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Abstract

In this work, using a game-theoretic approach, cost-
sensitive mechanisms that lead to reliable Internet-based
computing are designed. In particular, we consider
Internet-based master-worker computations, where a mas-
ter processor assigns, across the Internet, a computational
task to a set of potentially untrusted worker processors and
collects their responses. Several game-theoretic models
that capture the nature of the problem are analyzed and
mechanisms that, for each given set of cost and system
parameters, achieve high reliability are designed. Addi-
tionally, two specific realistic system scenarios are studied.
These scenarios are a system of volunteering computing like
SETI, and a company that buys computing cycles from In-
ternet computers and sells them to its customers in the form
of a task-computation service. Notably, under certain con-
ditions, non redundant allocation yields the best trade-off
between cost and reliability.

1 Introduction

Motivation. As traditional one-processor machines have
limited computational resources, and powerful parallel ma-
chines are very expensive to obtain and maintain, the Inter-
net is emerging as the computational platform of choice for
processing complex computational jobs. Several Internet-
oriented systems and protocols have been designed to op-
erate on top of this global computation infrastructure; ex-
amples include Grid systems [5, 27] and the “@home”
projects [2], such as SETI [17] (a classical example of
volunteering computing). Although the potential is great,
the use of Internet-based computing (also referred as P2P
computing–P2PC [9, 28]) is limited by the untrustworthi-
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ness nature of the platform’s components [2, 11]. Let us
take SETI as an example. In SETI, data are distributed for
processing to millions of voluntary machines around the
world. At a conceptual level, in SETI there is a machine
(which we can call the master) that sends jobs, across the
Internet, to these computers (which we can call the work-
ers). These workers execute and report back the result of
the task computation. However, these workers are not trust-
worthy, and hence might report incorrect results. Usually,
the master attempts to minimize the impact of these bogus
results by assigning the same task to several workers and
comparing their outcomes (that is, redundant task alloca-
tion is employed [2]).

In this paper, we consider Internet-based master-worker
computations from a game-theoretic point of view. Specif-
ically, we model these computations as games where each
worker chooses whether to be honest (that is, compute and
return the correct task result) or a cheater (that is, fabricate
a bogus result and return it to the master). We design cost-
sensitive mechanisms that provide the necessary incentive
for the workers to truthfully compute and report the correct
result. The objective is to maximize the probability of the
master of obtaining the correct result while minimizing its
cost (or alternatively, increasing its benefit).

Additionally, we identify and propose mechanisms for
two paradigmatic applications. Namely, a volunteering
computing system as the aforementioned SETI where com-
puting processors are altruistic, and a second scenario
where a company distributes computing tasks among con-
tractor processors that get an economic reward in exchange.

Background and Prior/Related Work. Prior examples
of game theory in distributed computing include work on
Internet routing [18, 19, 25], resource/facility location and
sharing [10, 13], containment of viruses spreading [20], se-
cret sharing [1, 15] and task computations [28]. For more
discussion on the connection between game theory and
computing we refer the reader to the survey by Halpern [14]
and the book by Nisan et al. [23].

In traditional distributed computing, the behavior of the
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system components (i.e., processors) is characterized a pri-
ori as either good or bad, depending on whether they follow
the prescribed protocol or not. In game theory, processors
are assumed to act on their own self-interest and they do not
have an a priori established behavior. Such processors are
usually referred as rational [1, 11]. In other words, the pro-
cessors decide on how to act in an attempt to increase their
own benefit, or alternatively to lower their own cost.

In algorithmic mechanisms design [1, 6, 22, 24], games
are designed to provide the necessary incentives so that pro-
cessors’ interests are best served by acting “correctly.” The
usual practice is to provide some reward (resp. penalty)
should the processors (resp. do not) behave as desired. The
design objective is to force a desired unique Nash equilib-
rium (NE) [21], i.e., a strategy choice by each game partic-
ipant such that none of them has incentive to change it.

In [7,16] reliable master-worker computations have been
considered by redundant task-allocation. In these works
probabilistic guarantees of obtaining the correct result while
minimizing the cost (number of workers chosen to perform
the task) are also shown. However, a traditional distributed
computing approach is used, in which the behavior of each
worker is pre-defined. In this paper, much richer payoff pa-
rameters are studied and the behavior of each worker is not
pre-defined, introducing new challenges that naturally drive
to a game-theoretic approach.

Master-worker computations in a game-theoretic model
have been studied before [28]. In that paper, the master can
audit the results returned by rational workers with a tunable
probability. Bounds for that audit probability are computed
to guarantee that workers have incentives to be honest in
three scenarios: redundant allocation with and without col-
lusion1, and single-worker allocation. They conclude that,
in their model, single-worker allocation is a cost-effective
mechanism specially in presence of collusion. Although
our model comprises a weaker type of collusion, similar
conclusions are reached here under certain system param-
eters. Additionally, our paper complements their work in
various ways, such as studying more algorithms and games,
including a richer payoff model, or considering probabilis-
tic cheating. Also, ours are one-round protocols and we
show useful trade-offs between the benefit of the master and
the probability of accepting a wrong result.

A somewhat related work is [3] in which they face the
problem of bootstrapping a P2P computing system, in the
presence of rational peers. The goal is to incentive peers to
join the system, for which they propose a scheme that mixes
lottery psychology and multilevel marketing. In our setting,
the master could use their scheme to recruit workers. We
assume in this paper that enough workers are willing to par-
ticipate in the computation.

1Cooperation among various workers concealed from the master.

Framework. We consider a distributed system consisting
of a master processor that assigns a task to a set of work-
ers to compute and return the task result. We assume that
the master has the possibility of verifying whether the value
returned by a worker is the correct result of the task. We
also assume that verifying an answer is more efficient than
computing the task [12] (e.g., NP -complete problems if
P 6= NP ), but the correct result of the computation might
not be obtained. Therefore, the master by verifying does
not necessarily obtain the correct answer (e.g., when all
workers cheat). As in [3, 28], workers are assumed to be
rational and seek to maximize their benefit, i.e., they are
not destructively malicious. We note that this assumption
can conceptually be justified by the work of Shneidman and
Parks [26] where they reason on the connection of ratio-
nal players–of algorithmic mechanism designs–and work-
ers in realistic P2P systems. Furthermore, we do not con-
sider non-intentional errors produced by hardware or soft-
ware problems.

The general protocol used by master and workers is the
following. The master process assigns the task to n work-
ers. Each worker processor i cheats with probability p(i)

C
and the master processor verifies the answers with some
probability pV . If the master processor verifies, it rewards
the honest workers and penalizes the cheaters. If the master
does not verify, it accepts the answer returned by the ma-
jority of workers. However, it does not penalize any worker
given that the majority can be actually cheating. Instead,
the master rewards workers according to one of the three
following models. Either the master rewards the majority
only (Reward Model Rm), or the master rewards all work-
ers independently of the returned value (Reward ModelRa),
or the master does not reward at all (Reward ModelR∅).

Our model comprises the following form of collusion.
Workers decide whether to cheat independently, but all
cheaters collude in returning the same incorrect answer.
Since the master accepts the majority, this behavior max-
imizes the chances of cheating the master. Being this the
worst case, it subsumes models where cheaters do not nec-
essarily return the same answer. We also assume that if a
worker does not perform the task, then it is (almost) im-
possible to guess the correct answer (i.e., the probability is
negligible).

Given the protocol above, the game is defined by a set of
parameters that include rewards to the workers that return
the correct value, punishments to the workers that cheated
(that is, returned the incorrect result and “got caught”).
Hence, the game is played between the master and the
workers, where the first wants to obtain the correct result
with a desired probability, while obtaining a desired util-
ity value (in expectation), and the workers decide whether
to be honest or cheaters, depending on their expected util-
ity gain or loss. In this paper, we design several games and
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study the conditions under which unique Nash equilibria are
achieved. Each NE results in a different benefit for the mas-
ter and a different probability of accepting an incorrect re-
sult. Thus, the master can choose some game conditions so
that a unique NE that best fits its goals is achieved.

Contribution. The main contributions of this paper are:
1. The identification of a collection of realistic payoff pa-
rameters that allow to model Internet-based master-worker
computational environments in game theoretic terms.
2. The definition of four different games that the master can
force to be played: (a) A game between the master and a
single worker, (b) a game between the master and a worker,
played n times (with different workers), (c) a game with
a master and n workers, and (d) a game of n workers in
which the master participates indirectly. Together with the
three reward models defined above, we have overall defined
twelve games among which the master can choose the most
convenient to use in each specific context.
3. The analyses of all the games under general payoff mod-
els, and the characterization of conditions under which a
unique Nash Equilibrium point is reached for each game
and each payoff-model. These analyses lead to mechanisms
that the master can run to trade cost and reliability.
4. To demonstrate the utility of the analysis, we design
mechanisms for two specific realistic scenarios. These sce-
narios reflect, in their fundamental elements, (a) a system of
volunteering computing like SETI, and (b) a company that
buys computing cycles from Internet computers and sells
them to its customers in the form of a task-computation ser-
vice. Our results show that for (a) the best choice is non-
redundant allocation, even for our weak model of collusion.
Furthermore, in this case we show that to obtain always the
correct answer it is enough to verify with arbitrarily small
probability. As an example of the results obtained in (b),
if the master only chooses the number of workers n, we
show that, again, the best choice is non-redundant alloca-
tion. However, in order to achieve correctness always, the
required probability of verifying can now be large.

Paper Structure. In Section 2 we provide basic defini-
tions to be used throughout the paper. In Section 3 we
present and analyze the games proposed. In Section 4 the
mechanisms for the two realistic scenarios are designed.

2 Definitions

Game Definition. Game participants are referred as
workers and master, or simply as players, indistinctively.
In order to define the game played in each case, we fol-
low the customary notation used in game theory. Given
that this notation is repeatedly used throughout the paper,

WPC worker’s punishment for being caught cheating
WCT worker’s cost for computing the task
WBA worker’s benefit from master’s acceptance
MPW master’s punishment for accepting a wrong answer
MCA master’s cost for accepting the worker’s answer
MCV master’s cost for verifying worker’s answers
MBR master’s benefit from accepting the right answer

Table 1. Payoffs

we summarize it in Table 2 for clarity. We assume that
the master always chooses an odd number of worker play-
ers n. Whenever needed, we will express a strategy pro-
file as a group of individual strategy choices and two sets
of workers, grouped by their strategy choice. For instance,
(si = C, sM = V, F, T ) means a strategy profile s where
worker i chooses strategy C, the master chooses strategy V ,
a set F of |F | workers choose strategy C, and a set T of |T |
workers choose strategy C. For games with one worker and
the master, the strategy profile is composed only by their
choices. For example, mCV stands for the master’s payoff
in the case that the worker cheated and the master verified.
We require that, for each worker i, p(i)

C = 1 − p(i)

C and, for
the master, pV = 1 − pV . For games where we only have
one worker or all workers use the same probability, we will
express p(i)

C (resp. p(i)

C ) simply by pC (resp. pC). When-
ever the strategy is clear from the context, we will refer to
the expected utility of a worker as Ui, and for the master as
UM . Unless otherwise stated, the games studied are games
of complete information, i.e., that the worker processors and
the master know the algorithm and the parameters involved.

Equilibrium Definition. We define now precisely the
conditions for the equilibrium among players. For any fi-
nite game, a mixed strategy profile σ∗ is a mixed-strategy
Nash equilibrium (MSNE) if, and only if, for each player i

Ui(si, σ
∗
−i) = Ui(sj , σ

∗
−i),∀si, sj ∈ supp(σ∗i ), (1)

Ui(si, σ
∗
−i) ≥ Ui(sk, σ

∗
−i),

∀si, sk : si ∈ supp(σ∗i ), sk /∈ supp(σ∗i ). (2)

In words, given a MSNE with mixed-strategy profile σ∗, for
each player i, the expected utility, assuming that all other
players do not change their choice, is the same for each pure
strategy that the player can choose with positive probabil-
ity in σ∗, and it is not less than the expected utility of any
pure strategy with probability zero of being chosen in σ∗.
A fully MSNE is an equilibrium with mixed strategy profile
σ where, for each player i, supp(σi) = Si.

Payoffs Definition. We detail in Table 1 the payoff defini-
tions that will be used throughout the paper. All the param-
eters in this table are non-negative. Notice that we split the
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W = {1, 2, . . . , n} set of assigned workers
M master processor
Si set of pure strategies available to player i

{C, C} set of pure strategies of a worker
{V,V} set of pure strategies of the master
s strategy profile (a mapping from players to pure strategies)
si strategy used by player i in the strategy profile s
s−i strategy used by each player but i in the strategy profile s
w

(i)
s payoff of worker i for the strategy profile s
ms payoff of the master for the strategy profile s
p
(i)
si probability that worker i uses strategy si

psM probability that the master uses strategy sM

σ mixed strategy profile (a mapping from players to prob. distrib. over pure strategies)
σi probability distribution over pure strategies used by player i in σ
σ−i probability distribution over pure strategies used by each player but i in σ

Ui(si, σ−i) expected utility of worker i with mixed strategy profile σ
UM (sM , σ−M ) expected utility of master with mixed strategy profile σ
supp(σi) set of strategies of player i with probability > 0 in σ

Table 2. Game notation

reward to a worker in WBA and MCA to model the fact that
the cost of the master might be different than the benefit of
a worker. In fact, in some models they may be completely
unrelated. Among the parameters involved, we assume that
the master has the freedom of choosing the cheater penalty
WPC and the worker reward for computing MCA. By tun-
ing these parameters and choosing n, the master achieves
the desired trade-off between correctness and cost.

3 Equilibria Analysis

In the following sections, different games are studied ac-
cording with the participants involved. In order to identify
the parameter conditions for which there is a NE, Equa-
tions 1 and 2 of the MSNE definition are instantiated in
each particular game, without making any assumptions on
the payoffs. We call this the general payoffs model. From
these instantiations, we obtain conditions on the parameters
(payoffs and probabilities) that would make such equilib-
rium unique. Finally, we introduce the reward models de-
scribed before on those conditions, so that we can compare
among all games and models in Section 4.

3.1 Game 1:1: One Master - One Worker

We start the analysis by considering the game between
the master and one worker.

General Payoffs Model. In order to evaluate all possi-
ble equilibria, all the different mixes have to be consid-
ered. In other words, according with the range of values

that pC and pV can take, we can have fully MSNE, par-
tially MSNE, or pure-strategies NE. More specifically, both
pC and pV can take values either 0, 1 or in the open in-
terval (0, 1). Depending on these values the different con-
ditions in Equations 1 and 2 have to be achieved in or-
der to have an equilibrium. Hence, conditions on pC and
pV for each equilibrium can be obtained from these equa-
tions (for details, see [8]). On the other hand, the expected
utility of the master and the worker in any equilibrium are
UM = pCpVmCV+(1−pC)pVmCV+pC(1−pV)mCV+(1−
pC)(1−pV)mCV and UW = pCpVwCV+pC(1−pV)wCV+
(1−pC)pVwCV+(1−pC)(1−pV)wCV respectively, and the
probability of accepting the wrong answer can be obtained
as Pwrong = (1− pV)pC .

Reward ModelRm. Recall that in this model we assume
that when the master does not verify, rewards only the ma-
jority. Given that there is only one worker, in this case the
master rewards always. Under the payoff model detailed in
Table 1, the payoffs are

mCV = −MCV wCV = −WPC
mCV = MBR −MCV −MCA wCV = WBA −WCT
mCV = −MPW −MCA wCV = WBA
mCV = MBR −MCA wCV = WBA −WCT

Replacing appropriately, we obtain the conditions for equi-
librium, probability of accepting the wrong answer and util-
ities for each case.

Reward Model Ra. In this model we assume that if the
master does not verify, it rewards all workers independently
of the answer. Hence, the analysis is identical to the previ-
ous section.

318



Reward Model R∅. Recall that in this model we assume
that if the master does not verify, it does not reward the
worker. Hence, under the payoff model detailed in Table 1,
the payoffs are

mCV = −MCV wCV = −WPC
mCV = MBR −MCV −MCA wCV = WBA −WCT
mCV = −MPW wCV = 0
mCV = MBR wCV = −WCT

Replacing appropriately, we obtain the conditions for
equilibrium, probability of accepting the wrong answer and
utilities for each case, as we will see in the next Section.

3.2 Game 1:1n: n Games One to One

Given the equilibria computed in Section 3.1, the master
runs n instances of that game, one with each of the n work-
ers, choosing to verify or not with probability pV only once.
Additionally, when paying while not verifying, the master
rewards all or none according with the one-to-one game.

General Payoffs Model. Since in this game the master
runs n instances of the same one-to-one game, under the
payoff model detailed in Table 1, the conditions for equi-
libria and the utility of a worker are the same as in Sec-
tion 3.1. Although the expected utility of the master and
the probability of accepting the wrong result change. In or-
der to give those expressions, we define the following nota-
tion. Let W be the set of partitions in two subsets (F, T )
of W , i.e., W = {(F, T )|F ∩ T = ∅, F ∪ T = W}.
F is the set of workers that cheat and T the set of hon-
est workers. We also define master payoff functions ms :
{0, 1, . . . , n} → R, that reflect the fact that the cost may in-
clude some fixed amount for unique verification or unique
cost of being wrong but they are still function of the num-
ber of workers that cheat or not. For the sake of clarity, we
will denote the probability that the majority cheates as PC .
Then, the probability that the majority cheates, the prob-
ability of being wrong, and the master’s utility are PC =∑

(F,T )∈W
|F |>|T |

∏
j∈F p

(j)
C

∏
k∈T (1 − p

(k)
C ), Pwrong = (1 −

pV)PC and UM = pV
∑

(F,T )∈W
∏

j∈F p
(j)
C

∏
k∈T (1 −

p
(k)
C )mV + (1 − pV)

∑
(F,T )∈W

∏
j∈F p

(j)
C

∏
k∈T (1 −

p
(k)
C )mV respectively, where mV = mCV(|F |) +mCV(|T |)

and mV = mCV(|F |) +mCV(|T |).

Reward Models. In this game, we assume that the cost of
verification MCV is independent of the number of workers
and that, as long as some worker is honest, upon verification
the master obtains the correct result. It is important to note
that, under this assumption, the probability of obtaining the
correct result is not 1 − Pwrong, given that if the master

verifies but all workers cheat, the master does not obtain the
correct result. Recall that the master plays n instances of a
one-to-one game, thus, depending on the model, it must re-
ward every worker if not verifying independently of majori-
ties. We summarize the probability of accepting the wrong
result, the master utility for each case, the conditions for
equilibrium, and the workers utility for the reward models
Rm and R∅ in Tables 3 and 4 respectively (Tables 3 and 4
give also these values for Game 1:1 replacing appropriately
n = 1).

3.3 Game 0:n: No Master in the Game

Another natural generalization of the game of Sec-
tion 3.1 is to consider a game in which the master assigns
the task to n workers that play the game among them. In-
tuitively, it can be seen that workers will compete to be in
the majority to persuade the master in case of not verify-
ing. The question of how the master participating also in
the game would affect the results obtained in this section is
addressed in Section 3.4.

General Payoffs Model. In order to analyze this game,
it is convenient to partition the set of workers W in three
disjunct sets F, T,R, such that F ∪ T ∪ R = W as fol-
lows. F is the set of workers that choose to cheat as a pure
strategy, i.e., F = {i|i ∈ W ∧ p(i)

C = 1}. T is the set
of workers that choose not to cheat as a pure strategy, i.e.,
T = {i|i ∈ W ∧ p(i)

C = 0}. R is the set of workers that
randomize their choice, i.e., R = {i|i ∈W ∧p(i)

C ∈ (0, 1)}.
Let Ri be the set of partitions in two subsets (RF , RT ) of
R\{i}, i.e.,Ri = {(RF , RT )|RF ∩RT = ∅∧RF ∪RT =
R \ {i}}. Let E[w(i)

s ] be the expected payoff of worker
i for the strategy profile s, taking the expectation over the
pure strategies of the master. More precisely, E[w(i)

s ] =
pVw

(i)
s−M ,
sM=V

+(1−pV)w(i)
s−M ,

sM=V
. Then, for each worker i ∈W ,

we have

Ui(R,F, T, si = C) =∑
(RF ,RT )∈Ri

∏
j∈RF

p
(j)
C

∏
k∈RT

(1− p(k)
C )E[w(i)

F∪RF ,
T∪RT ,
si=C

], (3)

Ui(R,F, T, si = C) =∑
(RF ,RT )∈Ri

∏
j∈C

p
(j)
C

∏
k∈RT

(1− p(k)
C )E[w(i)

F∪RF ,
T∪RT ,

si=C

]. (4)

Given that, the normal strategic form of each worker is the
same, facing the same scenario, every worker obtains the
same payoff. In other words, if a given worker choose
to cheat ( resp. be honest), receives some payoff, and it
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turns out that the majority of nodes cheated (resp. was hon-
est), another worker that also cheates (resp. is honest) re-
ceives the same payoff. Additionally, all even splits of the
other workers in cheaters/not-cheaters are the same from
the point of view of i because what matters is the majority.
If this is true for every worker, we fold these cases as fol-
lows. For each worker i and each partition (RF , RT ) ∈ Ri,
∆wC = E[w(i)

si=C ]−E[w(i)

si=C
], when |F ∪RF | > |T ∪RT |;

∆wC = E[w(i)
si=C ]−E[w(i)

si=C
], when |F ∪RF | < |T ∪RT |;

and ∆wX = E[w(i)
si=C ] − E[w(i)

si=C
], when |F ∪ RF | =

|T∪RT |. Also, for convenience, we define ∆Ui(R,F, T ) =
Ui(R,F, T, si = C) − Ui(R,F, T, si = C). Replacing
Equations 3 and 4 in this equation we obtain

∆Ui(R,F, T ) =

∆wC
∑

(RF ,RT )∈Ri

|F∪RF |>|T∪RT |

∏
j∈RF

p
(j)
C

∏
k∈RT

(1− p(k)
C )+

∆wX

∑
(RF ,RT )∈Ri

|F∪RF |=|T∪RT |

∏
j∈RF

p
(j)
C

∏
k∈RT

(1− p(k)
C )+

∆wC
∑

(RF ,RT )∈Ri

|F∪RF |<|T∪RT |

∏
j∈RF

p
(j)
C

∏
k∈T

(1− p(k)
C ). (5)

Restating the equilibrium conditions of Equations 1 or 2
in terms of Equation 5, for each worker i ∈ R that does
not choose a pure strategy, the equilibrium condition is
∆Ui(R,F, T ) = 0; for each worker i ∈ F , i.e., that chooses
to cheat as a pure strategy, the condition is ∆Ui(R,F, T ) ≥
0; and for each i ∈ T , it must hold that ∆Ui(R,F, T ) ≤ 0.
In the following sections we show conditions to obtain an
equilibrium for each reward model. The following lemma
will be useful to show uniqueness.

Lemma 1. Given a game as defined in this section, if
∆wC ≥ ∆wX ≥ ∆wC , there is no unique equilibrium
where R 6= ∅.

Proof. For the sake of contradiction, assume there is a
unique equilibrium σ for which R 6= ∅ and ∆wC ≥
∆wX ≥ ∆wC . Then, ∆Ui(R,F, T ) = 0 must be solvable
for every worker i ∈ R. Given that R 6= ∅ the probabili-
ties given by the summations in ∆Ui(R,F, T ) = 0 are all
strictly bigger than zero. Therefore, given that the equation
is solvable, either ∆wC = ∆wX = ∆wC = 0, or some of
these values have different signs. If ∆wC ≥ 0, there would
be also an equilibrium when all workers choose to cheat
and σ would not be unique. So, it must hold that ∆wC < 0.
Then, given that the equation is solvable, either ∆wX ≥ 0
or ∆wC ≥ 0 or both, which is a contradiction.

In the following sections, we study conditions to obtain
unique equilibria under different models. In all these mod-
els it holds that ∆wC ≥ ∆wX ≥ ∆wC . Then, by Lemma 1,
there is no unique equilibrium where R 6= ∅. Regarding

equilibria where R = ∅, unless the task assigned has a bi-
nary output, a unique equilibrium where all workers choose
to cheat is not useful. Then, we make ∆wC < 0, ∆wX < 0
and ∆wC < 0 so that ∆Ui(R,F, T ) ≥ 0 has no solu-
tion and no worker can choose to cheat as a pure strategy.
Thus, the only equilibrium is for all the workers to choose
to be honest, which solves ∆Ui(R,F, T ) ≤ 0. Therefore,
∀i, p(i)

C = 0 and hence Pwrong = 0.

Reward Model Rm. Replacing appropriately the pay-
offs detailed in Table 1, we obtain ∆wC = pV(−WPC −
2WBA) + WBA+ WCT , ∆wX = pV(−WPC −WBA) +
WCT , and ∆wC = pV(−WPC) − WBA + WCT . The
condition on pV to obtain the aforementioned unique equi-
librium is then ∆wC < 0, yielding pV > (WBA +
WCT )/(WPC + 2WBA). The expected utilities are then
UM = MBR−pVMCV−nMCA andUW = WBA−WCT .

Reward Model Ra. Again, replacing appropriately the
payoffs detailed in Table 1, we have ∆wC = pV(−WPC −
WBA)+WCT , ∆wX = pV(−WPC−WBA)+WCT and
∆wC = pV(−WPC −WBA) + WCT . Then, the condi-
tion to obtain the unique equilibrium and the expected util-
ities are pV > (WCT )/(WPC + WBA), UM = MBR −
pVMCV − nMCA and UW = WBA −WCT .

Reward Model R∅. Replacing appropriately the payoffs
detailed in Table 1, ∆wC = pV(−WPC −WBA) + WCT ,
∆wX = pV(−WPC − WBA) + WCT and ∆wC =
pV(−WPC − WBA) + WCT . The condition to obtain
the unique equilibrium and the expected utilities are pV >
(WCT )/(WPC + WBA), UM = MBR − pV(MCV +
nMCA) and UW = pVWBA −WCT .

3.4 Game 1:n: One Master - n Workers

We now observe how the conditions obtained in the pre-
vious game are modified if the master also participates as
a player. The equilibria analysis regarding the workers fol-
lows the same lines as in Section 3.3. However, now Equa-
tions 1 and 2 have to be applied to the master also, as fol-
lows.

General Payoffs Model. Recall that R is the set of
workers that randomize their choice. Let R be the set
of partitions in two subsets (RF , RT ) of R, i.e., R =
{(RF , RT )|RF ∩ RT = ∅ ∧ RF ∪ RT = R}. Then, for
the master,

UM (R,F, T, sM = V) =∑
(RF ,RT )∈R

∏
j∈RF

p
(j)
C

∏
k∈RT

(1− p(k)
C )mF∪RF ,

T∪RT ,
sM=V
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UM (R,F, T, sM = V) =∑
(RF ,RT )∈R

∏
j∈RF

p
(j)
C

∏
k∈RT

(1− p(k)
C )mF∪RF ,

T∪RT ,

sM=V

.

From Equation 1, if pV ∈ (0, 1), the MSNE condition is
UM (R,F, T, sM = V) = UM (R,F, T, sM = V). From
Equation 2, if pV = 0 the condition is UM (R,F, T, sM =
V) ≤ UM (R,F, T, sM = V), and if pV = 1 the condition
is UM (R,F, T, sM = V) ≥ UM (R,F, T, sM = V).

The MSNE conditions for the workers are the same as
in Section 3.3. Hence, the conditions obtained for each of
the reward models are the same. However, additional con-
ditions are obtained from the master-utility conditions as
follows. As in Section 3.3, the desired unique MSNE oc-
curs when pC = 0. Using that, in the master-utility con-
ditions we get for the reward model Rm that if pV < 1,
MBR −MCV − nMCA = MBR − nMCA, and if pV = 1,
MBR − MCV − nMCA ≥ MBR − nMCA. Therefore,
in any case it must hold MCV = 0. For the reward
model Ra, the master-utility conditions give, if pV < 1,
MBR −MCV − nMCA = MBR − nMCA and if pV = 1,
MBR − MCV − nMCA ≥ MBR − nMCA. Therefore,
again, MCV = 0. Finally, for the reward model 3, the
master-utility conditions give if pV < 1, MBR −MCV −
nMCA = MBR and if pV = 1, MBR −MCV − nMCA ≥
MBR. Therefore, MCV = MCA = 0. Hence, to achieve
the goal of forcing the workers to be honest, in this game,
verifying must be free for the master.

4 Mechanism Design

In this section two realistic scenarios in which the
master-worker model considered could be naturally appli-
cable are proposed. For these scenarios, we determine ap-
propriate games and parameters to be used by the master to
maximize its benefit.

4.1 SETI-like Scenario

The first scenario considered is a volunteering comput-
ing system such as SETI@home, where users accept to do-
nate part of their processors idle time to collaborate in the
computation of large tasks. In this case, we assume that
workers incur in no cost to perform the task, but they ob-
tain a benefit by being recognized as having performed it
(possibly in the form of prestige). Hence, we assume that
WBA > WCT = 0. The master incurs in a (possibly
small) cost MCA when rewarding a worker (e.g., by ad-
vertising its participation in the project). As assumed in the
general model, in this model the master may verify the val-
ues returned by the workers, at a cost MCV > 0. We also
assume that the master obtains a benefit MBR > MCA if

it accepts the correct result of the task, and suffers a cost
MPW > MCV if it accepts an incorrect value.

Under these constraints, the equilibria for games 1:1 and
1:1n collapse to one single equilibrium point. Also, since
game 1 : n requires MCV = 0 for the equilibrium to be
unique, it cannot be used in this scenario. The different ap-
plicable cases are summarized in Table 5. In this table it
can be observed that in games 1 : 1 and 1 : 1n the equilib-
rium is achieved with any value of pC in an interval. The
master has no way to force the specific value of pC that a
worker uses within the interval. And, in particular, it can-
not force pC = 0 (i.e., Pwrong = 0). Additionally, looking
at the master utility, all games have UM < MBR. How-
ever, in game (0:n,R∅) the master can make UM arbitrarily
close to MBR by setting pV arbitrarily small. (Notice that
the utility of a worker will be arbitrarily small likewise, but
given that workers are volunteering this is not a problem.)
In conclusion, the game (0 : n,R∅) with n = 1 and very
small pV is the best choice in this scenario, since it satisfies
Pwrong = 0 and UM ≈ MBR.

4.2 Contractor Scenario

The second scenario considered is a company that buys
computational power from Internet users and sells it to
computation-hungry costumers. In this case the company
pays the users an amount S = WBA = MCA for using
their computing capabilities, and charges the consumers an-
other amount MBR > MCA for the provided service. Since
the users are not altruistic in this scenario, we assume that
computing a task is not free for them (i.e., WCT > 0),
and they must have incentives to participate (i.e., UW > 0).
As in the previous case, we assume that the master veri-
fies and has a cost for accepting a wrong value, such that
MPW > MCV > 0. Again, under these assumptions, the
equilibria for games 1:1 and 1:1n collapse to unique equi-
libria and game 1:n can not be used. The different cases
are summarized in Table 6. Observe that there are cases in
this table in which the worker has negative expected util-
ity UW . Given that in this case workers are not altruistic,
they will not accept to participate in such a game. This
fact immediately rules out games (1:1,R∅) and (1:1n,R∅).
Similarly, this restriction forces the master to use a value of
pV > WCT /WBA in game (0:n,R∅). Finally, comparing
games (0:n,Rm) and (0:n,Ra), it can be seen that the master
would never choose the former, because the lower bound of
pV is smaller in the latter while the rest of expressions are
the same, which leads to a larger master utility.

In this scenario, beyond choosing the game and num-
ber of workers as in the previous one, we assume that the
master can also choose the reward WBA to the workers for
correctly computing the task, and the punishment WPC if
they are caught returning an incorrect value. All possible
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Equilibrium
pC, pV

Conditions Pwrong UM UW

MCV
MCA+MPW

, WCT
WBA+WPC

(1− pV)PC

pV((1− pn
C )MBR−

MCV − (1− pC)nMCA)+
(1− pV)(MBR(1−PC)−

MPWPC − nMCA)

WBA −WCT

0,
WCT

WBA+WPC
≤ pV < 1

0 < pV
MCV = 0 0 MBR − nMCA WBA −WCT

1, 0 < pV ≤
WCT

WBA+WPC
pV < 1

MCV = MPW + MCA 1− pV −pVMCV − (1− pV)(MPW + nMCA)
(1−pV)WBA−

pVWPC

0 ≤ pC ≤
MCV

MCA+MPW
pC < 1

, 0 WCT = 0 PC MBR(1−PC)−MPWPC − nMCA WBA

MCV
MCA+MPW

≤ pC < 1

0 < pC
, 1 WCT = WBA + WPC 0

(1−
Q

j∈W p
(j)
C )MBR −MCV−P

(WF ,WT )∈W
Q

j∈WF
p
(j)
C ·Q

k∈WT
(1− p

(k)
C )|WT |MCA

−WPC

1, 1 MCV ≤ MPW + MCA
WCT ≥WBA + WPC

0 −MCV −WPC

0, 1 MCV = 0
WCT ≤WBA + WPC

0 MBR − nMCA WBA −WCT

1, 0 MCV ≥ MPW + MCA 1 −MPW − nMCA WBA

Table 3. Game 1:1n, Models Rm and Ra (and Game 1:1 for n = 1)

Equilibrium
pC, pV

Conditions Pwrong UM UW

MCV+MCA
MCA+MPW

, WCT
WBA+WPC

(1− pV)PC

pV((1− pn
C )MBR−

MCV − (1− pC)nMCA)+
(1− pV)(MBR(1−PC)−

MPWPC)

−pVWPC

0,
WCT

WBA+WPC
≤ pV < 1

0 < pV
MCA = MCV = 0 0 MBR pVWBA −WCT

1, 0 < pV ≤
WCT

WBA+WPC
pV < 1

MCV = MPW 1− pV −MCV −pVWPC

0 ≤ pC ≤
MCV+MCA
MCA+MPW

pC < 1
, 0 WCT = 0 PC MBR(1−PC)−MPWPC 0

MCV+MCA
MCA+MPW

≤ pC < 1

0 < pC
, 1 WCT = WBA + WPC 0

(1−
Q

j∈W p
(j)
C )MBR −MCV−P

(WF ,WT )∈W
Q

j∈WF
p
(j)
C ·Q

k∈WT
(1− p

(k)
C )|WT |MCA

−WPC

1, 1 MCV ≤ MPW
WCT ≥WBA + WPC

0 −MCV −WPC

0, 1 MCV = MCA = 0
WCT ≤WBA + WPC

0 MBR WBA −WCT

1, 0 MCV ≥ MPW 1 −MPW 0

Table 4. Game 1:1n, Model R∅ (and Game 1:1 for n = 1)

combined variations of these parameters yield a huge num-
ber of cases to be considered. In this work, we assume that
the master only can choose one of these parameters, while
the rest are predefined. A study of richer combinations is
left for future work.

The following notation is used for clarity. Whenever a
parameter may be different among different games being
compared, a super-index indicates the game to which the
parameter belongs. For instance, U (i,j)

M is the utility of the
master for game (i, j). MCA and WBA are referred to as
simply S.

A simple observation of games (0:n,Ra) and (0:n,R∅)
leads to find that in both cases it is convenient for the
master to choose the smallest possible value of pV . For
this reason, in the following we assume in these games
values p(0:n,Ra)

V = WCT
CP +S + γ(0:n,Ra) and p

(0:n,R∅)
V =

WCT
S + γ(0:n,R∅), for arbitrarily small γ(0:n,Ra) > 0 and

γ(0:n,R∅) > 0.

Tunable n: Regarding games (1:1,Rm) and (1:1n,Rm),
in this case the master has no control over pC or pV , since
they are completely defined by the application parameters.
Hence, the probability of accepting a wrong answer might
be arbitrarily close to 1, even for game (1:1n,Rm), because
PC grows with n if pC > 1/2 as shown in Claim 2. Given
that we want to design a mechanism that can be applied to
any setting, we rule out these games for this case. In the case
that n is tunable, the benefit of the master in games (0:n,Ra)
and (0 : n,R∅) decreases as n increases. Hence for these
games the master chooses n = 1. Additionally, these games
provide Pwrong = 0. Out of these games, (0:n,Ra) is better
iff WCT + WCTMCV/S > S+ WCTMCV/(WPC +S).
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(Game,Model) Equilibrium Pwrong UM UW

pC, pV

(1:1,Rm), (1:1,Ra) 0 ≤ pC ≤
MCV

MCA+MPW
, pC < 1 , pV = 0 pC MBR − pC(MBR + MPW)−MCA WBA

(1:1,R∅) 0 ≤ pC ≤
MCV+MCA
MCA+MPW

, pC < 1 , pV = 0 pC MBR − pC(MBR + MPW) 0

(1:1n,Rm), (1:1n,Ra) 0 ≤ pC ≤
MCV

MCA+MPW
, pC < 1 , pV = 0 PC MBR −PC(MBR + MPW)− nMCA WBA

(1:1n,R∅) 0 ≤ pC ≤
MCV+MCA
MCA+MPW

, pC < 1 , pV = 0 PC MBR −PC(MBR + MPW) 0

(0:n,Rm) pC = 0, WBA
WPC+2WBA

< pV ≤ 1 0 MBR − pVMCV − nMCA WBA

(0:n,Ra) pC = 0, 0 < pV ≤ 1 0 MBR − pVMCV − nMCA WBA
(0:n,R∅) pC = 0, 0 < pV ≤ 1 0 MBR − pV(MCV + nMCA) pVWBA

Table 5. SETI-like Scenario

(Game,Model) Equilibrium Pwrong UM UW

pC, pV

(1:1,Rm), (1:1,Ra) MCV
MCA+MPW

, WCT
WBA+WPC

(1− pV)pC MBR − pC(MBR + MPW)−MCA WBA −WCT

(1:1,R∅) MCV+MCA
MCA+MPW

, WCT
WBA+WPC

(1− pV)pC MBR − pC(MBR + MPW) −pVWPC

(1:1n,Rm), (1:1n,Ra) MCV
MCA+MPW

, WCT
WBA+WPC

(1− pV)PC

(pV(1− pn
C ) + (1− pV)(1−PC))MBR

−pVMCV − (1− pV)PCMPW
−(1− pVpC)nMCA

WBA −WCT

(1:1n,R∅) MCV+MCA
MCA+MPW

, WCT
WBA+WPC

(1− pV)PC

(pV(1− pn
C ) + (1− pV)(1−PC))MBR

−pVMCV − (1− pV)PCMPW
−pV(1− pC)nMCA

−pVWPC

(0:n,Rm) 0, WBA+WCT
WPC+2WBA

< pV ≤ 1 0 MBR − pVMCV − nMCA WBA −WCT

(0:n,Ra) 0, WCT
WPC+WBA

< pV ≤ 1 0 MBR − pVMCV − nMCA WBA −WCT

(0:n,R∅) 0, WCT
WPC+WBA

< pV ≤ 1 0 MBR − pV(MCV + nMCA) pVWBA −WCT

Table 6. Contractor Scenario

Tunable WPC: Comparing games (0:n,Ra) and (0:n,R∅),
U

(0:n,Ra)
M = MBR − p

(0:n,Ra)
V MCV − nS = MBR −

WCTMCV/(S+WPC(0:n,Ra))−nS−γ(0:n,Ra)MCV and
U

(0:n,R∅)
M = MBR − p

(0:n,R∅)
V MCV − p

(0:n,R∅)
V nS =

MBR − WCTMCV/S − nWCT − γ(0:n,R∅)MCV −
γ(0:n,R∅)nS. Thus, game (0 : n,R∅) is better iff n >
WCTMCV/S(S−WCT ) for small enough γ(0:n,R∅). Oth-
erwise, (0:n,Ra) is better for small enough γ(0:n,Ra) and
large enough WPC(0:n,Ra). As argued in the previous case,
in this case the master has no control over pC . Although
the master can reduce WPC to increase pV , it can not make
pV arbitrarily close to 1 to reduce Pwrong in case pC is big
(and consequently PC). Then, some cases might lead to a
big probability of accepting the wrong answer. Thus, games
(1:1,Rm) and (1:1n,Rm) are ruled out from consideration.

Tunable S in (WCT ,MBR): In this case n is fixed,
and given that we do not make any assumptions about
its magnitude, we evaluate game 1 : 1 while evaluat-
ing game 1 : 1n for an arbitrary n. Using calculus, the
utility of the master for game (0 : n,Ra) is maximum
when S

(0:n,Ra)
max = ±

√
MCVWCT /n − WPC . Due to

the aforementioned constraints, only values in the inter-
val (WCT ,MBR) are valid for S. Assuming then that
WCT < S

(0:n,Ra)
max < MBR, the utilities areU (0:n,Ra)

M (S =
S

(0:n,Ra)
max ) = MBR − 2

√
nMCVWCT + nWPC and

U
(0:n,R∅)
M = MBR −WCTMCV/S(0:n,R∅) − nWCT −

γ(0:n,R∅)(MCV + nS(0:n,R∅)). Since U (1:1n,Rm)
M ≤ MBR,

game (0 : n,Ra) is better than game (1 : 1n,Rm) when-
ever n > 4MCVWCT /WPC2. On the other hand, game
(0 : n,R∅) is better than game (0 : n,Ra) if MBR >
WCTMCV/(2

√
nMCVWCT − n(WPC + WCT )), for

small enough γ(0:n,R∅) and S(0:n,R∅) arbitrarily close to
MBR. In order to show a scenario where game (1:1n.Rm)
is better, we assume now that MPW ≥ 2MCV . Then, under
this assumption, pC ≤ 1/2. The following claim that makes
use of this fact will be useful.

Claim 2. For game 1:1n, if PC(n) is the probability that
the majority out of n workers cheat, then, if the probability
that a worker cheates pC ≤ 1

2 , PC(n+ 2) ≤ PC(n).

Proof. Let PC(n,> 1) be the probability that, out of n
workers, the number of cheaters exceed the number of hon-
est workers by more than one (i.e., at least 3 given that we
consider only odd number of workers), PC(n,= 1) by ex-
actly one, and PC(n,= 1) be the probability that the num-
ber of honest workers exceed the number of cheaters by ex-
actly one. Then, PC(n+2) = PC(n,> 1)(p2

C+(1−pC)2)+
PC(n,= 1)(p2

C+ 2pC(1−pC)) +PC(n,= 1)p2
C . Bounding

pC the claim follows.

From the previous claim, given that PC = 1/2 for pC =
1/2, we conclude that PC ≤ 1/2. Using that pC ≤ 1/2,
PC ≤ 1/2, and MPW > 2MCV , the utility of the master
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for game (1:1n,Rm) is

U
(1:1n,Rm)
M ≥1

2
MBR − p(1:1n,Rm)

V MCV−

1
2

(1− p(1:1n,Rm)
V )MPW − nS(1:1n,Rm)

=
1
2
MBR − p(1:1n,Rm)

V MCV−

1
2
MPW +

1
2
p
(1:1n,Rm)
V MPW − nS(1:1n,Rm)

≥1
2

(MBR −MPW)− nS(1:1n,Rm).

As shown before, game (0 : n,Ra) is better than game
(0:n,R∅) when MBR < WCTMCV/(2

√
nMCVWCT −

n(WPC + WCT )). Comparing games (1 : 1n,Rm) and
(0:n,Ra) when WCT <

√
MCVWCT /n−WPC < MBR,

we have (MBR − MPW)/2 − nS(1:1n,Rm) ≥ MBR −
2
√
nMCVWCT + nWPC . Therefore, game (1:1n,Rm) is

better whenever

WCT ≤ S(1:1n,Rm) ≤2

√
MCVWCT

n
−

1
2n

(MBR + MPW)−WPC (6)

All three conditions are feasible simultaneously for big
enough MCV , therefore there exists a scenario for which
game (1 : 1n,Rm) is better. Notice that under the afore-
mentioned condition, for game (0:n,Ra) to be better, i.e.,
n > 4MCVWCT /WPC2, it must be true that WPC >
2
√

MCVWCT /n and the inequality 6 does not hold.
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