
Self-Stabilizing Virtual Synchrony?

Shlomi Dolev1, Chryssis Georgiou2, Ioannis Marcoullis2, and Elad M. Schiller3

1 Dept. of Computer Science, Ben-Gurion University of the Negev, Israel.
2 Dept. of Computer Science, University of Cyprus, Cyprus.

3 Dept. of Engineering and Computer Science, Chalmers University of Technology, Sweden.

Abstract. Virtual synchrony (VS) is an important abstraction that is proven to be
extremely useful when implemented over asynchronous, typically large, message-
passing distributed systems. Fault tolerant design is critical for the success of such
implementations since large distributed systems can be highly available as long
as they do not depend on the full operational status of every system participant.
Self-stabilizing systems can tolerate transient faults that drive the system to an
arbitrary unpredictable configuration. Such systems automatically regain consis-
tency from any such configuration, and then produce the desired system behavior
ensuring it for practically infinite number of successive steps, e.g., 264 steps.
We present a new multi-purpose self-stabilizing counter algorithm establishing an
efficient practically unbounded counter, that can directly yield a self-stabilizing
Multiple-Writer Multiple-Reader (MWMR) register emulation. We use our counter
algorithm, together with a self-stabilizing group membership and a self-stabilizing
multicast service to devise the first practically stabilizing VS algorithm and a self-
stabilizing VS-based emulation of state machine replication (SMR). As we base
the SMR implementation on VS, rather than consensus, the system progresses in
more extreme asynchronous settings in relation to consensus-based SMR.

1 Introduction
Virtual Synchrony (VS) has been proven to be very important in the scope of fault-
tolerant distributed systems [4]. The VS property ensures that two or more processors
that participate in two consecutive communicating groups should have delivered the
same messages. Systems that support the VS abstraction are designed to operate in the
presence of fail-stop failures of a minority of the participants. Such a design fits large
computer clusters, data-centers and cloud computing, where at any given time some
of the processing units are nonoperational. Systems that cannot tolerate such failures
degrade their functionality and availability to the degree of unuseful systems.

Group communication systems that realize the VS abstraction provide services,
such as group membership and reliable group multicast. The group membership service
is responsible for providing the current group view of the recently live and connected
group members, i.e., a processor set and a unique view identifier, which is a sequence
number of the view installation. The reliable group multicast allows the service clients
to exchange messages with the group members as if it was a single communication end-
point with a single network address and to which messages are delivered in an atomic
fashion, thus any message is either delivered to all recently live and connected group

? The work of the first author is partially supported by the Rita Altura Trust Chair in Computer
Sciences, and the Israel Science Foundation (grant 428/11). The work of the second and third
authors is supported by the University of Cyprus.

members prior to the next message, or is not delivered to any member. The challenges
related to VS consist of the need to maintain atomic message delivery in the presence
of asynchrony and crash failures. VS facilitates the implementation of a replicated state
machine [4] that is more efficient than classical consensus-based implementations that
start every multicast round with an agreement on the set of recently live and connected
processors. It is also usually easier to implement [4]. To the best of our knowledge, no
self-stabilizing virtual synchrony solution exists.

Transient violations of design assumptions can lead a system to an arbitrary state.
For example, the assumption that error detection ensures the arrival of correct messages
and the discarding of corrupted messages, might be violated since error detection is a
probabilistic mechanism that may not detect a corrupt message. As a result, the mes-
sage can be regarded as legitimate, driving the system to an arbitrary state after which,
availability and functionality may be damaged forever, requiring human intervention.
In the presence of transient faults, large multicomputer systems providing VS-based
services, can prove hard to manage and control. One key problem, not restricted to vir-
tually synchronous systems, is catering for counters (such as view identifiers) reaching
an arbitrary value. How can we deal with the fact that transient faults may force coun-
ters to wrap around to the zero value and violate important system assumptions and
correctness invariants, such as ordering of events? A self-stabilizing algorithm [7] can
automatically recover from such unexpected failures, possibly as part of after-disaster
recovery or even after benign temporal violation of the assumptions made in the design
of the system. We tackle this issue in our work.
Contributions. We present the first self-stabilizing virtual synchrony solution. Specifi-
cally, we provide a self-stabilizing counter algorithm using bounded memory and com-
munication bandwidth, and yet (many writers) can increment the counter for an un-
bounded number of times in the presence of processor crashes and unbounded com-
munication delays. Our counter algorithm is modular with a simple interface for in-
creasing and reading the counter, as well as providing the identifier of the processor
that has incremented it. At the heart of our counter algorithm is the underlying labeling
algorithm which extends the label scheme of Alon et al. [1] to support multiple writers,
whilst the algorithm specifies how the processors exchange their label information in
the asynchronous system and how they maintain proper label bookkeeping so as to “dis-
cover” the greatest label and discard all obsolete ones. An immediate application of our
counter algorithm is a self-stabilizing MWMR register emulation. Our self-stabilizing
counter, using the self-stabilizing reliable multicast and membership services yields our
self-stabilizing VS solution, which leads to a self-stabilizing VS-based State Machine
Replication (SMR) implementation. A full version of this paper can be found in [11].
Related Work. Lamport was the first to introduce SMR, presenting it as an example
in [12]. Schneider [14] gave a more generalized approach to the design and implemen-
tation of SMR protocols. Group communication services can implement SMR by pro-
viding reliable multicast that guarantees VS [3]. Birman et al. were the first to present
VS and a series of improvements in the efficiency of ordering protocols [5]. Birman
gives a concise account of the evolution of the VS model for SMR in [4].

Research during the last recent decades resulted in an extensive literature on ways
to implement VS and SMR, as well as industrial construction of such systems. A

2

recent research line on (practically) self-stabilizing versions of replicated state ma-
chines [9,10,1,6] obtains self-stabilizing replicated state machines in shared memory
as well as synchronized and asynchronous message passing systems.

The bounded labeling scheme and the use of practically unbounded sequence num-
bers proposed in [1], allow the creation of self-stabilizing bounded-size solutions to
the never-exhausted counter problem in the restricted case of a single writer. In [6] a
self-stabilizing version of Paxos was developed that led to a self-stabilizing consensus-
based SMR implementation. To this end, a labeling scheme extending the one of [1] to
allow multiple writers. Extracting this scheme for other uses does not seem intuitive.
We present a simpler and significantly more communication efficient self-stabilizing
(bounded-size never-exhausted) counter that also supports many writers, where a single
label rather than a vector of labels needs to be communicated. Our solution is highly
modular and can be easily used in any similar setting requiring such counters.

Practically-stabilizing VS and self-stabilizing VS are identical when VS is defined
by the behaviour of classical VS algorithms that use (bounded) counters. These algo-
rithms preserve the VS requirements as long as the counters do not reach their upper
bound. In our setting, if a counter reaches the upper bound due to a transient fault
our self-stabilizing/practically-stabilizing solution introduces a new epoch with new se-
quence numbers. It, thus, converges to act exactly as the non-stabilizing VS (for the
same number of steps) as an initialized non-stabilizing VS algorithm.

2 System Settings

We consider an asynchronous message passing system that includes a set P of n com-
municating processors; we refer to the processor with identifier i, as pi. We assume
that up to a minority of processors may become inactive. The system runs on top of
a stabilizing data-link layer that provides reliable FIFO communication over unreli-
able bounded capacity channels [8] and reference therein. The network topology is
of a fully connected graph where every two processors exchange (low-level messages
called) packets to enable a reliable delivery of (high level) messages. When no confu-
sion is possible we use the term messages for packets.

The communication links have bounded capacity, thus the number of packets in ev-
ery given instance is bounded by a constant. When processor pi sends a packet, π, to
processor pj , the operation send inserts a copy of π into the FIFO queue representing
the communication channel from pi to pj , while respecting the capacity of the channel,
possibly omitting the new packet or one of the already sent packets. Packets are retrans-
mitted until more than the total capacity acknowledgments arrive. Acknowledgments
are sent only when a packet arrives (not spontaneously). When pj receives π from pi,
π is dequeued. We assume that packets can be spontaneously omitted (lost) from the
channel, however, a packet that is sent infinitely often is received infinitely often.

Over this data-link, the two connected processors can constantly exchange a “to-
ken”. Specifically, the sender (possibly the processor with the highest identifier among
the two) constantly sends packet π1 until it receives enough acknowledgments (more
than the capacity). Then, it constantly sends packet π2, and so on and so forth. This
assures that the receiver has received packet π1 before the sender starts sending packet
π2. This can be viewed as a token exchange. We use the abstraction of the token car-

3

rying messages back and forth between any two communication entities and use it to
implement a reliable multicast procedure, and a failure detector in Section 4

The code of self-stabilizing algorithms usually consists of a do forever loop that
contains communication operations with the neighbors and validation that the system is
in a consistent state as part of the transition decision. An iteration of the algorithm starts
in the loop’s first line and ends at the last (regardless of whether it enters branches).

Every processor pi executes a program that is a sequence of (atomic) steps, where
a step starts with local computations and ends with a single communication operation,
which is either send or receive of a packet. For ease of description, we assume the
interleaving model, where steps are executed atomically, a single step at any given time.
An input event can be either the receipt of a packet or a periodic timer triggering pi to
(re)send. Note that the system is asynchronous thus rate of the timer is totally unknown.

A (system) configuration is a tuple of the form (s1, s2, · · · , sn), where si is the
state of pi (including the values of all the variables and all messages in transit to
pi). Each algorithm step can change the processor’s state. An execution (or run) R =
c0, a0, c1, a1, . . . is an alternating sequence of system configurations cx and steps ax,
such that each configuration cx+1, except the initial configuration c0, is obtained from
the preceding configuration cx by the execution of the step ax. A practically infinite ex-
ecution [6] is an execution with many steps (and iterations), where “many” is defined to
be proportional to the time it takes to execute a step and the life-span time of a system.

We define the system’s task by a set of executions called legal executions (LE) in
which the task’s requirements hold, we use the term safe configuration for any config-
uration in LE. An algorithm is self-stabilizing with relation to the task LE when every
(unbounded) execution of the algorithm reaches a safe configuration with relation to the
algorithm and the task. An algorithm is practically stabilizing with relation to the task
LE if in any practically infinite execution a safe configuration is reached.

The VS property requires that any two processors sharing the same sequence of
views, ought to deliver identical message sets in these views. A legal execution of VS is
defined in terms of input/output sequences of the system with the environment. When
a majority of processors are continuously active, every external input (and only the
external inputs) should be atomically accepted and processed by this majority. Note
that in executions lacking a majority, there is no delivery and processing guarantee, but
still any delivery and processing is due to a received environment input.

3 Self-stabilizing Labeling Scheme and Counter Increment
In this section we first present the self-stabilizing labeling algorithm for multiple writers
and extend this result to obtain self-stabilizing practically unbounded counters.

3.1 Labeling Algorithm for Concurrent Label Creations
Bounded Labeling Scheme. We build on the labeling scheme of Alon et al. [1]
to support wait-free multi-writer systems. The labels (also called epochs) allow the
system to stabilize, since once a label is established, the integer counter related to this
label is considered to be practically infinite. We extend the label structure of [1] by
including the epoch creator’s (writer’s) identity to break symmetry, to determine the
most recent epoch, even when two or more creators concurrently create a new label.

4

Specifically, we consider the set of integers D = [1, k2 + 1]. A label (or epoch) is
a triple 〈lCreator, sting, Antistings〉, where lCreator is the identity of the proces-
sor that established (created) the label, Antistings ⊂ D with |Antistings| = k, and
sting ∈ D. Given two labels `i, `j , we define the relation `i ≺lb `j ≡ (`i.lCreator
< `j .lCreator) ∨ (`i.lCreator = `j .lCreator ∧ ((`i.sting ∈ `j .Antistings) ∧
(`j .sting 6∈ `i.Antistings))); we use =lb for label identity. Note that ≺lb does not
define a total order. For example, when `i.lCreator = `j .lCreator and (`i.sting 6∈
`j .Antistings) and (`j .sting 6∈ `i.Antisting) these labels are incomparable. We say
that a label ` cancels another label `′, if either they are incomparable or they have the
same lCreator but ` is greater than `′ (with respect to sting and Antistings).

Function nextLabel() (Algorithm 1) accepts a set of labels as input and returns
a new label, greater than all of the input labels. It has the same functionality as the
function Nextb() of [1], but it additionally considers the label creator. It builds a new
Antistings set from the stings of all the labels it has as input, and chooses a sting that
is in none of theAntistings of the input labels. In this way it ensures that the new label
is greater than any of the input. Note that the function takes k Antistings of k labels,
implying at most k2 integers, thus the choice of |D| = k2 + 1 ensures the existence of
an integer to be used as the sting, which is not part of Antistings of the input labels.

Each processor pi is required to “clean up” the system from obsolete labels of which
pi appears to be the creator (for example, such labels could be present in the system’s
initial arbitrary state). To achieve this, pi maintains a bounded FIFO history of such
labels that it has recently learned while communicating with the other processors, and
creates a greater label by passing the labels in its queue to nextLabel(); call this new
label pi’s local maximal label. Performing the above tasks is aimed at having each pro-
cessor learn the globally maximal label, that is, the label in the system that is the greatest
among the local maximal ones and adopt it. Unfortunately, when some processors are
not active, finding a global maximal becomes challenging, since these processors will
not “clean up” their local labels. Active processors have to do this indirectly without
knowing which processors are inactive. Note that this is not a concern in [1], since the
sole writer is responsible of “cleaning” obsolete labels as long as it is active; once the
single writer becomes inactive nothing can be done with respect to new label creation.

Let us explain why obsolete labels from inactive processors are problematic when
they are not cleaned (canceled). Consider a system starting in a state that includes a
cycle of labels `1 ≺lb `2 ≺lb `3 ≺lb `1, all of the same creator, say px. If px is active,
it eventually learns about these labels and creates a label greater than them all. But
if px is inactive, the system’s asynchronous nature may cause a repeated cyclic label
adoption, especially when px has the greatest processor identifier, since the identifier is
used to break symmetry. Say that an active processor learns and adopts `1 as its global
maximal label. Then, it learns about `2 and hence adopts it, while forgetting about `1.
Then, learning of `3 it adopts it. Lastly, it learns about `1, and as it is greater than `3, it
adopts `1 once more, as the greatest in the system; this can continue indefinitely.

As a solution, each processor maintains a bounded queue for each other processor,
where a label with lCreator = j, is stored in the queue corresponding to processor
pj . Obsolete labels eventually accumulate in these bounded FIFO queues and are never
again adopted, ending cyclic adoptions. We show that given a majority of active pro-
cessors and any initial state, the system eventually converges to a global maximal label.

5

Algorithm 1: The nextLabel() function; code for pi
1 For any non-empty set X ⊆ D, function pick(d,X) returns d arbitrary elements of X;

input : S = 〈`1, `2 . . . , `k〉 set of k labels.
output : 〈i, newSting, newAntistings〉

2 let newAntistings = {`j .sting : `j ∈ S};
3 newAntistings← newAntistings ∪ pick(k − |newAntistings|, D \ newAntistings);
4 return 〈i, pick(1, D \ (newAntistings ∪ {∪`j∈S`j .Antistings})), newAntistings〉;

The Labeling Algorithm. The algorithm specifies how the processors exchange
their label information in the asynchronous system and how they maintain proper label
bookkeeping so as to “discover” their greatest label and cancel all obsolete ones. As we
will be using pairs of labels with the same label creator, for the ease of presentation,
we will be referring to these two variables as the (label) pair. The first label in a pair is
calledml. The second label is called cl and it is either⊥, or equal to a label that cancels
ml (i.e., cl indicates whether ml is an obsolete label or not).
The processor’s state: Each processor stores an array of label pairs, maxi[], where
maxi[i] refers to pi’s maximal label pair and maxi[j] is the most recent label that pi
knows about pj’s pair. Processor pi also stores the pairs of the most-recently-used labels
in the array of queues storedLabelsi[]. The j-th entry refers to the queue with pairs
from pj’s domain, i.e., created by pj . The algorithm makes sure that storedLabelsi[j]
includes only label pairs with uniqueml from pj’s domain and that at most one of them
is legitimate, i.e., not canceled.
Information exchange between processors: Processor pi takes a step whenever it
receives two pairs 〈sentMax, lastSent〉 from some other processor, say pj . We note
that in a legal execution pj’s pair includes both sentMax, which refers to pj’s maximal
label pair maxj [j], and lastSent, which refers to a recent label pair that pj received
from pi about pi’s maximal label, maxj [i] (line 16).

Whenever pi receives a pair 〈sentMax, lastSent〉 from pj , pi stores the arriving
sentMax in maxi[j] (line 19). Note that in a legal execution the arriving sentMax
is always legitimate. However, when pj acknowledges pi’s label, it is possible that pj
needs to inform pi of a label from pi’s domain that cancels pi’s maximal label, ml in
maxi[i]. It does so by sending to pi a label that cancels ml and thus it would be the
case, lastSent will have a lastSent.cl, that is not ⊥. Specifically, it contains a label
that pj knows such that lastSent.cl 6�lb lastSent.ml, i.e., lastSent.cl is either greater
or incomparable to lastSent.ml. In case this lastSent.ml still refers to pi’s maximal
label, pi must cancel maxi[i] by assigning it with lastSent (and thus maxi[i].cl =
lastSent.cl) as in line 20. Lines 21 to 28 show how pi processes the two pairs received.
Label processing: Having received a new pair message 〈sentMax, lastSent〉 from
some pj , processor pi starts a step by removing stale information, i.e., misplaced or
doubly represented labels (line 9) in the label storage. When stale information exists,
the algorithm empties the entire storage. Processor pi then tests whether the arriving two
pairs are already included in the label storage (storedLabels[]), otherwise it includes
them (line 22). Based on the new pairs added to the label store, the algorithm determines
whether it is possible to cancel a non-canceled label pair (which may well be a newly
added pair). In this case, the algorithm updates the canceling field of any label pair lp
(line 23) with the canceling label of a label pair lp′ such that lp′.ml 6�lb lp.ml (line 23).
It is implied that since the two pairs belong to the same storage queue, they have the

6

same creator identity. Line 24 checks whether any pair of the maxi[] array can cancel a
record in the label storage, and line 25 removes any canceled records that share the same
ml. The test also considers the case in which the above update may cancel any arriving
label in max[j] and updates this entry accordingly based on stored pairs (line 26).

After this series of tests and updates, the algorithm is ready to decide upon a maxi-
mal label based on its local information. This is the �lb-greatest legit label pair among
all the ones in maxi[] (line 26). When no such legit label exists, pi request a legit label
in its own label storage, storedLabelsi[i], and if one does not exist, will create a new
one if needed (line 28). This is done by passing the labels in the storedLabeli[i] queue
to the nextLabel() function. Note that the returned label is coupled with a ⊥ and the
resulting label pair is added to both maxi[i] and storedLabeli[i].

Correctness proof outline. Consider an execution R of Algorithm 2 that may start in
an arbitrary configuration. We first show some basic facts, such as: (1) stale information
is removed, i.e., storedLabelsi[j] includes only unique copies of pj’s labels, and at
most one legitimate and (2) pi either adopts or creates the �lb-greatest legitimate local
label. We then bound on the number of adoptions, first in the absence of label creations
and then in their presence.
Lemma 1. Let pi, pj ∈ P , be two processors. Suppose that pj has stopped adding
labels to the system configuration (the else part of line 28), and sending (line 16)
these labels during R. Processor pi adopts (line 27) at most (n + m) label pairs,
lpj : (lpj =lCreator j), from pj’s unknown domain (lpj /∈ labelsi(lpj)), where m
is the maximum number of label pairs that can be in transit in the system.

Lemma 2. Let pi ∈ P be a processor. Let Li = lpi0 , lpi1 , . . . be the sequence of
legitimate label pairs (i.e., lpik .cl = ⊥), `ik =lCreator i, from pi’s domain, which pi
stores in maxi[i] over time, where k ∈ N . It holds that |Li| ≤ n(n2 +m).

Active processors can now be shown to eventually stop adopting or creating labels.
We show that incomparable label pairs eventually disappear from the system and thus no
new labels are adopted or created, which then implies the existence of a global maximal
label. Combining all the above, we deduce that starting from any initial configuration,
the system eventually reaches a configuration in which there is a global maximal label.

Theorem 1. Suppose that there exists at least one processor, pu ∈ P with unknown
identity, that takes practically infinite number of steps in R. Within a bounded number
of steps, there is a legitimate label pair `max, such that for any processor pi ∈ P (that
takes a practically infinite number of steps in R), it holds that pi has that label pair
maxi[i] = `max when naming its (local) maximal label,maxi[i].ml. Moreover, for any
processor pj ∈ P (that takes a practically infinite number of steps in R), it holds that
((maxi[j] �lb `max) ∧ ((∀` ∈ storedLabelsi[j] : legit(`))⇒ (` �lb `max))).

Proof Sketch. For any processor in the system which may take any (bounded or prac-
tically infinite) number of steps in R, we know that there is a bounded number of label
pairs, Li = lpi0 , lpi1 , . . ., that processor pi ∈ P adds to the system configuration (the
else part of line 28), where lpik =lCreator i (Lemma 2). Thus, by the pigeonhole princi-
ple, we know that within a bounded number of steps inR, there is a period during which
pu takes a practically infinite number of steps in R whilst (all processors) pi do not add
any label pair, lpik =lCreator i, to the system configuration (the else part of line 28).

7

Algorithm 2: Self-Stabilizing Labeling Algorithm; code for pi
1 Variables:
2 max[n] of 〈ml, cl〉: max[i] is pi’s largest label pair, max[j] refers to pj ’s label pair (canceled when
max[j].cl 6= ⊥).

3 storedLabels[n]: an array of queues of the most-recently-used label pairs, where storedLabels[j]
holds the labels created by pj ∈ P . For pj ∈ (P \ {pi}), storedLabels[j]’s queue size is limited to
(n+m) w.r.t. label pairs, where n = |P | is the number of processors in the system and m is the
maximum number of label pairs that can be in transit in the system. The storedLabels[i]’s queue size is
limited to (n(n2 +m)) pairs. The operator add(`) adds lp to the front of the queue, and
emptyAllQueues() clears all storedLabels[] queues. We use lp.remove() for removing the record
lp ∈ storedLabels[]. Note that an element is brought to the queue front every time this element is
accessed in the queue.

4 Notation: Let y and y′ be two records that include the field x. We denote y =x y′ ≡ (y.x= y′.x)
5 Macros:
6 legit(lp) = (lp= 〈•,⊥〉)
7 labels(lp) : return (storedLabels[lp.ml.lCreator])
8 double(j, lp) = (∃lp′ ∈ storedLabels[j] : ((lp 6= lp′) ∧ ((lp =ml

lp′) ∨ (legit(lp) ∧ legit(lp′)))))
9 staleInfo() = (∃pj ∈ P, lp ∈ storedLabels[j] : (lp 6=lCreator j) ∨ double(j, lp))

10 recordDoesntExist(j) = (〈max[j].ml, •〉 /∈ labels(max[j]))
11 notgeq(j, lp) = if (∃lp′ ∈ storedLabels[j] : (lp′.ml 6�lb lp.ml)) then return(lp′.ml)

else return(⊥)
12 canceled(lp) = if (∃lp′ ∈ labels(lp) : ((lp′ =ml lp) ∧ ¬legit(lp′))) then return(lp′)

else return(⊥)
13 needsUpdate(j) = (¬legit(max[j]) ∧ 〈max[j].ml,⊥〉 ∈ labels(max[j]))
14 legitLabels() = {max[j].ml : ∃pj ∈ P ∧ legit(max[j])}
15 useOwnLabel() = if (∃lp ∈ storedLabels[i] : legit(lp)) thenmax[i]← lp

else storedLabels[i].add(max[i]← 〈nextLabel(),⊥〉) // For every
lp ∈ storedLabels[i], we pass in nextLabel() both lp.ml and lp.cl.

16 upon transmitReady(pj ∈ P \ {pi}) do transmit(〈max[i],max[j]〉)
17 upon receive(〈sentMax, lastSent〉) from pj

18 begin
19 max[j]← sentMax;
20 if ¬legit(lastSent) ∧max[i] =ml lastSent then max[i]← lastSent;
21 if staleInfo() then storedLabels.emptyAllQueues();
22 foreach pj ∈ P : recordDoesntExist(j) do labels(max[j]).add(max[j]);
23 foreach pj ∈ P, lp ∈ storedLabels[j] : (legit(lp) ∧ (notgeq(j, lp) 6= ⊥)) do

lp.cl← notgeq(j, lp);
24 foreach pj ∈ P, lp ∈ labels(max[j]) : (¬legit(max[j]) ∧ (max[j] =ml lp) ∧ legit(lp))

do lp← max[j];
25 foreach pj ∈ P, lp ∈ storedLabels[j] : double(j, lp) do lp.remove();
26 foreach pj ∈ P : (legit(max[j]) ∧ (canceled(max[j]) 6= ⊥)) do

max[j]← canceled(max[j]);
27 if legitLabels() 6= ∅ then max[i]← 〈max≺lb

(legitLabels()),⊥〉;
28 else useOwnLabel();

During this period, we know that for any processor pj ∈ P that takes any number of
(bounded or practically infinite) steps in R, and processor pk ∈ P that adopts labels in
R (line 27), lpj : (lpj =lCreator j), from pj’s unknown domain (lpj /∈ labelsk(lpj)),
it holds that pk adopts such labels (line 27) only a bounded number of times in R
(Lemma 1). Again, by the pigeonhole principle, there is a period during which pu takes
practically infinite steps in R where neither pi adds a label, lpik =lCreator i, to the sys-
tem (line 28), nor pk adopts labels (line 27), lpj : (lpj =lCreator j), from pj’s unknown
domain (lpj /∈ labelsk(lpj)). Consequently, whilst pu takes practically infinite steps,
all processors (that take practically infinite steps in R) name the same �lb-greatest le-
gitimate label as the theorem statement specifies. �

8

3.2 Increment Counter Algorithm

In this subsection, we explain how we can enhance the labeling scheme presented in
the previous subsection to obtain a practically self-stabilizing counter increment algo-
rithm supporting multiple writers. To do so, we extend the labeling scheme to han-
dle counters. A counter cnt is a triplet 〈lbl, seqn,wid〉, where lbl is an epoch label
as defined in the previous subsection, the sequence number seqn is an integer rang-
ing from 0 to 2b, where b is large enough, say b = 64, and wid is the identifier of
the processor that last incremented the counter’s sequence number, i.e., wid is the
counter writer. Then, given two counters cnti, cntj we define the relation cnti ≺ct cntj
≡ (cnti.lbl ≺lb cntj .lbl) ∨ ((cnti.lbl = cntj .lbl) ∧ (cnti.seqn < cntj .seqn)) ∨
((cnti.lbl = cntj .lbl) ∧ (cnti.seqn = cntj .seqn) ∧ (cnti.wid < cntj .wid)). When
the labels of the two counters are incomparable, the counters are also incomparable.

The relation ≺ct defines a total order (as required by practically unbounded coun-
ters) only when processors share a globally maximum label. In this case, processors can
increment a shared counter even when attempting to do so concurrently. Note that by
the correctness of the labeling algorithm, starting from any initial state, we eventually
reach a configuration where the active processors adopt the same maximal label. Thus,
the system stabilizes to use a global maximal label, and so the pair of the sequence num-
ber and the identifier of the processor who created this sequence number can be used as
an unbounded counter, as used, for example, in MWMR register implementations [13].

Let us highlight the main issues one needs to consider when dealing with counters
rather than labels. Recall that in the labeling algorithm each processor pi maintained
two main structures of pairs of labels: array max[] that stored the local maximal labels
of each other processor (based on the message exchange) and storedLabels[], an array
of queues of label pairs that each processor maintains in an attempt to clean up obsolete
labels created by itself or other processors. These structures now need to contain coun-
ters instead of just labels (and these structures are called maxC[] and storedCnts[]).
However, each label can now yield many different counters. In order to avoid increasing
the size of these queues (with respect to the number of elements stored), we only keep
the highest sequence number observed for each label (breaking ties with wids).

If there are corrupt counters in the system (from the initial arbitrary state), then they
can only force a change of label if their sequence number is exhausted (i.e., seqn ≥ 2b).
Exhausted counters are treated by the algorithm in a similarly to canceled labels in the
labeling algorithm; an exhausted counter cnti in a counter pair 〈cnti, cntj〉 is canceled,
by setting cnti.lbl = cntj .lbl (i.e., the counter’s own label cancels it) and hence making
the counter non-legit (thus it cannot be used as a local maximal counter in maxCi[i]).
This cannot increase the number of labels that are created due to the initially corrupted
ones, as the total capacity of the links in the system still corresponds to m.

Another issue worth mentioning is that the system might revert back to a previous
legit label x, in case the current maximal label y is canceled. Label x might have been
used before to create counters, so it is required to store the last sequence number written.
If x is legit the system should not propose a new label and instead revert to it. Otherwise
the queues might grow with no bound. But as mentioned above, each processor stores
only the maximal sequence number learned for each label, inside storedCnts[] (i.e.,
the counter with the maximal (seqn,wid) to the corresponding lbl).

9

Algorithm description: To increment the counter, a processor pi first sends a request
to all other processors querying the counter they consider as the global maximum and
awaits for responses from a majority. In a procedure similar to the labeling algorithm, pi
(eventually) finds the maximal epoch label and the maximal sequence number for this
label. In other words, it collects counters and finds the one(s) with the largest global
label; there can be more than one such counter. In this case, it returns the one with the
highest sequence number, breaking symmetry with the wids. It then checks whether
this maximal sequence number is exhausted, i.e., if it is equal or greater than 2b. If so, it
proceeds to find a new maximal label until it finds one that is not exhausted and uses the
maximal sequence number it knows for this epoch label, incrementing it by one, and
setting its own identifier as the writer of this new sequence number. It then sends the
new counter to all processors, awaiting for acknowledgment from a majority. This is,
in spirit, similar to the two-phase write operation of MWMR register implementations,
focusing on the sequence number rather than on an associated value [13].

When a processor pi establishes a new label ` as the global maximum, it sets the
corresponding counter cnt = 〈`, 0, i〉; in this case, the label creator identifier and the
sequence number writer identifier is i. When there is an already established maximal
label ` in the system and processor pi wants to increment the counter, it increases the
corresponding (to `) maximal sequence number found (maxseqn) by one, and sets the
counter cnt = 〈`,maxseqn + 1, i〉; in this case, the label creator identifier and the
sequence number writer identifier need not be the same, i.e., if pi was not the creator of
label `. From the above, we have the following correctness result:
Theorem 2. Given an execution of the counter increment algorithm in which up to a
minority of processors may become inactive, starting from an arbitrary configuration,
the algorithm eventually ensures that counters increment monotonically.

Having a self-stabilizing counter increment algorithm, we can implement a self-
stabilizing MWMR register emulation. Each counter is associated with a value and the
counter increment procedure essentially becomes a write operation: once the writer
finds a maximal counter, it increments and associates it with the value to be written. It
then communicates this to a majority of processors. The read operation is similar: the
reader queries all processors about the maximum counter they are aware of, and waits
for a majority to respond. If it does not receive such a counter, it returns ⊥ so the read
has to be repeated; i.e., the system has yet to converge to a maximal label. If a maximal
counter exists, it sends this together with the associated value to all the processors, and
once it is acknowledged by a majority, it returns the counter with the associated value.
The second phase is a standard requirement to preserve the register’s consistency [2,13].

4 Virtually Synchronous Stabilizing Replicated State Machine
In this section, we present our practically stabilizing VS algorithm that emulates SMR.

4.1 Preliminaries
As already mentioned, group communication systems providing the VS property imple-
ment two main services: a membership service and a reliable multicast service, whilst
they assume there is access to an unbounded counter to use as unique view identifiers.
We provide these services in a coordinator-based solution, considering a primary-group

10

implementation [5]. To assign view identifiers, we use our counter increment algorithm.
Specifically, a counter defines a view identifier, and the counter’s writer identifier is that
of the view’s coordinator. This defines a simple interface with the counter algorithm,
which provides an identical output. The output of the coordinator’s failure detector de-
fines the set of view members; this helps to maintain a consistent membership among
the group members, despite inaccuracies between the various failure detectors. Pairing
the coordinator’s member set with the counter we obtain a view. The coordinator is also
responsible for the consistency of the multicast mechanism within the group. We first
suggest a possible implementation of a failure detector (to provide membership) and of
a reliable multicast service over the self-stabilizing FIFO data link given in Section 2.
Failure detector implementation: Every processor p, maintains a heartbeat integer
counter for every other processor q. Whenever p receives the token from q over their
data link, p resets q’s counter value to zero and increments all the integer counters asso-
ciated with the other processors by one, up to a predefined threshold value W . Once the
heartbeat counter value of a processor q reaches W, the failure detector of p considers
q as inactive. In other words, the failure detector at p considers processor q to be active,
if and only if the heartbeat associated with q is strictly less than W. This is essentially
the failure detector implementation mentioned in [6]. Note that for the correctness of
our VS algorithm, we require a weaker failure detector. Specifically, we require that at
least one processor is not suspected, for sufficiently long time, only by a majority of the
processors, as opposed to an eventually perfect failure detector that ensures that after a
certain time, no active processor suspects any other active processor.
Reliable multicast implementation: We use the coordinator, some processor say p`,
to exchange messages (by multicasting) within the group. The coordinator requests,
collects and combines input from the group members, and then it multicasts the updated
information. Specifically, when p` decides to collect inputs, it waits for the token to
arrive from each group participant. Whenever a token arrives from a participant, p` uses
the token to send the request for input to that participant, and waits the token to return
with some input (possibly ⊥, when the participant does not have a new input). Once
p` receives an input from a certain participant with respect to this multicast invocation,
the corresponding token will not carry any new requests to receive input from the same
participant; of course, the tokens continue to move back and forth. When all inputs are
received, p` combines them and again uses the token to carry the updated information.
The coordinator can then proceed to the next round of input collection.

4.2 Self-Stabilizing Virtually Synchrony and SMR Algorithm

We now present our self-stabilizing virtual synchrony and SMR algorithm. The guaran-
tees for VS hold under the assumption that a primary partition exists as defined below.

Definition 1 (Primary partition). We say that the output of the (local) failure detectors
in execution R includes a primary partition when it includes a supporting majority
of processors, Pmaj ⊆ P , that (mutually) never suspect at least one processor, i.e.,
∃p` ∈ P for which |Pmaj | > bn/2c and (pi ∈ (Pmaj ∩ FD`))⇐⇒ (p` ∈ (Pmaj ∩
FDi)) in every c ∈ R, where FDx returns the set of processors that according to x’s
failure detector are active.

11

Algorithm 3: Self-stabilizing automaton replication using VS, code for proc. pi
1 Constants: PCE (periodic consistency enforcement) number of rounds between global state check;
2 Interfaces: fetch() next multicast message, apply(state,msg) applies the step msg to state (while

producing side effects), synchState(replica) returns a replica consolidated state,
synchMsgs(replica) returns a consolidated array of last delivered messages, failureDetector()
returns a vector of processor pairs 〈pid, crdID〉, inc() returns a counter from the increment counter
algorithm;

3 Variables: rep[n] = 〈view = 〈ID, set〉, status ∈ {Multicast, Propose, Install}, (multicast
round number) rnd, (replica) state, (last delivered messages)msg[n] (to the state
machine), (last fetched) input (to the state machine), propV = 〈ID, set〉, (no
coordinator alive) noCrd, (recently live and connected component) FD〉 : an array of state
replica of the state machine, where rep[i] refers to the one that processor pi maintains. A local variable
FDin stores the failureDetector() output. FD is an alias for {FDin.pid}, i.e. the set of processors
that the failure detector considers as active. Let crd(j) = {FDin.crdID : FDin.pid = j}, i.e. the id
of pj ’s local coordinator, or⊥ if none.

4 Do forever begin
5 let FDin = failureDetector();
6 let seemCrd= {p` = rep[`].propV.ID.wid ∈ FD : (|rep[`].propV.set|> bn/2c) ∧

(|rep[`].FD|> bn/2c) ∧ (p` ∈ rep[`].propV.set) ∧ (pk ∈ rep[`].propV.set↔ p` ∈
rep[k].FD) ∧ ((rep[`].status=Multicast)→ rep[`].(view= propV))∧ crdID(`) = `};

7 let valCrd= {p` ∈ seemCrd : (∀pk ∈ seemCrd : rep[k].propV.ID �ct

rep[`].propV.ID)};
8 noCrd← (|valCrd| 6= 1);
9 if (|FD| > bn/2c) ∧ (((|valCrd| 6= 1) ∧ (|{pk ∈ FD : pi ∈ rep[k].FD ∧

rep[k].noCrd}|> bn/2c)) ∨ ((valCrd= {pi}) ∧ (FD 6= propV.set))) then
(status, propV)← (Propose, 〈inc(), FD〉);

10 else if (valCrd= {pi}) ∧ (∀ pj ∈ view.set : rep[j].(view, status, rnd) = (view, status,
rnd)) ∨ ((status 6=Multicast) ∧ (∀ pj ∈ propV.set :
rep[j].(propV, status) = (propV,Propose)) then

11 if status = Multicast then
12 apply(state,msg); input← fetch();
13 foreach pj ∈ P do if pj ∈ view.set then msg[j]← rep[j].input else

msg[j]← ⊥;
14 rnd← rnd+ 1;

15 else if status = Propose then
(state, status,msg)← (synchState(rep), Install, synchMsgs(rep));

16 else if status = Install then (view, status, rnd)← (propV,Multicast, 0);

17 else if
valCrd = {p`}∧ ` 6= i∧ ((rep[`].rnd = 0∨rnd < rep[`].rnd∨rep[`].(view 6= propV))
then

18 if rep[`].status = Multicast then
19 if rep[`].state = ⊥ then rep[`].state← state /∗ PCE optimization, line 25 ∗/;
20 rep[i]← rep[`]; apply(state, rep[`].msg); /∗ for the sake of side-effects ∗/
21 input← fetch();

22 else if rep[`].status = Install then rep[i]← rep[`];
23 else if rep[`].status = Propose then (status, propV)← rep[`].(status, propV);

24 let m = rep[i] /∗ sending messages: all to coordinator and coordinator to all ∗/ ;
25 if status = Multicast ∧ rnd(mod PCE) 6= 0 then m.state←⊥ /∗ PCE optimization,

line 19 ∗/ ;
26 let sendSet= (seemCrd ∪ {pk ∈ propV.set : valCrd= {pi}} ∪ {pk ∈ FD : noCrd ∨

(status= Propose)})
27 foreach pj ∈ sendSet do send(m);

28 Upon message arrival m from pj do rep[j]← m;

Note that Definition 1, allows for more than one such processor p`; in this case, it is not
necessary for these processors to have the same supporting majority.

12

Algorithm outline. Each participant maintains a replica rep[] of the state machine.We
bound the memory used to store the history of the replica by only keeping the encap-
sulated influence of the history represented by the current state of the replica (variable
state). Each participant also maintains the last delivered (composite) message,msg[n],
ensuring common reliable multicast, in case the coordinator becomes inactive before
ensuring delivery by all members of the group.

The existence of coordinator p` is in the heart of Algorithm 3. The algorithm de-
termines p`’s availability and acts towards finding a new coordinator when no valid
coordinator exists (lines 5 to 9). The pseudocode details the coordinator-side (lines 10
to 16) and the follower-side (lines 17 to 22) actions and how the two sides exchange
messages. Lines 1–3 define the processor’s state and interfaces.

Determining coordinator availability: The algorithm takes an agile approach for
multicasting with atomic delivery guarantees. Namely, a new view is installed when-
ever the coordinator sees a change to its local failure detector, failureDetector(),
which pi stores in FDi (line 5). Nevertheless, we might reach a configuration without
a view coordinator as a result of an arbitrary initial configuration, or of a coordinator
becoming inactive. Using the failure detector heartbeat exchange, processors can detect
such initially corrupted states. Each participant that detects that it has no coordinator,
seeks for potential candidates based on the exchanged information.

Processor pi can see the set of processors, seemCrdi, that each seems to be
the view coordinator, because pi stored a message from p` ∈ FDi in which p` =
rep[`].propV.ID.wid. Note that pi cannot consider p` as a (seemly) coordinator unless
the conditions in line 6 hold. Intuitively, such a processor must be active according to
pi’s failure detector, and there is a majority of processors that also think so. Note that all
these are based on local knowledge, which due to asynchrony might not be up to date.
The next step is for pi to consider the processor in seemCrdi with the �ct-greatest
view identifier (line 7) as the valid coordinator. Here, set valCrdi is either a singleton
or empty (line 8). If pi considers some processor p` as a valid coordinator, it waits to
hear from p` (or learn that it is not active). We call pi a follower of p`. If there is no
such processor, pi will only propose a new view if its failure detector indicates that there
exists a supportive majority of active processors that are also without a valid coordina-
tor (line 9). If such a majority exists, pi acquires a counter from the counter increment
algorithm and proposes a new view, with the counter as the view ID, and the set of
processors that appear active according to its failure detector as the group membership.

As we show, if pi’s view is accepted from all the processors in the view, then it pro-
ceeds to install the view, unless another processor who has obtained a higher counter
does so. In a transition from one view to the next, there can be several processors at-
tempting to become the coordinator (namely, those who according to their knowledge
have a supporting majority). Still, by exploiting the intersection property of the support-
ing majorities we prove that each of these processors will propose a view at most once,
and out of these, one view will be installed (i.e., we do not have never-ending attempts
for new views to be installed). To satisfy the VS property, no new multicast message is
delivered to a new view, before the coordinator of this new view has collected all the
participants’ last delivered messages (of their prior views) and has resent the messages
appearing not to have been delivered uniformly.

13

The coordinator-side: Processor pi is aware of its valid coordinatorship if (valCrdi
= {pi}) (line 10). During a normal Multicast round, pi observes the round end, when
for every view member pj it holds that (repi[j].(view, status, rnd) = (viewi, statusi,
rndi)). Depending on its status, the coordinator pi proceeds once it observes a suc-
cessful round conclusion. At the end of a normal Multicast round, the coordinator in-
crements the round number after aggregating the followers’ input (line 11). The coordi-
nator continues from the end of a Propose round to an Install round after using the most
recently received replicas and the last delivered messages of each processor to install a
synchronized state of the emulated automaton (line 15). After a successful Install round
(line 16), the coordinator proceeds to a Multicast round after installing the proposed
view and the first round number.

As part of the multicast procedure, the coordinator (line 13), collects inputs (possi-
bly ⊥) received from the environment and ensures that all group members apply these
inputs to the replica producing possible side-effects. The processors need to apply one
input at a time, maybe in an agreed upon sequential order, say from the input of the first
processor to the last. Alternatively, the coordinator may request one input at a time in a
round-robin fashion and multicast it.
The follower-side: Processor pi considers p` as its coordinator when (valCrdi =
{p`}) and i 6= ` (line 17). It has to act upon merely new messages, i.e., the first message
round when installing a new view (rep[`].rnd = 0), the first time a message arrives
(rnd < rep[`].rnd) or a new view is proposed (rep[`].(view 6= propV)). During
normal Multicast rounds (line 18) the follower pi applies the aggregated message of
this round to its current automaton state so that it produces the needed side-effects
before adopting the coordinator’s replica (line 22). Once a processor does not have a
coordinator, and while in a Propose round, pi does not overwrite its round number, and
so the coordinator can know the last round number that pi delivered a message during
the latest installed view. Both the coordinator and the followers periodically send their
current replica (line 27) and store the replicas received (line 28). As an optimization,
during normal Multicast rounds, processors transmit their full replica state every PCE
rounds, where PCE is a predefined constant.

Correctness Outline. We show that starting from an arbitrary state in an execution R
of Algorithm 3 and once the primary partition property (Definition 1) holds throughout
R, we reach a configuration c ∈ R where some processor p` proposes a view including
a majority of processors and this view is accepted by all its members. We then prove
that a coordinator without a supporting majority stops being the coordinator. Then we
show that when there is no coordinator, a processor with a supporting majority even-
tually proposes a view. All such processors propose at most once, leading to a unique
coordinator. We conclude by proving that any execution suffix in R that begins from
such a configuration c will preserve the VS property and implement SMR.

Lemma 3. If the conditions of Definition 1 hold throughout an execution R of Algo-
rithm 3, then starting from an arbitrary configuration, the system reaches a config-
uration in which any processor p` with a supporting majority may propose itself as
the coordinator at most once. As a consequence, the system reaches a configuration in
which one of these processors is the global coordinator until the end of the execution.

14

Then we show the main result:

Theorem 3. Starting from any configuration, an execution R of Algorithm 3 satisfying
Definition 1, emulates automaton replication preserving the VS property.

Proof Sketch. We consider a finite prefix R′ of R with an arbitrary configuration c, and
a primary partition (as per Definition 1) and assume that this prefix is sufficiently long
for Lemma 3 to hold. I.e., we reach a safe configuration in which there exists a global
coordinator for a majority of processors. By careful consideration of the code and the
way the coordinated multicast steps take place we argue the claim of the theorem. �

5 Conclusion
We have presented the first self-stabilizing algorithm that guarantees VS, and used it
to obtain a self-stabilizing VS-based SMR emulation; within this emulation, the sys-
tem progresses in more extreme asynchronous executions compared to consensus-based
SMRs. A key component of the VS algorithm is a novel modular self-stabilizing counter
algorithm, that establishes an efficient practical unbounded counter, which in turn can
be directly used to implement a self-stabilizing MWMR register emulation.

References
1. N. Alon, H. Attiya, S. Dolev, S. Dubois, M. Potop-Butucaru, and S. Tixeuil. Practically

stabilizing SWMR atomic memory in message-passing systems. Journal of Computer and
System Sciences, 2015.

2. H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing systems.
J. ACM, 42(1):124–142, 1995.

3. A. Bartoli. Implementing a replicated service with group communication. Journal of Systems
Architecture, 50(8):493–519, 2004.

4. K. Birman. A history of the virtual synchrony replication model. In Replication: Theory and
Practice, pages 91–120, 2010.

5. K. Birman and R. Van Renesse. Reliable distributed computing with the Isis toolkit. Wiley-
IEEE Computer society press, Los Alamitos, 1994.

6. P. Blanchard, S. Dolev, J. Beauquier, and S. Delaët. Practically self-stabilizing Paxos repli-
cated state-machine. In Proc. of NETYS’14, pages 99–121, 2014.

7. S. Dolev. Self-Stabilization, MIT press, 2000.
8. S. Dolev, A. Hanemann, E. M. Schiller, and S. Sharma. Self-stabilizing end-to-end com-

munication in (bounded capacity, omitting, duplicating and non-fifo) dynamic networks. In
Proc. of SSS’12, pages 133–147, 2012.

9. S. Dolev, R. I. Kat, and E. M. Schiller. When consensus meets self-stabilization. Journal of
Computer and System Sciences, 76(8):884 – 900, 2010.

10. S. Dolev, L. Lahiani, N. A. Lynch, and T. Nolte. Self-stabilizing mobile node location man-
agement and message routing. In Self-Stabilizing Systems, pages 96–112, 2005.

11. S. Dolev, C. Georgiou, I. Marcoullis and E. Schiller. Practically Stabilizing Virtual Syn-
chrony. CoRR abs/1502.05183, 2015.

12. L. Lamport. Time, clocks, and the ordering of events in a distributed system. pages 558–565,
1978. Commun. ACM, 21(7):558–565, 1978.

13. N. A. Lynch and A. A. Shvartsman. Robust emulation of shared memory using dynamic
quorum-acknowledged broadcasts. In Proc. of FTC’1997, pages 272–281, 1997.

14. F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

15

	Self-Stabilizing Virtual Synchrony -.7em

