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Abstract. Consider a system in which tasks of different execution times ar-
rive continuously and have to be executed by a set of processors that are prone
to crashes and restarts. In this paper we model and study the impact of paral-
lelism and failures on the competitiveness of such an online system. In a fault-
free environment, a simple Longest-in-System scheduling policy, enhanced by
a redundancy-avoidance mechanism, guarantees optimality in a long-term ex-
ecution. In the presence of failures though, scheduling becomes a much more
challenging task. In particular, no parallel deterministic algorithm can be com-
petitive against an offline optimal solution, even with one single processor and
tasks of only two different execution times. We find that when additional energy
is provided to the system in the form of processor speedup, the situation changes.
Specifically, we identify thresholds on the speedup under which such compet-
itiveness cannot be achieved by any deterministic algorithm, and above which
competitive algorithms exist. Finally, we propose algorithms that achieve small
bounded competitive ratios when the speedup is over the threshold.

Keywords: Scheduling, Non-uniform Tasks, Failures, Competitiveness, Online
Algorithms, Energy Efficiency.

1 Introduction

Motivation. In recent years we have witnessed a dramatic increase on the demand of
processing computationally-intensive jobs. Uniprocessors are no longer capable of cop-
ing with the high computational demands of such jobs. As a result, multicore-based
parallel machines such as the K-computer [32] and Internet-based supercomputing plat-
forms such as SETI@home [23] and EGEE Grid [16] have become prominent comput-
ing environments. However, computing in such environments raises several challenges.
For example, computational jobs (or tasks) are injected dynamically and continuously,
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Table 1. Summary of results

Condition Number of Task Cost Algorithm
task costs competitiveness competitiveness

s < cmax/cmin and ≥ 2 ∞ ∞ Any
s < γcmin+cmax

cmax

s ≥ cmax/cmin Any 1 cmax/cmin (n, β)-LIS
γcmin+cmax

cmax
≤ s < cmax

cmin
2 1 1 γn-Burst

s ≥ 7/2 Finite cmax/cmin 1 LAF

each job may have different computational demands (e.g., CPU usage or processing
time) and the processing elements are subject to unpredictable failures. Preserving
power consumption is another challenge of rising importance. Therefore, there is a cor-
responding need for developing algorithmic solutions that would efficiently cope with
such challenges.

Much research has been dedicated to task scheduling problems, each work address-
ing different challenges (e.g., [9,13,14,15,17,18,20,22,26,31,12]). For example, many
works address the issue of dynamic task injections, but do not consider failures (e.g.,
[11,21]). Other works consider scheduling on one machine (e.g., [3,27,30]); with the
drawback that the power of parallelism is not exploited (provided that tasks are indepen-
dent). Other works consider failures, but assume that tasks are known a priori and their
number is bounded (e.g., [5,7,12,18,22]), where other works assume that tasks are uni-
form, that is, they have the same processing times (e.g., [12,17]). Several works consider
power-preserving issues, but do not consider, for example, failures (e.g., [10,11,31]).

Contributions. In this work we consider a computing system in which tasks of different
execution times arrive dynamically and continuously and must be performed by a set
of n processors that are prone to crashes and restarts. Due to the dynamicity involved,
we view this task-performing problem as an online problem and pursue competitive
analysis [28,2]. Efficiency is measured as the maximum pending cost over any point
of the execution, where the pending cost is the sum of the execution times of the tasks
that have been injected in the system but are not performed yet. We also account for the
maximum number of pending tasks over any point of the execution. The first measure
is useful for evaluating the remaining processing time required from the system at any
given point of the computation, while the second for evaluating the number of tasks still
pending to be performed, regardless of the processing time needed.

We show that no parallel algorithm for the problem under study is competitive
against the best off-line solution in the classical sense, however it becomes competi-
tive if static processor speed scaling [6,4,11] is applied in the form of a speedup above
a certain threshold. A speedup s means that a processor can perform a task s times faster
than the task’s system specified execution time (and therefore has a meaning only when
s ≥ 1). Speed scaling impacts the energy consumption of the processor. As a matter of
fact, the power consumed (i.e., the energy consumed per unit of time) to run a processor
at a speed x grows superlinearly with x, and it is typically assumed to have a form of
P = xα, for α > 1 [31,1]. Hence, a speedup s implies an additional factor of sα−1 in
the power (and hence energy) consumed. The use of a speedup is a form of resource
augmentation [25].
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Our investigation aims at developing competitive online algorithms that require the
smallest possible speedup. As a result, one of the main challenges of our work is to
identify the speedup thresholds, under which competitiveness cannot be achieved and
over which it is possible. In some sense, our work can be seen as investigating the trade-
offs between knowledge and energy in the presence of failures: How much energy (in
the form of speedup) does a deterministic online scheduling algorithm need in order
to match the efficiency (i.e., to be competitive with) of the optimal offline algorithm
that possesses complete knowledge of failures and task injections? (It is understood
that there is nothing to investigate if the offline solution makes use of speed-scaling as
well). Our contributions are summarized as follows (see Table 1):

Formalization of fault-tolerant distributed scheduling: In Section 2, we formalize an
online task performing problem that abstracts important aspects of today’s multicore-
based parallel systems and Internet-based computing platforms: dynamic and contin-
uous task injection, tasks with different processing times, processing elements subject
to failures, and concerns on power-consumption. To the best of our knowledge, this
is the first work to consider such a version of dynamic and parallel fault-tolerant task
scheduling.

Study of offline solutions: In Section 3, we show that an offline version of a similar
task-performing problem is NP-hard, for both pending cost and pending task efficiency,
even if there is no parallelism (one processor) and the information of all tasks and
processor availability is known.

Necessary conditions for competitiveness: In Section 4, we show necessary condi-
tions (in the form of threshold values) on the value of the speedup s to achieve compet-
itiveness. To do this, we need to introduce a parameter γ, which represents the smallest
number of cmin-tasks that an algorithm can complete (using speedup s), in addition
to a cmax-task, such that the offline algorithm cannot complete more tasks in the same
time. Note that cmin and cmax are lower and upper bounds on the cost (execution time)
of the tasks injected in the system.
We propose two conditions, (a) s < cmax

cmin
, and (b) s < γcmin+cmax

cmax
and show that if

both hold, then no deterministic sequential or parallel algorithm is competitive when
run with speedup s. It is worth noting that this holds even if we only have a single
processor, and therefore this result could be generalized for stronger models that use
centralized or parallel scheduling of multiple processors. Observe that, satisfying con-
dition (b) implies ρ > 0, which automatically means that condition (a) is also satisfied.

Sufficient conditions for competitiveness: Then, we design two scheduling algo-
rithms, each matching a different threshold bound from the necessary conditions above,
showing sufficient conditions on s that lead to competitive solutions. In fact, it can be
shown that in order to have competitiveness, it is sufficient to set s = cmax/cmin if
cmax/cmin ∈ [1, ϕ], and s = 1 +

√
1− cmin/cmax if otherwise, where ϕ = 1+

√
5

2 is
the golden ratio.
Algorithm (n, β)-LIS: For the case when condition (a) does not hold (i.e., s ≥
cmax

cmin
), we develop algorithm (n, β)-LIS, presented in Section 5. We show that, un-

der these circumstances, (n, β)-LIS is 1-pending-task-competitive and cmax

cmin
-pending-

cost-competitive for parameter β ≥ cmax

cmin
and for any given number of processors n.

These results hold for any collection of tasks with costs in the range [cmin, cmax].
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Algorithm γn-Burst: It is not difficult to observe that algorithm (n, β)-LIS cannot be
competitive when condition (a) holds but condition (b) does not (i.e., γcmin+cmax

cmax
≤

s < cmax

cmin
). For this case we develop algorithm γn-Burst, presented in Section 6. We

show that when tasks of two different costs, cmin and cmax, are injected, the algorithm
is both 1-pending-task and 1-pending-cost competitive.
These results fully close the gap with respect to the conditions for competitive-
ness on the speedup in the case of two different task costs, establishing s =
min{ cmax

cmin
, γcmin+cmax

cmax
} as the threshold for competitiveness.

Algorithm LAF, low energy guaranteed: In Section 7, we develop algorithm LAF that
is again competitive for the case when condition (b) does not hold, but in contrast with
γn-Burst, it is more “geared” towards pending cost efficiency and can handle tasks of
multiple different costs. We show that this algorithm is competitive for speedup s ≥ 7

2 .
Hence, unlike the above mentioned algorithms, its competitiveness is with respect to a
speedup that is independent of the values cmax and cmin.

Omitted proofs and further details can be found in the full version [8].

Task Scheduling. We assume the existence of an entity, called Shared Repository
(whose detailed specification is given in Section 2), that abstracts the service by which
clients submit computational tasks to our system and that notifies them when they are
completed. This allows our results to be conceptually general, instead of considering
specific implementation details. The Shared Repository is not a scheduler, since it does
not make any task allocation decisions; processors simply access this entity to obtain
the set of pending tasks. Such an entity, and implementations of it, have been con-
sidered, for example, in the Software Components Communication literature, where it
is referred as the Shared Repository Pattern (see for example [24,29], and references
therein).

This makes our setting simpler, easier to implement and more scalable than other
popular settings with stronger scheduling computing entities, such as a central sched-
uler. Note that even in the case of the central scheduler, a central repository would
still be needed in order for the scheduler to keep track of the pending tasks and pro-
ceed with task allocation. Hence, the underline difference of our setting with that of a
central scheduler is that in the latter, scheduling decisions and processing is done by
a single entity which allocates the tasks to the processors, as opposed to our setting
where scheduling decisions are done in parallel by the participating processors for de-
ciding what task each processor should perform next. As a consequence, all the results
of our work also hold for such stronger models: algorithms work not worse than in the
Shared Repository setting since it is a weaker model. The necessary conditions on en-
ergy threshold also hold as they are proven for a scenario with a single processor, where
these two models are indistinguishable.

Related Work. The work most closely related to this work is the one by Georgiou and
Kowalski [17]. As in this work, they consider a task-performing problem where tasks
are dynamically and continuously injected to the system, and processors are subject
to crashes and restarts. Unlike this work, the computation is broken into synchronous
rounds and the notion of per-round pending-task competitiveness is considered instead.
Furthermore, tasks are assumed to have unit cost, i.e., they can be performed in one
round. The authors consider at first a central scheduler and then show how and under
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what conditions it can be implemented in a message-passing distributed setting (called
local scheduler). They show that even with a central scheduler, no algorithm can be
competitive if tasks have different execution times. This result has essentially moti-
vated the present work; to use speed-scaling and study the conditions on speedup for
which competitiveness is possible. As it turns out, extending the problem for tasks with
different processing times and considering speed-scaling is a non-trivial task; different
scheduling policies and techniques had to be devised.

Our work is also related with studies of parallel online scheduling using identical
machines [26]. Among them, several papers consider speed-scaling and speedup issues.
Some of them, unlike our work, consider dynamic scaling (e.g., [4,10,11]). Usually, in
these works preemption is allowed: an execution of a task may be suspended and later
restarted from the point of suspension. In our work, the task must be performed from
scratch. The authors of [19] investigate scheduling on m identical speed-scaled pro-
cessors without migration (tasks are not allowed to move among processors). Among
others, they prove that any z-competitive online algorithm for a single processor yields
a zBa-competitive online algorithm for multiple processors, where Ba is the number of
partitions of a set of size a. What is more, unlike our work, the number of processors is
not bounded. The work in [6] considers tasks with deadlines (i.e., real-time computing
is considered), but no migration, whereas the work in [4] considers both. We note that
none of these works considers processor failures. Considering failures, as we do, makes
parallel scheduling a significantly more challenging problem.

2 Model and Definitions

Computing Setting. We consider a system of n homogeneous, fault-prone processors,
with unique ids from the set [n] = {1, 2, . . . , n}. We assume that processors have access
to a shared object, called Shared Repository or Repository for short. It represents the
interface of the system that is used by the clients to submit computational tasks and
receive the notifications about the performed ones.

Operations. The data type of the repository is a set of tasks (to be described later)
that supports three operations: inject, get, and inform. The inject operation is executed
by a client of the system, who adds a task to the current set, and as discussed below,
this operation is controlled by an adversary. The other two operations are executed by
the processors. By executing a get operation, a processor obtains from the repository
the set of pending tasks, i.e., the tasks that have been injected into the system, but the
repository has not been notified that they have been completed yet. To simplify the
model we assume that, if there are no pending tasks when the get operation is executed,
it blocks until some new task is injected, and then it immediately returns the set of new
tasks. Upon computing a task, a processor executes an inform operation, which notifies
the repository about the task completion. Then the repository removes this task from
the set of pending tasks. Note that due to processor crashes, it would not be helpful
for a processor to notify the repository of the task it has scheduled before actually
performing the task. Each operation performed by a processor is associated with a point
in time (with the exception of a get that blocks) and the outcome of the operation is
instantaneous (i.e., at the same time point).
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Processor Cycles. Processors run in real-time cycles, controlled by an algorithm. Each
cycle consists of a get operation, a computation of a task, and an inform operation (if a
task is completed). Between two consecutive cycles an algorithm may choose to have
a processor idling for a period of predefined length. We assume that the get and inform
operations consume negligible time (unless get finds no pending task, in which case it
blocks, but returns immediately when a new task is injected). The computation part of
the cycle, which involves executing a task, consumes the time needed for the specific
task to be computed divided by the speedup s ≥ 1. Processor cycles may not complete:
An algorithm may decide to break the current cycle of a processor at any moment, in
which case the processor starts a new one. Similarly, a crash failure breaks (forcefully)
the cycle of a processor. Then, when the processor restarts, a new cycle begins.

Work Conserving. We consider all online algorithms to be work conserving; not to
allow any processor to idle when there are pending tasks and never break a cycle.

Event Ordering. Due to the concurrent nature of the assumed computing system, pro-
cessors’ cycles may overlap between themselves and with the clients’ inject operations.
We therefore specify the following event ordering at the repository at a time t: first, the
inform operations executed by processors are processed, then the inject operations, and
last the get operations of processors. This implies that the set of pending tasks returned
by a get operation executed at time t includes, besides the older unperformed tasks, the
tasks injected at time t, and excludes the tasks reported as performed at time t. (This
event ordering is done only for the ease of presentation and reasoning; it does not affect
the generality of results.)

Tasks. Each task is associated with a unique identifier, an arrival time (the time it
was injected in the system based on the repository’s clock), and a cost, measured as
the time needed to be performed (without a speedup). Let cmin and cmax denote the
smallest and largest, respectively, costs that tasks may have (unless otherwise stated,
this information is known to the processors). Throughout the paper we refer to a task of
cost c ∈ [cmin, cmax], as a c-task. We assume that tasks are atomic with respect to their
completion: if a processor stops executing a task (intentionally or due to a crash) before
completing the entire task, then no partial information can be shared with the repository,
nor the processor may resume the execution of the task from the point it stopped (i.e.,
preemption is not allowed). Note also, that if a processor performs a task but crashes
before the inform operation, then this task is not considered completed. Finally, tasks
are assumed to be similar (require equal or comparable resources), independent, and
idempotent (multiple executions of the same task produce the same final result). Several
applications involving tasks with such properties are discussed in [18].

Adversary. We assume an omniscient adversary that can cause processor crashes and
restarts, as well as task injections (at the repository). We define an adversarial pattern
A as a collection of crash, restart and injection events caused by the adversary. Each
event is associated with the time it occurs (e.g., crash(t, i) specifies that processor i
is crashed at time t). We say that a processor i is alive in time interval [t, t′], if the
processor is operational at time t and does not crash by time t′. We assume that a
restarted processor has knowledge of only the algorithm being executed and parameter
n (number of processors). Thus, upon a restart, a processor simply starts a new cycle.
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Efficiency Measures. We evaluate our algorithms using the pending cost measure, de-
fined as follows. Given a time point t ≥ 0 of the execution of an algorithm ALG under
an adversarial pattern A, we define the pending cost at time t, Ct(ALG,A), to be the
sum of the costs of the pending tasks at the repository at time t. Furthermore, we denote
the number of pending tasks at the repository at time t under adversarial pattern A by
Tt(ALG,A).

Since we view the task performance problem as an online problem, we pursue com-
petitive analysis. Specifically, we say that an algorithm ALG is x-pending-cost compet-
itive if Ct(ALG,A) ≤ x · Ct(OPT,A) +Δ, for any t and under any adversarial pattern
A; Δ can be any expression independent of A and Ct(OPT,A) is the minimum (or
infimum, in case of infinite computations) pending cost achieved by any off-line algo-
rithm —that knows a priori A and has unlimited computational power— at time t of its
execution under the adversarial pattern A. Similarly, we say that an algorithm ALG is
x-pending-task competitive if Tt(ALG,A) ≤ x ·Tt(OPT,A)+Δ, where Tt(OPT,A) is
analogous to Ct(OPT,A). We omit A from the above notations when it can be inferred
from the context.

3 NP-hardness

We now show that the offline problem of optimally scheduling tasks to minimize pend-
ing cost or number of pending tasks is NP-hard. This justifies the approach used in this
paper for the online problem, speeding up the processors. In fact we show NP-hardness
for problems with even one single processor.

Let us consider C SCHED(t,A) which is the problem of scheduling tasks so that
the pending cost at time t under adversarial pattern A is minimized. We consider a de-
cision version of the problem, DEC C SCHED(t,A, ω), with an additional input pa-
rameter ω. An algorithm solving the decision problem outputs a Boolean value TRUE
if and only if there is a schedule that achieves pending cost no more than ω at time t
under adversarial pattern A. I.e., DEC C SCHED(t,A, ω) outputsTRUE if and only
if Ct(OPT,A) ≤ ω.

Theorem 1. The problem DEC C SCHED(t,A, ω) is NP-hard.

A similar theorem can be stated (and proved following the same line), for a decision
version of a respective problem, say DEC T SCHED(t,A) of T SCHED(t,A, ω),
for which the parameter to be minimized is the number of pending tasks.

4 Conditions on Non-competitiveness

For given task costs cmin, cmax and speedup s, we define parameter γ as the smallest
number (non-negative integer) of cmin-tasks that one processor can complete in addi-
tion to a cmax-task, such that no algorithm running without speedup can complete more
tasks in the same time. The following properties are therefore satisfied:

Property 1. γcmin+cmax

s ≤ (γ + 1)cmin.
Property 2. For every non-negative integer κ < γ, κcmin+cmax

s > (κ+ 1)cmin.

It is not hard to derive that γ = max{� cmax−scmin

(s−1)cmin
�, 0}.
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We now present and prove necessary conditions for the speedup value to achieve
competitiveness.

Theorem 2. For any given cmin, cmax and s, if the following two conditions are satis-
fied

(a) s < cmax

cmin
, and (b) s < γcmin+cmax

cmax

then no deterministic algorithm is competitive when run with speedup s against an
adversary injecting tasks with cost in [cmin, cmax] even in a system with one single
processor.

In other words, if s < min
{

cmax

cmin
, γcmin+cmax

cmax

}
there is no deterministic competitive

algorithm.

Proof. Consider a deterministic algorithm ALG. We define a universal off-line algo-
rithm OFF with associated crash and injection adversarial patterns, and prove that the
cost of OFF is always bounded while the cost of ALG is unbounded during the execu-
tions of these two algorithms under the defined adversarial crash-injection pattern.

In particular, consider an adversary that activates, and later keeps crashing and re-
starting one processor. The adversarial pattern and the algorithm OFF are defined recur-
sively in consecutive phases, where formally each phase is a closed time interval and
every two consecutive phases share an end. In each phase, the processor is restarted in
the beginning and crashed at the end of the phase, while kept continuously alive during
the phase. At the beginning of phase 1, there are γ of cmin-tasks and one cmax-task
injected, and the processor is activated.

Suppose that we have already defined adversarial pattern and algorithm OFF till the
beginning of phase i ≥ 1. Suppose also, that during the execution of ALG there are
x of cmin-tasks and y of cmax-tasks pending. The adversary does not inject any tasks
until the end of the phase. Under this assumption we could simulate the choices of ALG
during the phase i. There are two cases to consider:

Scenario 1. ALG schedules κ of cmin-tasks, where 0 ≤ κ < γ, and then schedules
a cmax-task; then OFF runs κ + 1 of cmin-tasks in the phase, and after that the
processor is crashed and the phase is finished. At the end, κ + 1 cmin-tasks are
injected.

Scenario 2. ALG schedules κ = γ of cmin-tasks; then OFF runs a single cmax-task in
the phase, and after that the processor is crashed and the phase is finished. At the
end, one cmax-task is injected.

What remains to show is that the definitions of the OFF algorithm and the associated
adversarial pattern are valid, and that in the execution of OFF the number of pending
tasks is bounded, while in the corresponding execution of ALG it is not bounded. Since
the tasks have bounded cost, the same applies to the pending cost of both OFF and
ALG. Here we give some useful properties of the considered executions of algorithms
ALG and OFF, whose proofs can be found in [8].

Lemma 1. The phases, adversarial pattern and algorithm OFF are well-defined.
Moreover, in the beginning of each phase, there are exactly γ of cmin-tasks and one
cmax-task pending in the execution of OFF.
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Lemma 2. There are infinite number of phases.

Lemma 3. ALG never performs any cmax-task.

Lemma 4. If Scenario 2 was applied in the specification of a phase i, then the number
of pending cmax-tasks at the end of phase i in the execution of ALG increases by one
comparing with the beginning of phase i, while the number of pending cmax-tasks stays
the same in the execution of OFF.

Now we resume the main proof of non competitiveness, i.e., Theorem 2. By Lemma 1,
the adversarial pattern and the corresponding offline algorithm OFF are well-defined
and by Lemma 2, the number of phases is infinite. There are therefore two cases to
consider: (1) If the number of phases for which Scenario 2 was applied in the defini-
tion is infinite, then by Lemma 4 the number of pending cmax-tasks increases by one
infinitely many times, while by Lemma 3 it never decreases. Hence it is unbounded.
(2) Otherwise (i.e., if the number of phases for which Scenario 2 was applied in the
definition is bounded), after the last Scenario 2 phase in the execution of ALG, there
are only phases in which Scenario 1 is applied, and there are infinitely many of them.
In each such phase, ALG performs only κ of cmin-tasks while κ + 1 cmin-tasks will
be injected at the end of the phase, for some corresponding non-negative integer κ < γ
defined in the specification of Scenario 1 for this phase. Indeed, the length of the phase
is (κ + 1)cmin, while after performing κ of cmin-tasks ALG schedules a cmax-task
and the processor is crashed before completing it, because κcmin+cmax

s > (κ+ 1)cmin

(cf., Property 2). Therefore, in every such phase of the execution of ALG the number of
pending cmin-tasks increases by one, and it does not decrease since there are no other
kinds of phases (recall that we consider phases with Scenario 1 after the last phase
with Scenario 2 finished). Hence the number of cmin-tasks grows unboundedly in the
execution of ALG.

To conclude, in both cases above, the number of pending tasks in the execution of
ALG grows unboundedly in time, while the number of pending tasks in the corre-
sponding execution of OFF (for the same adversarial pattern) is always bounded, by
Lemma 1.

Note that the use of condition (a) is implicit in our proof.

5 Algorithm (n, β)-LIS

In this section we present Algorithm (n, β)-LIS, which balances between the following
two paradigms: scheduling Longest-In-System task first (LIS) and redundancy avoid-
ance. More precisely, the algorithm at a processor tries to schedule the task that has been
waiting the longest and does not cause redundancy of work if the number of pending
tasks is sufficiently large. See the algorithm pseudocode for details.

Algorithm (n, β)-LIS (for processor p)
Repeat //Upon awaking or restart, start here

Get from the Repository the set of pending tasks Pending;
Sort Pending by task arrival and ids/costs; //Ranking starts from 0
If |Pending| ≥ 1

then perform task with rank p · βn mod |Pending|;
Inform the Repository of the task performed.
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Recall that due to processes crashes, it would not be helpful for a process to notify
the repository of the task it has scheduled before performing the task. Observe that
since s ≥ cmax/cmin, Algorithm (n, β)-LIS is able to complete one task for each
task completed by the offline algorithm. Additionally, if there are at least βn2 tasks
pending, for β ≥ cmax

cmin
, two processors do not schedule the same task. Combining these

two observations it is possible to prove that (n, β)-LIS is 1-task-competitive.

Theorem 3. Tt((n, β)-LIS,A) ≤ Tt(OPT,A) + βn2 + 3n and Ct((n, β)-LIS,A) ≤
cmax

cmin
·
(
Ct(OPT,A) + βn2 + 3n

)
, for any time t and adversarial pattern A, and for

speedup s ≥ cmax

cmin
, when β ≥ cmax

cmin
.

Proof. We first focus on the number of pending-tasks. Suppose that (n, β)-LIS is not
OPT + βn2 + 3n competitive in terms of the number of pending tasks, OPT, for some
β ≥ cmax

cmin
and some s ≥ cmax

cmin
. Consider an execution witnessing this fact and fix the

adversarial pattern associated with it together with the optimum solution OPT for it.
Let t∗ be a time in the execution when Tt∗((n, β)-LIS) > Tt∗(OPT) + βn2 + 3n.

For any time interval I , let TI be the total number of tasks injected in the interval
I . Let t∗ ≤ t∗ be the smallest time such that for all t ∈ [t∗, t∗), Tt((n, β)-LIS) >
Tt(OPT) + βn2 (Note that the selection of minimum time satisfying some properties
defined by the computation is possible due to the fact that the computation is split
into discrete processor cycles.) Observe that Tt∗((n, β)-LIS) ≤ Tt∗(OPT) + βn2 + n,
because at time t∗ no more than n tasks could be reported to the repository by OPT,
while just before t∗ the difference between (n, β)-LIS and OPT was at most βn2.

Then, we have the following property.

Claim. Tt∗((n, β)-LIS) ≤ Tt∗(OPT) + βn2 + 3n.

The competitiveness for the number of pending tasks follows directly from the above
claim: it violates the contradictory assumptions made in the beginning of the analysis.
The result for the pending cost is a direct consequence of the one for pending tasks, as
the cost of any pending task in (n, β)-LIS is at most cmax

cmin
times bigger than the cost of

any pending task in OPT.

6 Algorithm γn-Burst

Observe that, against an adversarial strategy where at first only one cmax-task is in-
jected, and then only cmin-tasks are injected, algorithm (n, β)-LIS with one processor
has unbounded competitiveness when s < cmax

cmin
(this can be generalized for n pro-

cessors). This is also the case for algorithms using many other scheduling policies, e.g.,
ones that schedule first the more costly tasks. This suggests that for s < cmax

cmin
a schedul-

ing policy that alternates executions of lower-cost and higher-cost tasks should be de-
vised. In this section, we show that if the speed-up satisfies γcmin+cmax

cmax
≤ s < cmax

cmin

and the tasks can have only two different costs, cmin and cmax, then there is an algo-
rithm, call it γn-Burst, that achieves 1-pending-task and 1-pending-cost competitiveness
in a system with n processors. The algorithm’s pseudocode follows.

We first overview the main idea behind the algorithm. Each processor groups the set
of pending tasks into two sublists, Lmin and Lmax, each corresponding to the tasks
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Algorithm γn-Burst (for processor p)
Input: cmin, cmax, n, s
Calculate γ ← � cmax−scmin

(s−1)cmin
�

Repeat //Upon awaking or restart, start here
c← 0; //Reset the counter
Get from the Repository the set of pending tasks Pending;
Create lists Lmin and Lmax of cmin- and cmax-tasks;
Sort Lmin and Lmax according to task arrival;
Case 1: |Lmin| < n2 and |Lmax| < n2

If previously performed task was of cost cmin then
perform task (p · n) mod |Lmax| in Lmax; c← 0; //Reset the counter

else perform task (p · n) mod |Lmin| in Lmin; c← min(c+ 1, γ);
Case 2: |Lmin| ≥ n2 and |Lmax| < n2

perform the task at position p · n in Lmin; c← min(c+ 1, γ);
Case 3: |Lmin| < n2 and |Lmax| ≥ n2

perform the task at position p · n in Lmax; c← 0; //Reset the counter
Case 4: |Lmin| ≥ n2 and |Lmax| ≥ n2

If c = γ then perform task at position p · n in Lmax; c← 0; //Reset the counter
else perform task at position p · n in Lmin; c← min(c+ 1, γ);

Inform the Repository of the task performed.

of cost cmin and cmax, respectively, ordered by arrival time. Following the same idea
behind Algorithm (n, β)-LIS, the algorithm avoids redundancy when “enough” tasks
are pending. Furthermore, the algorithm needs to take into consideration parameter γ
and the bounds on speed-up s. For example, in the case that there exist enough cmin-
and cmax-tasks (more than n2 to be exact) each processor performs no more than γ
consecutive cmin-tasks and then performs a cmax-task; this is the time it takes for the
same processor to perform a cmax-task in OPT. To this respect, a counter is used to
keep track of the number of consecutive cmin-tasks, which is reset when a cmax-task is
performed. Special care needs to be taken for all other cases, e.g., when there are more
than n2 cmax-tasks pending but less than cmin-tasks, etc.

Theorem 4. Tt(γn-Burst,A) ≤ Tt(OPT,A) + 2n2 + (3 +
⌈

cmax

s·cmin

⌉
)n, for any time t

and adversarial pattern A.

The difference in the number of cmax-tasks between ALG and OPT can be shown to be
bounded by n2 + 2n. This, and Theorem 4, yield the following bound on the pending
cost of γn-Burst, which also implies that it is 1-pending-cost competitive.

Theorem 5. Ct(γn-Burst,A) ≤ Ct(OPT,A) + cmax(n
2 + 2n) + cmin(n

2 + (1 +⌈
cmax

s·cmin

⌉
)n), for any time t and adversarial pattern A.

7 Algorithm LAF

In the case of only two different costs, we can obtain a competitive solution for speedup
that matches the lower bound from Theorem 2. More precisely, for given two differ-
ent cost values, cmin and cmax, we can compute the minimum speedup s∗ satisfying
condition (b) from Theorem 2 for these two costs, and choose (n, β)-LIS with speedup
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cmax/cmin in case cmax/cmin ≤ s∗ and γn-Burst with speedup s∗ otherwise. (Note
that s∗ is upper bounded by 2.) However, in the case of more than two different task
costs we cannot use γn-Burst, and so far we could only rely on (n, β)-LIS with speedup
cmax/cmin, which can be large.

We would like to design a “substitute” for algorithm γn-Burst, working for any
bounded number of different task costs, which is competitive for some fixed small
speedup. (Note that s ≥ 2 is enough to guarantee that condition (b) does not hold.)
This algorithm would be used when cmax/cmin is large. In this section we design such
an algorithm, that works for any bounded number of different task costs, and is compet-
itive for speedup s ≥ 7/2. This algorithm, together with algorithm (n, β)-LIS, guaran-
tee competitiveness for speedup s ≥ min{ cmax

cmin
, 7/2}. In more detail, one could apply

(n, β)-LIS with speedup cmax

cmin
when cmax

cmin
≤ 7/2 and the new algorithm with speedup

7/2 otherwise.
We call the new algorithm Largest Amortized Fit or LAF for short. It is parametrized

by β ≥ cmax/cmin. This algorithm is more “geared” towards pending cost efficiency.
In particular, each processor keeps the variable total, storing the total cost of tasks
reported by processor p, since the last restart (recall that upon a restart processors have
no recollection of the past). For every possible task cost, pending tasks of that cost are
sorted using the Longest-in-System (LIS) policy. Each processor schedules the largest
cost task which is not bigger than total and is such, that the list of pending tasks of the
same cost (as the one selected) has at least βn2 elements, for β ≥ cmax/cmin. If there
is no such task then the processor schedules an arbitrary pending one.

As we show in the full version [8], in order for the algorithm to be competitive,
the number of different costs of injected tasks must be finite in the range [cmin, cmax].
Otherwise, the number of tasks of the same cost might never be larger than βn2, which
is necessary to assure redundancy avoidance. Whenever this redundancy avoidance is
possible, the algorithm behaves in a conservative way in the sense that it schedules a
large task, but not larger than the total cost already completed. This implies that in every
life period of a processor (the continuous period between a restart and a crash of the
processor) only a constant fraction of this period could be wasted (wrt the total task cost
covered by OPT in the same period). Based on this observation, a non-trivial argument
shows that a constant speedup suffices for obtaining 1-pending-cost competitiveness.

Theorem 6. Algorithm LAF is 1-pending-cost competitive, and thus cmax

cmin
-pending-

task competitive, for speedup s ≥ 7/2, provided the number of different costs of tasks
in the execution is finite.

8 Conclusions

In this paper we have shown that a speedup s ≥ min
{

cmax

cmin
, γcmin+cmax

cmax

}
is necessary

and sufficient for competitiveness.
One could argue that the algorithms we propose assume the knowledge of cmin and

cmax, which may seem unrealistic. However, in practice, processors can estimate the
smallest and largest task costs from the costs seen so far, and use these values as cmin

and cmax in the algorithms. This results in a similar performance (up to constant factors)
of the proposed algorithms with this adaptive computation of cmin and cmax , with some
minor changes in the analysis.
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A research line that we believe worth of further investigation is to study systems
where processors could use different speedups or their speedup could vary over time or
even to accommodate dependent tasks.
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