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Abstract

This paper considers quorum-replicated, multi-writer, multi-reader (MWMR) implementations of surviv-
able atomic registers in a distributed message-passing system with processors prone to failures. Previous
implementations in such settings invariably required two rounds of communication between readers/writers
and replica owners. Hence the question arises whether it is possible to have single round read and/or write
operations in this setting.
As a first step, we present an algorithm, called CWFR, that allows the classic two round write operations,
while supporting single round read operations. Since multiple write operations may be concurrent with a read
operation, this algorithm involves an iterative (local) discovery of the latest completed write operation. This
algorithm precipitates the question of whether fast (single round) writes may co-exist with fast reads. We
thus devise a second algorithm, called SFW, that exploits a new technique called server side ordering (SSO),
which –unlike previous approaches– places partial responsibility for the ordering of write operations on the
replica owners (the servers). With SSO, fast write operations are introduced for the very first time in the
MWMR setting. While this is possible, we show that under certain conditions the MWMR model imposes in-
herent limitations on any quorum-based fast write implementation of a safe read/write register and potentially
even restricts the number of writer participants in the system. In this case our second algorithm achieves near
optimal efficiency. Both algorithms are proved to preserve atomicity in all permissible executions.
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1 Introduction

Data survivability is essential in distributed systems. Replication is broadly used to sustain critical data in net-
worked settings prone to failures, and a variety of distributed storage systems have been designed to replicate and
maintain data residing at distinct network locations or servers. Together with replication come the problems of
maintaining consistency among the replicas and of efficiency of access to data, all in the presence of failures.

A long string of research has been addressing the consistency challenge by devising efficient, wait-free,
atomic (linearizable [21]) read/write sharable objects in message-passing systems (e.g., [1, 2, 3, 5, 7, 14, 15, 19,
20, 23, 26]). An atomic read/write object, or register [22], provides the semantics of a sequentially accessed
single object. The underlying implementations replicate the object at several failure-prone servers and allow
concurrent reading and writing by failure-prone clients. The efficiency of read or write operations is measured in
terms of the number of communication rounds between clients and servers.

In their pioneering work, Attiya et al. [3] presented an implementation of an atomic Single-Writer, Multiple-
Reader (SWMR) object in the message-passing model. The registers are replicated at the servers where any
minority of them may crash. The write protocol involves a single communication round-trip between the writer
and the servers, while the read protocol requires two communication rounds, where in the second round the
readers essentially perform a write of the value obtained in the first round. Each round includes communication
with a majority of servers. Building on [3], Lynch and Shvartsman [26, 23], presented an atomic reconfigurable
implementation if Multiple-Writer, Multiple-Reader (MWMR) objects, with majorities generalized to quorums,
where both read and write operations take two communication rounds (in the absence of reconfiguration).

A common theme in such solutions is that read operations have two phases, where the second phase in essence
performs a write. This contributed to a folklore belief that “atomic reads must write”. This belief is reexamined
by Dutta et al. [7], who present a wait-free atomic SWMR register implementation where both read and write
operations take a single communication round. This fast access (i.e., single round) is traded for a restriction on
the number of readers in terms of a bound involving the number of servers and the number of server crashes.
To allow a large number of readers, a semifast implementation was proposed [15] that pays for the unbounded
number of readers with at most a single slow read operation (i.e., two-round) for every write operation. It was
also shown that it is not possible to have fast or semifast implementations for MWMR registers.

Thus the following questions arises: Under what conditions may one obtain efficient atomic read/write reg-
ister implementations in the MWMR model? Answering this question is the objective of this work.

Prior Work. In the SWMR model, Attiya et al. [3] achieve consistency by exploiting the intersecting sets of
majorities in combination with 〈timestamp, value〉 pairs, comprised of a logical clock and the associated replica
value. A write operation increments the writer’s local timestamp and delivers the new timestamp-value pair to a
majority of servers, taking one round. A read operation obtains timestamp-value pairs from some majority, then
propagates the pair corresponding to the highest timestamp to some majority of servers, thus taking two rounds.

The majority-based approach in [3] is readily generalized to quorum-based approaches (e.g., [26, 8, 23,
9, 18]). In this context, a quorum system [16, 29, 11, 28, 27] is a collection of subsets of server identifiers
with pairwise non-empty intersections. The work of [9] shows that the read operations must write to as many
replica servers as the maximum number of failures allowed. A dynamic atomic memory implementation using
reconfigurable quorums is given in [23] (with several practical refinements in [17, 12, 13, 4]), where the sets of
servers can arbitrarily change over time as processes join and leave the system. Retargeting this work to ad-hoc
mobile networks, Dolev et al. [6] formulated the GeoQuorums approach. There (and in [4]), some reads involve
a single communication round when it is confirmed that the corresponding write operation has completed.

Dutta et al. [7] present the first fast atomic SWMR implementation where all operations take a single com-
munication round. They show that fast behavior is achievable only when the number of reader processes R is
inferior to S

t − 2, where S the number of servers, t of whom may crash. They also showed that fast imple-
mentations in the MWMR model are impossible in the presence of a single server failure. Georgiou et al. [15]
introduced the notion of virtual nodes that enables an unbounded number of readers. They define the notion of
semifast implementations were only a single read operation per write needs to be “slow” (take two rounds). Their
algorithm requires that the number of virtual nodes V is inferior to S

t − 2; this does not prevent multiple readers
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as long as at least one virtual node exists. They also show that semifast MWMR implementations are impossible.
Other works, e.g., [1, 19, 20, 14], pursue bounds on the efficiency of distributed storage in a variety of

organizational and failure models. For example, [19, 1], explore conditions under which two round operations
are required by safe and regular SWMR registers.

Recently quorum-based approaches were further explored in the context of efficient atomic registers [20, 14].
Guerraoui and Vukolić [20] defined the notion of Refined Quorum Systems (RQS), where quorums are classified
in three categories, according to their intersection size with other quorums. The authors characterize these prop-
erties and develop an efficient Byzantine-resilient SWMR atomic object implementation and a solution to the
consensus problem. In synchronous failure-free runs their implementation is fast. Georgiou et al. [14] specified
the properties that a general quorum system must possess in order to achieve single round operations in the pres-
ence of crashes and asynchrony. They showed that fast and semifast quorum-based SWMR implementations are
possible iff a common intersection exists among all quorums, hence a single point of failure exists in such solu-
tions (i.e., any server in the common intersection), making such implementations not robust. To trade efficiency
for improved fault-tolerance, weak-semifast implementations are introduced in [14] that require at least one sin-
gle slow read per write operation, and where all writes are fast. In addition, they present a client-side prediction
tool called Quorum Views that enables fast read operations in general quorum-based implementations even under
read/write concurrency. Simulation results demonstrated the effectiveness of this approach, showing that a small
fraction of read operations need to be slow under realistic scenarios. A question that naturally follows is whether
it is possible, and under what conditions, to have weak-semifast atomic MWMR register implementations.

Contributions. Our goal is to identify the conditions under which it is possible to obtain atomic register imple-
mentations that allow single round write and read operations in the Multi-Writer, Multi-Reader (MWMR) model.
We adopt previous techniques to improve the efficiency of read operations and we incorporate new techniques
that enable single communication round, i.e., fast, write operations. Our contributions are as follows.

1. We present algorithm CWFR that employs the Quorum Views technique of [14] in an iterative manner for
discovering the latest completed write operation among concurrent writes. This enables fast read opera-
tions. Indeed this algorithm shows that fast read operations are possible in the MWMR setting.

2. To enable fast write operations we introduce a new technique called Server Side Ordering (SSO) that
assigns to the server processes the responsibility of maintaining and incrementing logical timestamps,
that are used by both readers and writers and helps to ensure atomicity. Previous algorithms, including
algorithm CWFR, placed this responsibility on the writer’s side. (In the presence of asynchrony and
failures, SSO alone does not suffice to guarantee atomicity: using SSO by itself may result in the generation
of non unique timestamps for each write operation.)

3. We developed a quorum-based implementation for atomic MWMR registers, called SFW, that (a) employs
the SSO technique by having the servers assign logical timestamps to writes. and (b) ensures uniqueness of
timestamps by combining them with writer-generated (locally) logical timestamps. This hybrid approach
guarantees uniqueness of tags among the read and write participants for every written value and allows the
writers and readers to reason about the state of the system. To the best of our knowledge, this is the first
MWMR atomic register implementation that provides the possibility of fast reads and writes.

4. Lastly, we develop a framework for reasoning about impossibility and lower bounds for MWMR imple-
mentations. An n-wise quorum system is such where any n quorums have a common non-empty intersec-
tion. We call two operations consecutive if they are complete, not concurrent, and originate at two distinct
processes. Two operations are quorum shifting if they are consecutive and the two originating processes re-
ceive replies from two distinct quorums during these operations. We prove lower bounds on the number of
consecutive, quorum shifting fast write operations that an execution of a safe register implementation may
contain. We show that a safe register implementation is impossible in an n-wise quorum system, where not
all quorums have a common intersection, if any execution contains more than n − 1 consecutive, quorum
shifting single round write operations. This ultimately implies that in an implementation with only fast
writes there cannot be more than n − 1 writers. Algorithm SFW is nearly optimal since it approaches this
bound as it yields executions with up to n/2 consecutive fast write operations, while maintaining atomicity.
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Document Structure. In Section 2 we present our model and definitions. In Section 3 we describe the algorithm
CWFR, which contains slow write and fast read operations. Our second algorithm, SFW, is presented in Section
4. The inherent limitations of MWMR model and the conditions under which it is possible to obtain fast write
operations, are presented in Section 5. We conclude with discussion in Section 6.

2 Model and Definitions

We consider the asynchronous message-passing model. There are three distinct finite sets of processors: a set of
readers R, a set of writers W , and a set of S servers. The identifiers of all processors are unique and compa-
rable. Communication among the processors is accomplished via reliable communication channels. Servers are
arranged into intersecting sets, or quorums, that together form a quorum system Q. For a set of quorums A ⊆ Q
we denote the intersection of the quorums in A by IA =

⋂
Q∈AQ. We define specializations of quorum systems

based on the number of quorums that together have a non-empty intersection.

Definition 2.1 A quorum system Q is called an n-wise quorum system if for any A ⊆ Q, s.t. |A| = n we have
IA 6= ∅ holds. We call n the intersection degree of Q.

In a common quorum system any two quorums intersect, and so any quorum system is a 2-wise (pairwise)
quorum system. At the other extreme, a |Q|-wise quorum system has a common intersection among all quorums.
From the definition it follows that an n-wise quorum system is also a k-wise quorum system, for 2 ≤ k ≤ n. We
will organize the servers into n-wise quorum systems known to all the participants as needed.

Algorithms presented in this work are specified in terms of I/O automata [25, 24], where an algorithm A is
a composition of automata Ai, each assigned to some process i. Each Ai is defined in terms of a set of states
states(Ai) that includes the initial state σ0, a signature sig(Ai) that specifies input, output, and internal actions
(external signature consists of only input and output actions), and transitions, that for each action ν gives the
triple 〈σ, ν, σ′〉 defining the transition of Ai from state σ to state σ′. Such a triple is also called a step. An
execution fragment φ of Ai is a finite or an infinite sequence σ0, ν1, σ1, ν2, . . . , νr, σr, . . . of alternating states
and actions, such that every σk, νk+1, σk+1 is a step of Ai. If an execution fragment begins with an initial state of
Ai then it is called an execution. We say that an execution fragment φ′ of Ai, extends a finite execution fragment
φ of Ai if the first state of φ′ is the last state of φ. The concatenation of φ and φ′ is the result of the extension of
φ by φ′ where the duplicate occurrence of the last state of φ is eliminated, yielding an execution fragment of Ai.

A process i crashes in an execution φ if it contains a step 〈σk, faili, σk+1〉 as the last step of Ai. A process i
is faulty in an execution φ if i crashes in φ; otherwise i is correct. A quorum Q ∈ Q is non-faulty if ∀i ∈ Q, i is
correct; otherwise Q is faulty. We assume that at least one quorum in Q is non-faulty in any execution.

Atomicity. We aim to implement atomic read/write memory, where each object is replicated at servers. Each
object has a unique name, x from some set X , and object values v come from some set Vx; initially each x
is set to a distinguished value v0 (∈ Vx). Reader p requests a read operation ρ on an object x using action
readx,p. Similarly a write operation is requested using action write(∗)x,p at writer p. The steps corresponding
to such actions are called invocation steps. An operation terminates with the corresponding read-ack(∗)x,p or
write-ackx,p action; these steps are called response steps. An operation π is incomplete in an execution when the
invocation step of π does not have the associated response step; otherwise we say that π is complete. We assume
that requests made by read and write processes are well-formed: a process does not request a new operation until
it receives the response for a previously invoked operation.

In an execution, we say that an operation (read or write) π1 precedes another operation π2, or π2 succeeds
π1, if the response step for π1 precedes in real time the invocation step of π2; this is denoted by π1 → π2. Two
operations are concurrent if neither precedes the other.

Correctness of an implementation of an atomic read/write object is defined in terms of the atomicity and
termination properties. Assuming the failure model discussed earlier, the termination property requires that any
operation invoked by a correct process eventually completes. Atomicity is defined as follows [24]. For any
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execution of a memory service, if all the read and the write operations that are invoked complete, then the read
and write operations can be partially ordered by an ordering ≺, so that the following properties are satisfied:

P1. The partial order is consistent with the external order of invocation and responses, that is, there do not exist
operations π1 and π2, such that π1 completes before π2 starts, yet π2 ≺ π1.

P2. All write operations are totally ordered and every read operation is ordered with respect to all the writes.
P3. Every read operation ordered after any writes returns the value of the last write preceding it in the partial

order, and any read operation ordered before all writes returns the initial value of the object.

In the sequel we assume a single register memory system. By composing multiple single register implementa-
tions, one may obtain a complete atomic memory [24]. Thus, we omit further mention of object names.

Efficiency and Fastness. We measure the efficiency of an atomic register implementation in terms of commu-
nication round-trips (or simply rounds). A round is defined as follows [7, 15, 14]:

Definition 2.2 Process p performs a communication round during operation π if all of the following hold:
1. p sends request messages that are a part of π to a set of processes,
2. any process q that receives a request message from p for operation π, replies without delay.
3. when process p receives enough replies it terminates the round (either completing π or starting new round).

Operation π is fast [7] if it completes after its first communication round; an implementation is fast if in
each execution all operations are fast. Semifast implementations as defined in [15] allow some read operations
to perform two communication rounds. Briefly, an implementation is semifast if the following properties are
satisfied: (a) writes are fast, (b) reads complete in one or two rounds, (c) only a single complete read operation
is slow (two round) per write operation, and (d) there exists an execution that contains at least one write and
one read operation and all operations are fast. Finally, weak-semifast implementations [14] satisfy properties
(a), (b), and (d), but eliminate the property (c), allowing multiple slow read operations per write. As shown
in [7, 15] no MWMR implementation of atomic memory can be fast or semifast. So we focus our attention on
implementations where both reads and writes maybe slow. We use quorum systems and tags to maintain, and
impose an ordering on, the values written to the register replicas. We say that a quorum Q ∈ Q, replies to a
process p for an operation π during a round, if ∀s ∈ Q, s receives messages during the round and replies to these
messages, and p receives all of the replies.

Given that any subset of readers or writers may crash, the termination of an operation cannot depend on the
progress of any other operation. Furthermore we guarantee termination only if servers’ replies within a round
of some operation do not depend on receipt of any message sent by other processes. Thus we can construct
executions where only the messages from the invoking processes to the servers, and from the servers to the
invoking processes are delivered. Lastly, to guarantee termination under the assumed failure model, no operation
can wait for more than a singe quorum to reply within the processing of a single round.

3 Algorithm CWFR

We begin the study of the efficiency of atomic MWMR register implementations with algorithm CWFR. The
algorithm employs two techniques, (i) the classic query and propagate technique (two round) for write operations,
and (ii) analysis of Quorum Views [14] for potentially fast (single round) read operations. This allows us to
maintain two-round communication complexity of write operations, while enabling fast read operations.

The algorithm uses 〈tag, value〉 pairs, to impose ordering on the values written to the register. A tag is a
tuple of the form 〈ts, wid〉 ∈ N ×W , where ts is the timestamp and wid is a writer id. Two tags are ordered
lexicographically, first by the timestamp, then by the writer id. Initially tags are set to 〈0,min(W)〉 for all
processes. We use maxTag to denote the maximum tag that a client process observes in the replies it receives
from a quorum of servers for the operation that it invoked.
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The quorum views technique [14], provides sufficient information about the distribution of the latest tag in
the accessed quorum and allows read operations to decide locally whether a second round is needed. Quorum
views are defined as follows in terms of tags:

Definition 3.1 Assume that for a read or write operation π invoked by process p, each server s from some
quorum Q ∈ Q replies to p with the tag s.tag. Let maxTag = maxs∈Q(s.tag). We say that p observes one of
the following quorum views for Q:

qV iew(1): ∀s ∈ Q : s.tag = maxTag,
qV iew(2): ∀Q′ ∈ Q : Q 6= Q′ ∧ ∃A ⊆ Q ∩Q′, s.t. A 6= ∅ and ∀s ∈ A : s.tag < maxTag,
qV iew(3): ∃s′ ∈ Q : s′.tag < maxTag and ∃Q′ ∈ Q s.t. Q 6= Q′ ∧ ∀s ∈ Q ∩Q′ : s.tag = maxTag

Summarizing the above definition, qV iew(1) requires that all servers in some quorum reply with the same
tag. qV iew(3) reveals that some servers in the quorum contain an older value, but there exists an intersection
where all of its servers contain the new value. Finally qV iew(2) is the negation of the other two views, revealing a
quorum where the new value is neither distributed to the full quorum or distributed fully in any of its intersections.

We now give a high level description of our implementation. For paucity of space, the Input/Output Automata
specification and the proofs of correctness are given in Appendix A.

Servers. The servers play a passive role. They receive read or write requests, update their object replica accord-
ingly, and reply to the process that originated the request. In additional detail, upon receipt of any message, the
server compares its local tag with the tag included in the message. If the tag of the message is higher than its
local tag, the server adopts the higher tag along with its corresponding value. Once this is done the server replies
to the invoking process.

Writers. The write protocol has two rounds. During the first round the writer discovers the maximum tag among
the servers: It sends read messages to all servers and waits for a quorum to reply. Once it receives replies from
a complete quorum, it discovers the maximum tag among the replies. The writer increments this maximum
timestamp and proceeds to the second round, where it propagates the new tag along with the value to be written.
Once the writer receives replies from a complete quorum, the write completes.

Readers. The read protocol is more involved. When a reader invokes a read operation, it sends a read message
to all servers and waits for some quorum to reply. Once a quorum replies, the reader determines the maxTag
and stores it locally. Then the reader analyzes the distribution of the tag information within the responding
quorum Q in an attempt to determine the latest, potentially complete, write operation. This is accomplished by
determining the quorum view conditions. Detecting conditions of qV iew(1) and qV iew(3) are straightforward.
When condition for qV iew(1) is detected, the read completes and the value associated with the discovered
maxTag is returned. In the case of qV iew(3) the reader continues into the second round, advertising the latest
tag (maxTag) and its associated value. Analysis of qV iew(2) involves discovery of the earliest completed write
operation, and this is done iteratively by (locally) removing the servers from Q that replied with the largest tags.
After each iteration the reader determines the next largest tag in the remaining server set, and then re-examines
the quorum views in the next iteration. This process eventually leads to either qV iew(1) or qV iew(3) being
observed. If qV iew(1) is observed, then the read completes in a single round with the maximum tag among the
servers that remain in Q and returns the associated value. If qV iew(3) is observed, then the reader proceeds to
the second round as above, and upon completion it returns the value associated with the maximum tag discovered
among the original respondents in Q.

Let us discuss the idea behind our technique. Observe that under our failure model, any write operation can
expect a response from at least one full quorum. Moreover a write ω distributes its tag τω to some quorum, say
Qi, before completing.Thus when a read operation ρ, s.t. ω → ρ, receive replies from some quorum Qj , then
it will observe one of the following tag distributions: (a) if Qj = Qi , then ∀s ∈ Qj , τs = τω (qV iew(1)), or
(b) if Qj 6= Qi , then ∀s ∈ Qi ∩ Qj , τs = τω (qV iew(3)). Hence, if ρ observes a distribution as in qV iew(1)
then it follows that a write operation completed and received replies from the same quorum that replied to ρ.
Alternatively, if only an intersection contains a uniform tag (i.e., the case of qV iew(3)) then there is a possibility
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that some write completed in an intersecting quorum (in this exampleQi). The read operation is fast in qV iew(1)
since it is determinable that the write potentially completed. The read proceeds to the second round in qV iew(3),
since the completion of the write is indeterminable and it is necessary to ensure that any subsequent operation
will observe that tag. If none of the previous quorum views hold (and thus qV iew(2) holds), then it must be
the case that the write that yielded the maximum tag is not yet completed. Hence we try to discover the latest
potentially completed write by removing all the servers with the highest tag from Qj and repeating the analysis.
If at some iteration, qV iew(1) holds on the remaining tag values, then a potentially completed write (that was
overwritten by greater values in the rest of the servers) is discovered and that tag is returned. If no iteration is
interrupted because of qV iew(1), then eventually qV iew(3) will be observed, in the worst case, when a single
server will remain in some intersection of Qj . Since a second round cannot be avoided in this case, we take the
opportunity to propagate the largest tag observed in Qj . At the end of the second round that tag will be written
to at least as single complete quorum and thus the reader can safely return it.

Theorem 3.2 Algorithm CWFR implements a MWMR atomic read/write register.

Proof. [Sketch] We first show that the iterative application of the quorum views reveals the smallest tag potentially
associated with a completed write operation, and that no other read operation will perceive a different smallest
tag. With this we are able to claim consistency between the read operations and show that if a read operation ρ1

returns a tag τ and a read operation ρ2 succeeds ρ1 (i.e. ρ1 → ρ2) and returns a tag τ ′, then τ ′ ≥ τ . Furthermore
it allows us to show that if a write operation ω precedes a read operation ρ (i.e., ω → ρ) then ρ returns tag τ
higher or equal to the tag associated with the write operation. Lastly the fact that the write operations always
performs two rounds, implies the uniqueness of the tags associated with write operations and we show that if
there are two write operations s.t. ω1 → ω2 and tag τ1 is associated with ω1 and τ2 with ω2 then it must be
the case that τ2 > τ1. This reasoning is accompanied by the proof of tag monotonicity, completing the proof
(contained in the optional appendix). ut

4 SSO-based Algorithm

In this section we present algorithm SFW that utilizes a technique, called SSO, to introduce fast read and write
operations. In traditional MWMR atomic register implementations (including algorithm CWFR), the writer is
solely responsible for incrementing the tag that imposes the ordering on the values of the register. With the new
technique, and our hybrid approach, this task is now also assigned to the servers, hence the name Server Side
Ordering. Algorithm SFW involves two predicates. One for the write protocol and one for the read protocol. Both
protocols evaluate the distribution of a tag within the quorum that replies to a write/read operation respectively.
A formal specification in the form of IOA and the detail proof of correctness, can be found in Appendix B.2.

The algorithm uses 〈tag, value〉 pairs, to impose ordering on the values written to the register. In contrast
with the traditional approach where the tag is a two field tuple, this algorithm requires the tag to be a triple. In
particular the tag is of the form 〈ts, wid, wc〉 ∈ N×W ×N, where the fields ts and wid are used as in common
tags and represent the timestamp and writer identifier respectively. Fieldwc represents the write operation counter
and facilitates the ability to distinguish between write operations. Initially the tag is set to 〈0,min(W), 0〉 in every
process. In contrast to ts, wc is incremented by the writer before invokes a write operation and it denotes the
sequence number of that write. Recall that by our key technique, the tags (and particularly the timestamps in
the tags) are incremented by the server processes. Thus if a tag was a tuple of the form 〈ts, wid〉, then two
server processes si and sj may associate two different tags 〈tsi, w〉 and 〈tsj , w〉 to a single write operation.
Any operation however that witness such tags cannot distinguish whether the tags refer to a single or different
write operations from w. By introducing the new term the tags will become 〈tsi, w, wc〉 and 〈tsj , w, wc〉, and
thus any operation establishes that the same write operation was assigned two different timestamps. The triples
can be compared alphanumerically. In particular we say that tag1 > tag2 if tag1.ts > tag2.ts, or tag1.ts =
tag2.ts ∧ tag1.wid > tag2.wid, or tag1.ts = tag2.ts ∧ tag1.wid = tag2.wid ∧ tag1.wc > tag2.wc.
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Server. The server maintains the register replica and acts depending on the message it receives. The local state
of a server process s, is defined by three local variables: (1) the tags variable which is the local tag stored in the
server, (2) the confirmeds variable which stores the largest tag known by s that has been returned by some reader
or writer process and, (3) the inprogresss set which includes all the latest tags assigned by s to write requests.
Each server s waits to receive a read or write message from operation initiated at some process p. Where this
message contains: (a) the type of the message msgType , (b) the last tag returned by p (msgtag), (c) the value
to be written if p invokes a write operation or the latest value returned by p if p invokes a read operation, (d) a
counter msgwc that specifies the sequence number of this operation if p invokes a write or is equal to msgtag .wc
if p invokes a read, and (e) a counter to help the server distinguish between new and stale messages from p.
Upon receipt of any type of message, s updates its local and confirmed tags if they are smaller than the tag
enclosed in the received message. In particular if msgtag > tags (resp. msgtag > confirmeds) then s assigns
tags = msgtag (resp. confirmeds = msgtag). In addition to the above updates, if s receives a WRITE message
from p, then s generates a new tag newt = 〈tags.ts+ 1, p,msgwc〉, by incrementing the timestamp included in
its local timestamp by 1 and assigning the new timestamp to the write operation from p. Note that the new tag
generated is greater than both tags and msgtag . The server then pairs the new tag to the value included in the
write message and changes its local tag to tags = newt. Then s adds newt in the inprogresss set, and removes
any tag maintained previously in that set for any write operation from p. Once it completes its local update, s
acknowledges every message received by sending its inprogresss set and confirmeds variable to the requesting
process.

Writer. To uniquely identify all write operations, a writer w maintains a local variable wc that is incremented
each time w invokes a write operation. Essentially that variable counts the number of write operations performed
byw and every such write can be identified by the tuple 〈w,wc〉, by any process in the system. To perform a write
operation ω = 〈w,wc〉, w sends messages to all of the servers and waits for a quorum of these, Q, to reply. Once
enough replies arrive (each server’s inprogress set and confirmed variable), w collects all of the tags assigned
to ω by each server in Q. Then it applies a predicate on the collected tags. In few words the predicate is used to
checks if any of the collected tags appear in some intersection of Q with at most n2 − 1 (see proof sketch below
why this is sufficient) other quorums, where n the intersection degree of the deployed quorum system. If there
exists such a tag τ then the writer adopts τ as the tag of the value it tried to write; otherwise the writer adopts
the maximum among the collected tags in the replied quorum. The writer proceeds in a second communication
round to propagate the tag assigned to the written values if: (a) the predicate holds but the tag is only propagated
in an intersection of Q with more than n

2 − 2 other quorums, or (b) the predicate does not hold. In any other case
the write operation is fast and completes in a single communication round. More formally the writer predicate is
the following, where |A| is rounded down to the nearest integer:

Writer predicate for a write ω (PW): ∃ τ,A,MS where: τ ∈ {〈., ω〉 : 〈., ω〉 ∈ inprogresss(ω) ∧ s ∈
Q}, A ⊆ Q, 0 ≤ |A| ≤ n

2 − 1, and MS = {s : s ∈ Q ∧ τ ∈ inprogresss(ω)}, s.t. either |A| 6= 0 and
IA ∩Q ⊆MS or |A| = 0 and Q = MS.

Reader. The main difference between reader and writer protocols is that the reader has to examine each tag
assigned to all of the write operations contained in inprogress sets of the servers that replied. (In contrast, writer
examines only the tags assigned only to its own write operation.)

The reader proceeds by sending messages to all the servers and waits for some quorum of these to reply.
Soon as enough replies arrive, it computes the maximum confirmed tag maxConf , and populates the set inP
with all tags from inprgoress set reported by each of the replying servers. Then the reader chooses the largest
tag maxT found in inP and checks if: (a) maxConf ≥ maxT , or (b) whether maxT satisfies a reader predicate
(defined below). If neither condition is valid, then maxT tag is removed from inP and maxT is assigned the
next largest tag in inP , then the two checks are repeated. If inP becomes empty, then maxConf is returned
along with its associated value. If (a) holds, then some tag that has already been returned by some process is
higher than any remaining tag in inP . In this case reader returns maxConf and its assigned value. If (b) holds,
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then reader returns the tag and the associated value that satisfies its predicate. The reader is requires to ensure
that the tag is propagated in an intersection between the replied quorum and at most n2 − 2 other quorums, where
n the intersection degree of the quorum system. A read operation is slow and performs a second communication
round if: (1) the predicate holds but the tag is propagated in an intersection between Q and exactly n

2 − 2 other
quorums, or (2) the reader decides to return maxConf , but this was received from no complete intersection or
an intersection between Q and n − 1 other quorums. The tag and the associated value that will be returned by
the read operation are propagated to some quorum of servers during the second communication round. More
formally the reader predicate is, where |B| is rounded down to the nearest integer:

Reader predicate for a read ρ (PR): ∃ τ,B,MS, where: max(τ) ∈
⋃
s∈Qi inprogresss(ρ), B ⊆ Q, 0 ≤

|B| ≤ n
2 − 2, and MS = {s : s ∈ Qi ∧ τ ∈ inprogresss(ρ)}, s.t. either |B| 6= 0 and IB ∩Qi ⊆MS or

|B| = 0 and Qi = MS.

We provide a sketch of correctness proof for algorithm SFW. (Omitted details can be found in Appendix B.2.)

Theorem 4.1 Algorithm SFW implements a MWMR atomic read/write register.

Proof. [Sketch] The key challenge is to show that every reader and writer process decide on a single unique tag
for each write operation, despite the fact that servers may assign different tags to that same write operation. To
this end, we first show that in an n-wise quorum system, if some process p obtains replies from the servers of
some quorum, then p may witness only a single tag per write operation to be distributed in a k-wise intersection,
for k < n+1

2 .
Writer’s perspective: Based on the above observation, we show that only a single (unique) tag may satisfy

the write predicate (PW). Observe that if there is a tag τ that satisfies PW, then it follows that τ is distributed in
an intersection of at most n2 quorums (i.e. n

2 -wise intersection, including the replying quorum); otherwise, if no
tag satisfies PW then the write operation is associated with the unique maximum tag received by the writer.

Reader’s perspective: The goal is to show that if a read ρ returns a tag τ for a write ω, then τ was also the tag
assigned to ω by the writer that invoked ω. Observe that a read operation returns a tag τ for a write ω in two cases:
(a) τ satisfied the reader predicate PR, or (b) τ was equal to the max confirmed tag. In the first case the predicate
ensures that τ was distributed in an intersection of at most n2 − 1 quorums (including the replying quorum). Thus
the writer should have observed the tag in at least an n

2 -wise intersection, and hence τ would satisfy the writer’s
predicate as well. Furthermore, τ should be the only tag that satisfies the two predicates since it is distributed in
an intersection that consists of less than n+1

2 quorums. If the reader returns τ because of case (b) then it follows
that τ was confirmed by either a reader that was about to return τ because it satisfied its predicate, or by the
writer that decided to associate τ with its write operation ω. Either way this was a unique tag and thus returning
the confirmed tag maintains its uniqueness.

Using the proof of uniqueness of a tag assigned to a write operation, we proceed to show that the atomic
properties are satisfied. In particular we show the following: (1) the monotonicity of the tag in all participants,
(2) that if a write operation proceeds a read operation then the read returns a tag greatest or equal to the one
associated to the write operation, (3) If a write ω1 → ω2 then ω2 is associated with a higher tag than the tag
associated to ω1, and (4) If there are two read operation s.t. ρ1 → ρ2 then ρ2 decides and returns a value
associated with a higher or equal tag than the one returned by ρ1. ut

5 Write Optimality

We now investigate the conditions under which it is possible for an execution of a MWMR register implementa-
tion to contain only fast write operations. In particular we show that by exploiting an n-wise quorum system, it
is possible to have executions with only fast write operations iff a certain number of “consecutive” write opera-
tions are contained in the execution. In extend, we show that this result imposes bounds on the number of writer
participants in the system. For space limitations some proofs appear in Appendix C.
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We consider all operations that alter the tag value at some set of servers to be write operations. In an execution,
an operation π invoked by process p is said to contact a subset of servers G ⊆ S, denoted by contp(G, π), if for
every server s ∈ G: (a) s receives the messages sent by p within π, (b) s replies to p, and (c) p receives the reply
from s. If contp(G, π) occurs and additionally no other server (i.e., s /∈ G) receives any message from p within
π then we say that π strictly contacts G, and is denoted by scntp(G, π). Next we give two important definitions.

Definition 5.1 Two operations π1, π2 are consecutive in an execution if: (i) they are invoked from processes p1

and p2, s.t. p1 6= p2, (ii) they are complete, and (iii) π1 → π2 or π2 → π1 (they are not concurrent).

In lieu to the above definition, a safe register constitutes the weakest consistency guarantee in the chain, and
is defined [22] as property S1: Any read operation that is not concurrent to any write operation returns the value
written by the last preceding write operation.

Definition 5.2 A set of operations Π in an execution is called quorum shifting if ∀π1, π2 ∈ Π strictly contact
quorums Q′, Q′′ ∈ Q respectively, then π1 and π2 are consecutive and Q′ 6= Q′′.

Given the two definitions above, we now show the ensuing lemma.

Lemma 5.3 A read operation that succeeds a set of fast write operations Π, may retrieve the latest written value
only from the servers that received messages from all the write operations in Π.

Given an n-wise quorum system we show that if there are n − 1 consecutive, quorum shifting fast write
operations in an execution then safe register implementations are possible.

Lemma 5.4 Any execution fragment φ of a safe register implementation that uses an n-wise quorum system Q
s.t. 2 ≤ n < |Q|, contains at most n − 1 consecutive, quorum shifting, fast write operations for any number of
writers W ≥ 2.

We now show that safe register implementations are not possible if we extend any execution that contains
n − 1 consecutive writes, with one more consecutive, quorum shifting write operation. It suffices to assume a
very basic system consisting of two writers w1 and w2, and one reader r. Thus our results hold for at least two
writers.

Theorem 5.5 No execution fragment φ of a safe register implementation that exploits an n-wise quorum system
Q s.t. 2 ≤ n < |Q|, can contain more than n − 1 consecutive, quorum shifting, fast write operations for any
number of writers W ≥ 2.

Proof. Let Q be an n-wise quorum system, for 2 ≤ n < |Q|. From Lemma 5.4 we obtain that an implementa-
tion exploiting an n-wise quorum system may contain n − 1 consecutive, quorum shifting fast write operations
and still preserve property S1. Thesis of this proof follows from the contradiction, where we assume that an
implementation can include n consecutive fast writes and still satisfy property S1.

Let Q be an (k + 2)-wise system and let ξk be an execution of the safe register implementation that exploits
Q. Suppose the execution follows the construction in Lemma 5.4. It follows that ξk contains k + 1 consecu-
tive, quorum shifting, fast writes. Moreover by the induction we know that ξk satisfies safe register property if
extended by a read operation. Let us now extend ξk with a write ω(k + 2) from writer w(k+1 mod 2)+1 with
scntw(k+1 mod 2)+1

(Qk+2, ω(k + 2)), and a read operation ρ from r with scntr(Qj , ρ). Notice that since n < |Q|
then k + 2 < |Q| and thus there exists a quorum Q ∈ Q such that

(⋂k+2
i=1 Qi

)
∩ Q = ∅. Let Qj ∈ Q be such

quorum and w.l.o.g let us assume that Qj = Qk+3. We denote the obtained execution by ∆(ξk). Below we can
see the last three operations in the execution sequence of ∆(ξk):

a) a complete fast write operation ω(k + 1) by w(k mod 2)+1 with scntw(k mod 2)+1
(Qk+1, ωk+1),

b) a complete fast write operation ω(k + 2) by w(k+1 mod 2)+1 with scntw(k+1 mod 2)+1
(Qk+2, ω(k + 2)),

c) and a complete read operation ρ by r with scntr(Qk+3, ρ).
Notice that by the above construction reader r has to return the value written by ω(k+2) to preserve property S1.
Furthermore since we assumed a k+ 2-wise quorum then ρ, according to Lemma 5.3, observes the value written
by ω(k + 1) as the latest from the servers in

(⋂k
i=1Qi

)
∩ Qk+1 ∩ Qk+3 and the value written by ω(k + 2) as
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the latest from the servers in
(⋂k

i=1Qi

)
∩ Qk+2 ∩ Qk+3. We should note here that servers in both sets receive

messages from all write operations in the set {ω(1), . . . , ω(k)}. The first set however receives messages from
ω(k + 1) but not from ω(k + 2) and vice versa.

Consider now the execution fragment ∆(ξk)′ where the two write operations are switched. More precisely
we obtain ξ′k by extending ξk−1 with the write operation ω(k+ 2) by w(k+2 mod 2)+1 instead of ω(k+ 1). Then
we obtain ∆(ξk)′ by extending ξ′k with the write operation ω(k + 1) by w(k+1 mod 2)+1, and the read operation
ρ from r. In more detail, the last three operations that appear, and the quorums they contact are as follows:

a) a complete fast write operation ω(k + 2) by w(k+1 mod 2)+1 with scntw(k+1 mod 2)+1(Qk + 2, ωk+2),
b) a complete fast write operation ω(k + 1) by w(k mod 2)+1 with scntw(k mod 2)+1

(Qk+1, ω(k + 1)),
c) and a complete read operation ρ by r with scntr(Qk+3, ρ).

Observe that executions ∆(ξk) and ∆(ξk)′ differ only at the writers and the servers in
⋂k+2
i=1 Qi. Any other

server and the reader cannot distinguish between the two executions. In particular the reader does not receive
any messages from any server in

⋂k+2
i=1 Qi, since

(⋂k+2
i=1 Qi

)
∩Q3 = ∅. Moreover the reader observes the value

written by ω1 and ω2 as latest values from the servers in
(⋂k

i=1Qi

)
∩Qk+1∩Qk+3 and

(⋂k
i=1

)
∩Qk+2∩Qk+3

respectively. Since those are the same servers that replied with the same values to ρ in ∆(ξk) then r cannot
distinguish ∆(ξk)′ from ∆(ξk) and thus has to return ω(k+ 2) in ∆(ξk)′ as well. This however violates property
S1 since in ∆(ξk)′ the two write operations are consecutive and the latest completed write operation is ω(k+ 1).
Hence the read operation had to return ω(k+ 1) in ∆(ξk)′ to preserve property S1, contradicting our findings. ut

Remark 5.6 By close investigation of the predicates of Algorithm SFW, one can see that SFW approaches the
bound of Theorem 5.5, as it produces executions that contain up to n/2 fast consecutive write operations, while
maintaining atomic consistency. Obtaining a tighter upper bound is subject of future work.

Note that Theorem 5.5 is not valid in the following two cases: (i) Only a single writer exists in the system,
(ii) There is a common intersection among all the quorums in the quorum system. In the first case the sole
writer imposes the ordering on the tags introduced in the system and in the second case that ordering is imposed
by the common servers that need to be contacted by every operation. It follows by the same theorem that
it is impossible to have more than n − 1 consecutive fast write operations then it is also prohibited to have
more than n − 1 concurrent fast write operations. Since no communication between the writers is assumed and
achieving agreement in an asynchronous distributed system with a single failure (on the set of concurrent writes)
is impossible, by [10], then we can obtain the following corollary:

Corollary 5.7 No MWMR implementation of a safe register, that exploits an n-wise quorum system Q s.t. 2 ≤
n < |Q| and contains only fast writes is possible, if |W| > n− 1.

Moreover assuming that readers also may alter the value of the register, and thus write, then the following
theorem holds:

Theorem 5.8 No MWMR implementation of a safe register, that exploits an n-wise quorum system Q s.t. 2 ≤
n < |Q| and contains only fast operations is possible, if |W ∪R| > n− 1.

Recall that [7] proved the impossibility of implementations where both writes and reads are fast in the
MWMR model, while Theorem 5.8 complements that result by presenting the exact participation conditions
under which such implementations could have been possible. They also showed that in the case of a single writer
(i.e. |W| = 1), a bound |R| < |S|

f − 2 is imposed on the number of readers, where f is the total number of
allowed server failures. The authors assumed that f ≤ |S|/2, and they adopted the technique of communicating
with |S| − f servers for each operation. This technique however depicts a quorum system where every member
has a size of |S| − f . The following lemma presents the intersection degree of such a system.

Lemma 5.9 The intersection degree of a quorum system Q where ∀Qi ∈ Q, |Qi| = |S| − f is equal to |S|f − 1.
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Note that by Lemma 5.9 and Theorem 5.8, the system in [7] could only accommodate:

|W ∪R| ≤ (
|S|
f
− 1)− 1⇒ 1 + |R| ≤ |S|

f
− 2⇒ |R| ≤ |S|

f
− 3

and thus their bound follows. This leads us to the following remark.

Remark 5.10 Fast implementations, such as the one presented in [7], follow our proved restrictions on the
number of participants in the service.

6 Conclusion

In this paper we presented two algorithms for atomic MWMR registers that allow for fast (single round) read and
write operations in the message-passing model with asynchrony and crashes. The first algorithm (CWFR) adopts
the traditional two communication round protocol for a write operation, while incorporates the idea of quorum
views to enable single communication round reads. The second algorithm (SFW) exploits a new technique, called
server side ordering (SSO), that, depending on the intersection degree of a quorum system, allows in some cases
for both reads and writes to complete in a single communication round. To the best of our knowledge, algorithm
SFW, is the first implementation that achieves single round write operations in the MWMR setting.

Our future work will aim to establish the precise relationship between two algorithms in terms of their per-
formance. At the first glance, algorithm SFW outperforms algorithm CWFR in quorum systems with high inter-
section degree. The relative performance of the two algorithms becomes unclear when the intersection degree
of the quorum system drops below 4. In this case, all write operations in algorithm SFW are slow as well, and
thus only the speed (rounds) of read operations will determine a “winner.” Simulation results derived from the
implementations of the algorithms presented here may facilitate the comparison. Such simulations may also yield
a sensible comparison of the performance of these algorithms in the MWMR setting with other algorithms in the
SWMR setting.
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A Algorithm CWFR

A.1 Formal Specification of CWFR Algorithm
Algorithm CWFR consist of four kinds of automata: writer Writerp, reader Readerp, server Servers, and channels
Channelp,s and Channels,p, for p ∈ W ∪R and s ∈ S. Figures 1-3 present the IOA specification of the server, writer and
reader automata of algorithm CWFR, respectively.

Signature:

Input:
rcv(m)p,si , m ∈M , si ∈ S, p ∈ R ∪W
failsi

Output:
send(m)si,p, m ∈M , si ∈ S, p ∈ R ∪W

State:
tag = 〈ts, label〉 ∈ T ×W , initially {0,min(W)}
value ∈ V , initially ⊥
Counter(p) ∈ N+, p ∈ R ∪W , initially 0

msgType ∈ {WRITEACK,READACK,INFOACK}
status ∈ {idle, active}, initially idle
failed, a Boolean initially false

Transitions:
Input rcv(〈msgT, t, val, C〉)p,si

Effect:
if ¬failed then

if status = idle and C > Counter(p) then
status← active
Counter(p)← C
if tag < t then
(tag.ts, tag.label, value)← (t.ts, t.label, val)

Output send(〈msgT, t, val, C〉)si,p

Precondition:
¬failed
status = active
p ∈ R ∪ {w}
〈msgT, t, val, C〉 =

〈msgType, tag, value, Counter(p)〉
Effect:

status← idle

Input failsi

Effect:
failed← true

Figure 1: Algorithm CWFR, Serversi : Signature, State and Transitions

A.2 Correctness of Algorithm CWFR

We proceed to show the correctness (safety) of algorithm CWFR, that is, to show that the algorithm satisfies the atomicity
properties presented in Section 2. Let write-fix(π) (resp. read-fix(π)) denote the fix point of a write (resp. read) operation
π, where the status becomes equal to done. In other words the write-fix(π) operation happens when write-phase2-fix event
occurs. On the other hand read-fix(π) of a fast read operation happens when read-qview-eval event occurs, while if the
read operation is slow then its fix point is reached when read-phase2-fix occurs. For the rest of the section we use τp(π)
to denote the tag of a read/write operation π from a process p, after the read-fix(π) or write-fix(π) event of π respectively.
For the server automaton τs(π) denotes the value of the tag variable at server s after the send action at s for π. Let for any
process p, τp denote the value of the local tag variable at p. For a read/write operation π we denote by start-maxTag(π) the
maximum tag at the read/write event of π and by witnessed-maxTag(π) (analogously witnessed-minTag(π)) the maximum
(resp. minimum) tag witnessed at the read-phase1-fix (resp. write-phase1-fix) event if π is a read (resp. write) operation.
Lastly given tag τ and a set of servers Q that replied to some operation π, let MQ,τ = {s : s ∈ Q ∧ τs(π) > τ} be the set
of servers in Q that replied with a tag greater than τ .

We first provide an alternative definition to atomicity, to express the three atomicity properties based on the tags re-
turned. Notice that for ease of analysis we split property P1 in two properties that capture the relation between reads and
writes separately. So the following must hold for every finite or infinite execution ξ of our implementation:

1. For each process p the tag variable is alphanumerically monotonically nondecreasing and it contains a non-negative
timestamp.

2. If the read event of a read operation ρ from reader r succeeds the write-fix(ω) event of a write operation ω in ξ then,
τr(ρ) ≥ τw(ω).

13



Signature:

Input:
write(v)wi , v ∈ V , wi ∈ W
rcv(m)sj ,wi , m ∈M , sj ∈ S, wi ∈ W
failwi , wi ∈ W

Output:
send(m)wi,sj , m ∈M , sj ∈ S, wi ∈ W
write-ackwi , wi ∈ W

Internal:
write-phase1-fixwi

, wi ∈ W
write-phase2-fixwi

, wi ∈ W

State:
tag = 〈ts, wid〉 ∈ T ×W , initially {0, wi}
value ∈ V , initially ⊥
phase ∈ {1, 2}, initially 1
pvalue ∈ V , initially ⊥
wCounter ∈ N+, initially 0

status ∈ {idle, active, done}, initially idle
srvAck ⊆M × S, initially ∅
maxAck ⊆M × S, initially ∅
failed, a Boolean initially false

Transitions:
Input write(v)wi

Effect:
if ¬failed then

if status = idle then
status← active
srvAck ← ∅
phase← 1
pvalue ← value
value ← v
wCounter ← wCounter + 1

Input rcv(〈msgT, t, val, C〉)sj ,wi

Effect:
if ¬failed then

if status = active and wCounter = C then
srvAck ← srvAck ∪ {sj , 〈msgT, t, val, C〉}

Output send(〈msgT, t, val, C〉)wi,sj

Precondition:
status = active
¬failed[
(phase = 1 ∧ 〈msgT, t, val, C〉 =

〈READ, tag, pvalue, wCounter〉)∨
(phase = 2 ∧ 〈msgT, t, val, C〉 =

〈WRITE, tag, value, wCounter〉)
]

Effect:
none

Output write-ackw
Precondition:

status = done
¬failed

Effect:
status← idle

Internal write-phase1-fixwi

Precondition:
¬failed
status = active
phase = 1
∃Q ∈ Q : Q ⊆ {s : (s,m) ∈ srvAck}

Effect:
maxTs← maxs∈Q∧(s,m)∈srvAck(m.t)
tag = 〈maxTs+ 1, wi〉
phase← 2
srvAck ← ∅
wCounter ← wCounter + 1

Internal write-phase2-fixwi

Precondition:
¬failed
status = active
phase = 2
∃Q ∈ Q : Q ⊆ {s : (s,m) ∈ srvAck}

Effect:
status← done

Input failw
Effect:

failed← true

Figure 2: Algorithm CWFR, Writerwi : Signature, State and Transitions
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Signature:

Input:
readri , ri ∈ R
rcv(m)sj ,ri , m ∈M , ri ∈ R, sj ∈ S
failri , ri ∈ R

Output:
send(m)ri,sj , m ∈M , ri ∈ R, sj ∈ S
read-ack(v)ri , v ∈ V , ri ∈ R

Internal:
read-phase1-fixri
read-phase2-fixri

State:
tag = 〈ts, wid〉 ∈ T ×W , initially {0,min(W), 0}
maxTag = 〈ts, wid〉 ∈ T ×W , initially {0,min(W), 0}
value ∈ V , initially ⊥
phase ∈ {1, 2}, initially 1
retvalue ∈ V , initially ⊥
rCounter ∈ N+, initially 0

status ∈ {idle, active, done}, initially idle
srvAck ⊆M × S, initially ∅
maxAck ⊆M × S, initially ∅
maxTagSrv ⊆ S, initially ∅
replyQ ⊆ S, initially ∅
failed, a Boolean initially false

Transitions:
Input readri

Effect:
if ¬failed then

if status = idle then
status← active
rCounter ← rCounter + 1

Input rcv(〈msgT, t, val, C〉)sj ,ri

Effect:
if ¬failed then

if status = active and rCounter = C then
srvAck ← srvAck ∪ {(sj , 〈msgT, t, val, C〉)}

Output send(〈msgT, t, val, C〉)ri,sj

Precondition:
status = active
¬failed[
(phase = 1 ∧ 〈msgT, t, val, C〉 =

〈READ,maxTag, value, rCounter〉)∨
(phase = 2 ∧ 〈msgT, t, val, C〉 =

〈INFORM,maxTag, value, rCounter〉)
]

Effect:
none

Output read-ack(v)ri

Precondition:
¬failed
status = done
v = retvalue

Effect:
replyQ← ∅
srvAck ← ∅
status← idle

Internal read-phase2-fixri

Precondition:
¬failed
status = active
phase = 2
∃Q ∈ Q : Q ⊆ {s : (s,m) ∈ srvAck}

Effect:
status← done
phase← 1

Internal read-phase1-fixri

Precondition:
¬failed
status = active
phase = 1
∃Q ∈ Q : Q ⊆ {s : (s,m) ∈ srvAck}

Effect:
replyQ← Q
maxTag ← maxs∈replyQ∧(s,m)∈srvAck(m.t)
maxAck ← {(s,m) : (s,m) ∈ srvAck and m.t = maxTag}
maxTagSrv ← {s : s ∈ replyQ ∧ (s,m) ∈ maxAck}
value← {m.val : (s,m) ∈ maxAck}

Internal read-qview-evalri

Precondition:
¬failed
replyQ 6= ∅

Effect:
tag ← maxs∈replyQ∧(s,m)∈srvAck(m.t)
maxAck ← {(s,m) : (s,m) ∈ srvAck and m.t = maxTag}
maxTagSrv ← {s : s ∈ replyQ ∧ (s,m) ∈ maxAck}
retvalue← {m.val : (s,m) ∈ maxAck}
if replyQ = maxTagSrv then
status← done

else
if ∃Qj ∈ Q, Qj 6= replyQ s.t. replyQ ∩Qj ⊆ maxTsSrv then
tag ← maxTag
retvalue← value
phase← 2
srvAck ← ∅
rCounter ← rCounter + 1

else
replyQ← replyQ− {s : s ∈ maxTagSrv}

Input failri

Effect:
failed← true

Figure 3: Algorithm CWFR, Readerri : Signature, State and Transitions
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3. If ω1 and ω2 are two write operations from the writers w and w′ respectively, such that ω1 → ω2 in ξ, then τw(ω2) >
τw′(ω1).

4. If ρ1 and ρ2 are two read operations from the readers r and r′ respectively, such that ρ1 → ρ2 in ξ, then τr(ρ2) ≥
τr′(ρ1).

First we need to ensure that any process in the system maintains only monotonically nondecreasing tags. Hence once
some process p sets its tag variable to a value k at time t of an execution ξ, then it cannot be the case that p sets its tag to a
value ` ≤ k at a time t′ such that t′ > t in ξ.

Lemma A.1 For each server process s ∈ S, τs is alphanumerically monotonically nondecreasing and contains a τs.ts > 0.

Proof. It is easy to see that a server si modifies its tag variable only if the tag τ in the received messages is such that
τ > tag. This means that either: a) τ.ts > tag.ts or b) τ.ts = tag.ts and τ.wid > tag.wid. So the server’s tag is
monotonically incrementing. Furthermore since the initial tag of the server is set to 〈0,minwid〉 and the tag is updated only
if τ.ts ≥ tag.ts, then tag.ts is always greater than 0. ut

Lemma A.2 If a server s ∈ S receives a message from a process p, for operation π, that contains a tag τ , then s replies to
p with a tag τs(π) ≥ τ .

Proof. When the server receives the message from processor p it first compares τ with its local tag τs. If τ > τs then
the server sets τs = τ . From this it follows that τs is at least equal to the tag τ of the message. Since by Lemma A.1
the tag of the server is monotonically nondecreasing, then when the sends,p event occurs, the server replies to p with a tag
τs(π) ≥ τs ≥ τ . Hence the lemma follows. ut

Lemma A.3 For each writer process w ∈ W , τw is monotonically nondecreasing and contains a non-negative timestamp.

Proof.
Each writer process w modifies its local tag during its first communication round. In particular when the

write-phase1-fix event happens for a write operation ω, then τw becomes equal to τw(ω) = 〈witnessed-maxTag(ω).ts +
1, wi〉. So it suffice to show that start-maxTag(ω) ≤ witnessed-maxTag(ω). Suppose that all the servers of a quo-
rum Qj ∈ Q, received messages and replied to w, for ω. Every message sent from w to any server s ∈ Qj (when
sendw,s occurs), contains a tag τ = start-maxTag(ω). By Lemma A.2, any s ∈ Qj replies with a tag τs(ω) ≥ τ ≥
start-maxTag(ω). Thus ∀s ∈ Qj , τs(ω) ≥ start-maxTag(ω) and it follows that τs(ω).ts ≥ start-maxTag(ω).ts.
Since witnessed-maxTag(ω).ts = max(τs(ω).ts) then witnessed-maxTag(ω).ts ≥ start-maxTag(ω).ts and hence
τw(ω) = 〈witnessed-maxTag(ω) + 1, w〉 > start-maxTag(ω). Therefore not only the tag of a writer is nondecreasing
but we show explicitly that the writer’s tag is monotonically increasing. Furthermore since the writer adopts the maximum
tag sent from the servers, and since by Lemma A.1 the servers tags contain non-negative timestamps, then it follows that
the writer contains non-negative timestamps as well. ut

Lemma A.4 For each reader process r ∈ R, τr is monotonically nondecreasing and contains a non-negative timestamp.

Proof. Notice that the tag variable of a reader is τr ≤ start-maxTag(ρ) when the read event occurs and becomes
τr = τr(ρ) at the end of the operation. So it suffices to show that τr(ρ) ≥ start-maxTag(ρ). With similar argu-
ments to Lemma A.3 it can be shown that for every s ∈ Qj that replies to an operation ρ invoked by r, τs(ρ) ≥
start-maxTag(ρ). Since witnessed-maxTag(ρ) = max(τs(ρ)) and witnessed-minTag(ρ) = min(τs(ρ)) then it follows
that both witnessed-maxTag(ρ),witnessed-minTag(ρ) ≥ start-maxTag(ρ). By the algorithm the tag returned by the read
operation is witnessed-minTag(ρ) ≤ τr(ρ) ≤ witnessed-maxTag(ρ). Hence τr(ρ) ≥ start-maxTag(ρ). Thus no mat-
ter which of the tags is chosen to be returned at the end of the read operation nondecreasing monotonicity is preserved.
Also since by Lemma A.1 all the servers reply with a non negative timestamp, then it follows that r contains non-negative
timestamps as well. ut

Lemma A.5 For each process p ∈ R∪W∪S the tag variable is monotonically nondecreasing and contains a non-negative
timestamp.

Proof. Follows from Lemmas A.1, A.3 and A.4 ut

The following lemma states that if a read operation ρ returns a tag τ < maxTag it must be the case that any pairwise
intersection of the replied quorum contains at least a single server s such that τs(ρ) = τ .
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Lemma A.6 In any execution ξ, if a read operation ρ from r receives replies from the members of quorum Qi and returns
a tag τr(ρ) < witnessed-maxTag(ρ), then ∀Qj ∈ Q, j 6= i it must be true that (Qi ∩Qj)−MQi,τr(ρ) 6= ∅.

Proof. By definition the intersection of two quorums Qi, Qj ∈ Q is not empty. Let us assume to derive contradiction that a
read operation ρmay return a tag τr(ρ) = τ < witnessed-maxTag(ρ) and may exist (Qi∩Qj)−MQi,τr(ρ) = ∅. According
to our algorithm, when read-qview-eval event occurs, we first check if either qV iew(1) or qV iew(3) is observed in Qi. If
neither of those quorum views is observed then we remove all the servers with the current maximum tag from Qi and we
repeat the check on the remaining servers. It follows that since all the servers s ∈ Qi ∩ Qj were removed from Qi then it
must be the case that τs(ρ) > τ . So there must be a tag τ ′ > τ s.t. A = (Qi ∩ Qj) −MQi,τ ′ 6= ∅ and all servers s′ ∈ A
contain τs′(ρ) = τ ′. If this happens there are two cases for the reader: (a) ∀s′ ∈ (Qi) −MQi,τ ′ , τs′(ρ) = τ ′ and thus
qV iew(1) is observed and the reader returns τr(ρ) = τ ′, or (b) ∀s′ ∈ A, τs′(ρ) = τ ′ and thus qV iew(3) is observed and
the reader returns τr(ρ) = witnessed-maxTag(ρ). Since witnessed-maxTag(ρ) ≥ τ ′ then in any case the read operation ρ
would return a tag τr(ρ) > τ and that contradicts our assumption. ut

Derived from the above lemma, the next lemma states that a read operation basically returns either the maxTag or the
maximum of the minimum tags of all the pairwise intersections of the replied quorum.

Lemma A.7 If a read operation ρ from r receives replies from a quorum Qi, then ∀Qj ∈ Q, j 6= i, τr(ρ) ≥ min(τs(ρ))
for s ∈ Qi ∩Qj .

Proof. This lemma follows directly from Lemma A.6. Let a subset of servers in Qi∩Qj replied to ρ with the minimum tag
among all the servers of that intersection, say τ . If the iteration of the read-eval-qview event of ρ reaches tag τ then either
ρ observes qV iew(1) and returns τr(ρ) = τ or it observes qV iew(3) and returns τr(ρ) = witnessed-maxTag(ρ) ≥ τ . This
is true for all the intersections Qi ∩Qj , for i 6= j. And the lemma follows. ut

Lemma A.8 If the read event of a read operation ρ from reader r succeeds the write-fix(ω) event of a write operation ω
from w in an execution ξ then, τr(ρ) ≥ τw(ω).

Proof. Assume w.l.o.g. that the write operation receives messages from two, not necessarily different, quorums Qi and Qj
during its first and second communication rounds respectively. Furthermore let us assume that the read operation receives
replies from a quorum Qz , not necessarily different from Qi or Qj , during its first communication round. According to
the algorithm the write operation ω detects the maximum tag from Qi, increments that and propagates the new tag to Qj .
Since ∀s ∈ Qi,witnessed-maxTag(ω) ≥ τs(ω) then from the intersection property of a quorum system it follows that
∀s ∈ (Qi ∩ Qj) ∪ (Qi ∩ Qz), τw(ω) > witnessed-maxTag(ω) ≥ τs(ω). From the fact that w propagates τw(ω) in ω’s
second communication round and from Lemma A.2 it follows that at the write-fix(ω) every s ∈ (Qj ∩ Qz) contains a tag
τs(ω) ≥ τw(ω).

Since the read operation succeeds the write-fix(ω), then from Lemma A.2 the read operation will obtain a tag τs(ρ) ≥
τs(ω) ≥ τw(ω), from every server s ∈ Qj ∩ Qz and so min(τs(ρ)) ≥ τw(ω). Thus from Lemma A.7 τr(ρ) ≥ τs(ρ) for
s ∈ Qj ∩Qz and hence τr(ρ) ≥ τw(ω) completing the proof. ut

Lemma A.9 If ω1 and ω2 are two write operations from the writers w and w′ respectively, such that ω1 → ω2 in ξ, then
τw′(ω2) > τw(ω1)

Proof. From the precedence relation of the two write operations it follows that the write-fix(ω1) occurs before the write
event of ω2. Recall that for a write operation ω, τw(ω) = 〈witnessed-maxTag(ω).ts + 1, w〉. So it suffices to show here
that witnessed-maxTag(ω2) > witnessed-maxTag(ω1). This however is straightforward from Lemma A.2 and the value
propagated during the second communication round of ω1. In particular let ω1 propagate τw(ω1) > witnessed-maxTag(ω1)
to a quorum Qi. Notice that every s ∈ Qi replies with τs(ω1) ≥ τw(ω1) to the second communication round of ω1.
Furthermore let the write operation ω2 receive replies from a quorum Qj , not necessarily different than Qi, during its first
communication round. Since write-fix(ω1) occurs before the write event of ω2 then, by Lemmas A.1 and A.2, ∀sg ∈
Qi ∩ Qj τsg

(ω2) ≥ τsg
(ω1) ≥ τw(ω1). Thus witnessed-maxTag(ω2) ≥ τsg

(ω2) ≥ τw(ω1) and hence, since τw′(ω2) =
〈witnessed-maxTag(ω2).ts+ 1, w′〉 > witnessed-maxTag(ω2), then τw′(ω2) > τw(ω1). ut

Lemma A.10 If ρ1 and ρ2 are two read operations from the readers r and r′ respectively, such that ρ1 → ρ2 in ξ, then
τr(ρ2) ≥ τr′(ρ1).
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Proof. Since ρ1 → ρ2 in ξ, then the read-ack event of ρ1 occurs before the read event of ρ2. Let consider that
both read operations are invoked from the same reader r = r′. It follows from Lemma A.4 that τr(ρ1) ≤ τr(ρ2)
because the tag variable is monotonically non-decrementing. So it remains to investigate what happens when the two
read operations are invoked by two different processes, r and r′ respectively. Suppose that every server s in a quo-
rum Qi receives the messages of operation ρ1 with an event rcv(m)r,s, and replies with a tag τs(ρ1) with an event
send(m)s,r to r. Notice that for every server that reply, as mentioned in Lemma A.2, τs(ρ1) ≥ start-maxTag(ρ1). Let
the members of the quorum Qj (not necessarily different than Qi) receive messages and reply to ρ2. Again for every
s′ ∈ Qj , τs′(ρ2) ≥ start-maxTag(ρ2). We know that the tag of the read operation ρ1 after the read-qview-eval event
of ρ1 may take a value between witnessed-maxTag(ρ1) ≥ τr(ρ1) ≥ witnessed-minTag(ρ1). It suffice to examine the
two extreme cases and every intermediate value can be proved similarly: (1) τr(ρ1) = witnessed-minTag(ρ1), and (2)
τr(ρ1) = witnessed-maxTag(ρ1).

Case 1: Consider the case where τr(ρ1) = witnessed-minTag(ρ1), including the case where witnessed-minTag(ρ1) =
witnessed-maxTag(ρ1). This may happen only if the read-qview-eval event reaches an iteration with tag τ =
witnessed-minTag(ρ1) and observes qV iew(1). In other words all the servers s ∈ Qi − MQi,τs(ρ1) replied with
τs(ρ1) = witnessed-minTag(ρ1). By Lemma A.6 it follows that (Qi ∩ Qj) − MQi∩Qj ,τs(ρ1) 6= ∅ and thus every
server s′ ∈ Qi ∩ Qj replied to ρ1 with a tag τs′(ρ1) ≥ witnessed-minTag(ρ1). By Lemma A.1 it follows that ev-
ery server s′ ∈ Qi ∩ Qj , replies with a tag τs′(ρ2) ≥ τs′(ρ1) ≥ witnessed-minTag(ρ1). The read operation ρ2 may
return a value within the interval witnessed-minTag(ρ2) ≤ τr′(ρ2) ≤ witnessed-maxTag(ρ2). Since for every server
s′ ∈ Qi ∩ Qj , τs′(ρ2) ≥ witnessed-minTag(ρ1) = τr(ρ1) then witnessed-maxTag(ρ2) ≥ τs′(ρ2) ≥ τr(ρ1). Hence if
τr′(ρ2) = witnessed-maxTag(ρ2) it follows that τr′(ρ2) ≥ τr(ρ1). On the other hand if τr′(ρ2) = witnessed-minTag(ρ2)
we need to consider two cases: (a) witnessed-minTag(ρ2) ≥ witnessed-minTag(ρ1) and (b) witnessed-minTag(ρ2) <
witnessed-minTag(ρ1). If the first case is valid then it follows immediately that τr′(ρ2) ≥ witnessed-minTag(ρq) and thus
τr′(ρ2) ≥ τr(ρ1). If case (b) is valid then it follows that the iteration reached a tag equal to witnessed-minTag(ρ2). Since
however every server s′ ∈ Qi ∩Qj , replied with τs′(ρ2) ≥ witnessed-minTag(ρ1), then τs′(ρ2) ≥ witnessed-minTag(ρ2)
as well and thus all these servers should be removed by the iteration where tag is equal to witnessed-minTag(ρ2). But this
means that (Qi ∩Qj)−MQj ,witnessed-minTag(ρ2) = ∅ and that contradicts Lemma A.6. So such a case is impossible.

Case 2: Here we examine the case where τr(ρ1) = witnessed-maxTag(ρ1). This may happen after the read-qview-eval of
ρ1 if either observes a quorum view qV iew(1) or a quorum view qV iew(3). Let us examine the two cases separately.

Case 2a: In this case ρ1 witnessed a qV iew(1). Therefore it must be the case that ∀s ∈ Qi, s replied with τs(ρ1) =
witnessed-maxTag(ρ1) = witnessed-minTag(ρ1) = τr(ρ1). Thus by Lemma A.1 ∀s ∈ Qi ∩ Qj , s replies with a tag
τs(ρ2) ≥ τs(ρ1) to ρ2, and hence, ρ2 witnesses a maximum tag

witnessed-maxTag(ρ2) ≥ witnessed-maxTag(ρ1)⇒ witnessed-maxTag(ρ2) ≥ τr(ρ1) (1)

Recall that witnessed-minTag(ρ2) ≤ τr′(ρ2) ≤ witnessed-maxTag(ρ2). Clearly if τr′(ρ2) = witnessed-maxTag(ρ2) then
τr′(ρ2) ≥ τr(ρ1). So it remains to examine the case where τr′(ρ2) < witnessed-maxTag(ρ2). By Lemma A.7, τr′(ρ2)
must be greater or equal to the minimum tag of any intersection ofQj . Since min(τs(ρ2)) ≥ τr(ρ1), for every s ∈ Qi∩Qj ,
then by that lemma τr′(ρ2) ≥ τr(ρ1).

Case 2b: This is the case where τr(ρ1) = witnessed-maxTag(ρ1), because r witnessed a quorum view qV iew(3). In
this case ρ1 proceeds in phase 2 before completing. Since ρ1 → ρ2 and since ρ2 happens after the read-ack 1 action of
ρ1, it means that ρ2 happens after the read-phase2-fix action of ρ1 as well. However ρ1 proceeds to phase 2 only after
the read-phase1-fix and read-qview-eval actions. In the latter action ρ1 fixes the maxTag variable to be equal to the
witnessed-maxTag(ρ1). Once in phase 2, ρ1 sends inform messages with its maxTag = witnessed-maxTag(ρ1) to a
complete quorum, say Qk. By Lemma A.5, every server s ∈ Qk replies with a tag

τs(ρ1) ≥ witnessed-maxTag(ρ1)⇒ τs(ρ1) ≥ τr(ρ1) (2)

So ρ2 will observe (by Lemma A.1) that at least ∀s ∈ Qj ∩ Qk, τs(ρ2) ≥ τr(ρ1). Hence by Lemma A.7 ρ2 returns a tag
τr′(ρ2) ≥ min(τs(ρ2)) for s ∈ Qj ∩Qk, and thus τr′(ρ2) ≥ τr(ρ1) and this completes our proof. ut

Lastly the following lemma states that if two read operations return two different tags then the values that correspond
to these tags are also different.

1read-ack occurs only if all phases reach a fix point and the status variable becomes equal to done
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Lemma A.11 If ρ1 and ρ2 two read operations from readers r and r′ respectively, such that ρ1 (resp. ρ2) returns the value
written by ω1 (resp. ω2), then if τr(ρ1) 6= τr′(ρ2) then ω1 is different than ω2 otherwise they are the same write.

Proof. This lemma is ensured because a unique tag is associated to each written value by the writers. So it cannot be the
case that two readers such that τr(ρ1) 6= τr′(ρ2) returned the same value. ut

Using the above lemmas we can obtain:

Theorem A.12 Algorithm CWFR implements a MWMR atomic read/write register.

B Algorithm SFW

B.1 Formal Specification of SFW Algorithm
Algorithm SFW consist of four kinds of automata: writer Writerp, reader Readerp, server Servers, and channels Channelp,s
and Channels,p, for p ∈ W ∪ R and s ∈ S. Figures 4-6 present the IOA specification of the server, writer and reader
automata of algorithm SFW, respectively.

Signature:

Input:
rcv(m)p,s, m ∈M , s ∈ S, p ∈ R ∪W
fails

Output:
send(m)s,p, m ∈M , s ∈ S, p ∈ R ∪W

State:
tag ∈ T , initially {0, ∗}
value ∈ V , initially ⊥
pCount(p) ∈ N+, p ∈ R ∪W , initially 0

inprogress ⊆ T × V × (R∪W)× N+

confirmed ⊆ T × V × (R∪W)× N+

failed , a Boolean initially false

Transitions:
Input rcv(〈type,mtag,mvalue, opCount ,Count〉)p,s

Effect:
if ¬failed ∧ count > pCount(p) then
pCount(p)← count
if tag < mtag then
(〈tag.ts, tag.label , tag.opc〉, value)←

(〈mtag.ts,mtag.label ,mtag.opc〉,mvalue)
if mtype = W then
(tag.ts, tag.label , tag.opc)← (tag.ts + 1 , p, opCount)
inprogress ← (inprogress − 〈〈∗, p, ∗〉, val〉) ∪ 〈tag,mvalue〉

if confirmed < mtag then
confirmed ← mtag

Output send(〈inprog, conf , pc〉)s,p
Precondition:
¬failed
〈inprog, conf , pc〉
〈inprogress, confirmed ,Counter(p)〉

Effect:

Input fails
Effect:

failed ← true

Figure 4: Algorithm SFW, Servers: Signature, State and Transitions

B.2 Correctness of SFW

We proceed to show the correctness (safety) of algorithm SFW, that is, to show that the algorithm satisfies the atomicity
properties presented in Section 2. Let write-fix(π) (resp. read-fix(π)) denote the fix point of a write (resp. read) operation
π, where the status becomes equal to done . In other words the write-fix(π) (resp. read-fix(π)) of a fast operation happens
when write-phase1-fix (resp. read-phase1-fix) event occurs. If the write/read operation is slow then its fix point is reached
when write-phase2-fix or read-phase2-fix occurs respectively. For the rest of the section we use τp(π) to denote the tag
of a read/write operation π from a process p, after the read-fix(π) or write-fix(π) event of π respectively. For the server
automaton τs(π) and τconfirmeds(π) denote the value of the tag and confirmed variables respectively at server s ∈ S
after the send action at s for π. Similarly inprogresss(π) denotes the set inprogress which s sends to operation π and
τinprogresss(π) ∈ inprogresss(π) the tag that the set contains for writer w that invoked operation π. Notice that a write
operation can be characterized by the tuple 〈w,wc〉 where w is the id of the writer that invokes the write operation and wc
the operation counter of w at the end of the write event. Thus we denote by ω = 〈w,wc〉 and the tag assigned to ω by
τw(ω) = 〈ts, ω〉, where ts ∈ N the timestamp included in the tag. From this and by well-formedness assumption, it follows
that two write operations ω1 = 〈w,wc1〉 and ω2 = 〈w,wc2〉 invoked by the same writer w ∈ W , have the relation ω1 → ω2

if and only if wc1 < wc2. Let for any process p, τp denote the value of the local tag variable at p. For a read/write operation
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Signature:

Input:
write(v)w , v ∈ V , w ∈ W
rcv(m)s,w , m ∈M , s ∈ S, w ∈ W
failw , w ∈ W

Output:
send(m)w,s, m ∈M , s ∈ S, w ∈ W
write-ackw , w ∈ W

Internal:
write-phase1-fixw , w ∈ W
write-phase2-fixw , w ∈ W

State:
tag ∈ T , initially {0, ∗}
value ∈ V , initially ⊥
phase ∈ {W,RP}, initially W
pCount ∈ N+, initially 0
opc ∈ N+, initially 0

status ∈ {idle, active, done}, initially idle
srvAck ⊆ S × 2T time(T ), initially ∅
failed , a Boolean initially false

Transitions:
Input write(v)w
Effect:

if ¬failed ∧ status = idle then
status ← active
srvAck ← ∅
phase ←W
value ← v
pCount ← pCount + 1
opc ← opc + 1

Input rcv(〈inprogress, confirmed, count〉)s,w
Effect:

if ¬failed then
if status = active and pCount = count then
srvAck ← srvAck ∪ {〈s, inprogress, confirmed〉}

Output send(〈type,mtag,mvalue, wc, count〉)w,s
Precondition:

status = active
¬failed
〈type,mtag,mvalue, wc, counter〉 =

〈phase, tag, value, opc, pCount〉
Effect:

none

Output write-ackw
Precondition:

status = done
¬failed

Effect:
status ← idle

Internal write-phase1-fixw
Precondition:
¬failed
status = active
phase = W
∃Q ∈ Q : Q ⊆ {s : (s, ., .) ∈ srvAck}

Effect:
T ← {〈t, w, .〉 : 〈t, w, .〉 ∈ ∪s∈Qinprogress ∧ 〈s, inprogress, .〉 ∈ srvAck}
if ∃τ,MS,A : τ ∈ T∧

MS = {s : s ∈ Q ∧ τ ∈ inprogress ∧ 〈s, inprogress, .〉 ∈ srvAck} ∧
A ⊆ Q s.t. 0 ≤ |A| ≤ n

2
− 1 ∧ (∩Q′∈(A∪Q)Q

′) ⊆MS then
〈tag.ts, tag.label , tag.opc〉 ← 〈t, w, opc〉
if |A| ≥ max(0, n

2
− 2) then

phase ← RP
pCount ← pCount + 1

else
status ← done

else
〈tag.ts, tag.label , tag.opc〉 ← max〈t,w,opc〉∈

⋃
s∈Q s.inprogress(〈t, w, opc〉)

pCount ← pCount + 1
phase ← RP

srvAck ← ∅

Internal write-phase2-fixw
Precondition:

status = active
¬failed
phase = RP
∃Q ∈ Q : Q ⊆ {s : (s, ., .) ∈ srvAck}

Effect:
status← done

Input failw
Effect:

failed← true

Figure 5: Algorithm SFW, Writerw, w ∈ W: Signature, State and Transitions
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Signature:

Input:
readr , r ∈ R
rcv(m)s,r , m ∈M , r ∈ R, s ∈ S
failr , r ∈ R

Output:
send(m)r,s, m ∈M , r ∈ R, s ∈ S
read-ack(v)r , v ∈ V , r ∈ R

Internal:
read-phase1-fixr
read-phase2-fixr

State:
tag ∈ T ×W , initially {0, ∗}
value ∈ V , initially vo
phase ∈ {R,RP}, initially R
pCount ∈ N+, initially 0

status ∈ {idle, active, done}, initially idle
srvAck ⊆ S, initially ∅
srvConfirmed ⊆ S × T , initially ∅
srvInProgress ⊆ S × T , initially ∅ failed , a Boolean initially false

Transitions:
Input readr
Effect:

if ¬failed ∧ status = idle then
phase ← R
status ← active
pCount ← pCount + 1

Input rcv(〈inprog, conf , pc〉)s,r
Effect:

if ¬failed ∧ status = active then
if pCount = pc then
srvAck ← srvAck ∪ {〈s, inprogress, confirmed〉}

Output send(〈type,mtag,mvalue,wc, count〉)r,s
Precondition:

status = active
¬failed
〈type,mtag,mvalue, wc, count〉 =

〈phase, tag, value, tag.opc, pCount〉)
Effect:

none

Output read-ack(v)r
Precondition:
¬failed
status = done
v = retvalue

Effect:
replyQ← ∅
srvAck ← ∅
status← idle

Input failr
Effect:

failed← true

Internal read-phase1-fixr
Precondition:
¬failed
status = active
phase = R
∃Q ∈ Q : Q ⊆ {s : (s, ., .) ∈ srvAck}

Effect:
maxCT ← maxs∈Q(s.confirmed)
inPtag = {τ : τ ∈

⋃
s∈Q s.inprogress}

if ∃τ,MS,B :
τ > maxCT ∧
maxInPtags = {τ ′ : τ ′ ∈ s.inprogress ∧ s ∈ Q ∧ τ ′ > τ}∧
τ = maxτ ′′∈inPtag−maxInPtags(τ

′′)∧
MS = {s : s ∈ Q ∧ τ ∈ s.inprogress}∧
B ⊆ Qs.t. 0 ≤ |B| ≤ n

2
− 2 ∧ (∩Q′∈(B∪Q)Q

′) ⊆MS then
〈〈tag.ts, tag.label , tag.opc〉, value〉 ← 〈〈τ.ts, τ.w, τ.opc〉, τ.value〉
if |B| = max(0, n

2
− 2) then

phase ← RP
else
status ← done

else
MC ← {s : s ∈ Q ∧ s.confirmed = maxCTag}
〈tag.ts, tag.label , tag.opc〉 ← 〈maxCT.ts,maxCT.w,maxCT.opc〉
value← maxCT.value
if ∃C : C ⊆ Q ∧ |C| ≤ m− 2 ∧ (∩Q′∈CQ′) ∩Q ⊆MC then

status ← done
else
phase ← RP

Internal read-phase2-fixr
Precondition:
¬failed
status = active
phase = 2
∃Q ∈ Q : Q ⊆ {s : (s, ., .) ∈ srvAck}

Effect:
status← done
phase← 1

Figure 6: Algorithm SFW, Readerr : Signature, State and Transitions

π invoked from a reader/’writer process p, we denote by start(τp(π)) the value of the tag variable at the read/write event
of π. Finally let Qi ⊆ Q s.t. |Qi| = i.

Recall that the two predicates used in the algorithm are the following assuming that an operation received messages
from a quorum Q:

Writer predicate for a write ω (PW): ∃ τ,A,MS where: τ ∈ {〈., ω〉 : 〈., ω〉 ∈ inprogresss(ω) ∧ s ∈ Q},
A ⊆ Q, 0 ≤ |A| ≤ n

2 − 1, and MS = {s : s ∈ Q ∧ τ ∈ inprogresss(ω)}, s.t. either |A| 6= 0 and IA ∩Q ⊆MS or
|A| = 0 and Q = MS.

Reader predicate for a read ρ (PR): ∃ τ,B,MS, where: max(τ) ∈
⋃
s∈Q inprogresss(ρ), B ⊆ Q, 0 ≤ |B| ≤

max(0, n2 − 2), and MS = {s : s ∈ Q ∧ τ ∈ inprogresss(ρ)}, s.t. either |B| 6= 0 and IB ∩Q ⊆ MS or |B| = 0
and Q = MS.
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Notice that the “either..or” condition of the above predicates can be merged and written as IA∪{Q} ⊆ MS since
I∅∪{Q} = Q. Thus we will use this notation throughout the proofs. The writer predicate is located in write-phase1-fix of
Figure 5 and the reader predicate is located in read-phase1-fix of Figure 6.

Lemma B.1 For each server process s ∈ S, τs is alphanumerically monotonically nondecreasing and contains a τs.ts > 0.

Proof. It is easy to see that a server s modifies its tag variable only if the tag τ in a received message m is such that τ > τs.
In addition, if m is a write message, τs.ts = max(τs.ts, τ.ts) + 1. So in both cases the server’s tag is monotonically
increasing. Furthermore since the initial tag of the server is set to 〈0,minwid〉 and since τ > τs only if τ.ts ≥ τs.ts, then
τs.ts is always greater than 0. ut

Lemma B.2 For each server process s ∈ S the variable confirmeds of a server s is alphanumerically monotonically
nondecreasing.

Proof. From the algorithm it follows that the server s modifies the value of its confirmed variable only if the tag τ in a
message m received by s, is such that τ > confirmeds. ut

Lemma B.3 For each server process s ∈ S the tag maintained in the inprogresss set for a writer w ∈ W is alphanumeri-
cally monotonically increasing.

Proof. Notice that the server s maintains just a single record for a writer w in its inprogresss set. Each time the
server receives a new write request from a write operation ω = 〈w,wc〉 from w, for wc > 0, it generates a new tag
for τinprogresss(ω) = 〈τs.ts + 1, ω〉. Since by Lemma B.1 the local tag of the server s is non decreasing and it becomes
equal to any tag it assigns to a write operation, then τs is greater or equal to any tag associated with a previous write
operation ω′ = 〈w,wc′〉, for wc′ < wc, from w. Thus τinprogresss(w,wc) > τinprogresss(w,wc′), and the claim follows. ut

Lemma B.4 If a server s ∈ S receives a message m from a process π, that contains a tag τ then s replies to π with a
τconfirmedsi

(ρ) = 〈ts′, wid, wc′〉 s.t. τconfirmedsi
(π) ≥ τ .

Proof. It follows by Lemma B.2 that s upgrades the confirmeds variable only if the tag enclosed in the message τ >
confirmeds. If so then the s replies with τconfirmeds(π) = τ ; otherwise it replies with τconfirmeds(π) ≥ τ to operation π. ut

Lemma B.5 If server s ∈ S receives a message from a process w ∈ W , for the first communication round of a write
operation ω (i.e. type W) that contains a tag τ , then s replies with an inprogresss(ω) which contains τinprogresss(ω) > τ
and τinprogresss(ω) = maxτ ′∈inprogresss(ω)(τ ′).

Proof. The server s may receive W message from the write operation ω. The server checks if the tag τ enclosed in the
received message is higher than its local tag, and if so updates its tag to be equal to τ . Thus after this update it is true that
the tag of s, τs ≥ τ . If W message m is received from ω, then s generates a new tag τ ′ = 〈τs.ts + 1, w,m.wc〉. Since
the timestamp contained in the new tag is greater than the timestamp in the local tag of the server then τ ′ > τs and thus
τ ′ > τ as well. Then s replaces any previous operations from w in its inprogress set and inserts the new tag. Since the
tuple 〈w,m.wc〉 unifies ω from w then τ ′ is the unique value of ω in server s. Thus it follows that τinprogresss(ω) = τ ′ and
hence τinprogresss(ω) > τ .

For the second part of the proof notice that any tag added in the inprogress set of s contains the timestamp of the local
tag of s along with the id of the writer and the writer’s operation counter. Furthermore, since by Lemma B.1 the tag of a
server is monotonically incremented then, when the rcvw,s event happens, τs ≥ maxτ∈inprogresss

(τ). Since the new tag
entered in the set is τinprogresss(ω) = 〈τs.ts + 1, ω〉 then it follows that τinprogresss(ω) > τs and hence τinprogresss(ω) >
maxτ∈inprogresss

(τ). Therefore τinprogresss(ω) is the maximum tag in the set. That completes the proof. ut

The following lemma shows the uniqueness of each tag in the inprogress set of any server.

Lemma B.6 If a server s ∈ S maintains two tags τ1, τ2 ∈ inprogresss, such that τ1 = 〈ts1, w1, wc1〉 and τ2 =
〈ts2, w2, wc2〉, then w1 6= w2 and ts1 6= ts2.
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Proof. The first part of the lemma, namely that w1 6= w2, follows from the fact that the server s adds a new tag for a write
operation from w1 by removing any previous tag in inprogresss associated with a previous write from w1. Hence only a
single write operation is recorded in the inprogresss for every writer process w ∈ W , and thus our claim follows.

Let us assume, for the second part of the lemma, that w.l.o.g server s receives the message from ω1 before receiving
the message from ω2. Before replying to ω1, s adds in the inprogresss set the tag τ1 = 〈τs.ts + 1, w1, wc1〉, and sets
τs = τ1. The server s repeats the same process for ω2. Since by Lemma B.1 the local tag τs of the server in monotonically
non-decreasing, then it follows that τs ≥ τ1 when s receives the message from ω2. Thus if τ2 = 〈τs.ts+ 1, w2, wc2〉, then
τ2 ≥ 〈τ1.ts+ 1, w2, wc2〉, and hence ts2 ≥ ts1 + 1. So ts2 > ts1 and the lemma follows. ut

Lemma B.7 For each writer process w ∈ W the τw is monotonically increasing and contains a non-negative timestamp.

Proof. Each writer process w modifies its local tag during its first communication round. When the write-phase1-fix
event happens for a write operation ω, τw becomes equal to either the tag that satisfies the predicate or the maximum
tag, both derived from the inprogress sets of the servers that replied to a write operation of w. So it suffice to show
that start(τw(ω)) < mins∈Q(τinprogresss(ω)), assuming that all the servers of a quorum Q ∈ Q, received messages and
replied to w, for ω. Notice that every message sent from w to any server s ∈ Q (when sendw,s occurs), contains a tag
τ = start(τw(ω)). Since by Lemma B.5, every server s ∈ Q replies with τinprogresss(ω) > τ (to any communication round
of ω), then τinprogresss(ω) > start(τw(ω)) and the claim follows. Furthermore by Lemma B.1 and Lemma B.5 it follows
that w contains non-negative timestamps as well. ut

Lemma B.8 For each reader process r ∈ R the τr is monotonically nondecreasing and contains a non-negative timestamp.

Proof. The tag variable at r is modified only if r invokes some read operation ρ and becomes equal to either the maximum
tag in the inprogress set or the maximum confirmed tag obtained from the servers that replied. Notice however that τr(ρ) is
equal to some τinprogress∗(ρ)

only if τinprogress∗(ρ)
> max(τconfirmed∗(ρ)

). So it suffices to show that max(τconfirmed∗(ρ)
) ≥

start(τr(ρ)). Assume that all the servers in a quorumQ ∈ Q replied to ρ. Since ρ includes its start(τr(ρ)) in every message
sent during the event sendr,s to any server s ∈ Q, then by Lemma B.4, s replies with a τconfirmeds(ρ) ≥ start(τs(ρ)). Hence
it follows that max(τconfirmed∗(ρ)

) ≥ start(τρ()) as well and our claim holds. Also since by Lemma B.1 all the servers
reply with a non negative timestamp, then it follows that r contains non-negative timestamps as well. ut

Lemma B.9 For each process p ∈ R∪W ∪S , τp is monotonically nondecreasing and contains a non-negative timestamp.

Proof. Follows from Lemmas B.1, B.7 and B.8 ut

Lemma B.10 If a read/write operation π receives replies from a quorum Q ∈ Q and observes two tags τ1 and τ2 for a
write operation ω = 〈w,wc〉, s.t. τ1 = 〈t1, w, wc〉, τ2 = 〈t2, w, wc〉, t1 6= t2 and τ1 is propagated in a k-wise intersection,
then τ2 is propagated in at least k-wise intersection as well iff k > n+1

2 .

Proof. Let Sτ1 ⊆ Q be a set of servers such that ∀s ∈ Sτ1 replied with τinprogresss(ω) = τ1 to π and Sτ2 ⊆ Q the set
of servers such that ∀s′ ∈ Sτ2 replied with τinprogresss′ (ω) = τ2 to π. Since both τ1 and τ2 are propagated in a k-wise
intersection and since every server maintains just a single copy in its inprogress set for ω, then there exists two sets of
quorums Qk and Q′k such that IQk ⊆ Sτ1 and IQ′k ⊆ Sτ2 and IQk ∩ IQ′k = ∅. From the fact that Sτ1 , Sτ2 ⊆ Q, it follows
thatQ ∈ Qk,Q′k. So IQk = IQk−1∩Q and IQ′k = IQ′k−1∩Q, and hence IQk∩IQ′k = IQk−1∩IQ′k−1∩Q = ∅. By definition
we know that Qi is the quorum set that contains i quorums. So the intersection contains at most k− 1 +k− 1 + 1 = 2k− 1
quorums. Since we assume an n-wise intersection then the two sets of quorums maintain an empty intersection only if they
consist of more than n quorums. Hence it follows that the intersection is empty if and only if:

2k − 1 > n⇔ k >
n+ 1

2

This completes the proof. ut

Lemma B.11 If T is the set of tags witnessed by a write operation ω from a writer w, during its first communication round,
and τ ∈ T a tag that satisfies the writer predicate, then @τ ′ ∈ T such that τ ′ satisfies the writer predicate as well.
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Proof. Let us assume to derive contradiction that there exist a pair of tags τ, τ ′ ∈ T that both satisfy the writer predicate.
Furthermore assume that the write operation contw(Q,ω). According to the predicate a write operation accepts a tag only
if ∃A ⊂ Q such that |A| ∈ [0 . . . n2 − 1] and the tag is contained in all the servers s ∈ IA∪{Q}. If the predicate is valid
for τ with |A| = 0 then clearly all the servers s ∈ Q reply with τinprogresss(ω) = τ . Thus the write operation does not
observe any server s′ ∈ Q that replies with τinprogresss′ (ω) = τ ′ and hence τ ′ cannot satisfy the predicate, contradicting our
assumption.

Note that since we assume n-wise intersections any i-wise intersection (i < n− 1) contains an i+ 1-wise intersection
so if τ satisfies the predicate with |A| < n

2 − 1 it also satisfies it with |A| = n
2 − 1. Therefore it suffices to consider the

later case. So if now τ satisfies the predicate with |A| = n
2 − 1 then it follows that there exists an intersection IA∪{Q} such

that every s ∈ IA∪{Q} replied to w with τinprogresss(ω) = τ . Since A is a set of quorums that contains n
2 − 1 members then

|A ∪ {Q}| = n
2 and thus τ is propagated in an n

2 -wise intersection. Since n
2 is smaller than n+1

2 then by Lemma B.10, τ ′

cannot be propagated in n
2 -wise intersection and thus can only be propagated in at least (n2 + 1)-wise intersection. That

however means that ∃A′ such that |A′∪{Q}| = n
2 +1, and hence |A′| = n

2 , and ∀s′ ∈ IA′∪{Q}, τinprogresss′ (ω) = τ ′. Since
the predicate is only satisfied if A′ ∈ [0 . . . n2 − 1] then it follows that A′ does not satisfy the predicate. That contradicts our
assumption and completes our proof. ut

Lemma B.12 If a write operation ω from w witnesses multiple tags and sets τw(ω) = τ , then any read operation ρ from r
that returns the value written by ω decides a tag τr(ρ) = τ = τw(ω).

Proof. We proceed in cases and we show that either the read operation returns the value written by ω and τr(ρ) = τw(ω)
or the case is impossible and thus ρ does not return the value written by ω. Let us assume w.l.o.g. that contw(Qj , ω) and
contr(Qi, ρ), during their first communication round. There are two cases to consider for the write operation: (1) ω is fast
and completes in one communication round, or (2) ω is slow and performs two communication rounds. Let us examine the
two cases separately.
Case 1: Here the write operation ω is fast and thus its predicate is valid and completes in a single communication round.
Since ω is fast then there is a set M = {s : s ∈ Qj ∧ 〈τw(ω), ω.w, ω.wc〉 ∈ s.inprogress} and a set of quorums
|A| ∈ [0 . . . n2 − 3] s.t. IA∪{Qj} ⊆ M . Every server s ∈ IA∪{Qj ,Qi} replies with a τinprogresss(ω) = τw(ω) to ρ, if s
receives messages from ω before ρ. Otherwise s replies with a tag for an older write operation of w. Since according to the
predicate |A| ≤ n

2 − 3 then the union of the set |A ∪ {Qj , Qi}| ≤ n
2 − 1 (strictly less if Qi = Qj or Qi ∈ A). Thus the

intersection IA∪{Qj ,Qi} involves at most |A| + 2 ≤ n
2 − 1 quorums and hence by Lemma B.10 every tag τ ′ 6= τw(ω) is

observed by ρ in a k-wise intersection, such that k > n
2 −1. Thus ρ, either observes a B ⊆ A∪Qj , such that ∀s ∈ IB∪{Qi}

reply with τs(ρ) = τw(ω), and hence the predicate is valid for |B| ≤ |A|+ 1 ≤ n
2 − 2 and returns τw(ω), or since no other

tag satisfies its predicate it returns a value of a write ω′ 6= ω. Notice that since the predicate is false for any read operation
ρ′ succeeding or concurrent with ρ then no tag other than τw(ω) is propagated in the confirmed variable of any server for ω.
Hence if ρ returns the value written by ω, then it returns a tag τr(ρ) = τw(ω).
Case 2: Here the write operation ω is slow. This may happen in three cases: (a) either the predicate was true with |A| = n

2−2
or |A| = n

2 −1, or (b) the predicate was false and thus no tag τ ∈ T received from a set of serversMS = {s : s ∈ Qj ∧ τ ∈
s.inprogress} such that ∃|A| ≤ n

2 − 1 and IA∪{Qj} ⊆MS.
Case 2a: Here the predicate was true with |A| = n

2 − 2 or |A| = n
2 − 1. Notice that the read operation ρ may observe the

tag τw(ω) in the intersection IA∪{Qj ,Qi}. Thus the set |B| ≤ |A ∪ {Qj}| which in the first case it would be |B| ≤ n
2 − 1

and in the second case |B| ≤ n
2 . We should consider the two cases for A separately. Notice that since ω does not modify

the inprogress set during its second communication round then the read ρ observes the same values in that set no matter if
it succeeds the first or second communication round of ω. So our claims are valid for both cases.
Case 2a(i): Here τw(ω) is propagated in the servers s ∈ IA∪{Qj}, for |A| = n

2 − 2. Since the value τw(ω) is sent by any
server s ∈ IA∪{Qj ,Qi} to ρ, then there are three possible cases for Qi and B:

1) Qi = Qj ⇒ |B| = |A| = n
2 − 2,

2) Qi ∈ A⇒ |B| = |A−Qi| = n
2 − 3,

3) Qi /∈ A ∪ {Qj} ⇒ |B| = |A ∪ {Qj}| = n
2 − 1

By Lemma B.10 it follows that for any of the above cases, any tag τ ′ 6= τw(ω) may be propagated in a k-wise intersection,
such that k > n

2 + 1 and thus |B| > n
2 for such a tag.

In the first two cases the predicate of ρ holds since |B| ≤ n
2 − 2, and thus ρ returns τr(ρ) = τw(ω) for ω. It remains to

examine the third case where |B| = |A ∪ {Qj}| = n
2 − 1. In this case, |B ∪ {Qi}| = n

2 , and thus by Lemma B.10, none
of the tags assigned to ω will satisfy the predicate. So ρ returns the value of ω if it observers maxs∈Qi(τconfirmeds(ρ)) =
〈maxTs, ω〉, and hence 〈maxTs, ω〉 = τw(ω). Let s ∈ Qi be the server that replied to ρ with τconfirmeds(ρ) = 〈maxTs, ω〉.
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Server s sets its confirmed tag to 〈maxTs, ω〉 if it receives one of the following messages: (a) a W message for a write ω′

such that ω → ω′, (b) a RP from a second communication round of ω, (c) a RP from the second communication round of a
read operation ρ′ that returns a tag 〈maxTs, ω〉, or (d) a R from a read operation ρ′′ that already returned 〈maxTs, ω〉. If (a)
or (b) is true, and since the writer propagates the tag it returns in any of those messages, then 〈maxTs, ω〉 = τw(ω). Thus
we are down to the case that some reads propagated the tag in the confirmed variable. Since both ρ′ and ρ′′ should proceed
or be concurrent to ρ then they are also concurrent or succeed the first communication round of ω. So either they observed
(as ρ) the tag τw(ω) in a set of quorums |B| ≤ n

2 − 1, or no tag for ω satisfy their predicate. Since τw(ω) is the only tag
that may satisfy their predicate, then both reads must propagate 〈maxTs, ω〉 = τw(ω). So it follows that τr(ρ) = τw(ω) in
this case as well.
Case 2a(ii): Let us assume in this case that the write operation received τw(ω) from every server s ∈ IA∪{Qj}, and
|A| = n

2 − 1. With similar reasoning as in Case 2a(i) we have the following cases for Qi and B for ρ:

1) Qi = Qj ⇒ |B| = |A| = n
2 − 1,

2) Qi ∈ A⇒ |B| = |A−Qi| = n
2 − 2,

3) Qi /∈ A ∪ {Qj} ⇒ |B| = |A ∪ {Qj}| = n
2

Observe again that in the first two cases and by Lemma B.10 no other tag τ ′ 6= τw(ω) for ω is propagated in less than
n
2 -wise intersection, and thus τ ′ does not satisfy the predicate for ρ.

If Qi ∈ A, then the predicate is satisfied with |B| = n
2 − 2 for ρ and thus it returns τw(ω). Also if Qi = Qj and

|B| = n
2 − 1 then as showed in case 2a(i) ρ also returns τr(ρ) = τw(ω).

So it remains to examine the case where Qi /∈ A ∪ {Qj} and |B| = n
2 . It follows that |B ∪ {Qi}| = n

2 + 1
and ∀s ∈ IB∪{Qi}, τw(ω) ∈ s.inprogress. The read operation ρ may decide to return a tag τ ′ different from τw(ω),
if there are servers s′ ∈ IC∪{Qi} such that τ ′ ∈ s′.inprogress and |C| ≤ n

2 − 2. Furthermore it must be true that
(IB∪{Qi}) ∩ (IC∪{Qi}) = ∅ otherwise a server in that intersection would reply either with τinprogresss(ω) = τw(ω) or
τinprogresss(ω) = τ ′. It suffices then to show that the aforementioned intersection is impossible. Since we know that
|C| = n

2 − 2 and |B| = n
2 quorums then the intersection IB ∩ IC ∩Qi contains n

2 + n
2 − 2 + 1 = n − 1 quorums. Since

we assumed n-wise quorum system then the intersection IB ∩ IC ∩Qi 6= ∅. That will be true even if we assume a smaller
C. So no tag in this case satisfies the predicate of ρ either and thus ρ returns the value written by ω only if it observers
maxs∈Qi(τconfirmeds(ρ)) = 〈maxTs, ω〉. With similar arguments as in Case 2a(i), we can show that no read or the write
operation will propagate a tag different than τw(ω) for ω and thus no server replies with a tag 〈ts, ω〉 6= τw(ω). Thus if ρ
returns ω, then τr(ρ) = τw(ω) in this case as well.
Case 2b: In this case the predicate was false for the write operation ω. So any tag received from ω was observed in a set
|IA∪{Qj}| such that |A| ≥ n

2 . So let us split this case in two subcases:(i) |A| = n
2 , and (ii) |A| > n

2 .
Case 2b(i): Based on the three cases presented in case 2a forQi andB then ρmay observe one of the following distributions
for τw(ω):

1) Qi = Qj ⇒ |B| = |A| = n
2 ,

2) Qi ∈ A⇒ |B| = |A−Qi| = n
2 − 1,

3) Qi /∈ A ∪ {Qj} ⇒ |B| = |A ∪ {Qj}| = n
2 + 1

Observe that neither of the cases satisfies the predicate for ρ. Furthermore in the first two cases ρ observes τw(ω) in the
intersection IB∪{Qi} and |B∪Qi| ≤ n

2 +1. So according to Lemma B.10 no tag τ ′ 6= τw(ω) will be propagated in a k-wise
intersection, such that k < n

2 + 1 and hence τ ′ will not satisfy the predicate for ρ either.
It remains to examine deeper the third case where τw(ω) is received from every server s ∈ IB∪{Qi}, and |B ∪ Qi| =

n
2 +2. We need to examine if there could be set of quorums C such that |C| ≤ n

2 −2 and every server s′ ∈ IC∪{Qi} reply to
ρwith a tag τ ′ 6= τw(ω) for ω. Such a set would satisfy the predicate for ρ and thus ρwould return τ ′. This is only possible if
IB∩IC∩Qi = ∅. Since |B| = n

2 +1 and |C| = n
2 −2 then the intersection consists of |B|+|C|+1 = n

2 +1+ n
2 −2+1 = n

quorums. Since we assume an n-wise quorum system then it follows that the intersection is not empty. Thus there exist no
τ ′ and hence no tag will satisfy the predicate of ρ in this case. Since ρ will return the value written by ω only if it observes a
maximum confirmed tag such that maxs∈Qi

(τconfirmeds(ρ)) = 〈maxTs, ω〉. But since the predicate will be false for every
read operation then the first to confirm a tag for ω will be the writer w in the second communication round of ω. Since
though ω returns τw(ω) then it propagates that tag during its second round to a full quorum. Thus any read operation that
returns the value of ω must observe maxs∈Qi

(τconfirmeds(ρ)) = 〈maxTs, ω〉 = τw(ω) and hence returns τr(ρ) = τw(ω).
Case 2b(ii): Suppose now that the predicate does not hold for the writer because it observed every tag to be distributed in at
least some intersection IA∪{Qj}, where |A| > n

2 . Let us assume that |A| = n
2 + 1. By that it follows that the read operation

ρ would observe any tag obtained by the writer in one of the following distributions:
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1) Qi = Qj ⇒ |B| = |A| = n
2 + 1,

2) Qi ∈ A⇒ |B| = |A−Qi| = n
2 ,

3) Qi /∈ A ∪ {Qj} ⇒ |B| = |A ∪ {Qj}| = n
2 + 2

Obviously none of the cases satisfy the predicate of ρ. Furthermore, in the first two cases, by Lemma B.10 and as shown in
case 2b(i), no tag assigned to ω satisfies the predicate for ρ and so if ρ returns the value written by ω, it returns the value
propagated during ω’s second round.

Finally we need to explore what happens in the case where |B| = n
2 + 2. So can we devise a tag τ ′ for ω such that is

distributed in some set of quorumsC, such that |C| ≤ n
2 −2 and every server s′ ∈ IC∪{Qi} reply to ρwith a tag τ ′ 6= τw(ω).

Such a set would satisfy the predicate for ρ and thus ρ would return τ ′. This is only possible if IB ∩ IC ∩ Qi = ∅. Since
|B| = n

2 + 2 and |C| = n
2 − 2 then the intersection consists of |B|+ |C|+ 1 = n

2 + 2 + n
2 − 2 + 1 = n+ 1 quorums. Thus

such intersection is possible. If however ρ observed τ ′ in an intersection IC∪{Qi} and since every server s ∈ IC∪{Qi,Qj}
replied to ω with a tag τ ′ before replying to ρ, then there are three possible distributions for the write operation ω for τ ′:

1) Qj = Qi ⇒ |A| = |C| = n
2 − 2,

2) Qj ∈ C ⇒ |A| = |C −Qj | = n
2 − 3,

3) Qj /∈ C ∪ {Qi} ⇒ |A| = |C ∪ {Qi}| = n
2 − 1

This however shows that in any case the predicate for ω should have been true for the tag τ ′. But this contradicts our
initial assumption for this case that the predicate for ω is false and hence such a case is impossible. Thus no read operation
would observe a different tag τ ′ that satisfies its predicate and so every read ρ that returns the value of ω must observe
maxs∈Qi

(τconfirmeds(ρ)) = 〈maxTs, ω〉 = τw(ω) and as shown in case 2b(i) τr(ρ) = τw(ω). ut

Since Lemma B.12 shows that every read operation returns the same tag for the same write operation then from this
point onwards we can say that different tags represent different write operations. This is presented formally by the following
corollary:

Corollary B.13 If two read operations ρ1 and ρ2 return tags τ∗(ρ1) = τ∗(ω) and τ∗(ρ2) = τ∗(ω′) respectively, then if
τ∗(ρ1) = τ∗(ρ2) then ω = ω′ otherwise ω 6= ω′.

Lemma B.14 If a server s ∈ S replies with a τinprogresss(ω) to the write operation ω from w, then s replies to any
subsequent message from an operation π with inprogresss(π), s.t. maxτ∈inprogresss(π)(τ) ≥ τinprogresss(ω) if π is a read
and maxτ∈inprogresss(π)(τ) > τinprogresss(ω) if π is a write.

Proof. If π is a write operation then by Lemma B.5 s replies to π with τinprogresss(π) = maxτ∈inprogresss(π)(τ). But
before s adds τinprogresss(π) in inprogresss, according again to Lemma B.5, τinprogresss(π) was greater than any tag in that
set. Since s also added τinprogresss(ω) before replying to ω then it follows that τinprogresss(π) = maxτ∈inprogresss(π)(τ) >
τinprogresss(ω).

If π is a read operation then by the algorithm server s receives either a R or RP message. In none of those cases s
updates its inprogresss set. By Lemma B.5 when server s replied to ω, τinprogresss(ω) = maxτ∈inprogresss(ω)(τ). Thus if s
did not receive any write message between the message from ω and π then the operation observes maxτ∈inprogresss(π)(τ) =
τinprogresss(ω). Otherwise, with the combination of the first part of this proof, π observes maxτ∈inprogresss(π)(τ) >
τinprogresss(ω). Hence our claim follows. ut

Lemma B.15 If a read operation ρ from r receives a confirmed tag τconfirmeds(ρ) from a server s, then τr(ρ) ≥ τconfirmeds(ρ).

Proof. Let the read operation ρ receive replies from the servers in Qi. By the algorithm a read operation returns either
the maxs′∈Qi

(τconfirmeds′ (ρ)
) or the maximum tag τ that satisfies predicate PR. Notice that if maxs′∈Qi

(τconfirmeds′ (ρ)
) ≥

τ then the reader does not evaluate the predicate but rather returns τr(ρ) = maxs′∈Qi
(τconfirmeds′ (ρ)

) in one or two
communication rounds. Since ρ returns either τr(ρ) = maxs′∈Qi

(τconfirmeds′ (ρ)
) ≥ τconfirmeds(ρ) or τr(ρ) = τ >

maxs′∈Qi
(τconfirmeds′ (ρ)

), then in either case τr(ρ) ≥ τconfirmeds(ρ). ut

Lemma B.16 If the read event of a read operation ρ from reader r ∈ R succeeds the write-fix(ω) event of a write operation
ω from w ∈ W in an execution ξ then, τr(ρ) ≥ τw(ω).
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Proof. Let assume that every server in the quorums Qi, Qz ∈ Q (not necessarily Qi 6= Qz) received the messages for
the first and the second (if any) communication rounds of the write operation ω respectively and replied to those messages.
Also let Qj be the quorum that replied to the first communication round of ρ operation, not necessarily different than Qj
or Qz . Moreover let T = {〈., ω〉 : s ∈ Qi ∧ 〈., ω〉 ∈ inprogresss(ω)} be the set of tags witnessed by ω during its first
communication round. Notice that either: (1) τw(ω) = τ such that τ ∈ T and its distribution satisfies the predicate PW,
or (2) τw(ω) = maxs∈Qi

(τinprogresss(ω)), otherwise. We should investigate these two cases separately. The read operation
returns a tag τr(ρ) equal to either the maxs∈Qj

(τconfirmeds(ρ)) or the maximum tag in
⋃
s∈Qj

inprogresss(ρ) that satisfies
predicate PR. Therefore if maxs∈Qj

(τconfirmeds(ρ)) ≥ τw(ω) or ∃τ ∈
⋃
s∈Qj

inprogresss(ρ) s.t. τ > τw(ω) that satisfies
PR then ρ returns τr(ρ) ≥ τw(ω). Also notice that if w invokes a write operation ω′ such that ω → ω′ then by Lemmas B.3,
B.5 and B.4 it follows that every server receiving messages from ω′ will reply to ρ with τconfirmeds(ρ) ≥ τw(ω) since w will
include τw(ω) in its next write operation. Thus ρ returns τr(ρ) ≥ τw(ω) in this case as well. So it suffices to examine the
case where there is no write ω′ s.t. ω → ω′ and no τ ′ ∈

⋃
s∈Qj

inprogresss(ρ) s.t. τ ′ ≥ τw(ω) and τ ′ satisfies the predicate
for the read operation ρ.
Case 1: Observe that by Lemma B.11, τw(ω) is the only tag that satisfies the writer predicate for the write operation
ω = 〈w,wc〉. In this case we need to consider the following subcases for the set of quorums A that satisfies the predicate
PW: (a) |A| < n

2 − 2 and thus the write operation is fast, or (b) |A| ∈ [n2 − 2, n2 − 1] and thus the write operation is slow.
Notice that by Lemma B.14 it follows that every server s ∈ IA∪{Qi,Qj} replied to ρ with inprogresss(ρ) that contains a
tag τ ≥ τw(ω). Since we only examine the cases where no s received messages from a write ω′ from w s.t. ω → ω′, thus it
must hold that inprogresss(ρ) = τw(ω).
Case 1a: This is the case where the write operation is fast and hence |A| < n

2 − 2 and every server s ∈ IA∪{Qi} replies
with τw(ω) ∈ inprogresss(ω) to ω. The read operation ρ will witness the tag τw(ω) from the servers in IB∪{Qj} where Qj
and B may be as follows:

1) Qj = Qi ⇒ |B| = |A| < n
2 − 2,

2) Qj ∈ A⇒ |B| = |A−Qi| ≤ n
2 − 3,

3) Qj /∈ A ∪ {Qi} ⇒ |B| = |A ∪ {Qi}| ≤ n
2 − 2

In any case |B| ≤ n
2 − 2 and thus the predicate PR is valid for the ρ for τw(ω). Hence ρ returns τr(ρ) = τw(ω) in one or

two communication rounds.
Case 1b: This is the case where |A| ∈ [n2 − 2, n2 − 1] and thus the predicate holds for ω, but ω proceeds to a second
communication round before completing. During its second round, ω propagates the tag τw(ω) to a complete quorum say
Qz . Since ω → ρ and by Lemma B.4, then any server s ∈ Qj ∩ Qz replies to ρ with a τconfirmeds(ρ) ≥ τw(ω). Thus by
Lemma B.15 τr(ρ) ≥ τconfirmeds(ρ), and hence τr(ρ) ≥ τw(ω).
Case 2: In this case the predicate does not hold for ω. Thus the writer discovers the maximum tag among the ones it
receives from the servers and propagates that to a full quorum say Qz , not necessarily different from Qj or Qi. It follows
that by Lemma B.2 ρ will receive a τconfirmeds(ρ) ≥ τw(ω) from any server s ∈ Qi ∩Qz . Thus by Lemma B.15 ρ returns
τr(ρ) ≥ τw(ω) in this case as well. ut

Lemma B.17 If ω1 and ω2 are two write operations from the writers w and w′ respectively, such that ω1 → ω2 in ξ, then
τw′(ω2) > τw(ω1).

Proof. First consider the case where w = w′ and thus ω1 and ω2 are two subsequent writes of the same writer. It is easy
to see by Lemmas B.7 and B.3 that τw(ω1) > τw(ω2) since the tag of the writer is monotonically increasing. So for the
rest of the proof we focus on the case where ω1 and ω2 are invoked from two different writers w 6= w′. Let us assume that
every server in the quorums Qi, Qz ∈ Q (not necessarily Qi 6= Qz) received the messages for first and the second (if any)
communication rounds of the write operation ω1 respectively and replied to those messages, and let Qj be the quorum that
replied to the first communication round of ω2’s operation, not necessarily different than Qj or Qz . Notice here that since
ω2 decides about the tag τw′(ω2) in its first communication round, then it suffices to examine ω2’s first communication
round alone. Moreover let T1 = {〈., ω1〉 : s ∈ Qi ∧ 〈., ω1〉 ∈ inprogresss(ω1)} be the set of tags witnessed by ω1 during
its first communication round and T2 the respective set of tags for ω2. Notice that either: (1) τw(ω1) = τ such that τ ∈ T1

and its distribution satisfies the predicate PW, or (2) τw(ω1) = maxs∈Qi
(τinprogresss(ω)), otherwise. We now study these

two cases individually.
Case 1: This is the case where the predicate PW holds for ω1. Thus according to the predicate there exists some set of
quorums |A| ≤ n

2 − 1 such that ∀s ∈ IA∪{Qi}, τinprogresss(ω1) = τw(ω1). From the predicate we can see that if n ≤ 4 then
|A| ∈ [0, 1]. So we can split this case into two subcases: (a) n > 4, and (b) n ≤ 4.
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Case 1a: Here we assume that n > 4 and thus the predicate may be satisfied with |A| ≤ n
2 − 1 and n

2 − 1 > 0. From
the monotonicity of the servers (Lemma B.1) and from Lemmas B.5 and B.6, it follows that every server s′ ∈ IA∪{Qi,Qj}
replies with a τinprogresss′ (ω2) > τinprogresss′ (ω1) and thus τinprogresss′ (ω2) > τw(ω1). There are three subcases for Qj : (i)
Qj = Qi, (ii) Qj ∈ A, or (iii) Qj /∈ A ∪ {Qi}. If one of the first two cases is true then ω2 will observe a set of quorums
|C| ≤ n

2 − 1 such that every server s′ ∈ IC∪{Qj} will reply with a tag greater than τw(ω1). Since |C ∪ {Qj} ≥ n
2 , then

according to Lemma B.10 no tag τ ′ < τw(ω1) will be propagated in an intersection ID∪{Qj} such that |D| ≤ n
2 . Thus no

such tag will satisfy predicate PW for ω2. It follows that ω2 returns a tag τw′(ω2) either because τw′(ω2) ∈ inprogresss(ω2),
and s ∈ IC∪{Qj} and PR is satisfied or τw′(ω2) = maxs∈Qj

(τinprogresss(ω2)). In both cases τw′(ω2) > τw(ω1).
It remains to investigate the subcase (iii) where Qj /∈ A ∪ {Qi}. If |A| ≤ n

2 − 2 then ω2 will observe a set of quorums
|C| ≤ n

2 − 1 and the proof is similar as in cases (i) and (ii). If however |A| = n
2 − 1 then before ω1 completes it performs

a second communication round and propagates τw(ω1) to a full quorum Qz . But every server s ∈ Qz that receives this
message sets its local tag to τs = τw(ω1) if τw(ω1) > τs; otherwise they do not update their tag. Thus every server
s ∈ Qz contain a tag τs ≥ τw(ω1) when ω1 completes. Since by Lemma B.1 the local tag of a server is monotonically
increasing, then by Lemmas B.5 and B.6, every server s ∈ Qj ∩ Qz reply with τinprogresss(ω2) > τw(ω1) to ω2. So
|C| = |{Qz}| = 1. Since we assume that n > 4 then |C| ≤ n

2 − 1 and hence as before and by Lemma B.10 there cannot
exist tag τ ′ < τw(ω1) that satisfies the predicate for ω2. Thus in this case τw′(ω2) = τinprogresss(ω2) for some s ∈ Qj ∩Qz
and hence τw′(ω2) > τw(ω1).
Case 1b: Here n ≤ 4. In this case it follows that the predicate is valid for ω1 with |A| ∈ [0, 1]. If the predicate is
valid for |A| = 0 then it follows that ω1 received τw(ω1) from all the servers in Qi while if |A| = 1 it received that tag
from a pairwise intersection. Notice that the predicate for ω1 holds for |A| = 1 only in the case where n = 4 and with
|A| = 0 for n ≤ 3. Thus in any case IA∪{Qj ,Qi} 6= ∅. Hence in case the predicate does not hold for ω2 and returns the
maxs∈Qj

(τinprogresss(ω2)) then τw′(ω2) > τw(ω1). So it remains to explore the two cases where the predicate holds for ω2.
If the predicate for ω1 holds with |A| = 0 then it follows that all the servers s ∈ Qj ∩ Qi reply, by Lemmas B.5 and

B.6, to ω2 with τinprogresss(ω2) > τinprogresss(ω1) and thus greater than τw(ω1). Notice that for ω2 the predicate may also
hold for a quorum set |C| ∈ [0, 1]. If the predicate for ω2 holds with |C| = 0, then it follows that every server s ∈ Qj
replies with τinprogresss(ω2) = τw′(ω2). Since the servers in Qj ∩Qi reply with τinprogresss(ω2) > τw(ω1), then it follows
that every server s ∈ Qj replies with that same tag, and hence τw′(ω2) > τw(ω1). Otherwise, if |C| = 1, let us assume
to derive contradiction that C = {Qg} for Qg 6= Qi, Qj , and every server s ∈ IC∪{Qj} = Qg ∩ Qj reply to ω2 with a
τ ′ < τw(ω1). Since τ ′ < τw(ω1), then it must be the case that (Qg ∩ Qj) ∩ (Qi ∩ Qj) = ∅. Since we assume |C| = 1 it
follows that n = 4 and hence this is impossible. Thus the predicate may only hold in this case for C = {Qi} and for a tag
obtained by the servers in Qi ∩Qj and hence τw′(ω2) > τw(ω1).

If the predicate for ω1 holds with |A| = 1 then ω1 performs a second communication round propagating τw(ω1) to
a full quorum, say Qz . Thus every server s ∈ Qj ∩ Qz replies by Lemma B.5 with a tag τinprogresss(ω2) > τw(ω1).
Since a full intersection replies to ω2 with τinprogresss(ω2) > τw(ω1) then following similar analysis as in the previous case
(and by Lemma B.10) we can show that there cannot exist tag τ ′ < τw(ω1) to satisfy ω2’s predicate. Thus ω2 retruns
τw′(ω2) > τw(ω1).
Case 2: In this case the predicate does not hold for ω1 and thus proceeds to a second communication round propagating a
tag τw(ω1) = max s ∈ Qj(τinprogresss(ω1) to a full quorum, say Qz . Since every server s ∈ Qj ∩ Qz replies by Lemma
B.5 with a tag τinprogresss(ω2) > τw(ω1) then by Lemma B.10 and following similar analysis as in Case 1b, we can show
that there cannot exist tag τ ′ < τw(ω1) to satisfy ω2’s predicate. Thus ω2 retruns τw′(ω2) > τw(ω1) in this case as well. ut

Lemma B.18 If ρ1 and ρ2 are two read operations from the readers r and r′ respectively, such that ρ1 → ρ2 in ξ, then
τr(ρ2) ≥ τr′(ρ1).

Proof. Let us assume w.lo.g. that ρ1 to scntr(ρ1, Qi) and scntr(ρ1, Qj) (not necessarily different than Qi) during its first
and second communication round respectively. Moreover let ρ2 to scntr′(ρ2, Qj) during its first communication round.
Notice here that since a read operation decides on the tag that it returns when read-phase1-fix happens then we only need to
investigate the first communication round of ρ2. Let us first consider the case where the two read operations are performed
by the same reader, i.e. r = r′. In this case r will enclose in every message sent out a tag greater or equal to τr(ρ1) Thus
every server s ∈ Qj , by Lemma B.4, replies to ρ2 with τconfirmeds(ρ2) ≥ τr(ρ1). Thus by Lemma B.15 ρ2 returns a tag
τr′(ρ2) ≥ τr(ρ1).

So it remains to investigate the case where r 6= r′. Notice that if ρ1 proceeds to a second communication round,
either because the predicate holds for |B| = n

2 − 2 or not enough confirmed tags where received, then ρ1 propagates
τr(ρ1) in Qz before completing. By Lemmas B.4 and B.15 it follows that every server s ∈ Qz ∩ Qj replies to ρ2 with
a τconfirmeds(ρ2) ≥ τr1(ρ1) and thus ρ2 returns τr′(ρ2) ≥ τr(ρ1) in one or two communication rounds. Thus we left to
explore the case where ρ1 is fast and returns in a single communication round. This may happen in two cases: (1) predicate
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PR holds for ρ1 with |B| ≤ n
2 − 3 or (2) ρ1 returns the maximum confirmed tag which he observed in a k-intersection with

k ≤ n− 1. Let us examine those two cases.
Case 1: In this case ρ1 returns τr(ρ1) because it receives that tag from every server s ∈ IB∪{Qi}, s.t. |B| ≤ n

2 − 3
and τr(ρ1) = τinprogresss(ω) for some write operation ω = 〈w,wc〉 from writer w. Thus by Lemma B.14 every server
s ∈ IB∪{Qi,Qj}, replies to ρ2 with a τinprogresss(ω′) ≥ τr1(ρ1) as the tag for a write ω′ from the writer w. So there are two
subcases to consider: (a) there exists server s ∈ IB∪{Qi,Qj} such that replies with τinprogresss(ω′) > τr1(ρ1), and (b) all
servers in IB ∩Qi ∩Qj reply with τinprogresss(ω′) = τr1(ρ1).
Case 1a: If there exists s ∈ IB∪{Qi,Qj} such that τinprogresss(ω′) > τr1(ρ1), then it follows that the τinprogresss(ω′) >
τinprogresss(ω) and thus writer w performed a write ω′ such that ω → ω′. But according to the algorithm the message that
w sent to s for ω′ contains a tag τ ≥ τw(ω). Hence by Lemma B.4 s replies with τconfirmeds(ω) ≥ τ to ω and thus, by
monotonicity of the confirmed tag (Lemma B.2), s replies with τconfirmeds(ρ2) ≥ τ ≥ τw(ω) to ρ2 as well. Therefore from
Lemma B.15 ρ2 returns a tag τr′(ρ2) ≥ τw(ω) and thus τr′(ρ2) ≥ τr(ρ1).
Case 1b: If all the servers in s ∈ IB∪{Qi,Qj} reply with τinprogresss(ω′) = τr1(ρ1) then there are three different values
for Qj to consider: (i) Qj = Qi, (ii) Qj ∈ B, and (iii) Qj /∈ B ∪ Qi. Since |B| ≤ n

2 − 3 then in all three cases the
predicate PR will hold for ρ2 for at least tag τinprogresss(ω′) and with a quorum set |C| ≤ n

2 −2. Thus ρ2 will either return a
τconfirmed∗(ρ2)

≥ τinprogresss(ω′), a tag τinprogresss(∗) > τinprogresss(ω′) or τinprogresss(ω′). Hence τr′(ρ2) ≥ τr(ρ1) in this
case as well.
Case 2: In this case ρ1 is fast and returns in one communication round since he observed a τr(ρ1) = τconfirmed∗(ρ1)

tag in
an intersection IB∪{Qi} such that |B| = n − 2. Since we assume that Q is an n-wise quorum system then it follows that
IB∪{Qi,Qj} 6= ∅ (since |B ∪ {Qi, Qj}| ≤ n), and hence ρ2 will receive a τconfirmeds(ρ2) ≥ τr(ρ1) from at least a single
server in IB∪{Qi,Qj}. Thus by Lemma B.15, ρ2 returns τr′(ρ2) ≥ τr(ρ1) and that completes the proof. ut

Theorem B.19 SFW implements a near optimal MWMR atomic read/write register.

Proof. It follows from Lemmas A.5, B.16, B.18, B.17 and B.12. ut

C Write Optimality: Omitted Proofs
Lemma 5.3 Omitted Proof. The proof follows the fact that a server is not aware of a written value v unless: 1) it receives
messages from the writer that propagates that value v, or 2) It receives messages from a process that already observed value
v in the system. Moreover a server may infer the latest value at time t in any execution if: 1) receives messages from all the
write operations invoked at time t′ < t (and thus contains all the values written), or 2) received a message that contained the
value history at time t′ < t and received messages from the write operations invoked at time t′′ s.t. t′ < t′′ < t thereafter.

It is easy to see that a server may not be aware of the latest value even if all the write operations are not concurrent with
each other. Assume to derive contradiction that a server may return the latest value to a read operation even if it does not
receive messages from all the write operations. Let consider a server s at time t of an execution ξ. Assume that s received
all the messages from every write operation invoked at time t′ < t. Suppose w.l.o.g. that the latest value that the server s
received was v. Since the write operations are totally ordered, then it follows that v is the latest written value in the system.
Consider now an extension of the above execution ξ′ by a write operation ω that writes value v1. Assume that s does not
receive messages from ω in ξ′. Thus s cannot distinguish ξ from ξ′ and replies with a latest value v to any read operation.
Since however the write operations are totally ordered then the latest value in the system is v′. Thus contradiction. ut

Lemma 5.4 Omitted Proof. Let Q be some n-wise quorum system, for 2 ≤ n < |Q|. We provide a series of execution
constructions that depend on the intersection degree n. If n = 2 then ξ0 is the execution that consists of a single (n−1 = 1)
complete fast write operation ω(1) invoked by w1 with scntw1(Q1, ω(1)). If n = 3 then we extend ξ0 by a complete fast
write operation, ω(2), from w2 with scntw2(Q2, ω(2)), to obtain execution ξ1.

In general we construct execution ξi if Q is an n-wise system with n = i + 2, by extending execution ξi−1 with a
complete fast write operation, ω(i + 1), from w(i mod 2)+1 with scntw(i mod 2)+1(Qi+1, ω(i+ 1)). By this construction
any execution ξi contains i+ 1 (or n− 1) consecutive, quorum shifting fast write operations.

We proceed by induction on the intersection degree n, to show that extending any of the above executions with a read
operation by the reader r preserves property S1. In other words the read operation is able to discern the latest write operation
and return its value.

Induction base: We assume that n = 2 and hence pairwise intersection between the quorums of Q. In this case we extend
execution ξ0 by a read operation ρ from r to obtain the following execution ξ′0:

a) a complete fast write operation ω1 by w1 with scntw1(Q1, ω1), and
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b) a complete read operation ρ by r with scntr(Qj , ρ).
It is easy to see that the read operation ρ, for any Qj ∈ Q, observes the value written by ω1 in Q1 ∩Qj (6= ∅). Since ω1 is
the only write operation then ρ will return the value written by ω1 and preserve the S1 property.

Inductive hypothesis: Assume that n = k + 2 and that extending execution construction ξk with a read operation ρ
preserves property S1. It follows that ρ returns the value written by the last proceeding write operation which in ξk is
ω(k + 1) that scntw(k mod 2)+1(Qk+1, ω(k + 1)).

Induction step: We now investigate the case where Q is a (k + 3)-wise quorum system. We need to verify if execution
ξk+1 preserves property S1. Recall that ξk+1 is constructed by extending ξk with a fast complete write operation ω(k + 2).
We further extend ξk by a read operation ρ by r to obtain ξ′k+1. The last three operations of ξ′k are the following:

a) a complete fast write operation ω(k + 1) by w(k mod 2)+1 that scntw(k mod 2)+1(Qk + 1, ω(k + 1))
b) a complete fast write operation ω(k + 2) by w(k+1 mod 2)+1 that scntw(k+1 mod 2)+1(Qk+2, ω(k + 2)), and
c) a complete read operation ρ by r that scntr(Qj , ρ).

By the inductive hypothesis we know that the execution fragment of ξk preserves property S1. Furthermore any k + 3-wise
quorum system is also a k+ 2-wise quorum system. So it follows that if ξk was extended by a read operation then that read
operation would have returned, by induction hypothesis, ω(k + 1). Thus in execution ξ′k+1 ρ may return either ω(k + 1)
or ω(k + 2). If ω(k + 1) is returned then it follows that ρ cannot distinguish ξ′k+1 from ξ′k and hence does not observe
ω(k + 2) and violates property S1. Since Q is also a k + 2-wise system then it must be true that under Q,

⋂k+2
i=1 Qi 6= ∅,

and hence the two writers w1 and w2 and the servers in
⋂k+2
i=1 Qi 6= ∅ can distinguish between ξ′k and ξ′k+1 since those are

the only servers that received messages from all the write operations. From the quorum construction however we know that
Q has an intersection degree of k + 3 and thus

⋂k+3
i=1 Qi 6= ∅. So for any quorum Qj that replies to ρ it must hold that(⋂k+2

i=1 Qi

)
∩ Qj 6= ∅. Thus the read operation receive replies from the set of servers that distinguish the two executions

and hence ρ also distinguishes ξ′k+1 from ξ′k. So ρ returns ω(k + 2) and preserves property S1. ut
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