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ABSTRACT

In this paper, we study the complexity of gossip in an asyn-
chronous, message-passing fault-prone distributed system.
In short, we show that an adaptive adversary can signifi-
cantly hamper the spreading of a rumor, while an oblivious
adversary cannot. This latter fact implies that there ex-
ist message-efficient asynchronous (randomized) consensus
protocols, in the context of an oblivious adversary.

In more detail, we summarize our results as follows. If
the adversary is adaptive, we show that a randomized asyn-
chronous gossip algorithm cannot terminate in fewer than
O(f(d + δ)) time steps unless Ω(n + f2) messages are ex-
changed, where n is the total number of processes, f is
the number of tolerated crash failures, d is the maximum
communication delay for the specific execution in question,
and δ is the bound on relative process speeds in the spe-
cific execution. The lower bound result is to be contrasted
with deterministic synchronous gossip algorithms that, even
against an adaptive adversary, require only O( polylog(n))
time steps and O(n polylog(n)) messages.

In the case of an oblivious adversary, we present three
different randomized, asynchronous algorithms that provide
different trade-offs between time complexity and message
complexity. The first algorithm is based on the epidemic
paradigm, and completes in O( n

n−f
log2 n(d+ δ)) time steps

using O(n log3 n(d+δ)) messages, with high probability. The
second algorithm relies on more rapid dissemination of the
rumors, yielding a constant-time (w.r.t. n) gossip protocol:
for every constant ε < 1, and for f ≤ n/2, there is a variant
with time complexity O( 1

ε
(d + δ)) and message complexity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’08, August 18–21, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-59593-989-0/08/08 ...$5.00.

O( 1
ε
n1+ε log n(d + δ)). The third algorithm solves a weaker

version of the gossip problem in which each process receives
at least a majority of the rumors. This algorithm achieves
constant O(d + δ) time complexity and message complexity

O(n7/4 log2 n).
As an application of these message-efficient gossip proto-

cols, we present three randomized consensus protocols. Our
consensus algorithms derive from combining each of our gos-
sip protocols with the Canetti-Rabin framework, resulting in
message-efficient consensus algorithms. The resulting proto-
cols have time and message-complexity asymptotically equal
to our gossip protocols. We particularly highlight the third
consensus protocol, a result that is interesting in its own
right: the first asynchronous randomized consensus algo-
rithm with strictly subquadradic message-complexity, i.e.,
O(n7/4 log2 n).

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems; C.4 [Performance of Systems]: [fault tol-
erance]; G.3 [Probability and Statistics]: Probabilistic
algorithms

General Terms
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1. INTRODUCTION
In the gossip problem, each process starts with an initial

value, called a rumor, and attempts to learn all the other
rumors. Gossip protocols have long been studied in var-
ious distributed computing contexts; see, for example, [11]
(database consistency), [25] (failure detection) [4, 14, 17, 22]
(group multicast), [21] (group membership), [8, 9] (consen-
sus) and [20] (resource location). Almost all the theoretical
research, however, has focused on synchronous systems.



In this paper we study the efficiency of gossip in asyn-
chronous systems, that is, systems in which there are no a
priori bounds on message delay and processor speed. Pro-
cesses can fail by crashing at any time, permanently halting
their execution. We show how, in this context, an adap-
tive adversary can effectively limit the spread of a rumor,
whereas against an oblivious adversary gossip can be effi-
ciently achieved.

A simple scheme for gossiping consists of each process pe-
riodically sending its rumor—along with any new rumors
that it has learned—to another randomly selected process.
Such a scheme, sometimes called the epidemic-style paradigm
for its similarity with the way diseases are spread, is very ro-
bust because of the random pattern of communication. Two
natural questions, however, arise with respect to such a pro-
tocol: how often should a process transmit its rumor, and
when should a process stop? In a synchronous system, both
questions are readily answered: each process sends one mes-
sage per round of communication, and the processes can halt
(with high probability) after a sufficient number of rounds.
In a seminal paper, Karp et al. [19] show that a single rumor
can be disseminated in O(log n) rounds using O(n log log n)
messages, with high probability.

With further work, it is in fact possible to achieve a deran-
domized deterministic synchronous protocol, inspired by the
epidemic paradigm (based on expander graphs that approx-
imate random interactions), that needs only O( polylog(n))
rounds of communication and only O(n polylog(n)) mes-
sages [9], even when up to n− 1 processes may crash. (See
also [8, 16].) Perhaps unsurprisingly, globally synchronized
gossip periods are key to obtaining such good performance.

While it is common to argue that distributed applications
are synchronous most of the time, it is also good practice to
devise algorithms that can tolerate asynchronous situations
where there is no a priori bound on the communication de-
lay d and the relative process speed δ. In some cases, these
bounds may be unknown; in other cases, the only known
bound may be very conservative, resulting in inefficient pro-
tocols; in yet other cases, there may be pathological situ-
ations in which such bounds are violated. (Think of the
e-mail that took two days to reach its destination). Clearly,
it is appealing to devise asynchronous gossip algorithms that
do not make use of any known bound on synchrony.

The simple protocol sketched above can be engineered to
work in an asynchronous environment via a simple transfor-
mation: the gossip period can be based on a local counter,
rather than on bounds d and δ; every fixed number of local
steps, each process sends gossip to a randomly selected pro-
cess. The difficulty remains, however, to determine when to
stop gossiping in order to avoid too much communication;
the problem arises in part since failed processes can be con-
fused with slow ones. Unlike in the case of a synchronous
system, it is not sufficient to simply repeat the gossip step a
pre-determined number of times. For example, consider the
time at which two processes begin their rth iteration of gos-
sip; because of asynchrony, for large r, it may be that one of
the processes begins its rth iteration long after the other has
completed that iteration. Thus if we rely on a fixed number
of iterations of gossip, data may not be propagated.

The motivation of this paper is to ask whether we can
devise an asynchronous gossip algorithm that tolerates 0 <
f < n crash failures, yet performs efficiently when some
bounds on d and δ indeed hold. More specifically, we are

looking for asynchronous gossip algorithms with low par-
tially synchronous complexity [12].1

Contributions

1. Lower Bound and Cost of Asynchrony.
Our first result demonstrates the inherent cost of asyn-

chrony and crashes. Indirectly, this result indicates that
the techniques from the synchronous world developed in [8,
9] (for example), cannot be efficiently brought to an asyn-
chronous environment. Specifically, we show in Theorem 1
(Section 2) that any asynchronous gossip protocol—either
deterministic, or against an adaptive adversary—that tol-
erates f faults has either Ω(n + f2) message complexity or
Ω(f(d + δ)) time complexity. Notice that the trivial gos-
sip algorithm in which each process sends its rumor directly
to everyone else has Θ(n2) message complexity and time
complexity O(d + δ). Thus, any protocol that improves on
the trivial solution requires time complexity linear in f , the
number of possible faults. This is in contrast to determin-
istic algorithms for synchronous networks that complete in
only O( polylog(n)) rounds using only O(n polylog(n)) mes-
sages, despite tolerating f = n− 1 failures [9].

In many ways, the lower bound is quite surprising, as
epidemic-style algorithms appear relatively timing indepen-
dent. Underlying our lower bound proof lies a strategy for
the adversary to fight the spread of a rumor by adaptively
choosing how to delay computation and when to fail pro-
cesses. The strategy forces the processes to keep spreading
the rumor for a long period of time, or to inflate the number
of times the rumor needs to be spread.

In fact, by manipulating the relative process speeds, the
adversary can trick a large number of processes into believ-
ing that the remaining processes have failed. These remain-
ing processes are now in a quandary: if they send too many
messages, then the message complexity is high; if they send
too few messages, then the adversary can isolate a set of
processes, resulting in a slow completion time.

We then contrast asynchronous gossip algorithms with
synchronous gossip algorithms. As a corollary of our lower
bound (Corollary 2), we derive the inherent cost of asyn-
chrony in gossiping. Specifically, we contrast synchronous
algorithms that know a priori that d = δ = 1 to algorithms
that are asynchronous, i.e., in which d and δ are unknown
to the algorithm. We show that in the worst case, if there
are f possible failures, then the most efficient asynchronous
algorithm is either a factor of f slower or uses a factor of
1+f2/n more messages than the most efficient synchronous
algorithm. When f = Θ(n), this implies a factor of Θ(n)
loss either in time or message complexity.

2. Gossip Algorithms.
We proceed to ask whether efficient asynchronous gossip is

possible in the context of an oblivious adversary. We present

1This captures the complexity of the algorithms in the sub-
set of executions where synchrony bounds hold but are not
known to the algorithm [12]. However, the algorithm is in-
deed asynchronous and the processes have no global clocks,
nor do they manipulate the synchrony bounds. Note that
it is not clear how one could measure the complexity of
genuinely asynchronous executions with infinitely increasing
process relative speed and communication delays.



Algorithm Time Messages Model Adversary

CK [9] O (polylog(n)) O (n polylog(n)) Synch. Adaptive

Trivial O (d + δ) Θ
`
n2
´

Part. Synch. Adaptive

Lower Bound
(Section 2)

Ω (f(d + δ)) or Ω
`
n + f2

´
Part. Synch. Adaptive

ears (Section 3) O
“

n
n−f

log2 n(d + δ)
”

O
`
n log3 n(d + δ)

´
Part. Synch. Oblivious

sears (Section 4) O
“

n
ε(n−f)

(d + δ)
”

O
“

n2+ε

ε(n−f)
log n(d + δ)

”
Part. Synch. Oblivious

tears (Section 5) O (d + δ) O
“
n7/4 log2 n

”
Part. Synch. Oblivious

Table 1: Comparing gossip protocols for the synchronous and partially synchronous models, in the context

of an adaptive or oblivious adversary.

three different algorithms that encompass different trade-
offs between time and message complexity. The results are
summarized in Table 1.

The first algorithm (see Section 3), called ears (Epidemic
Asynchronous Rumor Spreading), combines a traditional
epidemic-style dissemination scheme with a progress con-
trol scheme for collecting additional information; this ad-
ditional data is necessary to decide when to stop, hence
avoiding unnecessary messages. We show that this algo-

rithm achieves O
“

n
n−f

log2 n(d + δ)
”

time complexity, and

O(n log3 n(d+δ)) message complexity, with high probability.
Thus, when f is a constant fraction of n, this epidemic-style
protocol is competitive with the best synchronous gossip
protocols. (Note that the results in [19] refer to dissemi-
nating only a single rumor.)

Conducting the performance analysis of such an asyn-
chronous algorithm is not straightforward; it requires ex-
amining the information gathering (typically found in syn-
chronous gossip protocols), procedures like shooting (trans-
mitting information from a core to the entire set of pro-
cesses), and information exchange among pairs of processes.
The technical difficulty in the analysis is related to evaluat-
ing the cost of these procedures, with respect to the unknown
parameters d and δ.

The second algorithm (see Section 4), called sears (Spam-
ming Epidemic Asynchronous Rumor Spreading), diverges
from the pure “epidemic” style by sending more messages
during each gossip period. The resulting algorithm is
an asynchronous constant-time gossip algorithm with sub-
quadratic message complexity. More specifically, we show
that for every constant ε < 1, and for f < n/2, algo-
rithm sears has time-complexity O( 1

ε
(d + δ)) and message-

complexity O( 1
ε
n1+ε log n(d + δ)).

The third algorithm (see Section 5), called tears (Two-
hop Epidemic Asynchronous Rumor Spreading), solves a
weaker variant of gossip, which we call majority gossip, in
which each process receives a majority of the rumors (rather
than the rumor of each correct process). The resulting
protocol achieves constant time (w.r.t. n), and a message-
complexity with no dependence on d or δ, but is stricly sub-
quadratic. The protocol achieves time complexity O(d + δ)

and message complexity O(n7/4 log2 n), for f < n/2.

3. Consensus.
As an application of these message-efficient gossip proto-

cols, we present three randomized asynchronous consensus
protocols. Our consensus algorithms derive from combining
each of our gossip protocols with the Canetti-Rabin frame-
work (see [6], or [2, Section 14.3]). (For consensus f < n/2 is
assumed). The resulting protocols have time and message-
complexity asymptotically equal to our gossip protocols (see
Section 6); the results are summarized in Table 2. (CR-G
stands for the Canetti-Rabin algorithm when used with gos-
sip algorithm G.)

We particularly highlight the third consensus protocol
as it is the first asynchronous randomized consensus algo-
rithm that terminates in constant time (w.r.t. n) and has
strictly subquadradic message-complexity. This application
also motivates the further study of majority gossip, a weak-
ening of the classic gossip problem.

To contrast our consensus algorithms to existing random-
ized protocols, we note that the first randomized protocol
for consensus in asynchronous message-passing systems was
given by Ben-Or [3]; it tolerates Byzantine failures and has
exponential expected time complexity. Many other random-
ized algorithms have followed, considering consensus under
different adversarial assumptions and failure models. See
the excellent surveys of Chor and Dwork [10], Aspnes [1] and
the book by Attiya and Welch [2]. To the best of our knowl-
edge, none of the previous randomized consensus algorithms
designed for an asynchronous, message-passing network
achieves asymptotically subquadratic message-complexity.

More discussion and omitted proofs can be found in the
full version of the paper [15].

Other Related Work.

In the context of asynchronous networks, Verma and Ooi [26]
consider an environment that resembles a partially syn-
chronous system, but assumes an a priori probability dis-
tribution on the communication delay; moreover, there are
no crash failures. The work of Boyd et al. [5] considers
gossip protocols (in the context of aggregation) in an “asyn-
chronous” environment where local clocks are modeled as
Poisson processes; there are also no crash failures in this
case. Our work fundamentally differs from [26] and [5] in
that we consider a fully asynchronous environment with
crashes. More details on prior work on gossip in fault-prone
distributed networks can be found in [24] and [18].



Algorithm Time Messages

Canetti-Rabin [6] O (d + δ) O
`
n2
´

CR-ears (Sections 3,6) O
`
log2 n(d + δ)

´
O
`
n log3 n(d + δ)

´

CR-sears (Sections 4,6) O
`

1
ε
(d + δ)

´
O
`

1
ε
n1+ε log n(d + δ)

´

CR-tears (Sections 5,6) O (d + δ) O
“
n7/4 log2 n

”

Table 2: Consensus protocols under an oblivious adversary. For consensus f < n/2 is assumed.

System Model

Processes.
We consider a system consisting of n message-passing,

asynchronous, crash-prone processes, each with a unique
identifier in a fixed set [n] = {1, 2, . . . , n}. Up to f < n pro-
cesses may crash. Each process can communicate directly
with all other processes; messages are not corrupted or lost
in transit. The model introduced here is derived from the
classical one in [12].

Timing.
For the purpose of analysis, we assume that time proceeds

in discrete steps. At every time step, some arbitrary subset
of the processes are scheduled to take a local step. In each
local step: (1) a process receives some subset of the messages
sent to it; (2) it performs some computation; and (3) it sends
one (or more) message(s) to other process(es).

For a given execution, we define d to be the maximum
delivery time of any message, and δ to be the maximum
step size: if a non-failed process p sends a message m to
process q, and if process q is scheduled for a local step at
any time t′ ≥ t + d, then process q receives message m no
later than time t′; during any sequence of δ time steps, each
non-crashed process is scheduled at least once. Note that
in the asynchronous environment we consider, there might
be no such bound d or δ in certain executions. An adver-
sary determines the set of processes scheduled for each time
step, and the set of ≤ f processes that crash during each
time step. An oblivious adversary determines the schedule
and failures in advance, while an adaptive adversary sched-
ules and fails processes dynamically in response to the al-
gorithm’s behavior (which may depend on random choices
made by the processes during the execution).

Gossip.
In this gossip problem, every process p begins with a ru-

mor rp unknown to the other processes, and maintains a
collection of rumors that it has received. A gossip protocol
should satisfy the following three requirements: (1) Rumor
gathering : eventually, every correct process has added to its
collection every rumor that initiated at a correct process; (2)
Validity : if a rumor is added to a process’s collection, then
it is the initial rumor for some process; and (3) Quiescence:
eventually, every process stops sending messages forever.

We say that gossip completes when each process has ei-
ther crashed or both (a) received the rumor of every correct
process and also (b) stopped sending messages. Note that
it is impossible in an asynchronous system for a process to
terminate, since a process can never be certain that it has

received every correct rumor. It can, however, stop sending
messages after some point.

Complexity Measures.
For a given asynchronous algorithm A, we say that A

has time complexity T asynch

A (d, δ) and message complexity

M asynch

A (d, δ) if for every f < n, for every infinite execution
with bounds d and δ, every correct process completes by
(expected) time T asynch

A (d, δ), and the (expected) number of
point-to-point messages sent by all the processes combined is
no more than M asynch

A (d, δ). For some synchronous algorithm
bA in which, for every execution, d = δ = 1 and this is known
a priori by the algorithm, T synch

bA
(d, δ) and M synch

bA
(d, δ) are

defined analogously. (Note that we count only the number
of messages sent, not the total number of bits transmitted,
which depends on the message size; this remains a subject
for future work.)

2. THE COST OF ASYNCHRONY
We now show that no randomized gossip protocol can be

both time and message efficient against an adaptive adver-
sary. This result also establishes the cost of asynchrony:
when there are f = Θ(n) possible failures, any asynchronous
gossip algorithm, when compared to an optimal synchronous
algorithm, either suffers a slow-down of a factor of Θ(n), or
an inflation of message-complexity by a factor of Θ(n).

Underlying the lower bound lies a strategy for the adver-
sary to fight the spreading of a rumor by adaptively choosing
how to delay computations and when to fail processes. The
main idea is to notice that there are two types of rumor
spreading techniques: either processes send many messages
in an attempt to rapidly distribute their rumors, or they
rely on the cascading of messages in an attempt to send
only a few. In the former case, it is easy for the adver-
sary to construct an execution in which the protocol is not
message-efficient. In the latter case, the adversary selects
two processes that do not communicate directly, and pre-
vent them from communicating by selectively failing pro-
cesses that may attempt to help them. As a result, these
two processes cannot terminate and hence the algorithm is
slow. In both cases, we use the eventual quiescence of some
of the processes to reduce the number of processes that fail
in the constructed execution.

Theorem 1. For every gossip algorithm A, there exists
d, δ ≥ 1 and an adaptive adversary that causes up to f < n
failures such that, in expectation, either: (1) M asynch

A (d, δ) =

Ω(n + f2); or (2) T asynch

A (d, δ) = Ω(f(d + δ)).

Proof. Consider some algorithm A. The Ω(n) lower
bound for the number of messages is straightforward. Fix



Figure 1: Illustration of the construction in Theorem 1.

f ≤ n/4. (For f > n/4 the adversary follows the strategy
described below with f = n/4.) Partition the n processes
into two sets: S1, of size n − f/2 and S2, of size f/2. The
adversary proceeds as follows: First, it executes set S1 with
d = 1 and δ = 1 until every process in S1 completes and
ceases to send messages.

Let t be the (global) time at which this completes. Assume
for the remainder of the proof that t ≤ f ; otherwise, we can
fail the processes in S2, resulting in an execution in which
d = δ = 1 and t = Ω(f(d + δ)). Throughout this first part,
choose δ = f and schedule only processes in S1.

Next, consider set S2. For each process p ∈ S2, simulate
the result of process p receiving any messages from S1, and
executing f/2 local steps in isolation, i.e., during which p

receives no other messages from any other process. Since the
behavior of p is probabilistic, this induces a distribution over
the set of messages sent by p. We say that p is promiscuous
if, in expectation, p sends at least f/32 messages during the
f/2 (isolated) local steps. Let P ⊆ S2 denote the set of
promiscuous processes.

There are now two cases to consider depending on num-
ber of promiscuous processes in S2. If there are at least f/4
promiscuous processes (|P | ≥ f/4), we construct an execu-
tion in which M(d, δ) = Ω(f2). Otherwise (|P | < f/4), we
construct an execution in which T (d, δ) = Ω(f(d + δ)).

Case 1: |P | ≥ f/4. Then, after time t, the adversary
schedules all of the processes in S2 in each of the following
f/2 time steps (δ = 1). The adversary ensures that none
of these messages are delivered, i.e., d ≥ f/2 + 1. Thus,
the f/4 promiscuous processes send, in expectation, f/32
messages each (and receive no messages), resulting in an

expected message complexity M asynch

A (d, δ) = Ω(f2), as de-
sired. Notice that in this case, the adversary does not fail
any processes.

Case 2: |P | < f/4. Let S = S2 \ P (the set of non-
promiscuous processes), and let ν = |S|. The adversary pro-
ceeds to identify two non-promiscuous processes that have a
constant probability of not communicating with each other;
all other processes in S2 are failed. (See Figure 1 for an
illustration.)

In order to identify two such non-promiscuous processes,
for each non-promiscuous p ∈ S, we define the set N(p) to
be the set of processes that p sends one or more messages to

with probability < 1/4 during f/2 (isolated) local steps. (If
p sends more than one message to the same process, then
N(p) requires that the the probability to send one message
plus the probability to send two messages and so on is less
than 1/4). We know, since p is non-promiscuous, that the
expected number of messages sent by p is < f/32. Thus,
|N(p)| > 7 · f/8: if not, then there exist (at least) f/8 pro-
cesses that p sends (at least) one message with probability
≥ 1/4, implying that in expectation p sends at least f/32
messages, resulting in a contradiction.

Next, since at most f/8 processes are not in N(p), and
since there are at least f/4 non-promiscuous processes (ν =
|S2| − |P |, |S2| = f/2, |P | < f/4), we conclude that there
are at least ν/2 non-promiscuous processes in N(p). Thus,
for each non-promiscuous p ∈ S2, there are at least ν/2 non-
promiscuous processes in S2 that are sent a message by p

with probability < 1/4.
We claim, then, that there exist two non-promiscuous

processes p,q ∈ S2 such that q ∈ N(p) and p ∈ N(q):
Consider the (logical) directed graph on ν non-promiscuous
nodes in which there is an edge from p to q if q ∈ N(p).
Since each p has ν/2 outgoing edges, there are a total of ν2/2
edges in the graph. However, there are only

`
ν
2

´
= ν(ν−1)/2

pairs of nodes in the graph, implying that there must exist
a pair of nodes with edges in both directions, as required.

The adversary fails all the nodes in S2 except p and q im-
mediately at time t, prior to taking any local steps. The ad-
versary then executes p and q for f/2 local steps, delivering
all messages with delay 1, i.e., d = 1. Since p and q have not
coordinated via previous messages, they choose to send their
messages independently, and thus we have established that
with probability at least (1− 1/4)(1− 1/4) = 9/16, p does
not send a message to q and q does not send a message to p.
The adversary fails every other process in S1 to which p and
q send a message (notice that processes in S2 have already
been failed). Since p and q are not promiscuous, each in ex-
pectation sends no more than f/32 messages. By Markov’s
inequality, we conclude that each, with probability at least
3/4, sends no more than f/8 messages. (Let X be the ran-
dom variable for the number of messages sent by p. Then,

Pr(X ≥ f/8) ≤ f/32
f/8

= 1/4. Hence, Pr(X < f/8) > 3/4.)

Thus, since the processes are independent, with probability
9/16, the two processes p and q together send at most f/4



messages, resulting in the total number of failed processes
being no more than 3f/4− 2 < 3f/4 < f : f/4 processes in
S1 and f/2− 2 processes in S2.

Finally, using a union bound, we observe that p and q

do not communicate with each other, and do not send more
than f/4 combined messages, with probability at least (1−
(7/16 + 7/16)) = 1/8. We also notice that in this case, p

and q cannot terminate during the f/2 (isolated) local steps:
they have not received each other’s rumors. Since in this
case, d = 1 and each local step takes time δ, we conclude that
p and q run for time at least (d + δ)f/2 with probability at

least 1/8. Thus, in expectation, T asynch

A (d, δ) = Ω(f(d + δ)),
as desired.

As a corollary, we consider the worst-case ratio of the cost
of asynchronous and synchronous algorithms. For a given
asynchronous algorithm A, we define the time and message
cost-of-asynchrony (CoA) as follows:

T (A)CoA = max
d,δ

 
T asynch

A (d, δ)

min bA T synch

bA
(d, δ)

!

M(A)CoA = max
d,δ

 
M asynch

A (d, δ)

min bA M synch

bA
(d, δ)

!
.

We conclude from Theorem 1 that there is an inherent cost
to tolerating asynchrony. In particular, the most efficient
asynchronous gossip algorithms are significantly less efficient
than the most efficient synchronous gosssip algorithms:

Corollary 2 (Cost of Asynchrony). For every
asynchronous gossip algorithm A, either:

T (A)CoA = Ω(f)

or

M(A)CoA = Ω(1 + f2/n).

3. EFFICIENT EPIDEMIC GOSSIP
In this section, we present an epidemic-style asynchronous

gossip algorithm, called ears (Epidemic Asynchronous Ru-
mor Spreading), that can tolerate up to f < n failures. We
then show in Section 3.2 that in the context of an oblivi-
ous adversary, the algorithm is both time and message ef-
ficient, achieving O( n

n−f
log2 n(d + δ)) time complexity and

O(n log2 n(d + δ)) message complexity.

3.1 Algorithm EARS

The algorithm presented in this section is based on the
well-known epidemic paradigm, augmented to maintain
and propagate additional information about the ongoing
progress in distributing the rumors. In each step, a process
chooses a target at random and sends it all the information
that it has collected. This procedure is devised to achieve
three properties: (1) gathering : after some period of time,
every rumor originating at a correct process is known to ev-
ery process in a large core of correct processes; (2) shooting :
every so often, every rumor known to the large core is sent
to every other process in the system; (3) exchange: every so
often, every pair of correct processes in the core exchange
information about who has been shot.

EARS(rp)

1 � Initialization:
2 V (p)← {rp} � a set of processes
3 I(p)← ∅ � a set of pairs 〈r,p〉
4 L(p)← [n] � a set of processes
5 sleep cnt ← 0 � an integer
6
7 repeat

8 for every message m = 〈V, I〉 received do

9 V (p)← V (p) ∪m.V
10 I(p)← I(p) ∪m.I
11 Update L(p) based on V (p) and I(p).
12 if L(p) = ∅
13 then sleep cnt ← sleep cnt + 1
14 else sleep cnt ← 0

15 if sleep cnt < Θ
“

n
n−f

log n
”

then

16 � Epidemic Transmission Mode:
17 Choose q uniformly at random from [n].
18 Send m = 〈V (p), I(p)〉 to process q.
19 for every r ∈ V (p) do

20 I(p)← I(p) ∪ (r,q)
21 Update L(p) based on V (p) and I(p).

Figure 2: The Epidemic-style gossip algorithm ears,
stated for process p; rp denotes the rumor of p. Ev-

ery time p is scheduled to take a step, it executes

one iteration of the main loop.

In more detail, the algorithm proceeds as follows. (Pseu-
docode is presented in Figure 2.) Each process p main-
tains a set V (p) containing all the rumors known to p. Ini-
tially V (p) contains only p’s initial rumor. Each process
also maintains an informed-list I(p) which contains pairs of
rumors and processes: when (r,q) ∈ I(p), this implies that
p knows that rumor r has been sent to process q by some
process.

In each local step, a process sends a message containing
V (p) and I(p) to a process q chosen uniformly at random
from [n]. Process p then adds all pairs (r,q), for r ∈ V (p),
to the informed-list I(p). When a process q receives a mes-
sage from p, it updates its local sets V (q) and I(q).

Let L(p) be the set of processes that p cannot ascertain
(via I(p)) whether they have been sent every rumor in V (p),
i.e., L(p) = {q : ∃r ∈ V (p), (r,q) /∈ I(p)}. When L(p) is
empty for process p, i.e., when every rumor known to p has
been sent to every process, p enters the shut-down phase
during which p ensures that its informed-list I(p) has been
disseminated sufficiently. This phase lasts for Θ( n

n−f
log n)

local steps; during the shut-down phase, p continues as be-
fore, receiving messages from other processes and sending
a shut-down message to a process chosen uniformly at ran-
dom from [n]. After the shut-down phase completes, p stops
sending messages and sleeps.

During the shut-down phase, and afterwards while p is
asleep, it may continue to receive and process messages from
other processes that are still awake. If p receives a new
rumor that has not yet been sent to some process, i.e., if L(p)
becomes non-empty, then p aborts the shut-down phase or
awakens and resumes the normal epidemic process until L(p)
becomes empty again.



3.2 Analysis of Algorithm EARS

In this section, we argue that with an oblivious (d, δ)-
adversary, the algorithm completes (correctly) by time
O( n

n−f
log2 n(d+ δ)) and sends O(n log3 n(d+ δ)) messages,

with high probability.
For the purposes of the analysis we partition the execution

into epochs such that in each epoch, only a constant fraction
of the processes fail. Since at most f processes crash in
an execution, there are at most log n

n−f
such epochs. We

identify the first epoch i of length Θ(2i log2 n(d + δ)); a
simple counting argument suffices to show that this occurs
no later than time Θ( n

n−f
log2 n(d+ δ)). Let A be the set of

processes that are non-faulty in epoch i; by assumption, we
have n/2i+1 < |A| ≤ n/2i. Each epoch is partitioned into
7 stages, each of length Θ(2i log2 n(d + δ)). Each correct
process thus takes at least Θ(2i log n) local steps in each
stage.

At a high level, the proof proceeds to show the following
sequence of claims, each of which corresponds to a stage:
(1) Processes in A collectively gather all the rumors in the
system. (2) Processes in A exchange information, ensuring
that every process in A knows all the rumors. (3) Processes
in A collectively send all the rumors to every other process.
(4) Processes in A exchange information, ensuring that every
process in A knows that all the rumors have been sent. (5)
Processes in A enter the shut-down phase. (6) Processes in
A collectively notify all the processes in the system that it
is time to shut down. (7) Every process sleeps.

The first key lemma shows that in each stage of epoch i,
all the processes in i exchange information. This resembles
the analysis of typical epidemic-style algorithms, with the
additional complication that some processes may be sleeping
(believing perhaps incorrectly that the gossip is complete).

Lemma 3 (Exchange Property). For every process
p ∈ A and stage j of epoch i:
(1) All rumors known by p at the beginning of stage j are
known to every q ∈ A at the end of j, w.h.p.
(2) If no process in A is asleep by the end of stage j, then
all pairs known to p in I(p) at the beginning of stage j are
known to all other processes in A at the end of stage j, w.h.p.

Proof (sketch). We begin with Part (2). Define sets
Bk, for 0 ≤ k ≤ log |A|: Let B0 contain processes in A that
know the rumors and pairs from process p at the beginning
of stage j; let Bk+1 contain processes in A \ (B0 ∪ . . . ∪Bk)
that were sent a message from some process q in Bk in the
first c·2i log n−1 local steps after q has received information
about p’s rumors and pairs at the beginning of phase j.

As long as |Bk| < |A|/8, the sets Bk grow at least ex-
ponentially in k with high probability. In the case where
|Bk| > |A|/8, there are a sufficient number of processes in
Bk to ensure that every other process in A is sent a mes-
sage containing information on p’s rumors and pairs at the
beginning of stage j, with high probability. The same ar-
gument holds with respect to Part (1), with the additional
complication that if a process involved in the dissemination
is asleep, then its data has already been disseminated.

We now argue that every process in A learns every possible
rumor by the end of stage 1. This lemma follows by counting
the number of messages sent by any correct process in stage
1, ensuring that each rumor is received by some process in
A; we then apply Lemma 3. Let Vall be the set of rumors

that are eventually learned by some correct process. (Since
every correct process “learns” its own rumor, it is sufficient
to ensure that every correct process learns Vall.)

Lemma 4 (Gathering Property). At the end of
stage 2, for every non-failed p ∈ A, Vall ⊆ V (p) w.h.p.

The key remaining claim is that every process sleeps by the
end of epoch i and never awakes thereafter. We begin by
observing: since every process in A has already learned every
rumor in Vallby the end of stage 2 (w.h.p.), we can be
certain that no process in A learns any new rumors at any
later point.

Next, we note that by the end of stage 3, every rumor
in Vall has been sent to every process in [n]. This follows
by counting the number of messages sent by (non-sleeping)
processes in A:

Lemma 5 (Shooting Property). For every process
q ∈ [n], there exists some process p ∈ A such that at the
end of stage 3 in epoch i, q /∈ L(p) with high probability.

It therefore easy to see that by the end of stage 4, as a result
of Lemma 5 and Lemma 3, at least one process in A has
entered the shut-down phase. Since information is rapidly
exchanged, it then follows that soon thereafter every process
in A enters the shut-down phase, followed by every correct
process in [n]; it requires some care, however, to ensure that
processes do not go to sleep prior to propagating the shut-
down information. (The argument is somewhat analogous
to Lemma 3, in that we maintain increasing sized sets of
nodes that have entered the shut-down phase, but not yet
gone to sleep.) We now conclude:

Theorem 6. Algorithm ears completes gossip with time

complexity O
“

n
n−f

log2 n(d + δ)
”

and message complexity

O(n log3 n(d + δ)), with high probability under an oblivious
adversary.

Proof (sketch).. By Lemma 4, we know that every ru-
mor in Vall has been learned by every process in A, and
thus the gossip protocol succeeds (w.h.p.). By Lemmas 5
and 3, it follows that some process in A has entered the
shut-down phase by the end of stage 4 with high probability.
From this and the rapid information exchange (Lemma 3),
it follows that all processes in A have entered the shut-down
phase by the end of stage 6, and we have already observed
that, no process exits the shut-down phase at this point.
Hence by the end of stage 7 every process has gone to sleep
with high probability. Epoch i ends no later than time

O
“

n
n−f

log2 n(d + δ)
”
, resulting in the desired time com-

plexity with high probability.
We now calculate the number of messages sent. In each

epoch k < i there are at most n/2k non-failed processes.
Since epoch i is the first “long” epoch, we know that each
process that is alive at the beginning of epoch k sends at
most O(2k log2 n(d + δ)) messages in epoch k. Thus, in
epoch k, non-failed processes send at most O(n log2 n(d+δ))
messages. The accounting for epoch i is similar, since every
process sleeps at the end of stage 7. Since there are at most
log n epochs, the result follows.

4. CONSTANT-TIME GOSSIP
Algorithm ears can be modified to yield a constant-time

randomized asynchronous gossip algorithm, which we call



sears (Spamming Epidemic Asynchronous Rumor Spread-
ing). The only difference in the algorithm is as follows:

• In each local step, each process sends messages to
Θ(nε log n) processes chosen at random.

• Each process takes only one shut-down step.

Then, we get the following.

Theorem 7. For every constant ε < 1, algorithm
sears has time-complexity O( n

ε(n−f)
(d + δ)) and message-

complexity O( n2+ε

ε(n−f)
log n(d + δ)).

Notice that for f < n/2 or f/n constant, the above results in
a constant-time (w.r.t. n) gossip protocol with subquadratic
message-complexity.
The correctness follows from the following sequence of facts:
Consider some particular rumor r that begins at some cor-
rect process p. Within O( n

n−f
(d + δ)) time, process p has

sent its rumor to at least Θ(nε) correct processes (with high
probability). In every further O( n

n−f
(d+δ)) time, the num-

ber of correct processes that know r grows by a factor of nε;
after 1/ε steps, a constant faction of the correct nodes know
r (with high probability). Within a further O( n

n−f
(d + δ))

time, these correct processes have, collectively, sent r to ev-
ery process in the system (with high probability). Then, in
the same way that rumor r spreads, the fact that“r has been
sent to every process”spreads, reaching every correct process

within O( n/ε
n−f

(d+δ)) time, after which there is one iteration

of shut-down messages followed by termination (with high
probability).

5. CONSTANT-TIME MAJORITY GOSSIP
The previous gossip protocols ensure that eventually every

correct rumor is disseminated. However, for the purpose of
various applications, including consensus [6] and do-all [7],
it suffices to require that each correct process receives only
a majority of the rumors (rather than receiving the rumor
of each correct process). We refer to this weaker version
of gossip as majority gossip. By restricting our attention
to the problem of majority gossip, we devise a gossip pro-
tocol, called tears (Two-hop Epidemic Asynchronous Ru-
mor Spreading), that completes in O(d + δ) time with mes-

sage complexity O(n7/4 log2 n), with high probability. No-
tice that the message complexity does not depend on d and
δ, i.e., it is strictly sub-quadratic. In order to make majority
gossip feasible, we need to assume that f < n/2.

5.1 Algorithm TEARS

We describe algorithm tears from the point of view of a
process p. (Pseudocode is presented in Figure 3.) We define
three additional parameters to simplify the description of
the algorithm: a = 4

√
n log n, µ = a

2
, and κ = 8n1/4 log n.2

Additionally, each process p selects locally two subsets of
processes Π1(p), Π2(p) in such a way that every other pro-
cess q, where q 6= p, is included in set Π1(p) (or in set
Π2(p), resp.) with probability a/n, independently at ran-
dom. In the first local step, each process p sends a message,
containing its own rumor and a flag raised up, to all pro-
cesses in Π1(p). We call such messages first-level messages.

2We also assume that n is sufficiently large; otherwise the
asymptotic complexities are all constants.

TEARS(rp)

1 � Initialization:
2 a← 4

√
n log n

3 µ← 2
√

n log n
4 κ← 8 4

√
n log n

5 V (p)← {rp}
6 Π1(p) : ∀q 6= p put q into Π1(p) with probability a/n
7 Π2(p) : ∀q 6= p put q into Π2(p) with probability a/n
8 flag ←↑
9 up msg cnt ← 0

10
11 repeat

12 � Two-Hop Transmission
13 for every process q ∈ Π1(p) do

14 send m = 〈V (p),flag〉 to q

15 flag ←↓
16 for every message m received do

17 V (p) = V (p) ∪m.V
18 if m.flag =↑
19 then up msg cnt ← up msg cnt + 1
20 bcast ← false

21 if (µ− κ ≤ up msg cnt < µ + κ)
22 then bcast ← true

23 if (up msg cnt − µ) /κ is a positive integer
24 then bcast ← true

25 if bcast = true

26 then for every process q ∈ Π2(p) do

27 send m = 〈V (p),flag〉 to q

Figure 3: Two-hop majority gossip algorithm tears,
stated for process p; rp denotes the rumor of p.

After receiving µ − κ first-level messages, each process p

sends a second-level message, that is, a message consisting
of all gathered rumors, to all processes in set Π2(p). It does
the same after receiving µ + j first-level messages, for ev-
ery −κ < j < κ, and later after receiving µ + iκ first-level
messages, for every positive integer i.

Notice that unlike algorithm ears, a process does not send
a message in every step; instead, a process sends messages
based on how many first-level message have been received.

5.2 Analysis of Algorithm TEARS

First observe the following estimates for the number of
messages sent by processes in a single step.

Lemma 8. Every process sends either 0 or between a− κ
and a + κ point-to-point messages in each step, with proba-
bility at least 1− 2/n3.

For each process p, let Sp consist of the local steps of
process p before sending its last second-level message; we
call it the safe epoch of process p. Note that process p may
receive some first-level messages after that time, but it does
not re-send these in any second-level message. We say that
the rumor of process q is safe in process p if p receives the
rumor of q in some first-level message that arrives in its safe
period. If a rumor is safe in at least

√
n non-faulty processes

then we call such rumor well-distributed. The intuition be-
hind a safe rumor is that it will be sent by the host to a
random processes as a part of some second-level message,



unless the host becomes faulty, and therefore a rumor that
is safe in sufficiently many processes will eventually reach
every non-faulty process.

We perform the analysis of correctness in three steps, cap-
tured by the three following lemmas, each proved to hold
with high probability. The first result explores the oblivi-
ousness of the adversary. It shows that almost a majority
of processes cannot be sufficiently disturbed by an oblivious
adversary during the first hop of random rumor spreading.

Lemma 9. There are at least n/2− n
log n

well-distributed

rumors, with probability at least 1− 2/n2.

The next lemma formalizes the probabilistic intuition that
any rumor well-distributed after the first hop is successfully
delivered to all non-faulty processes in the second hop.

Lemma 10. Each well-distributed rumor is eventually re-
ceived by each non-faulty process, with probability at least
1− 3/n2.

It can be shown that there are a large number of rumors
that are not well-distributed after the first hop. Moreover,
each non-faulty process receives in its second-level messages
a number of such rumors that complements the number of
well-distributed ones, reaching a majority of all rumors.

Lemma 11. Every non-faulty process receives such a
number of non well-distributed rumors that complements the
number of well-distributed rumors received to reach a major-
ity of all rumors, with probability at least 1− 4/n2.

Theorem 12. Algorithm tears completes majority gos-
sip with time complexity O(d + δ) and message complexity

O(n7/4 log2 n), with high probability under an oblivious ad-
versary.

Proof. The correctness is guaranteed by Lemmas 9, 10
and 11 with probability at least 1− 2

n2 − 3
n2 − 4

n2 ≥ 1− 9
n2 .

It remains to prove the complexity bounds.
Time complexity. All first-level messages arrive by time d+δ,
by time 2d + δ every second-level message is sent, and it
arrives by time 2d + 2δ. Hence, the bound O(d + δ) follows.
Message complexity. Each non-faulty process sends a +
κ ≤ 10

√
n log n first-level messages and thus receives at

most 40
√

n log n first-level point-to-point messages with high
probability (by Lemma 8, Chernoff bound and the upper
bound n/2 on the number of failures). Therefore it sends
less than„

2κ + 1 +
40
√

n log n

κ

«
· (a + κ) = O(n3/4 log2 n)

second-level point-to-point messages, all with high probabil-
ity (again by Lemma 8 and a union bound applied to this
and the previous events). By applying union bound to all

processes, the bound O(n7/4 log2 n) follows, also with high
probability.

6. RANDOMIZED CONSENSUS
In this section, we show how we implement message-

efficient fault-tolerant consensus, based on the gossip pro-
tocols presented in Sections 3–5. Recall that consensus con-
sists of n nodes, each with an initial value vi, trying to choose
an output (i.e., decision) satisfying: (1) Agreement : Every
value output by a process is the same. (2) Validity : Every

value output is some process’s initial value. (3) Termina-
tion: Every process eventually outputs a value, with high
probability. The key contribution of this section is showing
how gossip (and majority gossip) can be used in the con-
text of the Rabin-Canetti framework to produce an efficient
consensus protocol.

We begin by recalling the Rabin-Canetti framework in-
troduced by [6], and we follow the simplified presentation
of [2, Section 14.3] for crash-prone networks. Throughout
the protocol, each process repeats three rounds of voting
until a decision is reached: (1) Each process votes on its es-
timate (originally, its initial value); if one estimate receives
all the votes, then that value is decided; if some estimate is
voted on by a majority, then that estimate is preferred. (2)
In the second election, each process votes on its preferred
value; if everyone votes to prefer the same value, then that
value is adopted as the estimate; otherwise, a process pro-
ceeds to the third round of voting which simulates a shared
random coin. (See [2] for more details.)

Voting is implemented by a routine get-core which ex-
changes information among the processes. It returns a set
of votes to each participant satisfying the following: there
exists some set S containing at least a majority of the votes
such that each call to get-core returns at least the votes in
S. As presented in [2], get-core is implemented by three
sequential phases of all-to-all communication in which each
process sends all the votes it has received in that round to
everyone else, leading to O(n2) message complexity.

Efficient (majority) gossip can be used to reduce the mes-
sage complexity. Specifically, we implement get-core via
three sequential instances of asynchronous (majority) gossip,
each of which terminates when a process receives ⌊n/2⌋+ 1
rumors. Notice, though, that gossip is initiated here asyn-
chronously; previously, we had assumed that gossip began
simultaneously. Assume that as soon as a process receives
a gossip message, it begins to gossip itself. If any pro-
cess begins gossip using algorithm ears then within time
O((d + δ) log2 n), every non-failed process begins to gossip;
this follows immediately from the epidemic spread of the
initiator’s rumor. Similarly, with algorithm sears (resp.
tears), every non-failed process begins to gossip within
O( 1

ε
(d + δ)) time (resp. O(d + δ)). Thus, asynchronous

gossip initiation has no asymptotic impact on time or mes-
sage complexity.

It remains to ensure that each process begins to gossip
immediately upon receiving a gossip message. In order to
achieve this, each gossip message includes a history of all
prior completed calls to gossip and get-core. As soon as a
process receives a gossip message, it can use the received
history log to “catch up” with the sender of that message,
adopting the sender’s outcome for each completed gossip and
get-core.

From the above we conclude the following theorem:

Theorem 13. For an oblivious adversary and a minority
of failures, in expectation,

• Algorithm CR-ears has O
`
log2 n(d + δ)

´
time and

O(n log3 n(d + δ)) message complexity;

• Algorithm CR-sears has, ∀ε < 1, O( 1
ε
(d + δ)) time

and O(n1+ε log n(d + δ)) message complexity;

• Algorithm CR-tears has O(d + δ) time and

O(n7/4 log2 n) message complexity;



7. CONCLUSIONS
In this paper, we have initiated the study of the com-

plexity of gossip in an asynchronous, message-passing dis-
tributed system subject to processes crash failures. Our
results demonstrate that gossip is inherently inefficient in
the context of an adaptive adversary, but that it is possible
to develop efficient, randomized, asynchronous gossip algo-
rithms under an oblivious adversary. Our gossip algorithms
can be used to implement efficient asynchronous randomize
consensus protocols; one variant terminates in constant time
and has strictly subquadratic messsage complexity. This last
result is achieved by considering a weaker version of gossip,
called majority gossip.

One interesting open question is whether we can achieve
even better message complexity for a constant-round consen-
sus protocol; the key is to improve the message complexity
of majority gossip. Another interesting question is whether
majority gossip is any easier than general gossip; as of yet,
there no known lower bounds for majority gossip. Or, does
there exist an efficient deterministic asynchronous algorithm
for majority gossip problem. We believe that efficient solu-
tions to majority gossip can lead to efficient solutions for
other distributed problems, even beyond consensus, such as
load balancing and distributed atomic shared memory im-
plementations. Finally, we believe it is interesting to investi-
gate the bit complexity of asynchronous gossip (that is, the
total number of bits exchanged in a given computation).
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