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Abstract12

The various applications using Distributed Ledger Technologies (DLT) or blockchains, have led to13

the introduction of a new “marketplace” where multiple types of digital assets may be exchanged.14

As each blockchain is designed to support specific types of assets and transactions, and no blockchain15

will prevail, the need to perform interblockchain transactions is already pressing.16

In this work we examine the fundamental problem of interoperable and interconnected blockchains.17

In particular, we begin by introducing the Multi-Distributed Ledger Objects (MDLO), which is the18

result of aggregating multiple Distributed Ledger Objects – DLO (a DLO is a formalization of the19

blockchain) and that supports append and get operations of records (e.g., transactions) in them20

from multiple clients concurrently. Next we define the AtomicAppends problem, which emerges21

when the exchange of digital assets between multiple clients may involve appending records in more22

than one DLO. Specifically, AtomicAppend requires that either all records will be appended on the23

involved DLOs or none. We examine the solvability of this problem assuming rational and risk-averse24

clients that may fail by crashing, and under different client utility and append models, timing models,25

and client failure scenarios. We show that for some cases the existence of an intermediary is26

necessary for the problem solution. We propose the implementation of such intermediary over a27

specialized blockchain, we term Smart DLO (SDLO), and we show how this can be used to solve the28

AtomicAppends problem even in an asynchronous, client competitive environment, where all the29

clients may crash.30
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1 Introduction39

Blockchain systems, cryptocurrencies, and distributed ledger technology (DLT) in general,40

are becoming very popular and are expected to have a high impact in multiple aspects of41

our everyday life. In fact, there is a growing number of applications that use DLT to support42

their operations [26]. However, there are many different blockchain systems, and new ones are43

proposed almost everyday. Hence, it is extremely unlikely that one single DLT or blockchain44
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3:2 Atomic Appends on Multiple Distributed Ledgers

system will prevail. This is forcing the DLT community to accept that it is inevitable to45

come up with ways to make blockchains interconnect and interoperate.46

The work in [7] proposed a formal definition of a reliable concurrent object, termed47

Distributed Ledger Object (DLO), which tries to convey the essential elements of blockchains.48

In particular, a DLO is a sequence of records, and has only two operations, append and get.49

The append operation is used to attach a new record at the end of the sequence, while the50

get operation returns the sequence.51

In this work we initiate the study of systems formed by multiple DLOs that interact52

among each other. To do so, we define a basic problem involving two DLOs, that we call the53

Atomic Append problem. In this problem, two clients want to append new records in two54

DLOs, so that either both records are appended or none. The clients are assumed to be55

selfish, but rational and risk-averse [22], and may have different incentives for the different56

outcomes. Additionally, we assume that they may fail by crashing, which makes solving the57

problem more challenging. We observe that the problem cannot be solved in some system58

models and propose algorithms that solve it in others.59

1.1 Related Work60

The Atomic Append problem we describe above is very related to the multi-party fair61

exchange problem [8], in which several parties exchange commodities so that everyone gives62

an item away and receives an item in return. The proposed solutions for this problem rely on63

cryptographic techniques [18,20] and are not designed for distributed ledgers. In this paper,64

as much as possible, we want to solve Atomic Appends on DLOs via their two operations65

append and get, without having to rely on cryptography or smart contracts.66

Among the first problems identified involving the interconnection of blockchains was67

Atomic Cross-chain Swaps [13], which can also be seen as a version of the fair exchange68

problem. In this case, two or more users want to exchange assets (usually cryptocurrency) in69

multiple blockchains. This problem can be solved by using escrows, hashlocks and timelocks:70

all assets are put in escrow until a value x with a special hash y = hash(x) is revealed or a71

certain time has passed. Only one of the users knows x, but as soon as she reveals it to claim72

her assets, everyone can use it to claim theirs. Observe that this solution assumes synchrony73

in the system, in the sense that timelocks assume that the time to claim an asset is bounded74

and known, and that timeouts can be used to detect crashes.75

This technique was originally proposed in on-line fora for two users [1], and it has been76

specified, validated, adapted, and used [17, 21]. For instance, the Interledger system [11]77

will use a generalization of atomic swaps to transfer (and exchange) currency in a network78

of blockchains and connectors, allowing any client of the system to interact with any other79

client. The Lightning network [19, 23] also allows transfers between any two clients via a80

network of micro-payment channels using a generalized atomic swap. Both Interledger and81

Lighting route and create one-to-one transfer paths in their respective networks. Herlihy [13]82

has formalized and generalized atomic cross-chain swaps beyond one-to-one paths, and shows83

how multiple cross-chain swaps can be achieved if the transfers form a strongly connected84

directed graph. Herlihy proves that the best strategy, in Game Theoretic sense, for the users85

is to follow the proposed algorithm, and that someone that follows it will never end up worst86

than at the start.87

Unlike in most blockchain systems, in Hyperledger Fabric [5, 6] it is possible to have88

transactions that span several blockchains (blockchains are called channels in Hyperledger89

Fabric). This allows solving the atomic cross-chain swap problem using a third trusted90

channel or a mechanism similar to a two-phase commit [6]. Additionally, these solutions91



A. Fernández Anta, Ch. Georgiou, and N. Nicolaou 3:3

do not require synchrony from the system. The ability of channels to access each other’s92

state and interact is a very interesting feature of Hyperledger Fabric, very in line with the93

techniques we assume from advanced distributed ledgers in this paper. Unfortunately, they94

seem to be limited to the channels of a given Hyperledger Fabric deployment.95

There are other blockchain systems under development that, like Hyperledger Fabric,96

will allow interactions between the different chains, presumably with many more operations97

than atomic swaps. Examples are Cosmos [2] or PolkaDot [4]. These systems will have their98

own multi-chain technology, so only chains in a given deployment can initially interact, and99

other blockchain will be connected via gateways. Another proposal for interconnection of100

blockchains is Tradecoin [12], whose target is to interconnect all blockchains by means of101

gateways, trying to reproduce the way Internet works. Since the gateways will be clients of102

the blockchains, the functionality of the global interledger system will be limited by what103

can be done from the edge of the blockchains (i.e., by the blockchains’ clients).104

The practical need of blockchain systems to access the outside world to retrieve data (e.g.,105

exchange rates, bank account balances) has been solved with the use of blockchain oracles.106

These are relatively reliable sources of data that can be used inside a blockchain, typically107

in a smart contract. The weakest aspect of blockchain oracles is trust, since the outcome108

or actions of a smart contract will be as reliable as the data provided by the oracle. As of109

now, it seems there is no good solution for this trust problem, and blokchains have to rely110

on oracle services like Oraclize [3].111

1.2 Contributions112

As mentioned above, in this paper we extend the study of the distributed ledger reliable113

concurrent object DLO started in [7] to systems formed of several such objects. Hence, the114

first contribution is the definition of the Multiple DLO (MDLO) system, as the aggregation of115

several DLOs (in similar way as a Distributed Shared Memory is the aggregation of multiple116

registers [25]). The second contribution is the definition of a simple basic problem in MDLO117

systems: the 2-AtomicAppends problem. In this problem, the objective is that two records118

belonging to two different clients are appended to two different DLOs atomically. Hence,119

either both records are appended or none is. Of course, this problem can be generalized in a120

natural way to the k-Atomic Appends problem, involving k clients with k records and up to121

k DLOs.122

Another contribution, in our view, is the introduction of a crash-prone risk-averse rational123

client model, which we believe is natural and practical, especially in the context of blockchains.124

In this model, clients act selfishly trying to maximize their utility, but minimizing the risk125

of reducing it. We consider that this behavior is not a failure, but the nature of the client,126

and any algorithm proposed under this model (e.g., to solve the 2-AtomicAppends problem)127

must guarantee that clients will follow it, because their utility will be maximized without128

any risk. For a complete specification of the clients’ rationality their utility function has to129

be provided. Two utility models are proposed. In the collaborative utility model, both clients130

want the records to be appended over any other alternative. In the competitive utility model131

a client still wants both records appended, but she prefers that only the other client appends.132

This client model is complemented with the possibility that clients can fail by crashing.133

We explore hence the solvability of 2-AtomicAppends in MDLO systems in which the134

DLOs are reliable but may be asynchronous, and the clients are rational but may fail by135

crashing. The first results we present consider a system model in which clients do not crash,136

and show that Collaborative 2-AtomicAppends can be solved even under asynchrony, while137

Competitive 2-AtomicAppends cannot be solved. Then, we further study Collaborative138
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3:4 Atomic Appends on Multiple Distributed Ledgers

2-AtomicAppends if clients can crash. In the case that at most one of the two clients can139

crash, we show that, if each client must append its own record (what we call no delegation),140

Collaborative 2-AtomicAppends cannot be solved even under synchrony. This justifies141

exploring the possibility of delegation: any client can append any record, if she knows it. We142

show that in this case Collaborative 2-AtomicAppends can be solved, even if the system is143

asynchronous (termination is only guaranteed under synchrony, though). However, delegation144

is not enough if both clients can crash, even under synchrony. (See Table 2 for an overview.)145

The negative results (for Competitive 2-AtomicAppends even without crash failures and146

for Collaborative 2-AtomicAppends with up to 2 crashes) justifies exploring alternatives147

to appending directly or delegating among clients. Hence, we propose the use of an entity,148

external to the clients, that coordinates the appends of the two records. In fact, this entity is149

a special DLO with some level of intelligence, which we hence call Smart DLO (SDLO). The150

SDLO is by design a reliable entity to which clients can delegate (via appending in the SDLO)151

the responsibility of appending their records to their respective DLOs when convenient. The152

SDLO hence collects all the records from the clients and appends them. Since the SDLO is153

reliable, all the appends will complete. If some record is missing, the SDLO issues no append,154

to guarantee the properties of the 2-AtomicAppends problem. Thus, the SDLO can be used155

to solve Competitive and Collaborative k-AtomicAppends even when all clients can crash.156

We believe that SDLO opens the door to a new type of interconnection and interoperability157

among DLOs and blockchains. While the use of oracles to access external information in158

a smart contract (maybe from another blockchain) is widely known, we are not familiar159

with blockchain systems in which one blochchain (i.e., possibly a smart contract) issues160

transactions in another blockchain. We believe this is a concept worth to be explored further.161

The rest of the paper is structured as follows. The next section describes the model used162

and defines the AtomicAppends problem. Section 3 explores the 2-AtomicAppends problem163

when clients cannot crash. Section 4 studies the 2-AtomicAppends problem when clients can164

crash but SDLOs are not used. Section 5 introduces the SDLO and shows how it solves the165

AtomicAppends problem. Finally, Section 6 presents conclusions and future work.166

2 Problem Statements and Model of Computation167

2.1 Objects and Histories168

An object type T is defined over the domain of values that any object of type T may take,169

and the operations that any object of type T supports. An object O of type T is a concurrent170

object if it is a shared object accessed by multiple processes [24]. A history of operations on171

an object O, denoted by HO , is the sequence of operations invoked on O. Each operation π172

contains an invocation and a matching response event. Therefore, a history is a sequence of173

invocation and response events, starting with an invocation. We say that an operation π174

is complete in a history HO , if the history contains both the invocation and the matching175

response events of π. History HO is complete if it only contains complete operations. History176

HO is well-formed if no two invocation events that do not have a matching response event in177

HO belong to the same process p. That is, each process p invokes one operation at a time.178

An object history HO is sequential, if it contains a sequence of alternating invocation and179

matching response events, starting with an invocation and ending with a response. We say180

that an operation π1 happens before an operation π2 in a history HO , denoted by π1 → π2,181

if the response event of π1 appears before the invocation event of π2 in HO .182

The Ledger Object (LO). A ledger L (as defined in [7]) is a concurrent object that stores183

a totally ordered sequence L.S of records and supports two operations (available to any184
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process p): (i) L.getp(), and (ii) L.appendp(r). A record is a triple r = 〈τ, p, v〉, where p is185

the identifier of the process that created record r, τ is a unique record identifier from a set186

T , and v is the data of the record drawn from an alphabet Σ. We will use r.p to denote the187

id of the process that created record r; similarly we define r.τ and r.v. A process p invokes188

an L.getp() operation to obtain the sequence L.S of records stored in the ledger object L,189

and p invokes an L.appendp(r) operation to extend L.S with a new record r. Initially, the190

sequence L.S is empty.191

I Definition 1 (Sequential Specification of a LO [7]). The sequential specification of a ledger192

L over the sequential history HL is defined as follows. The value of the sequence L.S of the193

ledger is initially the empty sequence. If at the invocation event of an operation π in HL the194

value of the sequence in ledger L is L.S = V , then:195

1. if π is an L.getp() operation, then the response event of π returns V , while the value of196

L.S does not change, and197

2. if π is an L.appendp(r) operation (and r /∈ V ), then at the response event of π the value198

of the sequence in ledger L is L.S = V ‖r (where ‖ is the concatenation operator).199

In this paper we assume that ledgers are idempotent, therefore a record r appears only200

once in the ledger even when the same record r is appended to the ledger by multiple append201

operations (and hence the r /∈ V in the definition above).202

2.2 Distributed Ledger Objects (DLO) and Multiple DLOs (MDLO)203

Distributed Ledger Objects (DLO). A Distributed Ledger Object (DLO) DL, is a con-204

current LO that is implemented by (and possibly replicated among) a set S of (possibly205

distinct and geographically dispersed) computing devices, we refer as servers. Like any LO,206

DL supports the operations get() and append(). We refer to the processes that invoke the207

get() and append() operations on DL as clients.208

Each server s ∈ S may fail. Thus, the distribution and replication of DL offers availability209

and survivability of the ledger in case a subset of servers fail. At the same time, the fact that210

multiple clients invoke append() and get() requests to different servers, raises the challenge211

of consistency: what is the latest value of the ledger when multiple clients access the ledger212

concurrently? The work in [7] defined three consistency semantics to explain the behavior of213

append() and get() operations when those are invoked concurrently by multiple clients on a214

single DLO. In particular, they defined linearizable [14, 16], sequential [15], and eventual [9]215

consistent DLOs. In this work we will focus on linerizable DLOs which according to [7] are216

defined as follows:217

I Definition 2 (Linearizable Distributed Ledger Object [7]). A distributed ledger DL is lineariz-218

able if, given any complete, well-formed history HDL, there exists a sequential permutation219

σ of the operations in HDL such that:220

1. σ follows the sequential specification of a ledger object (Definition 1), and221

2. for every pair of operations π1, π2, if π1 → π2 in HDL, then π1 appears before π2 in σ.222

Multiple DLOs (MDLO). A Multi-Distributed Ledger Object MDL, termed MDLO,223

consists of a collection D of (heterogeneous) DLOs and supports the following operations:224

(i)MDL.getp(DL), and (ii)MDL.appendp(DL, r). The get returns the sequence of records225

DL.S, where DL ∈ D. Similarly, the append operation appends the record r to the end226

of the sequence DL.S, where DL ∈ D. From the locality property of linearizability [14] it227

follows that a MDLO is linearizable, if it is composed of linearizable DLOs. More formally:228
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3:6 Atomic Appends on Multiple Distributed Ledgers

I Definition 3 (Linearizable Multi-Distributed Ledger Object). A multi-distributed ledger229

MDL is linearizable if ∀DL ∈ D, DL is linearizable, where D is the set of DLOs MDL230

contains.231

For the rest of this paper, unless otherwise stated, we will focus on MDLOs consisting232

of two DLOs. The same techniques can be generalized in MDLOs with more than two233

DLOs. In particular, we consider the records of two clients, A and B, on two different234

DLOs. For convenience we use DLOX to denote the DLO appended by records from X, for235

X ∈ {A,B}. Similarly we denote as rX the record that X ∈ {A,B} wants to append on236

DLOX . Furthermore, we view the DLOs and MDLOs as black boxes that reliably implement237

the specified service, without going into further implementation details.238

2.3 AtomicAppends: Problem Definition239

Multi-DLOs allow clients to interact with different DLOs concurrently. This is safe when the240

records involved in concurrent operations are independent. However, it may raise semantic241

consistency issues when there exists inter-dependent records, e.g. a record rA must be242

inserted in DLOA when a record rB is inserted in DLOB and vice versa. More formally, we243

say that a record r depends on a record r′, if r may be appended on its intended DLO, say244

DL, only if r′ is appended on a DLO, say DL′. Two records, r and r′, are mutually dependent,245

if r depends on r′ and r′ depends on r. In this section we define a new problem, we term246

AtomicAppends, that captures the properties we need to satisfy when multiple operations247

attempt to append dependent records on different DLOs.248

I Definition 4 (2-AtomicAppends). Consider two clients, A and B, with mutually dependent249

records rA and rB. We say that records rA and rB are appended atomically on DLOA and250

DLOB respectively, when:251

Either both or none of the records are appended to their respective DLOs (safety)252

If neither A nor B fail, then both records are appended eventually (liveness).253

An algorithm solves the 2-AtomicAppends problem under a given system model, if it254

guarantees the safety and liveness properties of Definition 4.255

The k-AtomicAppends problem, for k ≥ 2, is a generalization of the 2-AtomicAppends256

that can be defined in the natural way (k clients, with k records, to be appended to up to k257

DLOs.) From this point onwards, we will focus on the 2-AtomicAppends problem, and when258

clear from the context, we will refer to it simply as AtomicAppends.259

2.4 Communication, Timing and Append Models260

The previous subsections are independent of the communication medium, and the failure and261

timing model. We now specify the communication and timing assumptions considered in262

the remainder of the paper. We also consider different models on who can append a specific263

record.264

Communication model: We assume a message-passing system where messages are neither265

lost nor corrupted in transit. This applies to both the communication among clients and266

between clients and DLOs (i.e, the invocation and response messages of the operations).267

Timing models: We consider synchronous and asynchronous systems with respect to both268

computation and communication. In the former, the evolution of the system is governed by a269

global clock and a local computation, a message delivery or a DLO operation is guaranteed to270
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complete within a predefined time-frame. For simplicity, we set this time-frame to correspond271

to one unit of time. In the latter, no timing assumptions are made beyond that they will272

complete in a finite time.273

Append models: We consider three different append models. In the first, and most274

restrictive one, which we refer to as Client appends with no delegation, or NoDelegation for275

short, the only way a client can append its record, is by issuing append operations directly276

to the corresponding DLOs, i.e., no other entity, including the other client, can do so. The277

second one, referred to as Client appends with delegation, or WithDelegation for short, is a278

relaxation of the first model, in which one client can append the record of the other client (if279

it knows it). Finally, in the third model, a record can be appended by an external (w.r.t.280

the clients) entity, provided it knows the record.281

2.5 Client Model and Utility-based Problem Definitions282

2.5.1 Client Setting283

We assume that clients are rational, i.e., they act selfishly, in a game-theoretic sense, in284

order to increase their utility [22]. Furthermore, clients are risk-averse, i.e., when uncertain,285

they prefer to lower the uncertainty, even if this might lower their potential utility [22]; we286

consider a client to be uncertain when her actions may lead to multiple possible outcomes.287

To this respect, a rational, risk-averse client runs its own utility-driven protocol that defines288

its strategy towards a given protocol (game), in such a way that it would not decrease its289

utility or increase its uncertainty.290

Regarding failures, the only type of failure we consider in this work, is crash failure, in291

which a client might cease operating without any a priori warning.292

Under this client model, an algorithm A solves the AtomicAppends problem, if293

it provides enough incentive to the clients to follow this algorithm (which guarantees the294

safety and liveness properties of Definition 4, possibly in the presence of crashes), without295

any client deviating from its utility-driven protocol. If no such algorithm can be designed,296

then the AtomicAppends problem cannot be solved.297

2.5.2 Utility Models298

Looking at the definition of the AtomicAppends problem, one might wonder what is the299

incentive of the clients to achieve this both-or-none principle on the appends. Let UX denote300

the utility function (or incentive) for each client X. A selfish rational client X will try to301

maximize her utility UX . Depending on the possible combinations of values the clients’ utility302

functions can take, we can identify a number of different scenarios, we refer as utility models.303

Let us now motivate and specify two such utility models.304

Collaborative utility model. Consider two clients A and B that have agreed to acquire305

a property (e.g., a piece of land) in common, and each has to provide half of the cost. If one306

of them, say A, pays while B backs off from the deal, then A incurs in expenses while not307

getting the property. On the other hand, B loses no money in this case, but her reputation308

may suffer. If both of them back off, they do not have any cost, while if both proceed with309

the payments then they get the property, which they prefer.310

If UX() denotes the utility of agent X ∈ {A,B}, then we have the following relations in
the scenario described:

UX(both agents pay) > UX(no agent pays) > UX(only agent X̄ pays) > UX(only agent X pays).
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3:8 Atomic Appends on Multiple Distributed Ledgers

Utility model Utility of client X

Collaborative UX(both append) > UX(none appends) >

UX(only X̄ appends) > UX(only X appends)
Competitive UX(only X̄ appends) > UX(both append) >

UX(none appends) > UX(only X appends)

Table 1 The utility of client X ∈ {A, B} in the two utility models considered.

In relation to the AtomicAppends problem, record rA contains the transaction by which311

client A pays her share of the deal, and the append of rA in DLOA carries out this payment.312

Similarly for client B. So, here we see that under the above utility model, both clients313

have incentive for both appends to take place. Observe that this situation is similar to the314

Coordinated Attack problem [10], in which two armies need to agree on attacking a common315

enemy. If both attack, then they win; if only one of them attacks, then that army is destroyed,316

while the other is disgraced; if none of them attack, then the status quo is preserved.317

These utility examples fall in the general utility model depicted in the first row of Table 1,318

which we call collaborative. We will be referring to the AtomicAppends problem under this319

utility model as the Collaborative AtomicAppends problem.320

Competitive utility model. We now consider a different utility model. Consider two321

clients A and B that have agreed to exchange their goods. E.g, A gives his car to B, and322

B gives a specific amount as payment to A. If one of them, say A, gives the car to B, but323

B does not pay, then A loses the car while not getting any money. On the other hand, B324

gets the car for free! If both of them back off from the deal, then they do not have any cost.325

Both proceeding with the exchange is not necessarily their highest preference (unlike in the326

previous collaborative model).327

So, if UX() denotes the utility of agent X ∈ {A,B}, then we have the following relations
in the scenario described:

UX(only X̄ proceeds) > UX(both agents proceed) > UX(no agent proceeds) > UX(only X proc.).

In relation to the AtomicAppends problem, record rA contains the transaction transferring328

the deed of A’s car to B, and the append of rA in DLOA carries out this transfer. Similarly,329

rB contains the transaction by which client B transfers a specific monetary amount to A330

(pays for the car), and the append of rB in DLOB carries out this monetary transfer. Observe331

that this scenario is similar to the Atomic Swaps problem [13].332

These utility examples fall in the general utility model depicted in the second row of333

Table 1, which we call competitive. We will be referring to the AtomicAppends problem334

under this utility model as the Competitive AtomicAppends problem.335

No matter of the utility, failure or timing model assumed, our objective is to provide336

a solution to the AtomicAppends problem. Our investigation will focus on identifying the337

modeling conditions under which this is possible or not, and what is the impact of the model338

on the solvability of the problem.339

3 AtomicAppends in the Absence of Client Crashes340

We begin our investigation in a setting with no client crashes, so to study the impact of the341

utility model on the solvability of the problem.342

It is not difficult to observe that in the absence of crash failures, even under asynchrony343

and NoDelegation, there is a straightforward algorithmic solution to the Collaborative344
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AtomicAppends problem: the algorithm simply has client A (resp. client B) issuing operation345

append(DLOA, rA) (resp. append(DLOB , rB)). Based on Table 1, the clients’ utilities are346

maximized when both append their corresponding records. Since there are no failures and347

the DLOs are reliable, these operation are guaranteed to complete, nullifying the clients’348

uncertainty. Hence, the clients will follow the algorithm, without deviating from their349

utility-driven protocol. This yields the following result:350

I Theorem 5. Collaborative 2-AtomicAppends can be solved in the absence of failures, even351

under asynchrony and NoDelegation.352

However, this is not the case for the Competitive AtomicAppends problem. The problem353

cannot be solved, even in the absence of failures, in synchrony, and WithDelegation:354

I Theorem 6. Competitive 2-AtomicAppends cannot be solved in the absence of failures,355

even in synchrony and WithDelegation.356

Proof. Let us firstly show that client A will never send its record rA to the other client B.357

The reason is that this would carry a large risk of B appending rA itself (and A is risk-averse).358

Observe that, independently on whether B already appended rB or not, this would reduce359

A’s utility (see Table 1). Then, we secondly claim that client A will not directly append360

its own record rA either. The reason is that, again, independently on whether B already361

appended rB or not, this would reduce A’s utility (see Table 1). Hence, client A will not362

have its record rA appended to DLOA ever. However, this violates the liveness property of363

Definition 4, since by assumption neither A nor B fail by crashing. J364

Note that the above result does not contradict the known solutions for atomic swaps365

(e.g., [13]), as the primitives used are stronger than the ones offered by DLO (e.g., some form366

of validation is needed for hashlocks). As we show in Section 5, the problem can be solved in367

the model we consider, if a reliable external entity is used between the clients and the MDLO.368

In view of Theorems 5 and 6, in the next section we focus on the study of Collaborative369

AtomicAppends in the presence of crash failures.370

4 Crash-prone Collaborative AtomicAppends with Client Appends371

In this section we focus on the Collaborative AtomicAppend problem assuming that at least372

one client may crash, under the NoDelegation and WithDelegation client append models.373

Observe from Table 1 that both clients have incentive to get both records appended, versus374

the case of no record appended, with respect to utilities. However, as we will see, in some375

cases, crashes introduce uncertainty that renders the problem unsolvable.376

4.1 Client Appends with No Delegation377

We prove that Collaborative AtomicAppends cannot be guaranteed by any algorithm A, even378

in a synchronous system, when at least one client crashes and the clients cannot delegate the379

append of their records.380

I Theorem 7. When at least one client crashes, Collaborative 2-AtomicAppends cannot be381

solved in the NoDelegation append model, even in a synchronous system.382

Proof. Consider an algorithm A that clients can execute without deviating from their utility-383

driven protocol. Assume algorithm A solves the Collaborative 2-AtomicAppends problem in384

the model described. Let E be an execution of algorithm A in which no client crashes. By385
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liveness, both clients A and B must issue append operations. Consider the first client, say A386

without loss of generality, that issues the append operation. Let us assume that A issues387

append(DLOA, rA) at time t. Hence, B issues append(DLOB , rB) at time no earlier than t,388

and A cannot verify that the record rB is in the corresponding DLOB until time t′ > t.389

Now consider execution E′ of algorithm A that is identical to E, up to time t. Now at time390

t client B crashes, and hence it never issues append(DLOB , rB). Since A cannot differentiate391

until time t this execution from E, it issues append(DLOA, rA) at time t, appending rA392

to DLOA. Even if after time t, A detects the crash of client B, by the specification of393

NoDelegation, it cannot append record rB in DLOB. This, together with the fact that B394

has crashed, yields that record rB is never appended to DLOB , violating safety. Hence, we395

reach a contradiction, and algorithm A does not solve the Collaborative 2-AtomicAppends396

problem. J397

4.2 Client Appends With Delegation398

Let us now consider the more relaxed client append model of WithDelegation. It is not399

difficult to see that in this model, the impossibility proof of Theorem 7 breaks. In fact, it400

is easy to design an algorithm that solves the collaborative AtomicAppends problem in a401

synchronous system, if at most one client crashes. In a nutshell, first both clients exchange402

their records. When a client has both records, it appends them (one after the other) to the403

corresponding DLO; otherwise it does not append any record. We refer to this algorithm as404

Algorithm ADSync and its pseudocode is given as Code 1. We show:405

I Theorem 8. In the WithDelegation append model, Algorithm ADSync solves the Collabo-406

rative 2-AtomicAppends problem in a synchronous system, if at most one client crashes.407

Proof. If no client crashes, then the proof of the claim is straightforward. Hence, let us408

consider the case that one client crashes, say A. There are three cases:409

(a) Client A crashes before sending its record. In this case, client B will not append any410

record and the problem is solved (none case).411

(b) Client A crashes after sending its record, but before it does any append. In this case412

client B will receive A’s record and append both records (both case).413

(c) Client A crashes after it performs one or two of the appends. Client B will perform414

both appends, and since DLOs guarantee that a record is appended only once (they are415

idempotent), the problem is solved (both case).416

The above cases and Table 1 suggest that the clients have no risk in running Algorithm417

ADSync with respect to their utility-driven protocol. Hence, the claim follows. J418

We note that algorithm ADSync solves the problem also in the asynchronous setting,419

without of course being able to implement the "else" statement (line 5), since in asynchrony,420

a client cannot distinguish the case on whether the other client has crashed or its message is421

taking too long to arrive. To this respect, we slightly modify the description of the algorithm422

to better highlight the inability to detect crashes. We refer to this version of the algorithm423

as ADAsync; its pseudocode is given as Code 2. We show:424

I Theorem 9. In the WithDelegation append model, Algorithm ADAsync solves the Collabo-425

rative 2-AtomicAppends problem in an asynchronous system, if at most one client crashes.426

Proof. As before, we will prove this by case analysis. If no client crashes, then the proof427

follows easily, given the fact that a DLOs guarantees that a record is appended only once.428

Hence, let us consider the case that one client crashes, say A. There are three cases:429
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Code 1 ADSync: AtomicAppends WithDelegation, Synchrony, at most one crash; code for Client
X ∈ {A, B}.

1: send rX to client X̄

2: If rX̄ is received from client X̄ then
3: append(DLOX , rX)
4: append(DLOX̄ , rX̄)
5: Else (client X̄ has crashed)
6: no append

Code 2 ADAsync: AtomicAppends WithDelegation, Asynchrony, at most one crash; code for Client
X ∈ {A, B}.

1: send rX to client X̄

2: wait until rX̄ is received from client X̄

3: append(DLOX , rX)
4: append(DLOX̄ , rX̄)

(a) Client A crashes before sending its record. In this case, client B will not proceed to430

append any record (none case). Observe that client B might not terminate, but the431

problem (safety) is not violated.432

(b) Client A crashes after sending its record, but before it does any append. In this case433

client B will receive A’s record and append both records (both case).434

(c) Client A crashes after it performs one or two of the appends (it means it has sent its435

record to client B). Client B will perform both appends, and since DLOs guarantee that436

a record is appended only once, the problem is solved (both case).437

The above cases and Table 1 suggest that the clients have no risk in running Algorithm438

ADAsync with respect to their utility-driven protocol. Hence, the claim follows. J439

As already discussed in case (a) of the above proof, it is possible for the client that has440

not crashed to wait forever, as it cannot distinguish the case when the message is taking441

too long to arrive and the append operation is taking too long to complete, from the case442

when the other client has crashed. Hence, algorithm ADAsync, under certain conditions, is443

non-terminating1.444

Furthermore, it is not difficult to see that if both clients fail, neither algorithm ADAsync445

nor algorithm ADSync can solve the Collaborative AtomicAppends problem. For example,446

in the proof of Theorem 8, in case (b), client B could crash right after appending its own447

record (i.e., rB is appended, but rA is not). This violates safety. In fact, we now show that448

if both clients can crash, the problem is not solvable, even under synchrony.449

I Theorem 10. When both clients can crash, the Collaborative 2-AtomicAppends problem450

cannot be solved WithDelegation, even in a synchronous system.451

Proof. Consider an algorithm A that clients can execute without deviating from their utility-452

driven protocol. Assume algorithm A solves the Collaborative 2-AtomicAppends problem in453

the model described. Let E be an execution of algorithm A in which no client crashes. By454

liveness, both records rA and rB must be eventually appended. Consider the first record455

appended, say rA w.l.o.g., and the client that issued the append operation, say A w.l.o.g.. Let456

1 Hence, in practice this may force a client to use timeouts in order to avoid blocking forever.
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us assume that A issues append(DLOA, rA) at time t. Hence, append(DLOB , rB) is issued457

at time no earlier than t, and A cannot verify that the record rB is in the corresponding458

DLOB until time t′ > t.459

Now consider execution E′ of algorithm A that is identical to E, up to time t. Now at time460

t client B crashes, and hence it never issues append(DLOB , rB). Since A cannot differentiate461

until time t this execution from E, it issues append(DLOA, rA) at time t, appending rA to462

DLOA. Then, at time t+1 (immediately after append(DLOA, rA) completes) A also crashes,463

and hence never issues append(DLOB , rB). Since append(DLOB , rB) is never issued, record464

rB is never appended to DLOB, violating safety. Hence, we reach a contradiction, and465

algorithm A does not solve the Collaborative 2-AtomicAppends problem. J466

5 Crash-prone AtomicAppends with SDLO467

Theorems 6 and 10 suggest the need to use some external intermediary entity, in order468

to solve Competitive AtomicAppends, even in the absence of crashes, and Collaborative469

AtomicAppends, in the case both clients crash, respectively. This is the subject of this section.470

5.1 Smart DLO (SDLO)471

We enhance the MDLO with a special DLO, called Smart DLO (SDLO), which is used by472

the clients to delegate the append of their records to the original MDLO. This SDLO is an473

extension of a DLO that supports a special “atomic appends” record of the form [client id,474

{list of involved clients in the atomic append}, record of client]. When two clients475

wish to perform an atomic append involving their records and their corresponding DLOs,476

then they both need to append such an atomic appends record in the SDLO; this is like477

requesting the atomic append service from the SDLO. Once both records are appended in the478

SDLO, then the SDLO appends each record to the corresponding DLO. A pseudocode of this479

mechanism, together with the client requests, called algorithm ASDLO is given as Code 3.480

Code 3 ASDLO: SDLO mechanism and requests from client X ∈ {A, B}; SDLO code only for
atomic appends
1: Client X:
2: append(SDLO, [X, {X, X̄}, rX ])
3: upon receipt AppendAck from SDLO return
4: SDLO:
5: Init: S ← ∅
6: function SDLO.append([X, {X, X̄}, rX ])
7: S ← S ‖ [X, {X, X̄}, rX ]
8: if [X̄, {X, X̄}, rX̄ ] ∈ S then
9: append(DLOX , rX)
10: append(DLOX̄ , rX̄)
11: return AppendAck

So essentially the SDLO.append function in Code 3 can be viewed as a smart contract481

that “collects” the append requests involved in the AtomicAppends instance and ultimately482

executes them, by performing individual appends to the corresponding DLOs. Observe that483

the SDLO does not access the state of DLOA and DLOB , but it needs to be able to perform484

append operations to both of them. In other words, delegation is passed to the SDLO. Also485

observe that the SDLO returns ack to a client’s request, once their atomic appends request486

is appended in the SDLO, and not when the actual atomic append takes place.487
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5.2 Solving AtomicAppends with SDLO488

It is not difficult to observe that algorithm ASDLO can solve the AtomicAppends problem in489

both utility models, even in asynchrony, and even if both clients crash. Note that SDLO,490

being a distributed ledger by itself, is reliable despite the fact that some servers implementing491

it may fail (more below). We show:492

I Theorem 11. Algorithm ASDLO solves both the Collaborative and Competitive 2-493

AtomicAppends problems in an asynchronous setting, even if both clients may crash.494

Proof. We consider three cases:495

1. If no client crashes, then algorithm ASDLO trivially solves the problem: Both clients496

invoke the atomic appends request to the SDLO, these operations complete, and the497

SDLO eventually triggers the two corresponding appends of records rA and rB to DLOA498

and DLOB , respectively (both case).499

2. At most one client crashes, say client A. Here we have two cases:500

a. Record [A, {A,B}, rA] is never appended to the SDLO. Since the SDLO will never501

contain both matching records, it will never append any of the records rA and rB502

(none case).503

b. Record [A, {A,B}, rA] is appended to the SDLO. Since record [B, {A,B}, rB] will504

eventually be appended by B in the SDLO, it will proceed with the corresponding505

appends of records rA and rB (both case).506

3. Both clients crash. If one of the two clients, say A, crashes before appending [A, {A,B}, rA]507

to the SDLO, then none of the appends of records rA and rB will take place in the508

corresponding DLOs (none case). However, if both clients crash after they have appended509

the matching atomic appends records, then both records rA and rB will be appended by510

the SDLO (both case).511

Observe that the above hold for both utility models. In Competitive AtomicAppends, if a512

client does not invoke its atomic append request to the SDLO, it knows that the SDLO will513

not proceed to append the other client’s record. This leaves the clients with their second best514

utility (see Table 1), and hence, both have incentive to invoke the atomic append requests to515

the SDLO. The reliability of the SDLO nullifies the uncertainty of the clients, and hence516

they will follow algorithm ASDLO. J517

Observe that algorithm ASDLO can easily be extended to solve the k-AtomicAppend518

problem, for any k ≥ 2, provided that the utility of all records being appended is higher than519

none being appended for all clients: All clients submit their atomic append request to the520

SDLO, and then the SDLO performs the corresponding appends. Hence:521

I Corollary 12. Both the Collaborative and Competitive k-AtomicAppends problems can be522

solved with the use of SDLO in the asynchronous setting, even if all k clients may crash.523

Remark: As we discussed in the case 2 of the proof of Theorem 11, if client A crashes524

and record [A, {A,B}, rA] is never appended to the SDLO, none of the records rA and rB525

will be appended. Now, observe that client B can proceed to perform other operations526

once it has appended [B, {A,B}, rB] (despite the fact that rB has not been appended to527

DLOB , as it is up to the SDLO to do so). Since clients do not need to wait forever for any528

operation, algorithm ASDLO is terminating with respect to the clients. Moreover, the SDLO529

also terminates the processing of all the operations, as long as the appends in other DLOs530

terminate.531
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Implementation issues. In the above mechanism and theorem, we treat the SDLO as532

one entity. Since, however, the SDLO is a distributed ledger implemented by collaborating533

servers, there are some low-level implementation details that need to be discussed. If we534

assume that the servers implementing the SDLO are prone to only crash faults and that the535

SDLO is implemented using an Atomic Broadcast service, as described in [7], then algorithm536

ASDLO can be implemented as follows: Clients A and B submit the atomic append requests537

to all servers implementing the SDLO. Once a server appends an atomic append request538

record to its local copy of the ledger, it checks if the matching record is already in the ledger.539

If this is the case, it issues the two corresponding append operations for records rA and540

rB . If up to f servers may crash, then it suffices that f + 1 servers, in total, perform these541

append operations. Given that each record is appended to a DLO at most once (the append542

operations are idempotent; if a record is already appended, it will not be appended again), it543

follows that both records are appended in the corresponding DLOs.544

6 Conclusion545

We have introduced the AtomicAppends problem, where given two (or more in general)546

clients, each needs to append a record to a corresponding DLO, and do so atomically with547

respect to each other: either both records are appended or none. We have considered crash-548

prone, rational and risk-averse clients based on two different utility models, Collaborative549

and Competitive, and studied the solvability of the problem under synchrony/asynchrony,550

different client append models and failure scenarios. Table 2 gives an overview of our results551

(for two clients): if the problem can be solved, then we list the algorithm we developed,552

otherwise we use the symbol “8”.553

Synchrony Asynchrony
ND WD SDLO ND WD SDLO

no crashes simple simple
up to one ADSync A(?)

DAsyncCollaborative
both 8

8
8

8

no crashes
up to oneCompetitive

both
8

ASDLO

8

ASDLO

(?) might not terminate
Table 2 Overview of the results. ND stands for NoDelegation and WD for WithDelegation.

Our results demonstrate a clear separation on the solvability of the problem based on the554

utility model assumed when appends are done directly by the clients. When appends are555

done using a special type of a DLO, which we call Smart DLO (SDLO), then the problem is556

solved in both utility models, even in asynchrony and even if both clients may crash.557

Our investigation of AtomicAppends did not look into the semantics of the records being558

appended. Consider, for example, the following scenario. Say that clients A and B initiate559

an atomic append request with records rA and rB, respectively. While the atomic append560

request is being processed, say by the SDLO, client B appends a record r′ directly to DLOB .561

It could be the case that the content of record r′ is such, that it would affect record rB . For562

example, say that the atomic append involves the exchange of a deed of a car with bitcoins;563

record rA contains the transfer of the deed and rB the transfer of bitcoins. If r′ involves the564

withdrawal of bitcoins from the wallet of client B, and this is appended first, then it could565

be the case that the wallet no longer contains sufficient bitcoins to carry out the atomic566

appends request. Even if we enforce the clients to perform all appends – not only atomic567
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appends – through the SDLO (which practically speaking is not desirable), still we need to568

validate records. Therefore, to tackle such cases, we will need to consider validated DLOs569

(VDLOs) [7]. This is a challenging problem, especially in asynchronous settings.570
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