
Self-Stabilizing Reconfiguration?

Shlomi Dolev1??, Chryssis Georgiou2, Ioannis Marcoullis2? ? ?, and Elad M. Schiller3

1 Dept. of Computer Science, Ben-Gurion University of the Negev, Israel.
2 Dept. of Computer Science, University of Cyprus, Cyprus.

3 Dept. of Engineering and Computer Science, Chalmers University of Technology, Sweden.

Abstract. Current reconfiguration techniques depend on starting the system in
a consistent configuration, in which all participating entities are in a predefined
state. Starting from that state, the system must preserve consistency as long as
a predefined churn rate of processors joins and leaves is not violated, and un-
bounded storage is available. Many systems cannot control this churn rate and
lack access to unbounded storage. System designers that neglect the outcome of
violating the above assumptions may doom the system to exhibit illegal behav-
iors. We present the first automatically recovering reconfiguration scheme that
recovers from transient faults, such as temporal violations of the above assump-
tions. Our self-stabilizing solutions regain safety automatically by assuming tem-
poral access to reliable failure detectors (FDs). Once safety is established, the FD
reliability is no longer needed. Still, liveness is conditioned by the FD’s unreliable
signals. Our self-stabilizing reconfiguration techniques can serve as the basis for
the implementation of several dynamic services over message passing systems.
Examples include self-stabilizing reconfigurable virtual synchrony, extendable to
a self-stabilizing reconfigurable state machine replication.

1 Introduction

Motivation. We consider distributed systems working in dynamic asynchronous en-
vironments, such as a shared storage system [17]. Quorum configurations [19], i.e.,
sets of active processors (servers or replicas), are typically used to provide service
to the system’s participants. A configuration may gradually lose active participants
due to voluntary leaves or stop failures, rendering service provision poor or impossi-
ble. It is important to instate a new configuration, i.e., to reconfigure, on time, based
on a more recent participation set. In recent years, several reconfiguration techniques
were proposed, mainly for state machine replication and atomic memory emulation
(e.g., [1,2,3,4,13,14,15,16,18]). Such reconfiguration techniques depend on initiating
the system in a consistent configuration, with all processors in a predefined state. Con-
tinuing from this state, the system must preserve consistency assuming a predefined
? A full version of this paper can be found in [8].

?? The research was partially supported by the Rita Altura Trust Chair in Computer Sciences;
Frankel center for computer science, grant of the Ministry of Science, Technology and Space,
Israel, and the National Science Council (NSC) of Taiwan; the Ministry of Foreign Affairs,
Italy; the Ministry of Science, Technology and Space, Infrastructure Research in the Field of
Advanced Computing and Cyber Security and the Israel National Cyber Bureau.

? ? ? Partially supported by a Doctoral Scholarship program of the University of Cyprus.

churn rate is not violated and unbounded storage availability. Also, they do not claim to
tolerate transient faults that may arbitrarily alter the system’s variables

Many working systems cannot control their churn rate and do not have access to
unbounded storage. System designers that neglect the outcome of violating the above
assumptions may doom the system to forever exhibit a behavior that does not satisfy
the system requirements. Furthermore, the dynamic and difficult-to-predict nature of
distributed systems gives rise to many fault-tolerance issues and requires efficient so-
lutions. Large-scale message passing networks are asynchronous and they are subject
to transient faults due to hardware or software temporal malfunctions, short-lived vi-
olations of the assumed failure rates or violation of correctness invariants, such as the
uniform agreement among all current participants about the current configuration. Fault
tolerant systems that are self-stabilizing [6] can recover after the occurrence of transient
faults as long as the program’s code is still intact.
Contributions and approach. We present the first automatically recovering reconfig-
uration scheme that recovers from transient faults, such as temporal violations of the
predefined churn rate or the unexpected activities of processors and communication
channels. Our blueprint for self-stabilizing reconfigurable distributed systems can with-
stand a temporal violation of such assumptions, and recover once conditions are re-
sumed, using a bounded amount of local storage and message size. Our self-stabilizing
solutions regain safety automatically by assuming temporal access to reliable failure
detectors? (FDs). Once safety is re-established, the FDs’ reliability is no longer needed;
liveness is conditioned by the FDs’ unreliable signals. We now overview our approach.
Reconfiguration scheme. Our scheme comprises of two layers that appear as a single
“black-box” module to any application that uses the reconfiguration service. The ob-
jective is to provide the application with a conflict-free configuration, such that no two
alive processors consider different configurations.

The first layer, called Reconfiguration Stability Assurance (recSA) and detailed in
Section 3.1, is mainly responsible for detecting configuration conflicts (possibly the re-
sult of transient faults). It deploys a brute-force technique for converging to a conflict-
free new configuration. It also employs a delicate configuration replacement technique
when a processor notifies that it wishes to replace the current configuration with a new
set of participants. For both techniques, processors use an implementable FD (cf. Sec-
tion 2) to obtain membership information. Configuration convergence is reached when
the FDs have temporal reliability. Once a uniform configuration is installed, the FDs’
reliability is no longer needed. Liveness conditions thereafter consider unreliable FDs.

The decision for requesting a delicate reconfiguration is controlled by the other
layer, called Reconfiguration Management or recMA for short (detailed in Section 3.2).
Specifically, if a processor suspects that the dependability of the current configuration
is under jeopardy, it seeks to obtain a majority approval from the alive members of the
current configuration, and requests a (delicate) reconfiguration from recSA. Moreover,
in the absence of such a majority (e.g., configuration replacement was not activated “on
time” or the churn assumptions were violated), the recMA can aim to control the re-
covery via a recSA reconfiguration request. The current participant set can, over time,

? Transient faults pose challenges in managing dynamic membership that justify the use of FDs;
see discussion in Related work.

2

become different than the configuration member set. As new members arrive and oth-
ers go, changing the configuration based on system membership would imply a high
frequency of (delicate) reconfigurations, especially in the presence of high churn. Note
that we avoid unnecessary reconfiguration requests by requiring a weak liveness con-
dition: if a majority of the configuration set has not collapsed, then there exists at least
one processor that is known to trust this majority in the FD of each alive processor.
Such active configuration members can aim to replace the current configuration with a
newer one (that would provide an approving majority for prospective reconfigurations)
without the use of the brute-force stabilization technique.
Joining mechanism. We complement our reconfiguration scheme with a self-stabilizing
joining mechanism JoinMec (detailed in Section 3.3) that manages and controls the in-
troduction of new processors into the system. It is crucial to ensure that newly joining
processors do not carry stale information (due to arbitrary faults) into the system state.
To this end, we employ several techniques along with a snap-stabilizing data link pro-
tocol (see Section 2). We have designed JoinMec to grant the application the control
on whether to allow new processors to join the system or not. In this way, the churn
(regarding new arrivals) can be “fine-tuned” based on the application requirements; we
have modeled this by having joining processors obtaining approval from a majority of
the current configuration’s members given no reconfiguration is taking place. These,
in turn, provide such approval if the application’s (among other) criteria are met. We
note that in the event of transient faults, such as unavailable approving majority, recSA
assures recovery via brute-force stabilization that includes all alive processors.
Applications. The presented reconfiguration scheme is modular and can be used to
extend the capabilities of algorithms designed for more static environments, i.e., for
environments where processors are aware of a single set of processors that can fail by
crashing. The reconfiguration scheme allows for this set to be renewed and thus service
can continue. We have used our reconfiguration scheme to obtain dynamic versions
of a multipurpose counter increment algorithm and a self-stabilizing virtual synchrony
algorithm that also leads to a self-stabilizing replicated state machine (cf., Section 4).
Related work. Existing solutions for providing reconfiguration in dynamic systems,
such as [14] and [1], do not consider transient faults and self-stabilization, as their
correctness proofs (implicitly) depend on a coherent start [17] and also assume that
fail-stops can never prevent the (quorum) configuration to facilitate configuration up-
dates. They also often use unbounded counters for ordering consensus messages (or
for shared memory emulation) and by that facilitate configuration updates, e.g., [14].
Our self-stabilizing solution recovers after the occurrence of transient faults, which we
model as an arbitrary starting state, and guarantees a consistent configuration that pro-
vides (quorum) services, e.g., allowing reading from and writing to distributed shared
memory, and at the same time managing the configuration that provides these services.

Furthermore, in existing non self-stabilizing solutions, dynamic membership is usu-
ally maintained by the exchange of “membership sets” (e.g., the set World in [14]). But
when dealing with transient faults, it is possible that local membership sets may change
arbitrarily and result in containing a large number of identifiers of processors that are
not present in the system. Given the asynchronous environment, this would result in a
deadlock if the processors wait for some majority (or quorum) of these non-existing

3

processors to respond while they have no means for detecting their non-existence. To
this respect, our self-stabilizing solution makes use of FDs (cf. Section 2).

There exists a significant amount of research to characterize the fault-tolerance guar-
antees that different quorum system designs can provided; see [19] for an in depth dis-
cussion. In this paper we use majorities, generally regarded as the simplest quorum
system (each set composed of a majority of the processors is a quorum). One can mod-
ify our reconfiguration scheme to support more complex, quorum systems, as long as
processors have access to a mechanism (that is a function) that, given a set of proces-
sors, can generate the specific quorum system. The when a reconfiguration (delicate in
our case) should take place is another important design decision; see related discussion
in [17]. A simple approach is to reconfigure when a fraction (e.g., 1/4th) of the mem-
bers of a configuration appear to have failed. More complex decisions use prediction
mechanisms (possibly based on statistics). This issue is beyond the scope of this work;
however, we have designed our reconfiguration scheme (specifically the recMA layer) to
use any decision mechanism imposed by the application (via an application interface).

2 System Settings

Processing entities. We consider an asynchronous message-passing system of proces-
sors. Each processor pi has a unique identifier, i, taken from a totally-ordered set of
identifiers P . The number of live and connected processors at any time of the compu-
tation is bounded by some integer N such that N � |P |. We refer to such processors
as active. We assume that processors have knowledge of the upper bound N , but not
of the actual number of active processors. Processors may stop-fail by crashing at any
point without warning. A crashed processor takes no further steps and never rejoins
the computation. (For readability’s sake, we model rejoins as transient faults rather than
considering them explicitly. Self-stabilization inherently deals with rejoins by regarding
the past join information as possibly corrupted.) New processors may join the system
(using a joining procedure) at any point in time with an identifier drawn from P , such
that this identifier is only used by this processor forever. A participant is an active pro-
cessor that has joined the computation and sends configuration-related messages. Note
that N accounts for all active processors, both the participants and those still joining.
Communication. The network topology is that of a fully connected graph, and links
have a bounded capacity cap. Processors exchange low-level messages called packets to
enable a reliable delivery of high level messages. Packets sent may be lost, reordered, or
duplicated but not arbitrarily created, although the channels may initially (after transient
faults) contain stale packets, which due to the boundedness of the channels are also
bounded in a number that is inO(N2cap). We assume the availability of self-stabilizing
protocols for reliable FIFO end-to-end message delivery (over unreliable channels with
bounded capacity), e.g., [9]and that channels provide fair communication, i.e., a packet
sent infinitely often is received infinitely often.

Using the underlying packet exchange protocol described, a processor pi that has
received a packet from some processor pj which did not belong to pi’s FD, engages
in a two phase protocol with pj in order to clean their intermediate link. This is done
before any messages are delivered to the algorithms that handle reconfiguration, joining

4

and applications. We follow the snap-stabilizing data link protocol detailed in [12]. A
snap-stabilizing protocol is one which allows the system (after faults cease) to behave
according to its specification upon its first invocation. We require that every data-link
established between two processors is initialized and cleaned straight after it is estab-
lished. In contrast to [12] where the protocol runs on a tree and initiates from the root,
our case requires that each pair of processors takes the responsibility of cleaning their
intermediate link. Snap-stabilizing data links do not ignore signals indicating the exis-
tence of new connections (such as physical carrier signal from the port). In fact, when
such a connection signal is received by the newly connected parties, they start a commu-
nication procedure that uses the bound on the packet in transit (possibly in buffers too)
to clean all unknown packets in transit, possibly repeatedly sending the same packet
until more than the round trip capacity acknowledgments arrive.

(N,Θ)-failure detector. It extends the Θ-FD used in [5]. It allows each processor pi to
order other processors according to how recently they have communicated. To achieve
this, pi maintains an ordered vector nonCrashed where every other communicating
processor pk is ranked according to the message exchanges that it has performed with
pi and relative to the communication it has with some other processor pj . Specifically,
when pi receives a message from pj , it sets pj’s corresponding counter to 0, and in-
crements the counters of any other processor pk by one. Since there are at most N
processors in the computation at any given time, we can ignore any processors that rank
below the N th vector entry. Each processor pi uses the nonCrashed vector to get an
estimate on the number of processors ni that pi believes to be active in the system;
ni ≤ N . Processor pi will find that between the last processor that is still communi-
cating with, and the first processor that has not communicated for some time, there is
a significant difference in their counter. Thus, the last processor is the nith processor
and provides an estimate on the number of active processors. If, for example, the first 30
processors in the vector have corresponding counters of up to 30, then the 31st will have
a counter much greater than that, say 100; so ni will be estimated at 30. This estimation
mechanism is suggested in [10] and in [11]. (For implementation details see [8].)

The interleaving model and self-stabilization. A program is a sequence of (atomic)
steps. Each atomic step starts with local computations and ends with a communication
operation, i.e., packet send or receive. We assume the standard interleaving model
where at most one step is executed in every given moment. An input event can either be
the arrival of a packet or a periodic timer triggering pi to (re)send. Note that the system
is asynchronous and the rate of the timer is totally unknown. The state, ci, consists of
pi’s variable values and the content of pi’s incoming communication channels. A step
executed by pi can change pi’s state. The tuple of the form (c1, c2, · · · , cn) is used to
denote the system state. An execution (or run) R = c0, a0, c1, a1, . . . is an alternating
sequence of system states cx and steps ax, such that each cx+1, except the initial system
state c0, is obtained from cx by the execution of ax. A practically infinite execution is
an execution with many steps, where many is defined to be proportional to the time it
takes to execute a step and the life-span time of a system. The system’s task is a set
of executions called legal executions (LE) in which the task’s requirements hold. An
algorithm is self-stabilizing with respect to LE when every (unbounded) execution of
the algorithm has a suffix that is in LE.

5

3 Self-stabilizing Reconfiguration Scheme

6

? ?

66

??

passQuery()evalConf()

Joining

Mechanism

Reconfiguration

Management
Application

Reconfiguration Stability Assurance

getConfig()
noReco()

estab() participate()

Fig. 1. Module Interaction.

We now describe the reconfiguration scheme
and joining mechanism. Figure 1 depicts the
interaction between the modules and the ap-
plication. The Reconfiguration Stability As-
surance (recSA) layer ensures that partic-
ipants eventually have a common configu-
ration. It provides information on the cur-
rent configuration and on whether a recon-
figuration is not taking place using inter-
faces getConfig() and noReco() respec-
tively. This is based on local information.
The Reconfiguration Management (recMA)
layer uses the (application-based) prediction mechanism evalConf() to evaluate if a
reconfiguration is required. If a reconfiguration is necessary, recMA initiates it with
estab(). Joining only proceeds if no reconfiguration is taking place. A joiner becomes a
participant via participate() only if passQuery() of a majority of configuration mem-
bers is reported as True. Arrows directed from module A to B show the transfer of
specified information from A to B. We proceed with details.

3.1 The Reconfiguration Stability Assurance Layer

This layer uses Algorithm 1 for assuring correct configuration while allowing updates
from the recMA layer (next section). Algorithm 1 guarantees that (1) all active pro-
cessors have eventually identical copies of a single configuration, (2) when participants
notify the system that they wish to replace the current configuration with another, the
algorithm selects one proposal and replaces the current configuration with it, and (3)
joining processors can become participants eventually.
The algorithm structure. The algorithm combines two techniques: one for brute force
stabilization that recovers from stale information and a complementary technique for
delicate (configuration) replacement, where participants jointly select a single new con-
figuration that replaces the current one.
Combining the two techniques. As long as a given processor is not aware of ongoing
configuration replacements, Algorithm 1 merely monitors the system for stale infor-
mation, e.g., that the config fields hold the same non-⊥ value. During these periods
the algorithm allows the invocation of configuration replacement processes (via the
estab(set) interface) as well as the acceptance of joining processors as participants (via
the participate() interface). During the process of configuration replacement, the al-
gorithm selects a single configuration proposal and replaces the current one with that
proposal before returning to monitor for configuration disagreements.
Blocking joins to the participants’ set during reconfiguration periods. While the sys-
tem reconfigures, there is no immediate need to allow joining processors to become
participants. By temporarily disabling this functionality, the algorithm can focus on
completing the configuration replacement using the current participant set. To that end,

6

Algorithm 1: Stabilizing Reconfiguration Stability Assurance; pi’s code
1 Variables: Each field is held in an array that stores pi’s own values and pj ’s most recently received ones. For

example, in the case of the config[] field, config[i] is pi’s view on the current configuration and config[j] stores the
most recently received one. Note that pi assigns⊥ (the empty configuration) after receiving a conflicting (different)
non-empty configuration value. FD[i] and FD[i].part represent pi’s failure detector, and respectively, an alias to
{pj ∈ FD[i] : config[j] 6=]}. Note that we consider only the trusted (unsuspected) processors. Namely, crashed
processors are eventually suspected and the FD field of every message encodes also this participation info. The field
prp[i] = 〈phase ∈ {0, 1, 2}, set ⊆ P 〉, where prp[i] refers to pi’s configuration replacement proposal. The
case of no proposal is denoted by 〈0,⊥〉. The field all[i] is true when pi observes that all trusted nodes notice its
current (max) proposal and they hold the same value. The variable allSeen stores the set of nodes pk for which pi

received the all = true indication.
2 Interfaces: function participate() replaces pi’s configuration (possibly set to]) with chsConfig(). Only

allowed when no reconfiguration is taking place.
3 function chsConfig() is the current config value, or⊥ when there is no single non-] value.
4 function getConfig() {if noReco() then return(chsConfig()) else return(config[i])};
5 function noReco() test (locally) whether pi runs a reconfiguration process.
6 function estab(set) = {if (noReco() ∧ (set /∈ {config[i], ∅})) then prp[i]← 〈1, set〉};
7 do forever begin
8 if stale info present, e.g., different (non-⊥ or-]) config values or empty intersection between config and

participant set then reset, i.e., call configSet(⊥);
9 if there is no proposal for configuration replacement then

10 if |{config[k]}pk∈FD[i] \ {⊥,]}| > 1 then configSet(⊥) // once a trusted processor has sent a
different (non-⊥ or]) configuration,⊥-nullify the stored one – i.e., nullify the configuration upon
conflict;

11 if (config[i] = ⊥ ∧ |{FD[j] : pj ∈ FD[i]}| = 1) then configSet(FD[i]) // once all trusted
nodes trust the same nodes, use this node set as the new configuration;

12 else
13 if all trusted participants report the same proposals and participation sets and they echo back the sent

values of these fields then all[i]← true;
14 else if trusted participant pk reports all[i] = true then
15 add pk to allSeen;
16 if allSeen includes all trusted participants then run the automaton (Figure 2) and empty

allSeen← ∅;

17 if config[i] 6=] then send to pj the state of pi (including pj ’s recently received info.);

18 upon receive m from pj do store m’s fields as the recently received values from pj ;
19 upon interrupt pi’s booting do foreach pk do (config[k], prp[k], all[k])← (], 〈0,⊥〉, false) // during

boot, nullify the stored fields and disable message transmissions;

only participants broadcast their state when finishing the do forever loop (line 17) and
only their messages arrive to the other active processors (line 18). Moreover, we assume
that the only way for a joining processor to start executing Algorithm 1 is by responding
to an interrupt call (line 19), where the assignment of] to config nullifies the config-
uration. Thus, joining processors cannot broadcast (line 17) before their safe entry to
participant set via the function participate() (line 2), which enables broadcasting. Note
that non-participants monitor the intersection between the current configuration and the
set of active participants (line 8). In case it is empty, the processors (participants or not)
call configSet(⊥) and start a reset process that ends with a brute-force stabilization,
which we explain below. Thus, the] values are removed from config and there is no
more blocking of joining processors to become participants.
Brute-force stabilization. The proposed algorithm detects the presence of stale in-
formation and recovers from these transient faults. Configuration conflicts are one of
several kinds of such stale information and they refer to differences in the field config,
which stores the configuration values. Processor pi can signal to all processors that
it has detected stale information by assigning ⊥ to configi and by that starts a reset
process that nullifies all config fields in the system (lines 8 and 10). Algorithm 1 uses
the brute-force technique for letting processor pi to assign to configi its set of trusted

7

Fig. 2. The automaton

processors (line 11), which the failure detector FDi

provides. Note that brute-force stabilization removes
any] value from config and allows all processors
(joining or participants) to become a participant at
the end of the brute-force process. Theorem 1 to-
gether with Lemma 2 show that eventually all active
processors share identical (non-⊥) config values.
Delicate (configuration) replacement. Participants
can propose to replace the current configuration with
a new set, via the estab(set) interface. This replace-
ment uses the configuration replacement automa-
ton (Figure 2) that a self-stabilizing mechanism for
(phase transition) coordination emulates.
The configuration replacement automaton. When the system is free from stale infor-
mation, the configuration uniformity invariant (of the config field values) holds. Then,
any number of calls to the estab(set) interface starts the automaton, which controls the
configuration replacement using the following three phases: (1) selecting uniformly a
single proposal (while verifying the eventual absence of “unselected” proposals), (2)
replacing uniformly all config fields with the jointly selected proposal, and (3) bringing
the system back to a state where it merely tests for stale information.
A self-stabilizing mechanism for phase transition coordination. The configuration re-
placement automaton, requires coordinated phase transition. Algorithm 1 lets processor
pi represent proposals as prpi[j] = (phase, set), where pj is the processor from which
pi received the proposal, phase ∈ {0, 1, 2} and set is a processor set or the null value,
⊥. The default proposal, 〈0,⊥〉, refers to the case in which prp encodes “no proposal”
(line 1). When pi calls the function estab(set), it changes prp to 〈1, set〉 (line 6) as
long as pi is not aware of an ongoing configuration replacement process, i.e., noReco()
returns true. Upon this change, the algorithm disseminates prpi[i] and by that guaran-
tees that eventually noReco() returns false for any processor that calls it. Once this
happens, no call to estab(set) adds a new proposal for configuration replacement and
no call to participate() lets a joining processor to become a participant (line 2). Algo-
rithm 1 can then use the lexical value of the prpi[]’s tuples to deterministically select
one of them (Figure 2). To that end, each participant ensures that all other participants
report the same tuples by waiting until they “echo” back the same values as the ones
it had sent them. After this, participant pi makes sure that the communication channels
do not include other “unselected” proposals, by raising a flag alli = true (line 13)
and waiting for the echoed values of these three fields, i.e., participant set, prpi[i] and
alli. This waiting continues until the echoed values match the values of any other active
participant in the system (while monitoring their well-being). Before this participant
proceeds, it makes sure that all active participants have noticed its phase completion
(line 15). Each processor maintains the allSeen variable; a set of participants that have
noticed its phase completion and has thus added them to the set allSeen.

The above self-stabilizing mechanism for phase transition coordination allows pro-
gression in a unison fashion. Namely, no processor starts a new phase before it has seen
that all other active participants have completed the current phase and have noticed that

8

all others have done so (because they have identical participant set, prp and all values).
This is the basis for emulating every step of the configuration replacement automaton
(line 16) and making sure that the phase 2 replacement occurs correctly before return-
ing to phase 0, in which the system simply tests for stale information. Since the FDs
monitor the participants’ well-being, this process terminates.

Correctness. We here highlight the main steps of the proof, starting with some key
definitions. An execution R is admissible when throughout R the FD values of active
processors are identical, do not change and consist of only themselves (the set of active
processors). I.e., ∀c ∈ R, pi, pj ∈ P that are active in R, we have FDi[i] = FDj [j] and
pk ∈ FDi[i] ⇐⇒ pk is active. Furthermore, we say that system state c has no stale
information when (1) all (quorum) configuration proposals are valid, e.g., the proposal
〈0, set〉 is not valid when set 6= ⊥, (2) all config values are non-⊥ and the same, (3) the
phase information (including allSeen) is in synch, and (4) the config set includes active
participants. The correctness proof shows that eventually there is no stale information
(Theorem 1), because they are all detected and cleaned eventually (lines 8 and 10), as
processors run configuration reset processes (by calling configSet(⊥)). To guarantee
the success of such reset processes (Lemma 2), we assume that the system reaches
eventually an admissible execution until the reset process terminates.
Failure Detector Usage: The above assumption implies that Algorithm 1 completes the
reset process by having a temporal access to reliable FDs. However, once it completes
this process, safety holds forever thereafter because, as Theorem 1 shows, the system
cannot introduce stale information (or start another reset process) after the process ter-
minates. In other words, once the reset process establishes safety, the FD reliability is no
longer needed, because the success of Algorithm 1 to achieve its task does not require
that the system reaches admissible executions, and liveness is conditioned by the FD’s
unreliable signals. Since Theorem 1 shows that no stale information eventually exists,
all the processors pi for which the field configi[i] /∈ {⊥,]} store the same value in that
field. We now give the main result and a proof sketch. (For the full proof see [8]).

Theorem 1 (Convergence). Let R be an admissible execution of Algorithm 1. R has
no stale information eventually.

Proof Sketch. Lines 8 and 10 detect stale information and start the configuration reset,
which by Lemma 2 terminates. The proof uses Claim 5 and Lemma 6 to imply the
theorem’s correctness, the first assuming that R does not include (notifications about)
replacement proposals, and the second that it does.

Lemma 2 During admissible executions R, reset processes terminate, eventually lead-
ing to no configuration conflicts.

Proof Sketch. Suppose that R’s starting system state does include a detection (line 8),
does not include a conflict, i.e., ∃pi, pj ∈ P : (configi[i] = ⊥) ∨ (configi[i] 6=
configi[j]) ∨ (configi[i] 6= configj [j]) or there is a message, mi,j , in the commu-
nication channel from pi to pj , such that the field (mi,j .config[k] = ⊥) : pk ∈
FDi[i] ∨ (mi,j .config 6= configi[i]), where both pi and pj are active processors. We
use Claims 3 and 4 to show that in all of these cases, eventually ∀pi ∈ P : configi[i] ∈

9

{⊥,FDi[i]} before using Claim 5 to show that eventually there are no configuration
conflicts. Claims 3 and 4 consider the values in the field config that are either held by
an active processor pi ∈ P or in its outgoing communication channel to another active
processor pj ∈ P . We define the set S = {Si ∪ S outi}pi∈P to be the set of all these
values, where Si = {configi[j]}pj∈FDi[i] and S outi = {mi,j .config}pj∈FDi[i].

Claim 3 Suppose that inR’s starting system state, there are processors pi, pj ∈ P that
are active in R, for which |S \ {⊥,]}| > 1.
(1) ∃S′ ⊆ S : S′ ∈ {{configi[i], configi[j]}, {configi[i],mi,j .config}} implies that
eventually the system reaches a state in which configi[i] ∈ {⊥,FDi[i]} holds.
(2) ∃S′ ⊆ S : S′ ∈ {{configi[i], configj [j]}} implies that eventually the system reaches
a state in which configi[i] ∈ {⊥,FDi[i]} or configj [j] ∈ {⊥,FDi[i]} holds.

Claim 4 Suppose that configi[i] ∈ {⊥,FDi[i]} : pi ∈ P in R’s starting sys-
tem state. (1) For any system state c ∈ R : configi[i] ∈ {⊥,FDi[i]}, and (2)
R = R′ ◦ R′′ has a suffix, R′′, such that ∀c′′ ∈ R′′,∀pi, pj that are active in
R : ({mi,j .config, configj [i], configj [j]} \ {⊥,FDi[i]}) = ∅.

Claim 5 Suppose for any two active pi, pj ∈ P , we have that
({configi[i], configj [i],mi,j .config}\{⊥,FDi[i]}) = ∅. Eventually configi[i] = FDi[i].

Lemma 6 Let R be an admissible execution (wrt the participant sets) of Algorithm 1.
Let n be a configuration replacement notification in R. Eventually n leaves the system.

Proof Sketch. We assume, towards a contradiction, that notification n never leaves the
system and it has a maximal lexical value among all the notifications in R. We begin
by assuming that all of R’s notifications appear in its starting state before removing
this assumption. We use the fact that only lines 15 to 16 change the notifications and
by that we show the non-decrease property of their lexical values. A contradiction is
achieved by showing that the following invariants hold. Suppose that prpi[i] = n holds
in every system state c′ ∈ R. Eventually the system reaches a state c′′ ∈ R, such
that for any pj ∈ P that is an active participant in R, it holds that: (1) prpj [i] = n
and FDj [i] = FDi. Moreover, prpj [j] = n and FDj [j] = FDi in c′′ eventually, (2)
echoi[j].prp = n, echoi[j].part = FDi[i].part and prpi[j] = n in c′′, (3) alli[i] = true
in c′′. (4) allj [i] = true in c′′. (5) echoi[j] = (FDi[i].part, prpi[i], alli[i]) in c′′. (6)
pi ∈ allSeenj in c′′. (7) the if-statement condition of line 16 holds in c′′. Note that
there exists a system state c∃n ∈ R in which there are no notifications, because of
invariant (7) there is a step ai that immediately follows c′′ and in which pi for any
n.phase value contradicts the assumption that n is of maximal value or that it never
leave the system. We complete the proof by showing that even in executions in which
not all of R’s notifications appear in its starting state, the above eventually holds. To
that end, the proof considers all notifications that appeared in R’s starting state and
shows that they must leave the system eventually because their (continuous) presence
causes noReco() to return false and by that disable the effect of the function estab(set)
(line 6). Once this is true for every active processor in the system, the conditions for
invariants (1) to (7) hold and all notifications leave the system eventually.

10

Algorithm 2: Self-stabilizing Reconfiguration Management; code for processor pi
1 Interfaces: evalConf() returns True/False on whether a reconfiguration is required or not by based on a

user-defined prediction function. The rest of the interfaces are specified in Algorithm 1. noReco() returns True
if a reconfiguration is not taking place, else False. estab(set) initiates the creation of a new configuration based
on the processor set provided. getConfig() returns the current local configuration.

2 Variables: needReconf [] is an array of size at most N , composed of booleans {True, False}, where
needReconfi[j] holds the last value of needReconfj [j] that pi received from pj as a result of exchange
(lines 16 and 17) and needReconf is an alias to needReconfi[i] i.e., of pi’s last reading of evalConf().
Similarly, noMaji[] is an array of booleans of size at most N on whether some trusted processor of pi detects a
majority of members that are active per the reading of line 11. noMaji[j] (for i 6= j) holds the last value of
noMajj [j] that pi received from pj . prevConfig holds pi’s believed previous config.

3 Macros: core() =
⋂

pj∈FDi[i].part FD[j].part;

4 flushFlags() : foreach pj ∈ FD[i] do needReconf [j]← (noMaj[j]← False);
5 Do forever begin
6 if pi ∈ FD[i].part then
7 curConf = getConfig(); needReconf [i]← (noMaj[i]← False);
8 if prevConfig 6∈ {curConf,⊥} then flushFlags();
9 if noReco() = True then

10 prevConfig← curConf ;

11 if |{pj 6∈ curConf ∩ FD[i]}| < (
|curConf|

2 + 1) then noMaj[i]← True;
12 if (noMaj[i] = True) ∧ (|core()| > 1) ∧ (∀pk ∈ core() : noMaj[k] = True) then
13 estab(FD[i].part); flushFlags();
14 else if (needReconf [i]← evalConf(curConf)) ∧

|{pj ∈ curConf ∩ FD[i] : needReconf [j] = True}| > |curConf|
2 then

15 estab(FD[i].part); flushFlags();

16 foreach pj ∈ FD[i].part do send(〈noMaj[i], needReconf [i]〉);

17 Upon receive m from pj do if pi ∈ FD[i].part then 〈noMaj[j], needReconf [j]〉 ← m;

3.2 Reconfiguration Management

The Reconfiguration Management (recMA) layer (Algorithm 2), bears the weight of
initiating (or “triggering”) a reconfiguration when either the majority has been lost, or
when the prediction function evalConf() indicates to a majority of processors that a
reconfiguration is needed to preserve the majority. To achieve this, it uses the estab()
interface of Algorithm 1. In spite of using majorities, the algorithm is generalizable
to other (more complex) quorum systems, while the prediction function evalConf()
(used as a black box) can be either very simple, e.g., asking for reconfiguration once
1/4th of the members appear to have failed, or more complex, based on application cri-
teria or network considerations. More elaborate methods may also be used to define the
set of processors that Algorithm 2 proposes as the new configuration. Our current im-
plementation, aiming at simplicity of presentation, defines the set of trusted participants
of the proposer as the proposed set for the new configuration.
Algorithm description. Each processor executing the algorithm maintains two vari-
ables, noMaj and needReconf . The first stores True/False on whether pi’s FD con-
siders a majority of the configuration members as alive. needReconf stores the out-
come of the last call to the prediction function evalConf(). These two variables are
sent to all participating processors in every iteration of the algorithm and the received
variables are stored for every participating processor. All decisions on whether a recon-
figuration should take place or not, is based on the received values for the two flags.

Algorithm 2 persistently refrains from triggering a reconfiguration if one is already
taking place, by the check of line 9. If a reconfiguration is not taking place, two cases
can force the algorithm to reconfigure.

11

(i) Processor pi sees that a majority of members suggests a reconfiguration. If a major-
ity of active configuration members exists and locally they see that evalConfig() =
True, each propagates needReconf = True. Any such processor, that locally sees a
majority of needReconf = True (lines 14–15), will proceed to propose FDi[i] as the
new configuration (line 15). We note that this will be a delicate reconfiguration.
(ii) Processor pi sees a loss of majority also seen by pi’s core. If a processor pi suspects
that the majority has collapsed, it propagates noMaj = True. Given that FDs are not
required to be always perfect (this is only required by Algorithm 1 to converge to a new
configuration), local information may inaccurately at times present a loss of majority.
In order to prevent unnecessary reconfigurations, we require that a processor considers
a “core” of information from the processors that seem to be regarded active by all the
processors. We thus introduce the notion of the local core as the intersection of the FDs
of participating processors in pi’s FD (line 3). If every processor in pi’s core appears
to have noMaj = True based on pi’s local information (collected via the exchange of
line 17) then a reconfiguration is triggered by pi with FDi[i] as the new configuration
(lines 12–13). The core is required to have size greater than 1 to prevent pi from trig-
gering if it is the only processor of its core. Using the notion of the core, we also place
the following liveness assumption on the FDs.
Majority-supportive core assumption. If a majority (of the configuration) has not col-
lapsed, then in the core of every participant pi, there exists at least one processor that is
known (by pi) to trust this majority in its FD.

In triggering a reconfiguration, Algorithm 2 uses the estab(set) interface with Algo-
rithm 1. In this perspective the two algorithms display modularity as to their workings.
Several processors may trigger reconfiguration simultaneously, but by the correctness
of Algorithm 1 this does not affect the delicate reconfiguration, and by the correctness
of Algorithm 2, a processor can only trigger once when this is needed.
Correctness. Algorithm 2 achieves correctness based on the ability of delicate recon-
figuration in Algorithm 1 to converge to a single configuration even if many proposals
are given. We use the term steady config state to indicate a system state were recSA
has imposed a conflict-free state at least once. We refer to a system state csafe during an
execution Rsafe of Algorithm 2, as one which contains no stale information. We first
show that the algorithm eventually cleans stale information from an initial arbitrary state
(in variables and program counters) after a bounded number of reconfiguration trigger-
ings that may be the result of this arbitrary state. We then proceed to prove that recMA
prevents processors that are already reconfiguring to trigger a new reconfiguration.

Lemma 7 Starting from an arbitrary initial state in an execution R, where stale infor-
mation exists, Algorithm 2 eventually converges to a steady config state, where local
stale information is removed.

Lemma 8 Starting from an Rsafe execution, any call to estab() (lines 13 and 15) re-
lated to a specific event (majority collapse or agreement of majority to change config),
can only cause a one per participant trigger. After the config has been established, no
triggering that relates to this event takes place.

A legal execution R′ of Algorithm 2, refers to an execution composed of conflict-
free states and delicate configurations triggered due to loss of majority of members, or

12

Algorithm 3: Self-stabilizing Joining Mechanism (JoinMec); code for processor pi
1 Interfaces. The algorithm uses following interfaces from Algorithm 1. noReco() returns True if a reconfiguration

is not taking place. participate() makes pi a participant. getConfig() returns the agreed configuration from
Algorithm 1 or⊥ if reconfiguration is taking place. The passQuery() interface to the application, returns a
True/False in response to granting a permission to a joining processor.

2 Variables. FD[] as defined in Algorithm 1. state[] an array of application states, where state[i] represents pi’s
local variables and state[j] the state that pi most recently received from pj . pass[] a boolean array of passes that
pi receives from configuration members.

3 Functions. resetV ars() initializes all variables related to the application based on default values. initV ars()
initializes all variables related to the application based on states exchanged with the configuration members.

4 procedure join() begin
5 foreach pj 6∈ FD do pass[j]← False;
6 do forever begin
7 if pi ∈ FD[i].part then
8 resetV ars();
9 repeat

10 let conf = getConfig();

11 if noReco() ∧ (|{pj : pj ∈ conf ∩ FD[i] ∧ pass[j] = True}| > |conf|
2) then

initV ars(); participate();
12 foreach pj ∈ FD[i] do send(“Join”);
13 until pi ∈ FD[i].part;

14 upon receive (“Join”) from pj ∈ FD \ FD[i].part do begin
15 if pi ∈ config ∧ noReco() = True then send(〈passQuery(), statei〉);

16 upon receive m = 〈pass, state〉 from pj ∈ FD do if pi 6∈ FD[i].part then 〈pass[j], state[j]〉 ← m;

due to the need of a majority of the members to reconfigure. Given the above lemmas,
the proof concludes that a reconfiguration will take place when required and only when
it is necessary, if the majority-supportive core assumption holds. This provides liveness
to the application and leads to the following theorem.

Theorem 9. Let R be an execution of Algorithm 2 starting from an arbitrary system
state. R has an execution suffix R′ which is a legal execution.

3.3 Joining Mechanism (JoinMec)

Every processor that wants to become a participant, uses the snap-stabilizing data-link
protocol (cf. Section 2) so as to avoid introducing stale information before establishing
a connection with the system’s processors. Algorithm 1 enables a joiner to obtain the
agreed config when no reconfiguration is taking place. In spite of eventually acquiring
knowledge of this config via recSA, a processor should only be able to participate
in the computation if the application allows it. In order to sustain the self-stabilization
property, it is also important that a new processor initializes its application-related local
variables to either default values or to the latest values that a majority of the configu-
ration members suggest. The joining protocol, Algorithm 3, illustrates the above and
introduces joiners to the system as participants and not as config members.
Algorithm description. Both non-participants and participants execute the algorithm.
The joiner’s side. Upon a call to the join() procedure, a joiner sets all the entries of its
pass[] array to False (line 5) and resets application-related variables to default values,
(lines 8). The processor then enters a do-forever loop, the contents of which it executes
only while it is not a participant (line 7). Joiners enter an inner loop in which they try
to gather enough support from a majority of configuration members in order to become

13

participants. In every iteration, the joiner sends a “Join” request (line 12) and stores the
responses by any configuration member pj in pass[j], along with the latest application
state that pj had. If a majority of active members has granted a pass = True and there
is no reconfiguration taking place, then application-related variables are initialized and
participate() is called to allow the joining processor to become a participant (line 11).
The participant’s side. A participant only executes the do–forever loop (line 6) but none
of its contents since it always fails the condition of line 7. Participants however respond
to join requests, by checking whether a joining processor has the correct configuration,
and whether a reconfiguration is not taking place, as well as if the application can accept
a new processor (line 15). If the above are satisfied, then the participant sends a pass =
True and its application state, otherwise it responds with False.
Correctness. The proof first considers safety, by establishing that a processor becomes
a participant through JoinMec only while a reconfiguration is not taking place. In the
case of a pending delicate reconfiguration, joining processors running Algorithm 3 can
only wait. In case of brute force reconfiguration, recSA was shown to bypass the Join-
Mec in order to introduce more processors to the configuration. The proof proceeds to
show that eventually a processor will become a participant if the application permits it,
unless it crashes. Theorem 10 summarizes the correctness.

Theorem 10. Given an execution R of Algorithm 3 with an arbitrary initial state, R
has a suffix in which every joining processor p eventually becomes a participant if
the application grants permission. Moreover, p respects the installed configuration and
does not affect a LE as defined by Theorem 9.

4 Applications of the Reconfiguration Scheme

Our self-stabilizing reconfiguration scheme allows applications built for static crash-
prone systems to endure more adverse system dynamics. When a configuration exists
and no reconfiguration is running, applications work in the same way as in their static
version, since they run their service on the configuration set as in the original static set-
ting. A main consideration, however, is functionality during and after reconfiguration.

A general framework for adapting the static algorithm to form a reconfigurable
one, involves developing an interface between the application and the reconfiguration
scheme to adapt the applications structures and data to the new configuration set. We
note that using this framework, the algorithms are suspending, i.e., they do not provide
service during reconfiguration, albeit we believe that it is possible with more elaborate
frameworks and under certain conditions to sustain service even during reconfiguration.
It is an interesting open question whether this is achievable, but in the meanwhile we
refer the reader to [4] for tradeoffs between suspending and non-suspending services.

Due to space limitations (and to focus on presenting the reconfiguration mechanism)
we omit details of how this adaptation is performed and refer the reader to [8]. There, we
show how the self-stabilizing algorithms of [7] can be adapted to be reconfigurable and
prove that the algorithms remain correct and extend their capabilities after this adapta-
tion. Specifically, we present a self-stabilizing counter algorithm that is multipurpose
(e.g., for Paxos ballot numbers, or view identifiers in group communication services).
This forms the basis for virtually synchronous state machine replication (SMR).

14

5 Conclusion

We presented the first self-stabilizing reconfiguration scheme that recovers automati-
cally from transient faults, such as temporal violations of the predefined churn rate or
the unexpected activities of processors and communication channels, using a bounded
amount of local storage and message size. We use a number of bootstrapping techniques
for allowing the system to always recover from arbitrary transient faults, even in cases
where the current configuration includes no active processors. We believe that the pre-
sented techniques provide a generic blueprint for different solutions that are needed in
the area of self-stabilizing high-level communication and synchronization primitives,
which need to deal with processor joins and leaves as well as transient faults.

References
1. M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer. Dynamic atomic storage without con-

sensus. J. ACM, 58(2):7, 2011.
2. N. Alon, H. Attiya, S. Dolev, S. Dubois, M. Potop-Butucaru, S. Tixeuil. Practically stabiliz-

ing SWMR atomic memory in message-passing systems. J. Comp. Syst. Sci., 81(4):692–701.
3. H. Attiya, H. C. Chung, F. Ellen, S. Kumar, and J. L. Welch. Simulating a shared register in

an asynchronous system that never stops changing. In Proc. of DISC 2015, pp. 75–91.
4. K. Birman, D. Malkhi, and R. van Renesse. Virtually synchronous methodology for dynamic

service replication. Technical Report MSR-TR-2010-151, Microsoft Research, 2010.
5. P. Blanchard, S. Dolev, J. Beauquier, and S. Delaët. Practically self-stabilizing paxos repli-

cated state-machine. In Proc. of NETYS 2014, pp. 99–121.
6. S. Dolev. Self-stabilization. The MIT press, 2000.
7. S. Dolev, C. Georgiou, I. Marcoullis, and E. M. Schiller. Self-stabilizing virtual synchrony.

In Proc. of SSS 2015, pp. 248–264.
8. S. Dolev, C. Georgiou, I. Marcoullis, and E. M. Schiller. Self-stabilizing reconfiguration.

CoRR, abs/1606.00195, 2016.
9. S. Dolev, A. Hanemann, E. M. Schiller, and S. Sharma. Self-stabilizing end-to-end commu-

nication in dynamic networks. In Proc. of SSS 2012, pp. 133–147.
10. S. Dolev and T. Herman. Superstabilizing protocols for dynamic distributed systems.

Chicago J. Theor. Comput. Sci., 1997.
11. S. Dolev, E. Schiller, and J. L. Welch. Random walk for self-stabilizing group communica-

tion in ad hoc networks. IEEE Trans. Mob. Comput., 5(7):893–905, 2006.
12. S. Dolev and N. Tzachar. Empire of colonies: Self-stabilizing and self-organizing distributed

algorithm. Theor. Comput. Sci., 410(6-7):514–532, 2009.
13. E. Gafni and D. Malkhi. Elastic configuration maintenance via a parsimonious speculating

snapshot solution. In Proc. of DISC 2015, pp. 140–153.
14. S. Gilbert, N. A. Lynch, and A. A. Shvartsman. Rambo: a robust, reconfigurable atomic

memory service for dynamic networks. Distributed Computing, 23(4):225–272, 2010.
15. L. Jehl, R. Vitenberg, and H. Meling. Smartmerge: A new approach to reconfiguration for

atomic storage. In Proc. of DISC 2015, pp. 154–169.
16. L. Lamport, D. Malkhi, and L. Zhou. Reconfiguring a state machine. SIGACT News,

41(1):63–73, 2010.
17. P. M. Musial, N. C. Nicolaou, and A. A. Shvartsman. Implementing distributed shared mem-

ory for dynamic networks. Commun. ACM, 57(6):88–98, 2014.
18. A. Spiegelman, I. Keidar, and D. Malkhi. Dynamic reconfiguration: A tutorial. OPODIS’15.
19. M. Vukolic. Quorum Systems: With Applications to Storage and Consensus. Synthesis

Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2012.

15

	Self-Stabilizing Reconfiguration

