the fragment. We will consider the set [n] \ hitProcsr, i.e., the set of processes that have not yet been hit and
show that this decreases.

Let Z = n48/
√
dline . We argue that in each pair of iterations of the GroupDistribution[`] service, one of the

following two events occurs:

1. At least a (1− 1/Z) fraction of processes in Pk,` that were alive at the beginning of the first iteration fail by the
end of the second iteration.

16



2. For every process pr active throughout both iterations, the set of processes [n] \ hitProcsr decreases by a factor
of Z by the end of the second iteration, with high probability.

From this claim, we conclude that within 2 logZ n pairs of iterations, either every process in Pk,` fails, or every process
has been added to hitProcs . Since a process is only added to hitProcs after it has been send all the available rumor
fragments in Pk,`, and since we have assumed that at least one process in Pk,` remains alive throughout the block, we
conclude that by the end of 4 logZ n ≤

√
dline/8 iterations, every process has been sent all of its rumor fragments.

We now proceed to prove that one of the two above events occurs. Fix a pair of iterations, let A be the set of
processes in Pk,` still active at the beginning of the first iteration, and let H be the set of processes in [n] \ hitProcsr
at the beginning of the first iteration, for the process pr with the largest set hitProcsr at the beginning of the first
iteration, where pr is active through both iterations. Assume that event (1) does not occur, i.e., there are at least |A|/Z
processes still active in Pk,` at the end of the second iteration.

In the second iteration, each process in A has an estimate of the size of A that is at most |A|. Recall that every
process in A sends at least Θ((n/|A|) · Z log n) messages. Fix the constant in the asymptotic notation to be at least
(c+ 3). Thus, every process in A sends at least (c+ 3)(n/|A|) ·Z log n messages. Moreover, during the first iteration,
processes share their hitSets, and hence in the second iteration, messages are only sent to processes that were not in
hitSetr.

For a given subset A′ ⊆ A of |A|/Z processes, for a given subset H ′ ⊆ H of |H|/Z processes, we calculate the
probability that no process in A′ sends a message to some process in H ′:

(1− 1/Z)(c+3)(n/|A|)(|A|/Z)·Z logn ≤ (1/e)(c+3)(n/Z) logn

There are at most
( |A|
|A|/Z

)
≤ e(|A|/Z) log |A| possible subsets A′, and at most

( |H|
|H|/Z

)
≤ e(|H|/Z) log |H| subsets H ′.

Thus, by a union bound over all possible subsets, the probability that any subset of |A|/Z processes does not hit some
subset of |H|/Z processes is at most:

e(|A|/Z) log |A|+(|B|/Z) log |B|

e(c+3)(n/|A|) logn
≤ e2(n/Z) logn

e(c+3)(n/Z) logn
≤ e−(c+1)(n/Z) logn

By a union bound over all the
√
dline/8 iterations, we conclude that with probability at least 1 − 1/nc, the set H

decreases by a factor of Z in each such pair of iterations, concluding our proof (via a union bound of the 1/nc

probability of error by the proxy service and the 1/nc probability of error here). �

We can now show the final piece: that each admissible rumor is successfully delivered to its destination set, and
that confirmation is delivered by the AllGossip service to everyone.

Lemma 10 Given admissible rumor ρ, injected at time t at process pi: if pi does not fail by time t+ρ.d, then by round
t + ρ.d − 1, process pi receives confirmation that rumor ρ was delivered, with high probability, i.e., with probability
at least 1− 2/nc for any constant c.

Proof: By Lemma 5, we know that if rumor ρ has even one admissible destination 6= pi, then there is some partition
` where there is at least one process in P0,` and one process in P1,` that does not fail in [t, t + ρ.d]. By Lemma 9,
we know that by time t + 3dline/4 − (t mod dline), with high probability (i.e., 1 − 2/nc), rumor fragments ρ0,`

and ρ1,` have been delivered to every destination in ρ.D by the GroupDistribution[`] service, allowing the destination
processes to reconstruct ρ.

Once this (probabilistic) event occurs, confirmation always takes place: Since at least one process p0 in P0,` and
one process p1 in P1,` does not fail during [t, t + ρ.d], we conclude that p0 and p1 complete the block in which the
rumor fragments for ρ are delivered to their destinations. At the end of the last round of the block, processes p0 and p1

inject sanitized versions of the hitSets as rumors into the AllGossip service with deadline dline/4− 1, thus ensuring
that process pi receives this information no later than round t+ ρ.d− 1. Process pi then marks rumor ρ confirmed. �

Using Lemmas 5–10, we prove the final complexity result.

Theorem 11 (Per-round message complexity) The per-round message complexity of CONGOS is:

O
(

(n1+48/
√
dmin + n1+6/

6√
dmin)polylog n

)
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where dmin is the minimum deadline of any rumor in the system in that round. This holds with high probability, i.e.,
with probability at least 1− 2/nc−2 for any constant c.

Proof: From Lemma 10 we have that for a given rumor ρ injected at process pi, with probability at least 1− 2/nc, the
rumor is confirmed prior to the deadline expiring. Since each process is injected at most one rumor per round (hence
there can be O(npolylog n) active rumors in the system at any given time, over all instances of continuous gossip and
all deadlines), by a union bound, no source process sends any messages directly to the destinations with probability at
least 1− 2/nc−2.

For a deadline of dline , Lemma 7 shows that the per-round message complexity for each instance of
Proxy[`] and GroupDistribution[`] is O(n1+48/

√
dline log n), leading to a per-round message complexity of

O(n1+48/
√
dline log2 n). Each instance of continuous gossip, invoked with rumors at least

√
dline , has message

complexity O(n1+6/
6√
dline polylog n). There are log n+ 1 such instances of continuous gossip.

Thus the total per round message complexity is:

Θ(log6(n))∑
dline=dmin

O
(

(n1+48/
√
dline + n1+6/

6√
dline)polylog n

)
.

This summation is dominated by the first term, yielding the desired result. �

6 Gossiping in the Presence of Collusion
In this section we extend our investigation of the confidential gossip problem by additionally assuming that processes
outside of a rumor’s destination set may collude in an attempt to learn the rumor.

More formally, given a rumor ρ injected in the system at a process pi, we denote by Cρ the collusion set of ρ.
In particular, Cρ may contain any process q 6∈ ρ.D ∪ {pi}. We assign adversary CRRI with the additional task of
“selecting” the colluding processes in an adaptive way during the execution. We will be referring as CRRI(τ) the
subset of the adversarial patterns of CRRI for which |Cρ| ≤ τ for any rumor ρ injected in the system. Finally, we will
be calling τ -collusion-tolerant an algorithm that it is designed to solve confidential gossip under adversary CRRI(τ).

6.1 Lower Bound
We prove that a class of algorithms generalizing our algorithm CONGOS suffers from collusion, in terms of message
complexity. We say that a gossip algorithm is partition-based if it allows only two operations tampering with the
content of the rumors: splitting, which allows to split a given initial rumor into disjoint smaller fragments, and merging,
which allows to merge given fragments of the same rumor into a larger fragment of this rumor1. Otherwise, the protocol
must treat the rumor (and its fragments) as nonmalleable tokens.

The effect of collusion, as demonstrated by the following theorem, might be significant (especially for large number
of colluders), even against an oblivious adversary that can only arrange the rumors destination sets and identify the
colluding processes prior to the start of the computation.

Theorem 12 For any constant ε > 0, every randomized, τ -collusion-tolerant, partition-based algorithm solving
confidential gossip has a maximum per-round message-complexity of at least Ω(min{nτ, n(3/2)−ε}/dmax ), with
probability 1, against an oblivious adversary, where dmax is the longest deadline of the injected rumors.

Proof: We assume the same initial setting of parameters and rumors, including their destination sets and deadlines, as
considered in the proof of Theorem 1, which are as follows. We may assume that n is sufficiently large (in fact, n ≥ 8
is sufficient). Let c be a constant and x be a parameter, to be specified in the same way as in the proof of Theorem 1,
depending on ε. Suppose that only rumors with uniform deadlines dmax are injected, all at the same time. Moreover,
assume that each process is injected one rumor with the same destination set as in the proof of Theorem 1.

Now consider a single execution of a given algorithm in this setting. Let a rumor interval be a set of rumor
fragments such that any set of fragments sufficient to reconstruct the rumor includes some fragment from the rumor

1Notice that this does not allow other algebraic manipulation of the rumor, as in “network coding” techniques.
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interval. (Informally a rumor interval corresponds to a sub-sequence of rumor bit-string representation and to all rumor
fragments that contain this sub-sequence.) Two cases are possible:
Case 1: More than half of the rumors satisfy the following property each: there is a rumor interval such that none of
its contained fragments is ever transmitted to a process outside the destination set.

It follows that for such a rumor interval, each destination process receives some rumor fragment in this rumor
interval directly from the rumor’s source (the process that the rumor was injected at) or relayed entirely through the
processes in the destination set. Therefore, the messages carrying rumor fragments in this rumor interval altogether
suffer from the same constraints as it would an original rumor propagated within its destination sets only. By The-
orem 1, the number of such messages is proportional to the size of the destination set, for the considered setting of
destination sets, and since there are more than n/2 such rumors, we get the lower bound Ω(n(3/2)−ε) on the total
number of such messages in the considered period of length dmax . Hence, the per round message complexity in this
case is Ω(n(3/2)−ε/dmax ).
Case 2: At least half of the rumors satisfy the following property each: fragments of the rumor transmitted outside the
destination set cover the whole original rumor.

In this case for each such rumor there are at least τ + 1 processes outside its destination set that receive a fragment
of the rumor directly from some processes in the destination set or the rumor’s source (the process that the rumor was
injected at); otherwise at most τ such outside processes could collude and get fragments covering the whole rumor,
thus violating the definition of confidentiality (which must hold for every execution). We call such at least τ + 1
fragments border fragments. Therefore there are at least τ + 1 point-to-point messages sent from some processes in
the destination set or the rumor’s source to the considered at least τ + 1 outside processes. Call these messages border
messages. It follows that there are at least (τ + 1)n/2 copies of border fragments sent via border messages. Recall
the property of the considered configuration of destination sets as proved in Theorem 1: each process is in at most c
destination sets, where c is a constant. It follows that a process sends at most c border fragments per border message,
which gives at least (τ+1)n/2

c = Ω(nτ) border messages. Hence the per-round message complexity in this case is
Ω(nτ/dmax ).

Observe that these two cases are complementary. Indeed, notice that if fragments of a rumor transmitted outside
the destination set do not cover the whole original rumor (there are at most half of such rumors in case 2), then some of
its rumor intervals consist of fragments not transmitted outside the destination set, e.g., containing the part of the rumor
which is not covered by the fragments transmitted outside the destination set. These rumors satisfy the requirement in
case 1. Hence, if there are at most half of such rumors, then case 2 is satisfied, otherwise case 1 is fulfilled.

In each case, the message complexity is Ω(min{nτ, n(3/2)−ε}/dmax ). This bound holds for any execution of the
algorithm. The adversary is oblivious, as it uses the same setting as in the proof of Theorem 1 and does not need to
specify colluding processes. To justify the latter, observe that both cases hold regardless of the choice of colluding
processes, and the only place the adversary threads the algorithm by possibility of collusion is in Case 2 when it
enforces at least τ + 1 border messages; but for this it does not need to specify online the set of colluding processes,
and the argument says only that if the algorithm broke it, the adversary could choose a set of colluders violating
confidentiality. This completes the proof of the theorem. �

6.2 Collusion-tolerant CONGOS

We modify algorithm CONGOS in the following way. Instead of log n partitions used in algorithm CONGOS, we use
cτ log n partitions given as a part of the input of the algorithm, for an appropriate choice of constant c. Each partition
contains τ + 1 groups, instead of the originally used 2 groups. For this purpose, rumors are now divided into τ + 1
fragments. If we view τ = 1 as a collusion of a process with itself, then the original algorithm CONGOS can be viewed
as 1-collusion-tolerant confidential gossip algorithm.

The set of cτ log n partitions needs to satisfy the following properties, for appropriate choice of constants c and c′:

• Partition-Property 1: In each partition, each group contains at least one process.

• Partition-Property 2: For every set S of at least 2c′τ log n processes, there exists a partition such that every
group in the partition contains at least one process in S.

The first property ensures well-formedness, i.e., that the partition is a proper division of the processes into non-empty
groups. The second property ensures good performance: as long as there are Ω(τ log n) processes alive, then one
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partition has live processes in every group and hence can be used to distribute the rumor fragments. We now argue
that there exists a good set of partitions that meets these requirements:

Lemma 13 If τ < n/ log2 n, then there is a set of cτ log n partitions satisfying the above conditions, for some
constants c, c′ > 0.

Proof: We proceed via the probabilistic method: first, we randomly select the groups for each partition, and then we
show that with some positive probability, the two properties are satisfied. We begin by assuming that for each partition,
each process is independently assigned, uniformly at random, to one of the τ + 1 groups in that partition.

We begin by examining the first required property. For each group g, the probability that a process chooses group g
is 1/(τ+1). Thus the probability that a given group is not chosen by any process is at most (1−1/(τ+1))n ≤ 2− log2 n.
In total, there are (τ + 1) · (cτ log n) ≤ 2cn2 groups, and thus by a union bound, the probability that any group is not
chosen by some process is at most 2−(log2 n−log (2cn2)) < 1/2, for sufficiently large n.

We now examine the second required property. We fix some set S of size 2c′τ log n. For a given partition,
for a given group in that partition, the probability that no process in set S is assigned to that partition is at most
(1 − 1/(τ + 1))2c′τ logn ≤ 1/nc

′
. Thus, by a union bound, the probability that any group in the partition does not

contain a process in S is at most (τ + 1)/nc
′ ≤ 1/nc

′−1.
Since each partition is selected independently, the probability that for every one of the cτ log n partitions, at least

one group is empty is at most (1/nc
′−1)cτ logn ≤ n−c·c′τ logn/2.

Now, consider all
(

n
2c′τ logn

)
choices of the set S. There are at most n2c′τ logn such sets S. Taking a union bound

over all the sets S, the probability that there exists a set S for which every partition has at least one empty group is at
most n−(c·c′τ logn/2−2c′τ logn) < 1/2, for appropriately large n and choice of c and c′.

Thus, the probability that the selected partition does not satisfy the two requisite properties is smaller than 1, and
hence, by the probabilistic method, a partition satisfying the two desired properties exists. �

We leave the polynomial time construction of partitions satisfying the required conditions as future work.
Overview of collusion-tolerant CONGOS: In a nutshell, the modified version of algorithm CONGOS operates as
follows for a newly injected rumor ρ at a process pi. If τ ≥ n/ log2 n then all rumors are sent directly to their
destinations. Otherwise, procedure ConfidentialGossip is called in which the rumor, for each different partition `, is
divided into the fragments ρ0,`, . . . , ρτ,` such that all fragments (from the same partition) are needed in order for ρ
to be re-assembled. A way to do this is as follows: Let ρ0,`, . . . , ρτ−1,` be different random binary strings and set
ρτ,` = (ρ xor ρ0,` xor . . . xor ρτ−1,`). Then ρ can be computed when all τ + 1 fragments are received. Note that
this scheme makes the algorithm partioned-based.

Say that in partition `, process pi belongs in group x. Then it injects fragment ρx,` in GroupGossip[`] and all other
fragments into Proxy[`]. Via procedure GroupGossip[`], the fragment ρx,` is gossiped in the members of group x and
via Proxy[`] each other fragment is gossiped into every other corresponding group (such that every other group learns
a different fragment of the rumor). Then procedure GroupDistribution[`] is called so that the processes in each group
collaborate in sending their corresponding fragment of the rumor only to the processes of the rumor’s destination set.
These processes receive all fragments and hence can reassemble the rumor. Lemma 13 assures the existence of at
least one partition ` in which all admissible rumors are received by the live processes of the rumor’s destination set.
Detailed outlines of the modified procedures are given below; the differences from algorithm CONGOS are included
in a box and annotated with boldface text. In particular, Figure 5 outlines ConfidentialGossip, Figure 6 outlines Proxy
and Figure 7 outlines GroupDistribution.

6.3 Analysis
We now prove that the collusion-tolerant algorithm still satisfies the desired correctness and message complexity
requirements. The structure of the proof closely follows the analysis in Section 5, modified to deal with the larger
number of partitions.

The first lemma states that confidentiality is not violated. This is almost identical to Lemma 3, looking at τ + 1
groups instead of 2 groups.

Lemma 14 (Confidentiality) In any execution the algorithm, and for any rumor ρ, if q 6∈ ρ.D, then at no point during
the execution q learns ρ.z. This occurs with probability 1.

20



Proof: Consider a rumor ρ injected at a processes p at round t of an execution of algorithm CONGOS. Also consider
a process q 6∈ ρ.D. We will show by investigating the flow of the algorithm that at no point will process q learn ρ.z or
be able to re-construct it from fragments.

Once ρ is injected at process p, based on the description of the algorithm at process p, and focusing on a partition `,
the rumor is split into ρ0,`, ρ1,`, . . . , ρτ,`. Each rumor fragment is distributed by the Proxy service and the GroupGossip
service only to its proper group, with the filter enforcing this restriction. Similarly, the GroupDistribution service sends
fragments only to processes in the proper destination set. Finally, the last step in the algorithm sends the rumor directly
to the destination set (as a fallback mechanism), i.e., not to any other process.

Thus no process that is not in the destination set learns more than one fragment, i.e., the fragment for the group it
is assigned to. Since there are at most τ colluders and τ + 1 fragments, we conclude that the colluders learn at most τ
fragments and hence cannot reconstruct the rumor. �

We now show that the algorithm delivers admissible rumors before they expire. The correctness in this case follows
by similar arguments as for algorithm CONGOS, since the partitions used for the modified algorithm satisfy the same
conditions explored in the analysis as the partitions used in the original algorithm CONGOS.

Lemma 15 (Correctness wrt QoD) In any execution of the algorithm, and for any rumor ρ injected at a process p at
round t of the execution, if p and q ∈ ρ.D are continuously alive for the lifetime of the rumor, then q learns ρ by round
t+ ρ.D. This occurs with probability 1.

Proof: Fix ρ = 〈z, d,D〉 injected at process p at round t, and consider process q ∈ ρ.D. Both p and q are continuously
alive for the rumors lifetime. Hence ρ is admissible for q. We show that q will learn, with probability 1, rumor ρ by
time t+ ρ.d.

From the last two bullets in the outline of the algorithm (Figure 6.2), we have that if the deadline of rumor ρ is
about to expire, and there is no confirmation that ρ has been delivered, then process p sends ρ directly to every process
in ρ.D, including q. Hence, what remains to be proved is that if p receives confirmation that ρ was delivered before
the rumor has expired, then q has indeed learned ρ (i.e., it has learned all the fragments of ρ is some partition `).

Process p will confirm that ρ has been delivered if a message from AllGossip confirms that, for some partition `,
all the fragments of a rumor ρ have been sent to every destination in ρ.D (including q). Thus, it remains only to prove
that the GroupDistribution service satisfies the [GD:CONFIRM] property, which follows from these observations:

• No process will include q in its hitSet if it has not sent its partial rumor to q in the GroupDistribution service of
some partition `.

• Say w is a process that has included q in its hitSet . The dissemination of hitSet takes place after rumor
fragments to the processes being “hit” are sent. If w would fail prior to hitting q, then its hitSet containing
q would not have been disseminated through the AllGossip service. Hence, when p receives a hitSet (from
AllGossip) containing q, it is the case that q was indeed hit.

• Messages sent from non-faulty processes to non-faulty processes are not lost (unless they go through the filter,
which is not the case here).

We therefore conclude that the initiator of a rumor only gets a confirmation of the rumor when it was delivered; this
completes the proof. �

We now give the main result of this section.

Theorem 16 Collusion-tolerant CONGOS solves the confidential gossip problem under adversary CRRI(τ) with
per-round message complexity of

O
((
n1+48/

√
dmin + n1+6/

6√
dmin

)
τ2 polylog n

)
,

where dmin is the minimum deadline of any rumor in the system in that round; this holds with high probability.

Proof: If τ ≥ n/ log2 n then the correctness argument is straightforward (as all rumors are straightaway sent to their
destinations) and the per-round message complexity is O(n2), as this is the upper bound on the number of links to be
used in a round. We have:

O(n2) ≤ O(n · (n/ log2 n)2) ≤ O
((
n1+48/

√
dmin + n1+6/

6√
dmin

)
τ2 polylog n

)
.
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In the remainder, we consider the case τ < n/ log2 n.
Lemma 15 shows that every admissible rumor is delivered by the deadline (as required), and Lemma 14 shows that

confidentiality is maintained.
For the message complexity, ignoring the fallback transmission in the last step of the algorithm: for every

group and for every partition, the Proxy and the GroupDistribution services send O(n1+48/
√
dmin) messages and

the GroupGossip service sends O(n1+6/
6√
dmin) messages. Since there are τ + 1 groups and O(τ log n) partitions, the

total per round message complexity is as claimed.
It remains to show that the fallback procedure does not induce too many messages. There are now two cases

to consider. Assume that there is not some set of at least 2c′τ log n processes that are alive throughout the relevant
period. Then in the final round of the protocol, there are at most 2c′τ log n processes that are still alive (and have not
crashed at some point), and each sends at most nmessages (for a fallback transmission). Hence the per-round message
complexity is at most O(nτ log n).

Now consider the case where there are at least 2c′τ log n processes that do not fail throughout the relevant time
interval. Then, by Partition-Property 2, we know that there exists a partition such that every group in the partition
contains at least one process that remains alive throughout. We fix this partition `.

It remains to show that each rumor is delivered by partition `with high probability before the fallback transmission.
Since there are at most O(npolylog n) active rumors at any time, this is sufficient to ensure (by a union bound) that
with high probability all the active rumors are delivered before the fallback transmission, and hence in any given round,
with high probability there are no fallback transmissions.

Recall that Lemmas 8 and 9 were stated and proven in terms of the behavior of the Proxy and GroupDistribution
services for specific groups, with no dependence on the partition. This behavior is unchanged, and hence the lemmas
hold unchanged.

We can now show that given an admissible rumor ρ, injected at time t at process pi, then by round t + ρ.d −
1, process pi receives confirmation that rumor ρ was delivered, with high probability, i.e., with probability at least
1 − 2/nc for any constant c. Specifically, for each of the groups in partition `, we know that one process remains
alive (by the choice of `). And so by Lemma 9, we know that by time t + 3dline/4 − (t mod dline), with high
probability (i.e., 1−2/nc), rumor fragments ρ0,`, ρ1,`, . . . , ρτ,` have been delivered to every destination in ρ.D by the
GroupDistribution[`] service, allowing the destination processes to reconstruct ρ.

Once this (probabilistic) event occurs, confirmation always takes place: Since for each k, at least one process pk
in Pk,` does not fail during [t, t + ρ.d], we conclude that each pk completes the block in which the rumor fragment
ρk,` is sent to its destinations. At the end of the last round of the block, each process pk injects sanitized versions of
the hitSets as rumors into the AllGossip service with deadline dline/4− 1, thus ensuring that process pi receives this
information no later than round t+ρ.d−1. Process pi then marks rumor ρ as confirmed. Thus in this case, no fallback
message is sent, and the per round message complexity is as required. �

Observe from Theorem 16 that when dmin = Θ(log6 n), the per-round message complexity is O(nτ2 polylog n).
When contrasted with Theorem 12 it follows that for τ <n1/4, the per-round message complexity is within a factor of
τ polylog n of the lower bound. (For τ = O(polylog n) the algorithm is optimal within log factors.)

7 Discussion
In this paper we have considered the problem of confidential gossip, where each rumor is learned only by processes
in the rumor’s specified destination set. Assuming an adaptive and omniscient adversary that dynamically and con-
tinuously injects rumors into the system and causes process crashes and restarts, we have designed an efficient (w.r.t.
per-round message complexity) algorithm which we call algorithm CONGOS. As an alternative to cryptographic
schemes, which can be expensive in such a dynamic environment, the algorithm deploys a simple rumor splitting
technique that enables an efficient “all-process” collaboration while guaranteeing confidentiality. For this purpose,
the algorithm combines, in a non-trivial way, a black-box efficient non-confidential continuous gossip service with
other auxiliary services (namely, Filter, Proxy, GroupDistribution). While we have focused on continuous gossip,
we believe that the same techniques apply to other gossip variants (e.g., single-instance gossip, etc.).

Open questions: collusion. We have also discussed the problem of collusion, and shown how to tolerate a moderate
amount of collusion at a limited cost. An interesting open question is whether we can tolerate higher levels of collusion
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if the adversary is oblivious, or if we allow some small probabilistic violation of confidentiality.
In addition, as currently presented, the algorithm guarantees the confidentiality of rumors, but various other meta-

data is released. For example, processes learn of the existence of rumors, roughly how many rumors are active, the
source of each rumor, a sequence number of each rumor, and the set of destinations for each rumor. Some of this in-
formation can be readily hidden. For example, the sequence number can be replaced with a pseudorandom identifier.
Other information appears more difficult to hide, for example, the proxies learn precisely who is requesting that they
act as a proxy, and this seems, to some extent, unavoidable.

The destination set associated with each rumor can be hidden, without increasing the overall message complexity,
but at the cost of increasing the message size (significantly). When a rumor ρ is injected at process pi, the source
creates n new rumors, each with a single process in its destination set. For every process in ρ.D, the new rumor
contains a copy of the injected rumor’s content. For the remaining new rumors, the contents of the new rumor are
chosen at random. The source then proceeds to distribute this entire collection of rumors. Only the processes in the
destination set can determine whether a rumor contains real content or simply a random string, and hence processes
cannot determine the real destination set.

Similarly, the very existence of rumors can be hidden by the continual injection of fake content-free rumors, at the
cost of wasted messages. In this way, a process cannot determine how many real rumors are currently active.

Open questions: message and communication complexities. One natural question is whether the message com-
plexity presented here is optimal. It seems likely that at least some improvement is possible. Specifically, the message
complexity depends (roughly) on n1+1/d` , for some constant `. Ideally, we would only need O(n1+1/d) messages.
In part, the additional cost comes from the Continuous Gossip service, which already requires ` = 3. To do bet-
ter, we need a better basic contiuous gossip protocol. In part, the aditional cost comes from using the continuous
gossip protocol as a black box: currently, the Proxy and GroupDistribution service each repeatedly initiate gossip
requests, each with a deadline of

√
dline/4. It seems plausible that by overlapping some of the work in the Proxy and

GroupDistribution services with the continuous gossip protocol, we could improve the message complexity.
A second natural question is whether we could improve the communication complexity, i.e., the total number of bits

transmitted in each round (rather than just the number of messages). For gossip protocols, however, the communication
complexity depends significantly on the precise application. If no aggregation of rumors is possible, i.e., if sending
two rumors costs twice as much as sending one rumor, then the communication complexity could necessarily be at
least Ω(n2/d) rumors per round: every process may be required to send/receive n different rumors over d rounds. In
such a case, gossip would have little benefit. Another issue is the cost in terms of control bits. Our solution adds a
fairly large number of control bits to ensure that rumors are delivered. Perhaps allowing some probability on the timely
delivery of rumors (i.e., some rumors could miss the deadline with low probability), the communication complexity
could be reduced. This is an interesting direction for future investigation.

Open questions: malicious users. Finally, an interesting open question is whether we can tolerate truly malicious
processes, i.e., those that do not follow the protocol. In fact, we believe that the approach for tolerating collusion may
be extended to deal with malicious processes, if the adversary is oblivious. In that case, we can tolerate some groups
misbehaving and failing to deliver their message fragments.
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Appendix: Detailed Pseudocode of Algorithm CONGOS

In this section we present the detail pseudocode for algorithm CONGOS. In particular we give a separate pseudocode
for each service of the algorithm at a process i. Figure 8 describes the operation of the ConfidentialGossip service
which is the main control of the algorithm. It basically coordinates the other services that run in parallel: Proxy
(Figure 9), GroupDistribution (Figure 10) and Filter (Figure 11); the code for these services is given for a certain
partition `.

As mentioned before, a non-confidential Continuous Gossip service (protocol) is assumed (e.g., the one presented
in [13]), which guarantees rumor dissemination within a specified deadline. GroupGossip[`] refers to an instance of the
service for partition ` that is filtered (from the Filter[`] service) in restricting rumor disseminations in certain process
groups. AllGroup refers to an instance of the gossip service for partition ` that it is not filtered (hence rumors are sent
to all processes in [n]).

We now explain the operation of the function random-split used in line 14 of the ConfidentialGossip service
(Figure 8). Recall that a rumor r is a tuple (z, d,D) where r.z is the data to be disseminated, r.d the deadline and r.D
the rumor destination set (only processes in the set must learn r). Once the function is executed, rumor r0 has as r0.z
the tuple 〈z0, r.D, counter〉, r0.d =

√
dline/6, and r0.D = [n]. Rumor r1 is similar (r1.z contains z1 and not z0).

As explained before, z0 is a random binary string and z1 = zXORz0. Note that r is split differently for each partition
`. The function merge in line 32 of the ConfidentialGossip service works reversely to reconstruct a rumor from its two
fragments. We will be using the notation rumor.z.D to denote the original destination set of a rumor (which rumor
is a fragment of it) and rumor.z.cnt the value of the counter that the rumor was assigned upon injection into the
source process. See for example lines 27 and 28 of the GroupDistribution service (Figure 10).

Throughout the codes, we denote by R the data type which is a set representing all rumors, that is, all rumors of
the form 〈z, d,D〉. We also consider round ∈ Z to be a global counter representing time (round numbers), taken from
the global clock.
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Outline of ConfidentialGossip service at pi:

• Do in parallel for each ` = 1, . . . , cτ log n :

1. Split rumor ρ into a sequence 〈ρ0,`, ρ1,`, . . . , ρτ,`〉.

2. If pi is in group b of partition `, inject ρb,` into GroupGossip[`], and inject all ρa,`, a 6= b, into Proxy[`].
Together, these two services ensure that each rumor fragment is delivered to every non-failed process in
the appropriate group of the partition.

3. For each rumor fragment received from GroupGossip[`] or Proxy[`], inject the fragment into
GroupDistribution[`].

4. Save every fragment received from GroupDistribution[`], and reassemble and deliver rumors as fragments
become available.

• Whenever a message from AllGossip confirms that, for some partition `, all τ + 1 fragments of a rumor ρ,
initiated at pi, have been sent to every destination in ρ.D, confirm that ρ has been delivered.

• Whenever a deadline is about to expire for some rumor ρ initiated at pi, and there is no confirmation that ρ has
been delivered, send ρ directly to every process in ρ.D. (A simple optimization would be to only send rumors
to destinations for which no confirmation was received. Since this is a low probability event, it has little impact
on performance.)

Figure 5: Outline of ConfidentialGossip service at pi – with collusion
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Outline of Proxy[`] at pi:

• Time is divided into blocks of length dline/4.

• At the beginning of a block, i.e., in the first round of a new block, if has been alive for at least dline/4 rounds,
then collect all the fragments that have been injected since the last block began, and if there is at least one such
fragment, then set status to active.

• Each block is divided into iterations of
√
dline + 2 rounds. In each iteration, we maintain a set collaborators

of the active processes (i.e., processes with status active) in the same group as pi. Say that pi is in group Pb,`.
We also keep track of failed-proxies , i.e., those that we have already learned (in previous iterations) have failed
in this block. For each iteration, repeat (as long as status = active):

– Round 1: for each other group Pa,`, a 6= b, send every rumor fragment associated with that group (i..e,

ρa,`) to Θ(n1+48/
√
dline log n/|collaborators|) processes chosen uniformly at random from group Pa,`,

excluding processes in failed-proxies . (Notice that as long as the set collaborators is a good estimate
of the set of collaborators, this ensures a good bound on the message complexity of this step.) Every
process that receives a request to be a proxy for some other group(s) Pa,`, a 6= b caches the received
rumor fragments.

– Rounds 2, . . . ,
√
dline + 1: initiate a GroupGossip[`] in which processes in Pb,` share the set of

failed-proxies , as well as establish the set of collaborators , i.e., members of the group that still have
status active. Processes also share all the rumor fragments received from the other groups Pa,`, a 6= b .

(The deadline for rumors in GroupGossip[`] here is
√
dline .)

– Round
√
dline+ 2: Any process that was asked to be a proxy for the other groups Pa,`, a 6= b sends an

acknowledgment that proxying was successful. Any process that sent a request, and does not receive an
acknowledgment, adds the non-acknowledging processes to the set of failed-proxies .

• Upon recovering from a failure, obtain the round number from the global clock, set status = idle and wait until
a new block begins.

Figure 6: Outline of Proxy[`] at pi – with collusion
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Outline of GroupDistribution[`] at pi:

• Time is divided into blocks of length dline/4.

• At the beginning of the second round of a block, if has been alive for at least 2dline/3 rounds, then collect all
the fragments that have been injected since the first round of the block, and set status to active. (The first round
of the block is spent waiting for rumor fragments from the previous block.)

• Each block is divided into iterations of
√
dline + 2 rounds. In each iteration, we maintain a set collaborators

of the active processes (i.e., processes with status active) in the same group as pi. Say that pi is in group Pb,`.
We also keep track of a set hitSet of processes that have been sent a message in this block; each process in this
set was sent all the rumor fragments for this block. For each iteration, repeat (as long as status = active):

– Round 1: wait for rumor fragments to be injected.

– Round 2: for each other group Pa,`, a 6= b, send every “appropriate” rumor fragment to

Θ(n1+48/
√
dline log n/|collaborators|) processes chosen uniformly at random from group Pa,`, ex-

cluding processes in hitSet . By appropriate we mean that if pj is a process chosen randomly by pi, then pi
sends to pj only the rumor fragments in which pj is in the destination set. (Recall that each partial rumor
contains the target destination set as part of the metadata.) Every process that receives rumor fragments
can now reconstruct the rumor and return it to its user (via the ConfidentialGossip service).

– Rounds 3, . . . ,
√
dline + 2 rounds: initiate an instance of GroupGossip[`] (with deadline

√
dline) in which

processes in group Pb,` share their hitSets, as well as count how many members of the group are still active
(have status = active).

• In the last round of the block, initiate an instance of AllGossip (with deadline dline/4 − 1). Each process pi
gossips the information in its hitSet , but without including the rumor fragments themselves. That is, if the
hitSet of process pi indicates that some rumor fragment ρ0,` was sent to some process pj , and if ρ0,` has
identifier r, then pi gossips that the fragment 0 for partition ` of the rumor associated with identifier r was sent
to pj . This provides sufficient information for the source to determine whether the rumor was delivered, without
revealing the contents of the rumor. (See the description of the ConfidentialGossip service, above, for how this
information is used.)

• Upon recovering from a failure, obtain the round number from the global clock, set status = idle and wait until
a new block begins.

Figure 7: Outline of GroupDistribution[`] at pi – with collusion
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service ConfidentialGossip(dline)i

1 state
2 delivered-rumors, rumors-parts ⊆ R //R denotes the set rumors
3 r , r0 , r1 ∈ R

4 rumor-cache ⊂ R× Z× Z
5 hitSetM [1 . . . logn][0 . . . 1] is a two dimensional matrix where each element is a tuple in [n]× Z.
6 counter ∈ Z

7 //Time is divided into blocks of dline/4 rounds.
8 //When a rumor is injected, in the first block it is split, in the second block the fragments are distributed via GroupGossip and the Proxy,
9 //in the third block the fragments are reassembled via GroupDistribution, and in the fourth block the sender receives confirmation.

10 //Upon a recovery from failure, the process retrieves the round number from the global clock and proceeds analogously.

11 input rumor-inject(r) //This marks the beginning of round 1 of a new block
12 counter ← counter + 1

13 for every ` ∈ {1, . . . , logn} do in parallel
14 〈r0 , r1 〉 ← random-split(r, counter ,

√
dline, [n])

15 rumor-cache ← rumor-cache ∪ 〈r, counter , round〉
16 if i[`] = 0 then // i[`] represents the `-th bit of the binary representation of i.
17 GroupGossip[`].gossip(r0 ) //Gossip the rumor fragment in group
18 Proxy.distribute[`](r1 ) //Find a proxy to distribute the other rumor fragment in the other group
19 else
20 GroupGossip[`].gossip(r1 )

21 Proxy[`].distribute(r0 )

22

23 input Proxy[`].return(R)
24 GroupDistribution[`].distribute(R)

25

26 input GroupGossip[`].deliver(R)
27 GroupDistribution[`].distribute(R)

28

29 input GroupDistribution[`].return(R)
30 rumor-parts ← rumor-parts ∪R

31 for every r1, r2 ∈ rumor-parts do
32 if merge(r1, r2) = 〈success, r〉 then
33 if r /∈ delivered-rumors then
34 delivered-rumors ← delivered-rumors ∪ r

35 return(r)

36 rumor-parts ← rumor-parts \ {r1, r2}
37

38 input AllGossip.deliver(R)
39 for every (〈distribution, j, partition, h〉, ∗, ∗) ∈ R do
40 hitSetM [partition, j[partition]]← hitSetM [partition, j[partition]] ∪ {h}
41 for every 〈r, c, t〉 ∈ rumor-cache do
42 if ∃` ∈ [1, . . . , logn] where:
43 {〈pk, c〉 : pk ∈ r.D} ⊆ hitSetM [`, 0]

44 and
45 {〈pk, c〉 : pk ∈ r.D} ⊆ hitSetM [`, 1]

46 then rumor-cache ← rumor-cache \ {〈r, c, t〉}

47 In every round:
48 if ∃〈r, c, t〉 ∈ rumor-cache where round = t + r.d then
49 for every j ∈ r.D do
50 Network.send(〈shoot, r〉, i, j)
51

52 input Network.receive(m, src, dest)

53 If m = 〈shoot, r〉 then return(r)

Figure 8: Main protocol at process i.

30



service Proxy(dline, `)i

1 state
2 failed-proxies, current-proxies, proxy-ack , collaborators ⊆ [n]

3 status ∈ {idle, active}
4 my-rumors,waiting-rumors, proxy-buffer ⊆ R

5 r ∈ R

6 wakeup ∈ Z

7 //Time is divided into blocks of dline/4 rounds.
8 //Each block is divided into iterations of

√
dline + 2 rounds.

9 //Each iteration consists of 1 sending round, 1 gossip instance of
√

dline rounds, and 1 acknowledging round.

10 On recovery from failure:
11 wake-up ← round // the value of round is retrieved from the global clock
12 status ← idle

13

14 At the beginning of round 1 of a new block:
15 if |round − wakeup| ≥ dline/4 then
16 my-rumors ← waiting-rumors

17 waiting-rumors ← ∅
18 if my-rumors 6= ∅ then
19 status ← active

20 failed-proxies, partial-rumors, proxy-buffer , proxy-ack ← ∅
21 collaborators ← {j ∈ [n] : j[`] = i[`]}
22

23 At the beginning of round 1 of an iteration:
24 if status = active then
25 current-proxies ← Θ(n1+48/

√
dline logn)/|collaborators| processes chosen uniformly at random

from {j ∈ [n] : j[`] 6= i[`]} \ failed-proxies

26 for every j ∈ current-proxies do Network.send(〈proxy,my-rumors〉, i, j)
27

28 At the beginning of round 2 of an iteration:
29 collaborators ← ∅
30 if status = active then GroupGossip[`].gossip(〈proxy-buffer , failed-proxies, i〉,

√
dline, [n])

31

32 At the beginning of the last round of an iteration:
33 if status = active then for every j ∈ proxy-ack do Network.send(proxy-ack, i, j)

34

35 At the end of the last round of a block:
36 ConfidentialGossip[`].return(partial-rumors)

37

38 input ConfidentialGossip[`].distribute(r)
39 waiting-rumors ← waiting-rumors ∪ {r}
40

41 input GroupGossip[`].deliver(R)
42 for every (〈m,F, j〉, ∗, ∗) ∈ R do
43 failed-proxies ← failed-proxies ∪ F

44 if status 6= idle then collaborators ← collaborators ∪ {j}
45 partial-rumors ← partial-rumors ∪m

46

47 input Network.receive(〈proxy,m〉, src, dest)
48 proxy-buffer ← proxy-buffer ∪ {m}
49 proxy-ack ← proxy-ack ∪ {src}
50

51 input Network.receive(proxy-ack, src, dest)
52 status ← idle

Figure 9: Proxy search at process i for partition `.
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service GroupDistribution(dline, `)i

1 state
2 partials,waiting-partials ⊆ [n]×R

3 target-procs, collaborators, hitProcs ⊆ [n]

4 hitSet ⊆ [n]× Z
5 target-msg ⊆ R×R× · · ·R× [n]

6 wakeup ∈ Z
7 status ∈ {idle, active}

8 //Time is divided into blocks of dline/4 rounds.
9 //Each block is divided into iterations of

√
dline + 2 rounds.

10 //Each iteration consists of one initialization round, one distribution round and one gossip instance of
√
dline rounds.

11 On recovery from failure:
12 wakeup ← round

13 status ← idle

14

15 At the beginning of round 2 of a block:
16 if |round − wakeup| ≥ 2dline/3 then
17 status ← active

18 partials ← waiting-partials

19 hitSet ,waiting-partials ← ∅
20 collaborators ← {j ∈ [n] : j[`] = i[`]}
21

22 At the beginning of round 2 of an iteration:
23 if status = active then
24 hitProcs = {p ∈ [n] : 〈p, ·〉 ∈ hitSet}
25 target-procs ← Θ(n1+48/

√
dline logn/|collaborators|) processes chosen uniformly at random

from {j ∈ [n] : j[`] 6= i[`]} \ hitProcs

26 for every j ∈ target-procs do
27 target-msg ← {rk ∈ partials : j ∈ rk.z.D}
28 hitSet ← hitSet ∪ {〈j, rk.z.cnt〉 : rk ∈ target-msg}
29 Network.send(〈partials, target-msg〉, i, j)
30

31 At the beginning of round 3 of an iteration:
32 collaborators ← ∅
33 if status = active then GroupGossip[`].gossip(〈share, hitSet , i〉,

√
dline, [n])

34

35 At the end of the last round of a block:
36 AllGossip.gossip(〈distribution, i, `, hitSet〉, dline/4− 1, [n])

37

38 input ConfidentialGossip[`].distribute(r)
39 waiting-partials ← waiting-partials ∪ {r}
40

41 input GroupGossip[`].deliver(〈share, h, j〉)
42 if status = active then
43 collaborators ← collaborators ∪ {j}
44 hitSet ← hitSet ∪ h

45

46 input Network.receive(m, src, dest)
47 if m = 〈partials, r1, r2, . . .〉 then for every rk ∈ m do ConfidentialGossip[`].return(rk)

Figure 10: Rumor distribution between groups at process i for partition `.
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service Filter(`)i

1 input GroupGossip[`].send(m, src, dest)

2 if i[`] = src[`] then Network.send(m, src, dest)

3

4 input Network.receive(m, src, dest)

5 GroupGossip[`].receive(m, src, dest)

Figure 11: Filter ` at process i.
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