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Abstract same probability of success— ¢, and in doing so, they

require similar upper bounds on the (expected) work. Fur-

In this work we consider a distributed system formed thermore, under certain conditions, these upper bounds are
by a master processor and a collection @fprocessors  asymptotically optimawith respect to our lower bounds.
(workers) that can execute tasks; worker processors are
untrusted and might act maliciously. The master assigns
tasks to workers to be executed. Each task returns a bi-1 Introduction
nary value, and we want the master to accept only correct
values with high probability. Furthermore, we assume that Problem and Motivation. The demand for processing
the service provided by the workers is not free; for each large amounts of data has increased over the last decade.
task that a worker is assigned, the master is charged with As traditional one-processor machines have limited compu-
a work-unit. Therefore, considering a single task assigned tational power, distributed systems consisting of hundreds
to several workers, our goal is to have the master computer of thousands of cooperating processing units are used in-
to accept the correct value of the task with high probabil- stead. An example of such a massive distributed coopera-
ity, with the smallest possible amount of work (number of tive computation is the SETI@home project [17]. As the
workers the master assigns the task). We explore two wayssearch for extraterrestrial intelligence involves the analysis
of bounding the number of faulty processors: (a) we con- of gigabytes of raw data that a fixed-size collection of ma-
sider a fixed bound® < n/2 on the maximum number of chines would not be able to effectively carry out, the data
workers that may fail, and (b) a probability< 1/2 of any  are distributed to millions of voluntary machines around the
processor to be faulty (all processors are faulty with prob- world. A machine acts as a server and sends data (aka tasks)
ability p, independently of the rest of processors). to these client computers, which they process and report

Our work demonstrates thitis possibleto obtain high back the result of the task computation. However, these
probability of correct acceptance with low work. In par- client computers are not trustworthy and might act mali-
ticular, by considering both mechanisms of bounding the ciously. This gives rise to a crucial problethow can we
number of malicious workers, we first show lower bounds prevent malicious clients from damaging the outcome of the
on the minimum amount of (expected) work required, sooverall computation?
that any algorithm accepts the correct value with proba- In this work we abstract this problem in the form of a
bility of succesd — ¢, wheres < 1 (e.g.,1/n). Then we  distributed system consisting ofraasterfail-free proces-
develop and analyze two algorithms, each using a differentsor M/ and a collection of. (powerful) processors, called
decision strategy, and show that both algorithms obtain the workers that can execute tasks; worker processors might

act maliciously, that is, they are Byzantine [20]. Since each
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Union under contract number IST-2005-015964 (AEOLUS). Preliminary ract values with high probability. Namely, éf < 1 is the

results of this work have been announced in [9]. . - . ]
tPartially supported by the Spanish MEC under grant TIN2005-09198- probability of accepting an incorrect value, we waprab

C02-01 and the Comunidad de Madrid under grant S-0505/TIc/0285.  ability of successf at Ieasﬂ —€ (e..g.,l —1/n). HOWQVG'}
tPartially supported by funds at the University of Cyprus. we assume that the service provided by the workers is not




free (as opposed to the SETI@home project). For each task Additionally, differences exist between the models con-
that a worker is assigned, the master computer is chargedaidered and our model. For instance, both Blough and Sul-
with awork-unit Furthermore, processors can be slow, and livan [4] and Paquette and Pelc [21] assume that the values
messages can get lost or arrive late; in order to introduceproposed by non-faulty voters are always received by the
these assumptions in the model, we consider that there is @eciding agent, and that there is a priori knowledge of the
known probabilityd (which may depend on) of M receiv- probability of each possible value to be correct. Also, in
ing the reply from a given worker on time. We also consider [4] it is assumed a priori knowledge of the probability for a
two types of known bounds on the number of malicious faulty entity to propose each possible value (faulty entities
workers: we either consider a fixed boufic n/2 on the are not really Byzantine). In [21], Byzantine failures are
maximum number of workers that may fail, or a probability considered and the authors are concerned with the compu-
p < 1/2 of any processor to be faulty @ndp may depend tational cost of the strategy, proposing strategies with linear
onn). Given the above model, and considering a single taskcost on the number of voters.
(which returns a binary value) assigned to several workers, Tg our knowledge, the work on voting closest to our
our goal is to have the master computer to accept the correciyodel is that of Kumar and Malik [18], since they define a
value of the task with probability of success at lebst ¢, reliability level that has to be achieved and try to minimize
and with the smallest possible amountvadrk (number of  the cost of achieving it. However, they still assume that the
workers)M assigned the task). (The problem and model are geciding agent gets proposals from all the entities. More
presented in detail in Section 2.) importantly, they assume that each entity has associated a
Observe that a trivial solution to the above problem when cost versus reliability curve that defines the cost that has to
d = 1 (all messages are delivered on time) and there arebe invested in that entity in order to have a given probabil-

no more thanf < n/2 malicious workers is to havé/ ity of the entity proposing the correct value. Then, under
assign the task t@f + 1 workers. This guarantees that this model the strategies are able to tune the failure proba-
the correct value is accepted (with probabilify Note, bility of each voter to optimize the total cost. In our model,

however, that iff = ©(n), then the work is linear om the failure probability is given, the master gets to choose
(which is not desired). Furthermoredf< 1, there are less  how many entities are asked to propose, and the cost is the
than2f + 1 workers available to execute the task, or we number of entities chosen.

consider a probabilistic model of failures (each processoris A real system that is very related to the model presented
faulty with probabilityp < 1/2), then it is not so obvious i this paper is the Berkeley Open Infrastructure for Net-
how to fully guarantee that a correct value is accepted with \york Computing (BOINC) [2, 3]. This system allows vol-
high probability. In this work, we develop two non-trivial - ynteers to provide free computational cycles to perform in-
algorithms for this problem and we show that it is in fact tensjve computation in a form similar to the one proposed
possible to obtain high probability of success with low work i this paper. In fact, the SETI@home project now runs
(for example, in the above casedt= 1 and linearf, if ¢ = over BOINC. With BOINC, an application can submit to
1/n, processoi accepts the correct value with probability - the system a task to be executed. Then, instances of the task
atleastl —1/n and with worklogarithmiconn instead of  are dispatched to several clients and a validation process is
linear). Furthermore, we provide lower bound results on the seq to decide which returned value to accept as correct
work required to achieve high probability of success. output of the task. In BOINC the number of instances of

Prior/Related Work. The problem we consider in this a task executed and the validation procedure is application
work is clearly related to theoting problemge.g., [4, 21, dependent: the application has to provide the number of in-
18]). In these problems there is a set of entities or “vot- Stances, a function to compare the received results, a func-
ers,” some of which can be faulty. Each voter proposes ation to validate, and the minimum number of received re-
value (usually obtained from some computation) to a de- sults in order to start validating. Once this latter minimum
C|d|ng agent' such that non_fau'ty voters a|WayS propOSe theis I‘eaChed, the validation proceSS is invoked with the set of
correct value, while faulty voters can have different behav- 'eceived responses, after each new response is received, un-
iors. From the set of proposed values, the agent uses a stratil some value is accepted. If an instance does not respond
egy to choose a value that it believes to be the correct oneby some given time another instance is started.

The purpose of a good strategy is to maximize the proba- Like in the original SETI@home system, and unlike in
bility of choosing the correct value. The main difference our model, applications in BOINC are not restricted on
of these problems with the problem studied in this paper is the number of instances of a task they request and are not
that they usually assume that all the entities in the systemcharged for the computational power they use. This could
propose a value (implicitly they assume that proposing a be dangerous if applications act selfishly and start a large
value involves no cost), and only the probability of a bad number of instances. On the other hand, application pro-
choice has to be minimized. In our model this probability grammers may not have enough information to be able to
is chosen a priori and the cost, measured as the number ofppropriately tune up the number of instances and the val-
entities involved, is minimized. idation mechanism. The theoretical model and algorithms



proposed in this paper could be adapted by BOINC design-asymptotic bounds presented, especially the lower bounds
ers to incorporate the validation mechanism as part of the(e.g.,Q(slg s) or Q(k1g k)) are meaningless in our model,
system, and letting the applications simply ask for a certainsinces = k = 1 (it is worth mentioning that their an-
level of reliability. The results of this paper could be used alytical results leading to the asymptotic expressions are
to derive the number of instances that have to be started forusually not dependent amande). In fact, in this work,

a task, and the validation strategy to be used. we present a new lower bound on the depth required by

Another problem related to the problem we consider in noisy static Boolean decision trees for the reliable compu-
this work is theDo-Allproblem, in which a collection of  tation of the trivial function thatlepend®n p ande. In the
k processors need to Cooperative|y perfdﬂindependent nOisy broadcast mOdel, bOUﬂdS are given as funCtionS Of the
tasks in the presence of failures (e.g., [5, 14, 15, 12]). Re-Number of broadcasts needed to compute a given function.
cently, this problem was studied under Byzantine proces-Again, these bounds do not apply to our model, since in
sors [8]. Several deterministic lower and upper bound re- Our model we have a single convergecast (from the work-
sults were introduced on the complexity of solving he- ers to the Master) and not multiple broadcasts between the
Allproblem in asynchronouglistributed system where up ~ Workers.
to f nodes might behave maliciously. Although the idea of

reliably executing tasks in the presence of malicious proces-Contributions. We study an interesting variation of the
sors is the same, both the model and the problem we conyting problem under a model that captures realistic sys-
sider here are different. For example, in the abbeeAll  tems of distributed computation. To the best of our knowl-
paper, processors attempt to collectively decide whether aedge, the problem and model as presented here have not
task has been correctly performed without in fact having to peen studied in prior work. Our work demonstrates that
learn the result of the task, as opposed to our problem whergs possibleto execute tasks reliably in the presence of ma-

a single processor must decide the validity of a task resultjicious processors with high probability and with low cost.
(and of course obtain that value). In particular,

Finally, there is an interesting connection between the o
problem considered in this work and the problems of re- ® We present lower bounds on work, considering both
liably computing Booleark-variable functions with noisy mechanisms of bounding the number of malicious
Boolean circuits (e.g., [22, 10]), noisy Boolean decisions workers (maximum number of malicious workgfrs<
trees (e.g., [22, 16, 7, 6]), and noisy broadcast (e.g., [11,  ™/2, probability of each worker failing < 1/2). Par-

13, 19]). Also, the fact that the master has to decide upfront ~ ticularly, we identify lower bounds on the minimum
the number of queries connects our model with the model of ~ @mount of (expected) work required, so that any al-

staticnoisy Boolean decision trees. In particular, our prob- gorithm accepts the correct value with probability of
lem can be viewed as the problem of reliably computing success — e. Furthermore, we derive a new lower
the trivial function of one variableK(z) = z) with a noisy bound on the depth afioisy static Boolean decision

static Boolean decision tree. However, we have identified ~ trees[22] required for the reliable computation of the
several differences between our model and the models con-  1-variable trivial function ¢'(z) = z); the bound is

sidered in the literature for these problems. For example, expressed as a function pfande.
in their models, a query of a bit always returns an answer e We develop two algorithms: (a) thdajority Based
(0 or 1) as opposed to our model in which it is possible Algorithm (MBA) which is a simple and natural algo-
not to get a reply for a query (either a malicious worker rithm where M decides on the majority of received
chooses not to reply at all or a message is not received on responses, and (b) thEhreshold Based Algorithm
time). Recent work [23] investigated the reliable compu- (TBA) in which if M receives a certain number of
tation of Booleank-variable functions assuming thétp- responses with equal value (threshold) it makes a de-
faulty copies of each input bit are received. However, it is cision, otherwise it decides on the majority of the re-
assumed that is fixed as opposed to our model where the ceived responses. Algorithm TBAé&srly-terminating
number of received replies is not fixed. as opposed to MBA that always waits for a tiffiend
Differences exist also in the complexity measures con- then makes a decision on the value to accept.
sidered. In noisy circuits and decision trees, upper and e We analyze the algorithms using Chernoff bounds.
lower bounds are usually given as functions of either (a) Both algorithms obtain the same probability of suc-
thesensitivitys (or the critical number) of a function (num- cessl — ¢ and we derive similar upper bounds on
ber of bits that are critical for the correct computation of the (expected) work required in doing so, expressed
the function), or (b) simply the number of variablesf as functions ok, d, and eithemp or f. Furthermore,
the function. Moreover, it is assumed that the probability for the cases whergis a constant off is linear both
p of a bit to be given incorrectly and the probabilitythat algorithms achieve the samasymptotiaupper bounds

the function is computed incorrectly are constants (we do on (expected) work, which a@symptotically optimal
not impose this restriction in our model). Therefore, the with respect to our lower bounds; in this case the work



complexity is©((—1ge)/d). due to several reasons: the worker never receives the mes-
sage fromM, M never receives the reply from the worker,

Paper Organization. The rest of the paper is organized ©f the whole process takes too much time and the reply is
as follows. In Section 2 we present the model and def- Slmply late. Note that we do not differentiate whether the
initions. In Section 3 we present lower bounds on work Worker is faulty or not.

in order to achieve high probability of correct decision in ~ Then, under this model we assume thdtis given a

the model we consider. In Section 4 we present algorithmstask, whose correct output valuerisand a probability <
MBA and TBA and show that they achieve the desired prob- 1 (€.9.,1/n), and} must accept with success probability
ability of correct decision while maintaining low work. Fi- Of at leastl — ¢ and low cost. By success probability we
nally, in Section 5 we discuss and compare our two algo- mean the probability ofif deciding the correct value that

rithms and the lower bounds and identify interesting future the task returns. To attempt to decide the correct valde,
research directions. must assign the execution of the task to a set of workers

(not necessarily all of them), wait for replies from them,
and decide from the replies obtained. We refer to the above
procedure as eound Note that we do not allow a second
] . . . round to take place}/ must accept a value at the end of the
We study execution of tasks in a system in which the ot (and only) round. This guarantees fast termination of
processors can behave maliciously, i.e., are Byzantine [20].51grithms. Note also that ondé accepts a value, it is not
We assume there is a fail-fresasterprocessorl/ which allowed to change its decision and choose a different value.
has a task to be executed. This task returns a binary valueg, . aach workens assigned the task\/ is charged with
which M wants to reliably obtain. Processdf is not ca-  ,ne\york-unit. Given a task assignment, its costyesrk, is
pable of executing the task itself, so a e0f  (powerful)  yafined as the total number of work-units thdtis charged
processorsp = {1,...,n}, that can execute the task, is fo thatjs, the total number of workers thit assigned the
made available td/. We refer to these processorsvesrk- task. Then, the objective is to minimize the (expected) work

ers The workers are continuously waiting f0f t0 assign ¢ the assignment while obtaining a success probability of
them a task to execute, they execute a task if they are asz; jaast — 2.

signed one, and return the computed value (as depicted in Finally, we assume that/ has noa priori knowledge
Figure 1). _ _ of the correct value to be computed by the task. Vete

The workers are not considered to be trustworthy and in e set of possible values returned by the task to be exe-
fact, they might act maliciously (e.g., they might send an ¢ o4 This means that’ has no information on the prob-
incorrect value, send no value, etc.). However, we assume, iy that each of the values i has to be the solution
that a malicious processor, that is a faulty processor, cannoly¢ tha task. In this work we consider only cases where
impersonate another processor and cannot modify nor re-, _ {0,1}. Note that sinceV/ decides in one round, it

move other processors’ messages (includidy Clearly, 1y a1eq sense to assume that faulty workers prefer to reply

in order to be able to do anything useful, the number of 1, 1/ \yith an incorrect value rather than to choose not to
processors that may fail has to be bounded. We consideqgny 4t ail (of course their message might be lost or de-
two kinds of mechanisms to bound the number of malicious layed). During the rest of the paper we will assume that

processors. We either assume that (i) there is a fixed boundyiq s always the case: a faulty worker always replies with
f < n/2 on the maximum number of processors that fail, e incorrect value. The faulty workers can obtain the incor-

or (ii) there is a probability) < 1/2 of any processorto be oot yajye either by collaborating, or by simply computing
faulty (each processor is faulty with probabilityindepen- the task (ifv is the result, then they respond with- v).
dently of the rest of processors). We assume that the set of

faulty processors is fixed beford assigns the task to the

workers and it does not change during the execution. wWe3 ~Lower Bounds on Work

also assume that/ knowsa priori the corresponding value

f or p, but has no a priori knowledge of which processor  In this section we give lower bounds on the (expected)

can be faulty. work of any algorithm with success probability no less than
We further assume that processors are asynchronoud — ¢. To do so, we lower bound the minimum number

with respect to each other and the communication betweenof repliesM must have in order to decide with the desired

them is not reliable. Therefore, processors can be slow, andsuccess probability. Since we have two different ways to

messages can get lost or arrive late. In order to incorpo-characterize processor failurgsand f, we have different

rate these assumptions in the model, we consider that therdounds for each case.

is a known non-decreasing probabiliyof M receiving We begin with the following lemma, which states that

the reply from a given worker (that is willing to reply) on the algorithms that accept the most received value among

time. This probability is identically distributed and inde- the replies have the maximum success probability.

pendent for each worker. The reply may not arrive on time

2 Model and Definitions



Processori € P, does:

1 Wait to receive from\/ a task to be executed
2 Execute the task

3 Send taM the computed value

Figure 1. Algorithm executed by any worker processor.

Lemma 3.1 If an algorithm A has success probability — more thanQIgicgffgs — 2 workers in order to decide with

&, then there is an algorithm” with success probability N0 propability of success at least— «.

less thanl — ¢ that always accepts the most frequent value

among the received replies. Proof: Suppose that the algorithm uses majority to decide
and always assigns the task to no more thargs— — 2
Proof: Due to lack of space, this proof is given in the TR

Appendix. m  \Workers. This implies thab/ getsr < 2lglfgfiga -2 =

2log s11e- € —2replies. Then, sincé/ did not have knowl-
Then, for the lower bounds we only need to consider al- edge of which processors are faulty when assigning the
gorithms that accept the most replied value. The following task, and all selected processors have the same probability
theorem, for the case when workers fail with probability ~ of getting their replies through, the probability that a major-
shows that any algorithm must have runs in which the sameity of the replies come from faulty processors is at least

task is assigned to a minimum number of workers. FUF=1)-(f = |r/2)]) (f _ r/2) 541 N
Theorem 3.2 If workers fail with probabilityp, for anyd, n(n—1)---(n—[r/2]) ~ n

any algorithm must have runs in which it assigns the task to f+1ge 3+l f4lge) o8t <
atleast2;£< —2 workers in order to decide with probability ( ” ) B < o ) =&,

of success at leagt— .

Proof: Suppose that the algorithm uses majority to decide Where the second inequality follows from the fact that

and always assigns the task to less tagf — 2 workers. }?hé? <101f‘i"12i80h imq”esdtrr‘]a(f 4’/5% 5)/"1 < f/n < 1/2.
en,lg {125 < 1 and hence/2 < —Ige.

Then, if this happens, a majority of the replies will
return the same incorrect valde— v, and M will decide
incorrectly. Then, the success probability of the execution

This implies that in each rud/ getsr < 2}%; -2 =

2log, € — 2 replies. Then, the probability that a majority of
them come from faulty processors is

r\ . e ey los < is below1 — . Since this happens for all runs, the success
Z <C>p (I=p) " 2p2" >p™°=c probability of the majority algorithm is below — . This
c>r/2 and Lemma 3.1 complete the proof. ]

If this happens, a majority of replies come from faulty
processors which return the same incorrect valvey, and
M will decide incorrectly. Then, the success probability
of the execution is below — ¢. Since this happens for all
runs, the success probability of the majority algorithm is
below1 — . This and Lemma 3.1 completes the proali
The above Theorem leads to a new non-trivial lower
bound result on the depth abisy static Boolean decision
trees[22].

The above bounds show the existence of runs with a min-
imum number of processors assigned to a task, but do not
give conditions on the distribution of these assignments.
The following results give lower bounds on the expected
number of workers to which any algorithm assigns a task.
These bounds are very close to the above bounds.

Theorem 3.5 If ¢ < 1/2 and workers fail with probability
p, the expected number of workers to which any algorithm

. 2 .
Corollary 3.3 Any noisy static Boolean decision tree for 2SSigns a task must be more thﬁ‘('li%éf) — 1) in order to
the functionF(z) = = when the error probability ip and ~ decide with probability of success at least .
the probability of a correct answer is at lealst-¢ has depth ~ Proof: Suppose that the algorithm uses majority to de-

at IeastQE,—; - 2. cide and assigns on average the tasks to no more than
é(lgl%) — 1) workers. This implies that/ gets on average

The following theorem presents a similar lower bound

4 (2 :
for the case when at mogtworkers can fail. For thisbound 2 < d(é(iﬁé;) —1)) = log,(2¢) — 1 replies. Letk be the
to hold we need to be large enough. random variable of number of replies obtained/y us-

ing Markov’s inequality we have thatr [R > 2R]| < 1/2.
Theorem 3.4 If f > —lge workers fail, for anyd, any Then, we can lower bound the probability that in any fun
algorithm must have runs in which it assigns the task to gets less tha@R replies and a majority of then return the



same incorrect value— v as follows. LetX be the number
of incorrect replies. Then,

Pr[(R < 2R)]Pr[X > R/2|R < 2R| >

S Pr[X = [R/2) +1|R < 27] =

1 1 %

ZplR/2J41 o T R+L S

2p > 2[) = E.

Then, M will decide incorrectly if this happens, and hence
the success probability of the majority algorithm is smaller
thanl — . This and Lemma 3.1 complete the proof. =

Theorem 3.6 If f > —1g(2¢) workers fail ande < 1/2,
the expected number of workers to which any algorithm as-

signs a task must be more th%r@% — 1) in order

to decide with probability of success at least «.

Proof: Suppose that the algorithm uses majority to de-

M decides on the majority of received responses. In the
second algorithm, calle@ihreshold Based AlgorithifTBA

for short), if M receives a certain number of responses with
equal value (threshold) it makes a decision, otherwise it de-
cides on the majority of the received responses.

Both algorithms operate under a time restriction, that is,
M needs to decide by some tinfie More precisely, the
valueT" determines how long/ will wait for replies from
the worker processors. Algorithm TBA might terminate
before timeT, that is, the algorithm igarly-terminating
Following the definitions given in Section Z,denotes the
probability of M receiving a reply from a worker (that is
willing to reply) within timeT". Clearly, M can choose this
parametefl’ to tune the probabilityi.

The exact analyses of the algorithms give exact values
for the probability of success. However, the expressions
found are hard to handle in order to find the most appro-
priate parameters of the algorithms tidtcan use in each
case. Even attempts for computing and plotting these values

cide and assigns on average the tasks to no more tharailed, as the computations require a big degree of floating

1

al

lg(2¢)

g LEE 1) workers. This implies thaf/ gets on

averageR < d(3 (llfgfifj(lﬂ — 1)) = log risee) (22) — 1

replies. LetR and X"be random variables as defined
in the proof of the previous theorem, again we have that
Pr [R > 2R| < 1/2. Then, we have that

Pr[(R <2R)|Pr[X > R/2|R < 2R] >

} f— R/2 [£]+1 N 1 f +1g(2€) [ 5]+1 N

2 n 2 n

} 4 1g(2) R+1 - 1 £+ 1g(2e) log%fzg)@s) .
2 n —2 n 7

where the second inequality follows from the fact that

lg(2¢) < 0, which implies that(f + Ig(2¢))/n <
f/n < 1/2. Then, 1g{829) 1 and hence
R/2 <R < llfgii%)) —1 < —Ilg(2¢). Then, M will

point accuracy and range of arithmetic values. Therefore,
we perform looser analyses with Chernoff bounds. These
analyses allow us to obtain much simpler expressions to
find suitable values for the parameters of the algorithms,
and are easy to compute. The Chernoff bounds we choose
to use for the analyses of the two algorithms are the follow-
ing:

Lemma4.1 ([1])) Let 73, %5, ..., Z, be n independent
Bernoulli distributed random variables witRr[Z, = 1] =

p; andPr(Z; = 0] = 1—p;, thenitholdsfoZ = "7 | Z;
andp = E[Z] =", p; that

() Pr(Z> 1+ <e

(B) PriZz<(1—0d)u]<e 4 forall 0 < § < 1.

4.1 The Majority Based Algorithm

We first present and analyze the Majority Based Algo-
rithm (MBA). In this algorithm, processal/ first chooses

decide incorrectly if this happens, and hence the succesamong the workers in sét a subsefS and assigns the task

probability of the majority algorithm is smaller than- e.
This and Lemma 3.1 complete the proof. ]

Note that the above lower bounds do not restrict the as-

signments nor the decision policy of the algorithm. Fur-

to be executed to them. Then it waits for replies for a fixed
time T. After that, it decides the value by simple voting
(breaking ties at random). The workersSrare chosenni-
formly at randomfrom those inP. We consider two ways
of choosing the subsét: either (i) M fixes the sizes of S

thermore, the workers assigned to the same task can be sand chooses processors uniformly at random frof?, or

at different times. In all cases, the bounds give the total

(i) M fixes a probabilityy and chooses each processor in

number of workers that must be assigned to a task until ac-P independently with probability. Hence,M can choose

cepting a value.
4 Proposed Algorithms

either the size or the probabilityy. The formulation of the
MBA algorithm is shown in Figure 2.
We now show that algorithm MBA achieves high proba-

In this section we present two algorithms that the master bility of success while restricting the amount of work.

processorM can run in order to solve the proposed prob-
lem. The first algorithm, calleMajority Based Algorithm
(MBA for short) is a simple and natural algorithm where

Theorem 4.2 Algorithm MBA guarantees a success prob-
ability of at leastl — & with



ProcessorM does:

1 Choose asef C P uniformly at random

2 Send the task to be executed to the workelS in

3 WaitT time for replies from the workers i

4 Acceptv, wherev is the most frequently returned value

Figure 2. Majority based algorithm executed by master processor

(a) Expected Worke[|S|] = ng = %

rametersp andg are considered,

when pa-

(b) Expected Worle[|S|] = ng = %

parametersf andgq are considered,

when

(c) Work|S| = s = (7188[22;;‘;?1’

ands are considered, and

1 when parameterg

(d) Work|S| = s = [5594™] when parameterg

ands are considered.

Forp < 1/4 and f < n/4 the values fop = 1/4 and
f =n/4 have to be used, respectively.

Proof: We denote byX the random variable that accounts
for the number of replies thal/ gets from faulty workers
(that is, replies with the incorrect value) and Bythe ran-
dom variable that accounts for the number of replies Aat
gets from non-faulty workers (that is, replies with the cor-
rect value by the end of peridd). DefinekR = X +Y, and
let R = EI[R)] be its expectation. Then the probability of
the algorithm MBA making an incorrect decision (that is,
accepting the incorrect value) can be bounded as follows.

PriX >Y]= ZPr =]Pr[X >¢/2lR=¢] =

Z PriR=

Pr(X >c¢/2|R=c]+

c<2R/3

> Pr[R=(|Pr[X >c¢/2lR=(] <
c>2R/3

> Pr[R=c+ Y Pr[R=¢Pr[X>¢/2[R=.
c<2R/3 c>2R/3

We now treat each term separately. The first term can be

bounded with the Chernoff bound of Lemma 43} (fixing
§=1/3.

Z Pr[R = |

c<2R/3

=Pr[R < 2R/3] < e T/18,

To bound the second term we need the following claim,

which trivially follows fromp < 1/2 and f < n/2,
whichever the case.

Claim: Let ¢ and ¢’ be two non-negative integers. If
c<cdthenPr[X >c¢/2|R=¢c] >Pr[X > /2|R=/{].

M.

From the Claim we have that,
> Pr[R=(|Pr[X >¢/2|R=(] <
c>2R/3
Pr(X >R/3|[R=2R/3] Y Pr[R=
¢>2R/3
Pr[X > R/3|R =2R/3].

c <

We want to use now a Chernoff bound to bound this
probability. LetS be the set of chosen processors d@nd
be the set of faulty processors. If parameteis used,
we define, for each € S, the Bernoulli random variable
XZ.(” = 1 if and only if processori is faulty and its
reply reaches\/ on time. Then it is easy to verify that
X =3 cs X" and that these variables are independent.
If parameterf is used, we define, for eache F N S,
the Bernoulli random variablé(i(z) = 1 if and only if
processor’s reply reaches\/ on time. It is also easy to
verify that X = > g X! and that these variables are
independent. Clearly, iR = 2R/3 then the expected value
of X is X = E[X] = ¢2R/3, wherey is eitherp or f/n.
Then, we can apply Lemma 4d) with § = i —1as

long as1/4 < ¢ < 1/2 (to guaranted < § < 1), and
J— J— —2¢p 2R

obtain thatPr [X > R/3|R = 2R/3| < e T Now,

since% < R/18, we can add both bounds and

“ I order to keep
this value no larger than, it is enough to guarantee that

. (1-20)°R
obtain thatPr[X > Y] < 2e” 18

R > W Since eithetR = sd or R = ngd and
eitherp = p or ¢ = f/n, the four cases of the statement of
the theorem hold. ]

4.2 The Threshold Based Algorithm

We now present and analyze the Threshold Based Al-
gorithm. This early-terminating algorithm is described in
pseudocode in Figure 3.

As in algorithm MBA, processal/ chooses subsét C
P uniformly at random and either by fixing the sizeof
by fixing the probabilityg of a processor being chosen (see
previous subsection). The threshold vatuis the number
of equal replies (coming from workers i) that will be
needed to accept a given valugbefore or on tim&". The
value ofr has to be large in order to prevent faulty proces-
sors to driveM to make a wrong decision. On the other
hand, the value of should not be too large, because other-



ProcessorM does:

1 Choose asef C P uniformly at random

2 Send the task to be executed to the workerS in

3 Wait for replies from the workers i

4 If there arer replies with the same valueon or before timel”
5 Acceptv

6 Else

7 Acceptv, wherev is the most frequently returned value

Figure 3. Threshold based algorithm executed by processor M.

wise M will not get enough replies from correct processors (1 6)7 where0 < 0 < 1. From this, we obtain that

to accept the correct value quickly. If by tinfie M does 6 = X=X and r = 2X¥ Note thatY > X, and hence
not receiver replies, then it follows the strategy of algo- 5Y+< 1. Then Wgégn use Lemma 4.1 and obtain the

rithm MBA and accepts the most frequently returned value fo|jowing
v (breaking ties at random).

We now show that algorithm TBA achieves high proba-
bility of correct acceptance with low (expected) work. PriX >7]+Pr[Y <7]=
PriX>(1+6)X]|+Pr[Y <(1-6)Y]<

PrX>71)v(Y <7)] <

Theorem 4.3 Algorithm TBA guarantees a success proba- . ., .,
bility of at leastl —  with eTF feTT < 2TF

)

(a) Expected Worl[|S|] = ng = W when para-  where the last inequality also follows from the fact that>

metersp andgq are considered, X.
3In2—Ine) Then, to bound the probability of non-successcbye
(b) Expected Workd[|S|] = nq = 2557527 /mya WheN  force0e =32 < ¢, which yields
parametersf andgq are considered, v_¥
(c) Work|S| = s = [J{23-512)] when parameterp and (y +X> X >3(In2—Ine). @
s are considered, and We now show the results for each case (a)-(d) by defining

appropriate Bernoulli variables and replacing the values of
X andY on Eq. (1). We need to define a different set of
Bernoulli random variables for each case in order to ensure

Moreover, forp < 1/6 and f < n/6 the values fop = 1/6 their independence.

and f = n/6 are used, respectively. Case (a):parametersp and q. We define the following
Bernoulli random variables. For eacke P, the Bernoulli

Proof: We first present a general analysis that is indepen-andom variablex @) _ 1 if and only if, simultaneously,

dent of the speC|f|c parameters considenedr(f andg or processori is fau|ty, chosen (, e.j € S), and its (in-

general analysis. To simplify the analysis we assume that if . c P, Y(m)
M would have gotten replies from malicious workers by g5 < s cqrrect, chosen, and its (correct) reply reachés
time T, it decides the incorrect value (this is like assuming on time. It is easy to verify thak — 3, ¥® and

that bad replies reach/ before the good ones). Moreover, ’ (@) . b

even if M does not get bad replies, we assume thatitde- ¥ = >_jepY; . for the random variableX” andY’, de-

cides the incorrect value unless it gets at leggbod replies  fined above. In this case we have tIﬁ‘a{Xi(a) = 1] = pgd

(that is, in Line 7 of Figure 3 the incorrect value is always gpq Pr[Y(a) =1] = (1 — p)qd, for anyi andj. Then,

accepted). All these assumptions lead to a correct but pes-
simistic analysis.

We define the random variable¥ and Y as in the
proof of Theorem 4.2. Our pessimistic view leads to Case (b):parametersf and¢. Denote byF” the set of
the following non-success property for algorithm TBA: faulty processors. Then we define the following Bernoulli
PriX>7)v(Y <7)]<e. random variables. For eadhe F, the varlabIeXi(b) =

To proceed we use the Chernoff bounds given in 1 if and onIy if, simultaneously, pI’OCGSS@I’iS chosen
Lemma 4.1. We define the appropriate Bernoulli vari- and its reply reached/ on time. Similarly, for each
ables later (when we consider each specific case). Denotg € P\ F, Y(b) = 1 if and only if, simultaneously,
X = E[X]andY = E[Y]. We setr = (1 + §)X processorj is chosen and its reply reachdg on time.

(d) Work|S| = s = (%1 when parameters

f ands are considered.

1 if and only if, S|multaneously, proces-

= npgd andY = n(1 — p)qd. Plugging these values in
Eqg. (1), we obtain the stated result for case (a).



Again, X = > p x®™ andy = 2 jeP\F Yj(b). Then,
Prix™ = 1] = Pr[Yj(b) =1] = ¢d, for anyi € F and
j € P\F,andX = fqd andY = (n — f)qd. From
Eq. (1), we obtain the stated result for case (b).

Case (c):parametergp ands. For this case, we only de-
fine Bernoulli random variables for the processorsSin
Then, for each € S, the variabIeXi(C) = 1 if and only
if, simultaneously, processaois faulty and its reply reaches
M ontime. Similarly, for each € S, the variabléfj(c) =1

if and only if, simultaneously, processgis correct and its
reply reaches\/ on time. Again, it is easy to verify that
X = Yis X9 andy = Yies Yj(c). In this case we
have thaPr[X” = 1] = pd andPr[y, = 1] = (1-p)d,
for anyi,j € S. Then,X = spd andY = s(1 — p)d.

considering both mechanisms of bounding the number of
malicious workers. Particularly, we identify lower bounds
on the minimum amount of work required, so that any algo-
rithm accepts the correct value with probability of success
1 — ¢, wheree < 1. Then, we develop and analyze two
algorithms: (a) algorithm MBA which is a simple and nat-
ural algorithm wheré// decides on the majority of received
responses, and (b) algorithm TBA in whichAf receives

a certain number of responses with equal value (threshold)
it makes a decision, otherwise it decides on the majority of
the received responses. Both algorithms obtain the same
probability of succesd — ¢ and we derive similar upper
bounds on the work required in doing so. In particular, the
bounds for both algorithms only differ on a factorf p?

or (6 - f/n)? (depending on the mode of failures consid-
ered), that is, algorithm MBA requires less work than algo-

Plugging these values in Eq. (1), we obtain the stated resultrithm TBA if p < 1/1/6 or f < n/v/6. Therefore, for the

for case (c).

Case (d): parameters f and s. Finally, we define
the following Bernoulli random variables. For each

i e FnsS X% = 1if and only if processor
i's reply reachesM on time. Similarly, for each
j e (P\F)nS§, Yj(d) = 1 if and only if processor
j's reply reachesM on time. Observe once again that
X =2 icrns Xi(d) andY = > .. p\p)ns Yj(d)' Then,
Pr(X\Y = 1] = Pr[y;¥ = 1] = d, foranyi € F N S and
je(P\F)NnS,andX = fsd/nandY = (n — f)sd/n.
From Eqg. (1), we obtain the stated result for case (d).

cases where is a constant off is linear both algorithms
achieve the same asymptotic upper bounds on work, which
are asymptotically optimal with respect to the lower bounds
obtained in this work; in this case the work complexity is
©((—1ge)/d). Given the above discussion, ahdsed on

the analysis we obtainedve consider algorithm TBA to be
most preferable than algorithm MBA, since TBAagarly-
terminating (discussed in Section 4) as opposed to MBA
that always waits for tim& and then makes a decision on
the value to accept.

Figure 4 shows graphical comparisons of the two algo-
rithms and the lower bounds we obtain by plugging certain

Finally, using basic calculus (derivatives) it is easily values on the analytical expression we have derived. Ad-
shown that the equations for (expected) work for cases (a)ditionally, it presents the minimum value efthat would

to (d) are minimized whep = 1/6 or f = n/6. This com-
pletes the proof of the theorem. ]

5 Discussion

satisfy the desired success probability for MBA, obtained
by simulation. From the left plot it can be observed how
the work of MBA is below that of TBA whem is smaller
than1/+/6, that they match at this point, and it is above that
of TBA for larger values op. From the right plot it can be
observed the similar behavior of our upper and lower bound

In this work we consider the problem of executing tasks results as changes. As previously discussed in the paper,

reliably in the presence of untrustworthy processors thatperforming an exact analysis of our algorithms proved to be
may act maliciously. We consider a model of a distributed very difficult, mainly due to the complicated derived formu-
system with a master processbf and a set of, untrust-  |as that do not allow us to express the important parameters
worthy workers. Processa must assign a task to asubset of the model and algorithms in a meaningful way. There-
of the workers so that the probability of accepting the cor- fore, we have chosen to analyze our algorithms using Cher-
rect value of the task is high, while the amount of work noff bounds, which has enabled us to obtain closed-form
(number of workers assigned the task) required in doing equations for these parameters. Additionally, to simplify
so is minimized. We bound the potential number of faulty the analyses we had to make pessimistic assumptions. Not
workers in two ways: either by considering a fixed bound surprisingly, it appears that in some cases there is a big gap
f < n/2 on the maximum number of processors that fail, hetween our upper and lower bound results. We believe that
or by considering a probability < 1/2 of any processor  the gap can be decreased by improving both the analyses of
to be faulty (all processors are faulty with probability  the lower bounds and of the algorithms. Especially for the
independently of the rest of processors). Additionally we a|gorithms’ analyses, we believe that if we are able to use
allow for unreliable and slow communications, including |ess pessimistic assumptions or to avoid the use of Chernoff
in the model the probability that the reply from a worker  hounds (or perhaps use/devise a more appropriate Chernoff
reaches\/ on time. bound for our problem) then we should be able to improve
We first present lower bounds on work for this model, the bounds on work while maintaining the same probability
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Figure 4. Comparison of the bounds obtained when pa-
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ande = 1/n. The plot on the right depicts (in log scale) the
work s (y-axis) overe (x-axis), ford = 0.9 andp = 1/4.

of success.

Another interesting research direction is to relax the one-
round assumption of our model (which was used to guaran-
tee fast termination of algorithms) and allow fbf to de-
cide in more than one round. For instangé,could start a
second round if it did not receive enough replies in the first
round. Intuitively, in such a casé/ should be able to ob-

tain better probability of success or perhaps less expected

work. This gives rise to the following question: By how

much is the probability of success increased and how are

algorithm termination and the bounds on work affected?
Another direction is to consider the more general prob-
lem where there is a sequence of tasks whose valiies
must reliably obtain while maintaining the overall work (re-
quired for all tasks) low. Our current algorithms provide

trivial bounds on work for this model (work as computed
in this paper times the number of tasks that must be exe-
cuted) with the same probability of success for each task
execution. These trivial bounds are possibly too loose and
one could improve them by taking into account the possi-
bility of avoiding re-using identified faulty processors in the
upcoming task executions. For that a mechanism for iden-
tifying or suspecting workers as faulty needs to be devised.
Finally, an interesting extension to this work would be
to consider the situation where it is possible for a task to
return more than two values (that |§/| > 2). In the case
where the faulty processors can collaborate and agree on
the incorrect values they will return t&/, then our analy-
sis trivially holds. However it would be very interesting to
study what happens in the case where faulty processors do
not collaborate or their collaboration is restricted. Ongoing
work is underway toward this direction.
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Appendix the success probability. In particular, we show that we can
derive from A an algorithmA’ whose success probability
Proof of Lemma 3.1 is no less thar — ¢ with decision functionD 4, such that

Qa(0,s8,r,2) = 0 andQa(1,s,r,r — z) = 0, for all
Let D4 denote the value returned (i.e., decided) by algo- » < s < n andz < r/2. Let us first observe, from Eq. (3),
rithm A, and letv denote the correct result of the task. We that for each- < s < n andz < r/2, Pr[D4 = 0Jv = 0]

first prove the following claim: andPr [D 4 = 1|v = 1] have the terms
Claim: The success probability of A s
min(Pr[D4 = 0jv = 0], Pr[D4 = 1jv = 1]). Pr(§=slv=0]Pr[R=r[v=0,5=s

Proof: Let us assume, w.l.o.g., thBt [D4 = 0jv = 0] < (B(z,0,8,1)QAa(0,8,1,2) + B(r — 2,0,8,1)Qa(0, s, 7,1 — 2)),
Pr[D4=1lv=1]. Note that in our model there

is no a priori restriction on the distribution of the and

correct values. Hence, iPrjv=0] = 1, we have

that Pr[success = Pr[Dj=0lv=0]Pr[v=0] + Pri§=sv=1]Pr[R=rlv=15=s]
Pr[Dg=1jv=1]Prjv=1]=Pr[D4 = 0lv =0]. This (B(z,1,s,7)Qa(l,s,1,2) + B(r — z,1,5,7)Qa(l,s,7,1r — 2)),



respectively. Additionally, these are the only terms in
whichQ (0, 5,7, 2), Qa(0,s,r,7 — 2), Qa(1,s,7,2), and
Qa(l,s,r,r — z) appear.

Let us design algorithmi’ to behave exactly likel but
with a decision functiorD 4. such that) 4. (0, s,7,2) = 0
andQa (1,s,r,r — z) = 0. From Eq. (2) we have that
Qa(1,8,7,2) =1andQua:(0,s,r,r — z) = 1. We also
have, from Egs. (6) and (7), thd&(z,0,s,r) < B(r —
z,0,s,r) and B(r — z,1,s,r) < B(z,1,s,r), and from
Eq. (5) thatB(z,0,s,7) = B(r — z,1,s,r) and B(r —
z,0,s,7) = B(z,1, s,7). Then, with this definition oD 4
we have that

min(Pr[Dy =0jv =0],Pr[Dg=1jv=1))=1—-¢ <
min(Pr[Dy = 0lv =0],Pr[Dy = 1jv = 1)),

and hence the success probability Affis at leastl — .
This completes the proof. ]



