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Abstract

The virtual synchrony abstraction was proven to be extremely useful for asynchronous, large-scale,
message-passing distributed systems. Self-stabilizing systems can automatically regain consistency
after the occurrence of transient faults.

We present the first practically-self-stabilizing virtual synchrony algorithm that uses a new counter
algorithm that establishes an efficient practically unbounded counter, which in turn can be directly
used for emulating a self-stabilizing Multiple-Writer Multiple-Reader (MWMR). Other self-stabilizing
services include membership, multicast, and replicated state machine (RSM) emulation. As we base
the latter on virtual synchrony, rather than consensus, the system can progress in more extreme
asynchronous executions than consensus-based RSM emulations.

1 Introduction

Virtual Synchrony (VS) is an important property provided by several Group Communication Systems
(GCSs) that has proved to be valuable in the scope of fault-tolerant distributed systems where communi-
cating processors are organized in process groups with changing membership [5]. During the computation,
groups change allowing an outside observer to track the history (and order) of the groups, as well as the
messages exchanged within each group. The VS property guarantees that any two processors that both
participate in two consecutive such groups, should deliver the same messages in their respective group.
Systems that support the VS abstraction are designed to operate in the presence of fail-stop failures of
a minority of the participants. Such a design fits large computer clusters, data-centers and cloud com-
puting, where at any given time some of the processing units are non-operational. Systems that cannot
tolerate such failures degrade their functionality and availability to the degree of unuseful systems.

Group communication systems that realize the VS abstraction provide services, such as group member-
ship and reliable group multicast. The group membership service is responsible for providing the current
group view of the recently live and connected group members, i.e., a processor set and a unique view
identifier, which is a sequence number of the view installation. The reliable group multicast allows the
service clients to exchange messages with the group members as if it was a single communication end-
point with a single network address and to which messages are delivered in an atomic fashion, thus any
message is either delivered to all recently live and connected group members prior to the next message,
or is not delivered to any member. The challenges related to VS consist of the need to maintain atomic
message delivery in the presence of asynchrony and crash failures. VS facilitates the implementation of
a replicated state machine [5] that is more efficient than classical consensus-based implementations that
start every multicast round with an agreement on the set of recently live and connected processors. It is
also usually easier to implement [5].
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Transient faults Transient violations of design assumptions can lead a system to an arbitrary state.
For example, the assumption that error detection ensures the arrival of correct messages and the discarding
of corrupted messages, might be violated since error detection is a probabilistic mechanism that may not
detect a corrupt message. As a result, the message can be regarded as legitimate, driving the system to
an arbitrary state after which, availability and functionality may be damaged forever, requiring human
intervention. In the presence of transient faults, large multicomputer systems providing VS-based services
can prove hard to manage and control. One key problem, not restricted to virtually synchronous systems,
is catering for counters (such as view identifiers) reaching an arbitrary value. How can we deal with the
fact that transient faults may force counters to wrap around to the zero value and violate important system
assumptions and correctness invariants, such as the ordering of events? A self-stabilizing algorithm [13]
can automatically recover from such unexpected failures, possibly as part of after-disaster recovery or
even after benign temporal violations of the assumptions made in the design of the system. To the best
of our knowledge, no stabilizing virtual synchrony solution exists. We tackle this issue in our work.

Practically-self-stabilization A relatively new self-stabilization paradigm is practically-self-
stabilization [1, 7, 16]. Consider an asynchronous system with bounded memory and data link capacity
in which corrupt pieces of data (stale information) exist due to a transient fault. (Recall that transient
faults can result in the appearance of corrupted information, which the system tends to spread and thus
reach an arbitrary state.) These corrupted data may appear unexpectedly at any processor as they lie in
communication links, or may (indefinitely) remain “hidden” in some processor’s local memory until they
are added to the communication links as a response to some other processor’s input. Whilst these pieces
of corrupted data are bounded in number due to the boundedness of the links and local memory, they can
eventually force the system to lose its safety guarantees. Such corrupt information may repeatedly drive
the system to an undesired state of non-functionality. This is true for all systems and self-stabilizing sys-
tems are required to eradicate the presence of all corrupted information. In fact, whenever they appear,
the self-stabilizing system is required to regain consistency and in some sense stabilize. One can consider
this as an adversary with a limited number of chances to interrupt the system, but only itself knows when
it will do this.

In this perspective, self-stabilization, as it was proposed by Dijkstra [12], is not the best design criteria
for asynchronous systems for which we cannot specifically define when stabilization is expected to finish (in
some metric like asynchronous cycles, for example). The newer criterion of practically-stabilizing systems
is closely related to pseudo-self-stabilizing systems [9], as we explain next. Burns, Gouda and Miller [9]
deal with the above challenge by proposing the design criteria of pseudo-self-stabilization, which merely
bounds the number of possible safety violations. Namely, their approach is to abandon Dijkstra’s seminal
proposal [12] to bound the period in which such violations occur (using some metric like asynchronous
cycles). We consider a variation on the design criteria for pseudo-self-stabilization systems that can
address additional challenges that appear when implementing a decentralized shared counter that uses a
constant number of bits.

Self-stabilizing systems can face an additional challenge due to the fact that a single transient fault
can cause the counter to store its maximum possible value and still (it is often the case that) the system
needs to be able to increment the counter for an unbounded number of times. The challenge becomes
greater when there is no elegant way to show that the system can always maintain an order among the
different values of the counter by, say, wrapping to zero in such integer overflow events. Arora, Kulkarni
and Demirbas [2] overcome the challenge of integer overflow by using non-blocking resets in the absence
of faults described [2]. In case faults occur, the system recovery requires a blocking operation, which
performs a distributed global reset. This work considers a design criteria for message passing systems
that perform in a wait-free manner also when recovering from transient faults.

Note that, from the theoretical point of view, systems that take an extraordinary large number of
steps (that accedes the counter maximum value, or even an infinite number of steps) are bound to violate
any ordering constraints. This is because of the asynchronous nature of the studied system, which could
arbitrarily delay a node from taking steps or defer the arrival of a message until such violations occur
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after, say, a counter wraps around to zero. Having practical systems in mind, we consider systems
for which the number of sequential steps that they can take throughout their lifetime is not greater
than an integer that can be represented using a constant number of bits. For example, Dolev, Kat
and Schiller [16] assume that counting from zero to 264 − 1 using sequential steps is not possible in
any practical system and thus consider only a practically infinite period, of 264 sequential steps, that
the system takes when demonstrating that safety is not violated. The design criteria of practically-self-
stabilizing systems [1, 7, 22] requires that there is a bounded number of possible safety violations during
any practically infinite period of the system execution. For such (message passing) systems, we provide
a decentralized shared counter algorithm that performs in a wait-free manner also when recovering from
transient faults.

Contributions We present the first practically-self-stabilizing (or practically-stabilizing) virtual syn-
chrony solution. Specifically:

• We provide a practically-self-stabilizing counter algorithm using bounded memory and communica-
tion bandwidth, where many writers can increment the counter for an unbounded number of times
in the presence of processor crashes and unbounded communication delays. Our counter algorithm
is modular with a simple interface for increasing and reading the counter, as well as providing the
identifier of the processor that has incremented it.

• At the heart of our counter algorithm is the underlying labeling algorithm that extends the label
scheme of Alon et al. [1] to support multiple writers, whilst the algorithm specifies how the processors
exchange their label information in the asynchronous system and how they maintain proper label
bookkeeping so as to “discover” the greatest label and discard all obsolete ones.

• An immediate application of our counter algorithm is a practically-self-stabilizing MWMR register
emulation.

• The practically-self-stabilizing counter algorithm, together with implementations of a practically-
self-stabilizing reliable multicast service and membership service that we propose, are composed to
yield a practically-self-stabilizing coordinator-based Virtual Synchrony solution.

• Our Virtual Synchrony solution yields a practically-self-stabilizing State Machine Replication
(SMR) implementation. As this implementation is based on virtual synchrony rather than con-
sensus, the system can progress in more extreme asynchronous executions than consensus-based
SMR implementations.

Related Work Leslie Lamport was the first to introduce SMR, presenting it as an example in [20].
Schneider [23] gave a more generalized approach to the design and implementation of SMR protocols.
Group communication services can implement SMR by providing reliable multicast that guarantees VS [4].
Birman et al. were the first to present VS and a series of improvements in the efficiency of ordering
protocols [6]. Birman gives a concise account of the evolution of the VS model for SMR in [5].

Research during the last recent decades resulted in an extensive literature on ways to implement
VS and SMR, as well as industrial construction of such systems. A recent research line on stabilizing
versions of replicated state machines [1, 7, 16, 17] obtains self-stabilizing replicated state machines in
shared memory as well as in synchronous and asynchronous message passing systems.

The bounded labeling scheme and the use of practically unbounded sequence numbers proposed
in [1], allow the creation of practically-stabilizing bounded-size solutions to the never-exhausted counter
problem in the restricted case of a single writer. In [7] a practically-self-stabilizing version of Paxos was
developed, which led to a practically-self-stabilizing consensus-based SMR implementation. To this end,
they extended the labeling scheme of [1] to allow for multiple counter writers, since unbounded counters
are required for ballot numbers. Extracting this scheme for other uses does not seem intuitive. We present
a simpler and significantly more communication efficient practically infinite counter that also supports
many writers, where only a pair of labels rather than a vector of labels needs to be communicated. Our
solution is highly modular and can be easily used in any similar setting requiring such counters. We also
note that with [1]’s single writer atomic register emulation, a quorum read of the value could return
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without a value if the writer did not before perform a write to establish a maximal tag. An emulation
based on our multiple-writer version guarantees that reads may always terminate with a value, since our
labeling algorithm continuously maintains a maximal tag.

In what follows, Section 2 presents the system settings and the necessary definitions. Section 3
details the practically-self-stabilizing Labeling Scheme and Increment Counter algorithms. In Section 4
we present the practically-self-stabilizing Virtual Synchrony algorithm and the resulting replicate state
machine emulation. We conclude with Section 5.

2 System Settings and Definitions

We consider an asynchronous message-passing system. The system includes a set P of n communicating
processors; we refer to the processor with identifier i, as pi. At most n/2 − 1 processors may fail by
crashing and these may sometimes be referred to as inactive in contrast to active processors that are not
crashed. We assume that the system runs on top of a stabilizing data-link layer that provides reliable
FIFO communication over unreliable bounded capacity channels as the ones of [14, 15]. The network
topology is of a fully connected graph where every two processors exchange (low-level messages called)
packets to enable a reliable delivery of (high level) messages. When no confusion is possible we use the
term messages for packets.

Communication and data link implementation The communication links have bounded capacity,
so that the number of messages in every given instance is bounded by a constant cap, which is known to
the processors. When processor pi sends a packet, π, to processor pj , the operation send inserts a copy of
π to the FIFO queue that represents the communication channel from pi to pj , while respecting an upper
bound on the number of packets in the channel, possibly omitting the new packet or one of the already
sent packets. When pj receives π from pj , π is dequeued from the queue representing the channel. We
assume that packets can be spontaneously omitted (lost) from the channel, however, a packet that is sent
infinitely often is received infinitely often.

One version of a self-stabilizing FIFO data link implementation that we can use, is based on the
fact that communication links have bounded capacity. Packets are retransmitted until more than the
total capacity acknowledgments arrive; while acknowledgments are sent only when a packet arrives (not
spontaneously) [14, 15]. Over this data-link, the two connected processors can constantly exchange a
“token”. Specifically, the sender (possibly the processor with the highest identifier among the two)
constantly sends packet π1 until it receives enough acknowledgments (more than the capacity). Then, it
constantly sends packet π2, and so on and so forth. This assures that the receiver has received packet
π1 before the sender starts sending packet π2. This can be viewed as a token exchange. We use the
abstraction of the token carrying messages back and forth between any two communication entities. a
heartbeat to (imperfectly) detect whether a processor is active or not; when a processor in no longer
active, the token will not be returned back to the other processor.

Definitions and complexity measures Every processor, pi, executes a program that is a sequence
of (atomic) steps, where a step starts with local computations and ends with a single communication
operation, which is either send or receive of a packet. For ease of description, we assume the interleaving
model, where steps are executed atomically, a single step at any given time. An input event can be either
the receipt of a packet or a periodic timer triggering pi to (re)send. Note that the system is asynchronous
and the rate of the timer is totally unknown.

The state, si, of a node pi consists of the value of all the variables of the node including the set of all
incoming communication channels. The execution of an algorithm step can change the node’s state. The
term (system) configuration is used for a tuple of the form (s1, s2, · · · , sn), where each si is the state of
node pi (including messages in transit to pi). We define an execution (or run) R = c0, a0, c1, a1, . . . as an
alternating sequence of system configurations cx and steps ax, such that each configuration cx+1, except
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Figure 1: An execution satisfying the VS property. The grey boxes indicate a new view installation, and the
example shows four views. View v1 initially with membership {p1, p4, p5}. The reliable multicast reaches all
members of the group. Two new processors p2 and p3 join the group, forming view v2. In this view, p5 crashes
before completing its multicast which is ignored (dashed lines). The new view v3 is formed to exclude p5, and in it,
p1 manages a successful multicast before crashing. The multicast of p3 is reliable and guaranteed to be delivered
to all non-crashed within the view, that is excluding p1 which might or might not have received it (dotted line).
A new view is then formed to encapture the failure of p1.

the initial configuration c0, is obtained from the preceding configuration cx by the execution of the step
ax.

An execution Rp is practically infinite execution if it contains a chain of steps ordered according to
Lamport’s happened-before relation [20] that are longer than 2τ (τ being, for example, 64), namely they
are practically infinite for any given system [16]. Similar to an infinite execution, a processor that fails by
crashing stops taking steps, and any processor that does not crash eventually takes a practically infinite
number of steps. The code of self-stabilizing algorithms reflects the requirement for non-termination in
that it usually consists of a do−forever loop that contains communication operations with the neighbors
and validation that the system is in a consistent state as part of the transition decision. An iteration of
an algorithm formed as a do−forever loop is a complete run of the algorithm starting in the loop’s first
line and ending at the last line, regardless of whether it enters branches. (Note that an iteration may
contain many steps).

We define the system’s task by a set of executions called legal executions (LE) in which the task’s
requirements hold, we use the term safe configuration for any configuration in any execution in LE.
As defined by Dijkstra in [12], an algorithm is self-stabilizing with relation to the task LE when every
(unbounded) execution of the algorithm reaches a safe configuration with relation to the algorithm and the
task. We define the system’s abstract task T by a set of variables (of the processor states) and constraints,
which we call the system requirements, in a way that implies the desired system behavior [13]. Note that
an execution R can satisfy the abstract task and still not belong to LE, because R considers only a
subset of variables, whereas the configurations of executions that are in LE consider every variable in
the processor states and message fields. An algorithm is practically-self-stabilizing (or just practically-
stabilizing) with relation to the task T if in any practically infinite execution has a bounded number of
deviations T [22].

This defines a measure for complexity. The asynchrony of the system makes it hard, if not impossible
to infer anything on stabilization time, since we cannot predict when an element from the corrupt state of
the system will reach a processor, (cf. self-stabilizing solutions that give time complexity in asynchronous
rounds). Based on the above definition of practically-stabilizing algorithms, a bounded number of corrupt
elements that might force the system to deviate from its task even if these may or may not (due to
asynchrony) appear. Whenever a deviation happens, a number of algorithmic operations are required to
satisfy T once again. As a complexity measure, we bound the total of these operations throughout an
execution. These operations differ by algorithm, i.e., it is label creations in the labeling scheme, counter
increments for the counter increment algorithm and view creations in the virtual synchrony algorithm.

The virtual synchrony task uses the notion of a view, a group of processors that perform multicast
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within the group and is uniquely identified, to ensure that any two processors that belong to two views
that are consecutive according to their identifier, deliver identical message sets in these views. The legal
execution of virtual synchrony is defined in terms of the input and output sequences of the system with
the environment. When a majority of processors are continuously active every external input (and only
the external inputs) should be atomically accepted and processed by the majority of the active processors.
The system works in the primary component, i.e., it does not deal with partitions and requires that a
view contains a majority of the system’s processors, i.e., its membership size is always greater than n/2.
Therefore, there is no delivery and processing guarantee in executions in which there is no majority, still
in these executions any delivery and processing is due to a received environment input. Figure 1 is an
example of a virtually synchronous execution.
Notation. Throughout the paper we use the following notation. Let y and y′ be two objects that both
include the field x. We denote (y =x y

′) ≡ (y.x = y′.x).

3 Practically-Self-Stabilizing Labeling Scheme and Counter Al-
gorithm

Many system like the ones performing replication (e.g. GCSs requiring group identifiers, of Paxos imple-
mentations requiring ballot numbers) assume access to an infinite (unbounded) counter. We proceed to
give a practically-stabilizing, practically infinite counter based on a bounded labeling scheme. Note that
by a practically infinite ( or unbounded) counter we imply that a τ -bit counter (e.g., 64-bit) is not truly
infinite (since this is anyway not implementable on hardware), but it is large enough to provide counters
for the lifetime of most conceivable systems when started at 0. We refer the reader to the example pro-
vided by Blanchard et al. [8], where a 64-bit counter initialized at 0 and incremented per nanosecond is
calculated to last for around 500 years, essentially an infinity for most of today’s running systems.

The task of a practically-self-stabilizing labeling scheme is for every processor that takes an infinite
number of steps to reach to a label that is maximal for all active processors in the system. The task
of maintaining a practically infinite counter, is for every processor that takes an infinite yet bounded
number of steps, to eventually be able to monotonically increment the counter from 0 to 2τ . The latter
task depends on the former to provide the maximal label in the system to be used as a sequence number
epoch, so that within the same epoch, the integer sequence number is incremented as a practically infinite
counter. It is implicit that the tasks are performed in the presence of corrupt information that might
exist due to transient faults.

Our solutions are practically infinite, in the following way. A bounded amount of stale information
from the corrupt initial state, may unpredictably corrupt the counter. In such cases, processors are forced
to change their labels and restart their counters. A processor cannot predict whether a corrupt piece of
information exists, or when will it make its appearance as this is essentially the work of asynchrony. Our
solutions guarantee that only a bounded number of labels will need to change, or that only a bounded
number of counter increments will need to take place before we reach to one that is eligible to last its full
2τ length, less the fact that this maximal value is practically unattainable.

We first present and prove the correctness of a practically-stabilizing labeling algorithm, and then
explain how this can be extended to implement practically stabilizing, practically unbounded counters in
Section 3.3.

3.1 Labeling Algorithm for Concurrent Label Creations

3.1.1 Preliminaries

Bounded labeling scheme The bounded labeling scheme of Alon et al. [1] implements an SWMR
register emulation in a message-passing system. The labels (also called epochs) allow the system to
stabilize, since once a label is established, the integer counter related to this label is considered to be
practically infinite, as a 64-bit integer is practically infinite and sufficient for the lifespan of any reasonable
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Algorithm 1: The nextLabel() function; code for pi

1 For any non-empty set X ⊆ D, function pick(d,X) returns d arbitrary elements of X;
input : S = 〈`1, `2 . . . , `k〉 set of k labels.
output : 〈i, newSting, newAntistings〉

2 let newAntistings = {`j .sting : `j ∈ S};
3 newAntistings← newAntistings ∪ pick(k − |newAntistings|, D \ newAntistings);
4 return 〈i, pick(1, D \ (newAntistings ∪ {∪`j∈S`j .Antistings})), newAntistings〉;

system. We extend the labeling scheme of [1] to support multiple writers, by including the epoch creator
(writer) identity to break symmetry, and decide which epoch is the most recent one, even when two or
more creators concurrently create a new label.

Formally defined, we consider the set of integers D = [1, k2 + 1] such that k ∈ N a known
constant to the processors, which we determine in Corollary 3.2. A label (or epoch) is a triple
〈lCreator, sting,Antistings〉, where lCreator is the identity of the processor that established (created)
the label, Antistings ⊂ D with |Antistings| = k, and sting ∈ D. Given two labels `i, `j , we define the re-
lation `i ≺lb `j ≡ (`i.lCreator < `j .lCreator) ∨ (`i.lCreator = `j .lCreator ∧ ((`i.sting ∈ `j .Antistings)
∧ (`j .sting 6∈ `i.Antistings))); we use =lb to say that the labels are identical. Note that the relation
≺lb does not define a total order. For example, when `i =lCreator `j and (`i.sting 6∈ `j .Antistings) and
(`j .sting 6∈ `i.Antisting) these labels are incomparable.

As an example, consider the situation with k = 3, and D = {1, 2, . . . , 10}. Assume the existence of
three labels `1 = 〈i, 2, 〈3, 5, 9〉〉, `2 = 〈i, 1, 〈2, 9, 10〉〉, and `3 = 〈i + 1, 1, 〈3, 5, 9〉〉. In this case, `1 ≺lb `3
and `2 ≺lb `3, since the creator of `3 has a greater identity than the creator of `1 and `2. We can also
see that `1 ≺lb `2, since the sting of `1, namely 2, belongs to the antistings set of `2 (which is 〈2, 9, 10〉)
while the opposite is not true for the sting of `2. This makes `2 “immune” to the sting of `1.

As in [1], we demonstrate that one can still use this labeling scheme as long as it is ensured that
eventually a label greater than all other labels in the system is introduced. We say that a label ` cancels
another label `′, either if they are incomparable or they have the same lCreator but ` is greater than `′

(with respect to sting and Antistings). A label with creator pi is said to belong to pi’s domain.

Creating a largest label Function nextLabel(), Algorithm 1, gets a set of at most k labels as input
and returns a new label that is greater than all of the labels of the input, given that all the input labels
have the same creator i.e., the same lCreator. This last condition is imposed by the labeling algorithm
that calls nextLabel(), as we will see further down with a set of labels from the same processor. It has
the same functionality as the function called Nextb() in [1], but it additionally appends the label creator
to the output. The function essentially composes a new Antistings set from the stings of all the labels
that it receives as input, and chooses a sting that is in none of the Antistings of the input labels. In
this way it ensures that the new label is greater than any of the input. Note that the function takes k
Antistings of k labels that are not necessarily distinct, implying at most k2 distinct integers and thus
the choice of |D| = k2 + 1 allows to always obtain a greater integer as the sting. For the needs of our
labeling scheme, k = 4(n3cap+ 2n2 − 2n) + 1 (Corollary 3.2).

Scheme idea and challenges When all processors are active, the scheme can be viewed as a simple
extension of the one of [1]. Informally speaking, the scheme ensures that each processor pi eventually
“cleans up” the system from obsolete labels of which pi appears to be the creator (for example, such
labels could be present in the system’s initial arbitrary state). Specifically, pi maintains a bounded FIFO
history of such labels that it has recently learned, while communicating with the other processors, and
creates a label greater than all that are in its history; call this pi’s local maximal label. In addition, each
processor seeks to learn the globally maximal label, that is, the label in the system that is the greatest
among the local maximal ones.
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We note here that compared to Alon et al. [1], which only had a single writer upon the failure of
whom there would be no progress thus stabilization would not be the main concern, we have multiple
label creators. If these creators were not allowed to crash then the extension of the scheme would be a
simple exercise. Nevertheless, when some processors can crash the problem becomes incrementally more
difficult as we now explain. The problem lies in cleaning the system of these crashed processors’ labels
since they will not “clean up” their local labels. Each active processor needs to do this itself, indirectly,
without knowing which processor is inactive, i.e., we do not employ any form of failure detection for
this algorithm. To overcome this problem, each processor maintains bounded FIFO histories on labels
appearing to have been created by other processors. These histories eventually accumulate the obsolete
labels of the inactive processors. The reader may already see that maintaining these histories, also creates
another source of possible corrupt labels. We show that even in the presence of (a minority of) inactive
processors, starting from an arbitrary state, the system eventually converges to use a global maximal
label.

Let us explain why obsolete labels from inactive processors can create a problem when no one ever
cleans (cancels) them up. Consider a system starting in a state that includes a cycle of labels `1 ≺ `2 ≺
`3 ≺ `1, all of the same creator, say px, where ≺ is a relation between labels. If px is active, it will
eventually learn about these labels and introduce a label greater than them all. But if px is inactive,
the system’s asynchronous nature may cause a repeated cyclic label adoption, especially when px has the
greatest processor identifier, as these identifiers are used to break symmetry. Say that an active processor
learns and adopts `1 as its global maximal label. Then, it learns about `2 and hence adopts it, while
forgetting about `1. Then, learning of `3 it adopts it. Lastly, it learns about `1, and as it is greater than
`3, it adopts `1 once more, as the greatest in the system; this can continue indefinitely. By using the
bounded FIFO histories, such labels will be accumulated in the histories and hence will not be adopted
again, ending this vicious cycle. We now formally present the algorithm.

3.1.2 The Labeling Algorithm

The labeling algorithm (Algorithm 2) specifies how the processors exchange their label information in the
asynchronous system and how they maintain proper label bookkeeping so as to “discover” their greatest
label and cancel all obsolete ones. Specifically, we define the abstract task of the algorithm as one that
lets every node to maintain a variable that holds the local maximal label. We require that, after the
recovery period and as long as there are no calls to nextLabel() (Algorithm 1), these local maximal label
actually refer to the same global maximal label.

As we will be using pairs of labels with the same label creator, for the ease of presentation, we will
be referring to these two variables as the (label) pair. The first label in a pair is called ml. The second
label is called cl and it is either ⊥, or equal to a label that cancels ml (i.e., cl indicates whether ml is an
obsolete label or not).

The processor state Each processor stores an array of label pairs, maxi[n], where maxi[i] refers to pi’s
maximal label pair and maxi[j] considers the most recent value that pi knows about pj ’s pair. Processor
pi also stores the pairs of the most-recently-used labels in the array of queues storedLabelsi[n]. The j-th
entry refers to the queue with pairs from pj ’s domain, i.e., that were created by pj . The algorithm makes
sure that storedLabelsi[j] includes only label pairs with unique ml from pj ’s domain and that at most
one of them is legitimate, i.e., not canceled. Queues storedLabelsi[j] for i 6= j, have size n + m whilst
storedLabelsi[i] has size 2(mn+ 2n2− 2n) where m is the system’s total link capacity in labels. We later
show (c.f. Lemmas 3.3 and 3.4) that these queue sizes are sufficient to prevent overflows of useful labels.

High level description Each pair of processors periodically exchange their maximal label pairs and
the maximal label pair that they know of the recipient. Upon receipt of such a label pair couple, the
receiving processor starts by checking the integrity of its data structures and upon finding a corruption
it flushes its label history queues. It then moves to see whether the two labels that it received can cancel
any of its non-canceled labels and if the received labels themselves can be canceled by labels that it has
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Algorithm 2: Practically-Self-Stabilizing Labeling Algorithm; code for pi
1 Variables:
2 max[n] of 〈ml, cl〉: max[i] is pi’s largest label pair, max[j] refers to pj ’s label pair (canceled when max[j].cl 6= ⊥).
3 storedLabels[n]: an array of queues of the most-recently-used label pairs, where storedLabels[j] holds the labels created by
pj ∈ P . For pj ∈ (P \ {pi}), storedLabels[j]’s queue size is limited to (n+m) w.r.t. label pairs, where n = |P | is the
number of processors in the system and m is the maximum number of label pairs that can be in transit in the system. The
storedLabels[i]’s queue size is limited to (n(n2 +m)) pairs. The operator add(`) adds lp to the front of the queue, and
emptyAllQueues() clears all storedLabels[] queues. We use lp.remove() for removing the record lp ∈ storedLabels[]. Note
that an element is brought to the queue front every time this element is accessed in the queue.

4 Notation: Let y and y′ be two records that include the field x. We denote y =x y
′ ≡ (y.x = y′.x)

5 Macros:
6 legit(lp) = (lp = 〈•,⊥〉)
7 labels(lp) : return (storedLabels[lp.ml.lCreator])

8 double(j, lp) = (∃lp′ ∈ storedLabels[j] : ((lp 6= lp′) ∧ ((lp =ml lp
′) ∨ (legit(lp) ∧ legit(lp′)))))

9 staleInfo() = (∃pj ∈ P, lp ∈ storedLabels[j] : (lp 6=lCreator j) ∨ double(j, lp))
10 recordDoesntExist(j) = (〈max[j].ml, •〉 /∈ labels(max[j]))

11 notgeq(j, lp) = if (∃lp′ ∈ storedLabels[j] : (lp′.ml 6�lb lp.ml)) then return(lp′.ml) else return(⊥)

12 canceled(lp) = if (∃lp′ ∈ labels(lp) : ((lp′ =ml lp) ∧ ¬legit(lp′))) then return(lp′) else return(〈⊥,⊥〉)
13 needsUpdate(j) = (¬legit(max[j]) ∧ 〈max[j].ml,⊥〉 ∈ labels(max[j]))
14 legitLabels() = {max[j].ml : ∃pj ∈ P ∧ legit(max[j])}
15 useOwnLabel() = if (∃lp ∈ storedLabels[i] : legit(lp)) then max[i] ← lp else storedLabels[i].add(max[i] ←

〈nextLabel(),⊥〉) // For every lp ∈ storedLabels[i], we pass in nextLabel() both lp.ml and lp.cl.
16 upon transmitReady(pj ∈ P \ {pi}) do transmit(〈max[i],max[j]〉)
17 upon receive(〈sentMax, lastSent〉) from pj
18 begin
19 max[j] ← sentMax;
20 if ¬legit(lastSent) ∧ max[i] =ml lastSent then max[i]← lastSent;
21 if staleInfo() then storedLabels.emptyAllQueues();
22 foreach pj ∈ P : recordDoesntExist(j) do labels(max[j]).add(max[j]);
23 foreach pj ∈ P, lp ∈ storedLabels[j] : (legit(lp) ∧ (notgeq(j, lp) 6= ⊥)) do lp.cl← notgeq(j, lp);
24 foreach pj ∈ P, lp ∈ labels(max[j]) : (¬legit(max[j]) ∧ (max[j] =ml lp) ∧ legit(lp)) do lp← max[j];
25 foreach pj ∈ P, lp ∈ storedLabels[j] : double(j, lp) do lp.remove();
26 foreach pj ∈ P : (legit(max[j]) ∧ (canceled(max[j]) 6= 〈⊥,⊥〉)) do max[j]← canceled(max[j]);
27 if legitLabels() 6= ∅ then max[i]← 〈max≺lb

(legitLabels()),⊥〉;
28 else useOwnLabel();

in its history. Upon finishing this label housekeeping, it tries to find its local maximal view, first among
the non-cancelled labels that other processors report as maximal, and if not such exist among its own
labels. In latter case, if no such label exists, it generates a new one with a call to Algorithm 1 and using
its own label queue as input. At the end of the iteration the processor is guaranteed to have a maximal
label, and continues to receive new label pair couples from other processors.

Information exchange between processors Processor pi takes a step whenever it receives two pairs
〈sentMax, lastSent〉 from some other processor. We note that in a legal execution pj ’s pair includes
both sentMax, which refers to pj ’s maximal label pair maxj [j], and lastSent, which refers to a recent
label pair that pj received from pi about pi’s maximal label, maxj [i] (line 16).

Whenever a processor pj sends a pair 〈sentMax, lastSent〉 to pi, this processor stores the value of the
arriving sentMax field in maxi[j] (line 19). However, pj may have local knowledge of a label from pi’s
domain that cancels pi’s maximal label, ml, of the last received sentMax from pi to pj that was stored
in maxj [i]. Then pj needs to communicate this canceling label in its next communication to pi. To this
end, pj assigns this canceling label to maxj [i].cl which stops being ⊥. Then pj transmits maxj [i] to pi as
a lastSent label pair, and this satisfies lastSent.cl 6�lb lastSent.ml, i.e., lastSent.cl is either greater or
incomparable to lastSent.ml. This makes lastSent illegitimate and in case this still refers to pi’s current
maximal label, pi must cancel maxi[i] by assigning it with lastSent (and thus maxi[i].cl = lastSent.cl)
as done in line 20. Processor pi then processes the two pairs received (lines 21 to 28).

Label processing Processor pi takes a step whenever it receives a new pair message 〈sentMax,
lastSent〉 from processor pj (line 17). Each such step starts by removing stale information, i.e., mis-
placed or doubly represented labels (line 9). In the case that stale information exists, the algorithm
empties the entire label storage. Processor pi then tests whether the arriving two pairs are already in-
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cluded in the label storage (storedLabels[]), otherwise it includes them (line 22). The algorithm continues
to see whether, based on the new pairs added to the label storage, it is possible to cancel a non-canceled
label pair (which may well be the newly added pair). In this case, the algorithm updates the canceling
field of any label pair lp (line 23) with the canceling label of a label pair lp′ such that lp′.ml 6�lb lp.ml
(line 23). It is implied that since the two pairs belong to the same storage queue, they have the same
processor as creator. The algorithm then checks whether any pair of the maxi[] array can cause cancel-
ing to a record in the label storage (line 24), and also line 25 removes any canceled records that share
the same creator identifier. The test also considers the case in which the above update may cancel any
arriving label in max[j] and updates this entry accordingly based on stored pairs (line 26).

After this series of tests and updates, the algorithm is ready to decide upon a maximal label based on
its local information. This is the �lb-greatest legit label pair among all the ones in maxi[] with respect to
their ml label (line 27). When no such legit label exists, pi requests a legit label in its own label storage,
storedLabelsi[i], and if one does not exist, will create a new one if needed (line 28). This is done by
passing the labels in the storedLabelsi[i] queue to the nextLabel() function. Note that the returned label
is coupled with a ⊥ as the cl and the resulting label pair is added to both maxi[i] and storedLabeli[i].

3.2 Correctness proof

We are now ready to show the correctness of the algorithm. We begin with a proof overview.

Proof overview The proof considers a execution R of Algorithm 2 that may initiate in an arbitrary
configuration (and include a processor that takes practically infinite number of steps). It starts by
showing some basic facts, such as: (1) stale information is removed, i.e., storedLabelsi[j] includes only
unique copies of pj ’s labels, and at most one legitimate such label (Corollary 3.1), and (2) pi either
adopts or creates the �lb-greatest legitimate local label (Lemma 3.2). The proof then presents bounds
on the number adoption steps (Lemmas 3.3 and 3.4), that define the required queue sizes to avoid label
overflows.

The proof continues to show that active processors can eventually stop adopting or creating labels,
by tackling individual cases where canceled or incomparable label pairs may cause a change of the local
maximal label. We show that such labels eventually disappear from the system (Lemma 3.5) and thus
no new labels are being adopted or created (Lemma 3.6), which then implies the existence of a global
maximal label (Lemma 3.7). Namely, there is a legitimate label `max, such that for any processor pi ∈ P
(that takes a practically infinite number of steps in R), it holds that maxi[i] = `max. Moreover, for
any processor pj ∈ P that is active throughout the execution, it holds that pi’s local maximal (legit)
label pair maxi[i] = `max is the �lb-greatest of all the label pairs in maxi[] and there is no label pair in
storedLabelsi[j] that cancels `max, i.e., ((maxi[j].ml �lb `max.ml)∧ ((∀` ∈ storedLabelsi[j] : legit(`))⇒
(`.ml �lb `max.ml))). We then demonstrate that, when starting from an initial arbitrary configuration,
the system eventually reaches a configuration in which there is a global maximal label (Theorem 3.3).
Before we present the proof in detail, we provide some helpful definitions and notation.

Definitions We define H to be the set of all label pairs that can be in transit in the system, with
|H| = m. So in an arbitrary configuration, there can be up to m corrupted label pairs in the system’s
links. We also denote Hi,j as the set of label pairs that are in transit from processor pi to processor pj .
The number of label pairs in Hi,j obeys the link capacity bound. Recall that the data structures used
(e.g., maxi[], storedLabelsi[], etc) store label pairs. For convenience of presentation and when clear from
the context, we may refer to the ml part of the label pair as “the label”. Note that in this algorithm, we
consider an iteration as the execution of lines 17–28, i.e., the receive action.

3.2.1 No stale information

Lemma 3.1 says that the predicate staleInfo() (line 9) can only hold during the first execution of the
receive() event (line 17).
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Lemma 3.1 Let pi ∈ P be a processor for which ¬staleInfoi() (line 9) does not hold during the k-th
step in R that includes the complete execution of the receive() event (from line 17 to 28). Then k = 1.

Proof. Since R starts in an arbitrary configuration, there could be a queue in storedLabelsi[] that
holds two label records from the same creator, a label that is not stored according to its creator iden-
tifier, or more than one legitimate label. Therefore, staleInfoi() might hold during the first execution
of the receive() event. When this is the case, the storedLabelsi[] structure is emptied (line 21). Dur-
ing that receive() event execution (and any event execution after this), pi adds records to a queue in
storedLabelsi[] (according to the creator identifier) only after checking whether recordDoesntExist()
holds (line 22).

Any other access to storedLabelsi[] merely updates cancelations or removes duplicates. Namely,
canceling labels that are not the �lb-greatest among the ones that share the same creating processors
(line 23) and canceling records that were canceled by other processors (line 24), as well as removing
legitimate records that share the same ml (line 25). It is, therefore, clear that in any subsequent iteration
of receive() (after the first), staleInfo() cannot hold. �

Lemma 3.1 along with the lines 9 and 26 of the Algorithm, imply Corollary 3.1.

Corollary 3.1 Consider a suffix R′ of execution R that starts after the execution of a receive() event.
Then the following hold throughout R′: (i) ∀pi, pj ∈ P , the state of pi encodes at most one legitimate label,
`j =lCreator j and (ii) `j can only appear in storedLabelsi[j] and maxi[] but not in storedLabelsi[k] :
k 6= j.

3.2.2 Local �lb-greatest legitimate local label

Lemma 3.2 considers processors for which staleInfo() (line 9) does not hold. Note that ¬staleInfo()
holds at any time after the first step that includes the receive() event (Lemma 3.1). Lemma 3.2 shows
that pi either adopts or creates the �lb-greatest legitimate local label pair and stores it in maxi[i].

Lemma 3.2 Let pi ∈ P be a processor such that ¬staleInfoi() (line 9), and Lpre(i) = {maxi[j].ml :
∃pj ∈ P ∧ legit(maxi[j]) ∧ (∃〈maxi[j].ml, x〉 ∈ (labels(maxi[j]) \ {maxi[j]}) ⇒ (x = ⊥))} be the set of
maxi[]’s labels that, before pi executes lines 21 to 28, are legitimate both in maxi[] and in storedLabelsi[]’s
queues. Let Lpost(i) = {maxi[j].ml : ∃pj ∈ P ∧ legit(maxi[j])} and 〈`,⊥〉 be the value of maxi[i]
immediately after pi executes lines 21 to 28. The label 〈`,⊥〉 is the �lb-greatest legitimate label in Lpost(i).
Moreover, suppose that Lpre(i) has a �lb-greatest legitimate label pair, then that label pair is 〈`,⊥〉.

Proof. 〈`,⊥〉 is the �lb-greatest legitimate label pair in Lpost(i). Suppose that imme-
diately before line 27, we have that legitLabelsi() 6= ∅, where legitLabelsi() = {maxi[j].ml : ∃pj ∈
P ∧ legit(maxi[j])} (line 14). Note that in this case Lpost(i) = legitLabelsi(). By the definition of
�lb-greatest legitimate label pair and line 27, maxi[i] = 〈`,⊥〉 is the �lb-greatest legitimate label pair in
Lpost(i). Suppose that legitLabelsi() = ∅ immediately before line 27, i.e., there are no legitimate labels in
{maxi[j] : ∃pj ∈ P}. By the definition of �lb-greatest legitimate label pair and line 15, maxi[i] = 〈`,⊥〉
is the �lb-greatest legitimate label pair in Lpost(i).
Suppose that rec = 〈`′,⊥〉 is a �lb-greatest legitimate label pair in Lpre(i), then ` = `′. We
show that the record rec is not modified inmaxi[] until the end of the execution of lines 21 to 28. Moreover,
the records that are modified in maxi[], are not included in Lpre(i) (it is canceled in storedLabelsi[]) and
no records in maxi[] become legitimate. Therefore, rec is also the �lb-greatest legitimate label pair in
Lpost(i), and thus, ` = `′.

Since we assume that staleInfoi() does not hold, line 21 does not modify rec. Lines 22, 23 and 25
might add, modify, and respectively, remove storedLabelsi’s records, but it does not modify maxi[]. Since
rec is not canceled in storedLabelsi[] and the �lb-greatest legitimate label pair in maxi[], the predicate
(legit(max[j]) ∧ notgeq(j)) does not hold and line 23 does not modify rec. Moreover, the records in
maxi[], for which that predicate holds, become illegitimate. �
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3.2.3 Bounding the number of labels

Lemmas 3.3 and 3.4 present bounds on the number of adoption steps. These are n + m for labels by
labels that become inactive in any point in R and (mn + 2n2 − 2n) for any active processor. Following
the above, choosing the queue sizes as n + m for storedLabelsi[j] if i 6= j, and 2(nm + 2n2 − 2n) + 1
for storedLabelsi[i] is sufficient to prevent overflows given that m is the system’s total link capacity in
labels.

Maximum number of label adoptions in the absence of creations Suppose that there exists
a processor, pj , that has stopped adding labels to the system (the else part of line 28), say, because it
became inactive (crashed), or it names a maximal label that is the �lb-greatest label pair among all the
ones that the network ever delivers to pj . Lemma 3.3 bounds the number of labels from pj ’s domain that
any processor pi ∈ P adopts in R.

Lemma 3.3 Let pi, pj ∈ P , be two processors. Suppose that pj has stopped adding labels to the system
configuration (the else part of line 28), and sending (line 16) these labels during R. Processor pi adopts
(line 27) at most (n+m) labels, `j : (`j =lCreator j), from pj’s unknown domain (`j /∈ labelsi(`j)) where
m is the maximum number of label pairs that can be in transit in the system.

Proof. Let pk ∈ P . At any time (after the first step in R) processor pk’s state encodes at most one
legitimate label, `j , for which `j =lCreator j (Corollary 3.1). Whenever pi adopts a new label `j from
pj ’s domain (line 27) such that `j : (`j =lCreator j), this implies that `j is the only legitimate label pair
in storedLabelsi[j]. Since `j was not transmitted by pj before it was adopted, `j must come from pk’s
state delivered by a transmit event (line 16) or delivered via the network as part of the set of labels that
existed in the initial arbitrary state. The bound holds since there are n processors, such as pk, and m
bounds the number of labels in transit. Moreover, no other processor can create label pairs from the
domain of pj . �

Maximum number of label creations Lemma 3.4 shows a bound on the number of adoption steps
that does not depend on whether the labels are from the domain of an active or (eventually) inactive
processor.

Lemma 3.4 Let pi ∈ P and Li = `i0 , `i1 , . . . be the sequence of legitimate labels, `ik =lCreator i, from
pi’s domain, which pi stores in maxi[i] through the reception (line 17) or creation of labels (line 28),
where k ∈ N. It holds that |Li| ≤ n(n2 +m).

Proof. Let Li,j = `i0,j , `i1,j , . . . be the sequence of legitimate labels that pi stores in maxi[j] during R
and Ci,j = `ci0,j , `

c
i1,j

, . . . be the sequence of legitimate labels that pi receives from processor pj ’s domain.
We consider the following cases in which pi stores L’s values in maxi[i].
(1) When `ik = `j0,j′ , where pj,pj′ ∈ P and k ∈ N. This case considers the situation in which maxi[i]
stores a label that appeared inmaxj [j

′] at the (arbitrary) starting configuration, (i.e. `j0,j′ ∈ Lj,j′). There
are at most n(n− 1) such legitimate label values from pi’s domain, namely n− 1 arrays maxj [] of size n.
(2) When `ik = `jk′ ,j′ = `cj0,j′ , where pj,pj′ ∈ P, k,k′ ∈ N and `jk′ ,j′ 6= `jk′ ,j. This case considers

the situation in which maxi[i] stores a label that appeared in the communication channel between pj
and pj′ at the (arbitrary) starting configuration, (i.e. `cj0,j′ ∈ Cj,j′) and appeared in maxj [j

′] before
pj communicated this to pi. There are at most m such values, i.e., as many as the capacity of the
communication links in labels, namely |H|.
(3) When `ik is the return value of nextLabel() (the else part of line 28). Processor
pi aims at adopting the �lb-greatest legitimate label pair that is stored in maxi[], whenever such exists
(line 27). Otherwise, pi uses a label from its domain; either one that is the �lb-greatest legit label pair
among the ones in storedLabelsi[i], whenever such exists, or the returned value of nextLabel() (line 28).

The latter case (the else part of line 28) refers to labels, `ik , that pi stores in maxi[i] only after
checking that there are no legitimate labels stored in maxi[] or storedLabelsi[i]. Note that every time pi
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executes the else part of line 28, pi stores the returned label, `ik , in storedLabelsi[i]. After that, there
are only three events for `ik not to be stored as a legitimate label in storedLabelsi[i]:
(i) execution of line 21, (ii) the network delivers to pi a label, `′, that either cancels `ik (`′.cl 6�lb `ik .ml), or
for which `′.ml 6�lb `ik .ml, and (iii) `ik overflows from storedLabelsi[i] after exceeding the (n(n2 +m)+1)
limit which is the size of the queue.

Note that Lemma 3.1 says that event (i) can occur only once (during pi’s first step). Moreover, only
pi can generate labels that are associated with its domain (in the else part of line 28). Each such label is
�lb-greater-equal than all the ones in storedLabelsi[i] (by the definition of nextLabel() in Algorithm 1).

Event (ii) cannot occur after pi has learned all the labels ` ∈ remoteLabelsi for which
` /∈ storedLabelsi[i], where remoteLabelsi = (((∪pj∈P localLabelsi,j) ∪ H) \ storedLabelsi[i]) and
localLabelsi,j = {`′ : `′ =lCreator i, ∃pj ∈ P : ((`′ ∈ storedLabels[i]) ∨ (∃ pk ∈ P : `′ = maxj [k].ml))}.
During this learning process, pi cancels or updates the cancellation labels in storedLabelsi[i] before adding
a new legitimate label. Thus, this learning process can be seen as moving labels from remoteLabelsi to
storedLabelsi[i] and then keeping at most one legitimate label available in storedLabelsi[i]. Every time
storedLabelsi[i] accumulates a label ` that was unknown to pi, the use of nextLabel() allows it to create
a label `ik that is �lb-greater than any label pair in storedLabelsi[i] and eventually from all the ones in
remoteLabelsi.

Note that remoteLabelsi’s labels must come from the (arbitrary) start of the system, because pi is the
only one that can add a label to the system from its domain and therefore this set cannot increase in size.
These labels include those that are in transit in the system and all those that are unknown to pi but exist
in the maxj [•] or storedLabelsj [i] structures of some other processor pj . By Lemma 3.3 we know that
|storedLabelsj [i]| ≤ n+m for i 6= j. From the three cases of Li labels that we detailed at the beginning
of this proof ((1)–(3)), we can bound the size of remoteLabelsi as follows: for pj ∈ P : j 6= i we have that
|remoteLabelsi| ≤ (n−1)(|max[]|+ |storedLabelsj [i]|)+ |H| = (n−1)(n+(n+m))+m = mn+2n2−2n.
Since pi may respond to each of these labels with a call to nextLabel(), we require that storedLabelsi[i] has
size 2|remoteLabelsi|+1 label pairs in order to be able to accommodate all the labels from |remoteLabelsi|
and the ones created in response to these, plus the current greatest. Thus, what is suggested by event (ii)
of pi, i.e., receiving labels from remoteLabelsi, stops happening before overflows (event (iii)) occurs, since
storedLabelsi[i] has been chosen to have a size that can accommodate all the labels from remoteLabelsi
and those created by pi as a response to these. This size is 2(mn+2n2−2n)+1 = 2(n3cap+2n2−2n)+1
(since m = n2cap) which is O(n3). �

From the end of the proof of Lemma 3.4, we get Corollary 3.2.

Corollary 3.2 The number k of antistings needed by Algorithm 1 is 2 · (2(n3cap+ 2n2 − 2n) + 1) (twice
the queue size).

3.2.4 Pair diffusion

The proof continues and shows that active processors can eventually stop adopting or creating labels. We
are particularly interested in looking into cases in which there are canceled label pairs and incomparable
ones. We show that they eventually disappear from the system (Lemma 3.5) and thus no new labels
are being adopted or created (Lemma 3.6), which then implies the existence of a global maximal label
(Lemma 3.7).

Lemmas 3.5 and 3.6, as well as Lemma 3.7 and Theorem 3.3 assume the existence of at least one
processor, punknown ∈ P whose identity is unknown, that takes practically infinite number of steps in R.
Suppose that processor pi ∈ P takes a bounded number of steps in R during a period in which punknown
takes a practically infinite number of steps. We say that pi has become inactive (crashed) during that
period and assume that it does not resume to take steps at any later stage of R (in the manner of fail-stop
failures, as in Section 2).

Consider a processor pi ∈ P that takes any number of (bounded or practically infinite) steps in R and
two processors pj , pk ∈ P that take a practically infinite number of steps in R. Given that pj has a label
pair ` as its local maximal, and there exists another label pair `′ such that (`′.ml 6�lb `.ml)∨`′.cl 6�lb `.ml
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Notation Definition Remark

hNamei,j,k {(`j , `k) : `j = maxj [j] ∧ (∃〈`k, •〉 ∈ Hk,j)}
In transit from pk to pj as
sentMax feedback about
maxk[k]

hAcki,j,k {(`j , `k) : `j = maxj [k] ∧ (∃〈•, `k〉 ∈ Hk,j)}
In transit from pk to pj
as lastSent feedback about
maxk[j]

maxi,j,k {(maxj [j],maxk[k])} Local maximal labels of pj
and pk

acki,j,k {(maxj [j],maxk[j])} `j is pj ’s local maximal la-
bel and `k = maxk[j]

storedi,j,k {{maxj [j]} × storedLabelsk[i]}
A label `k in
storedLabelsk[i] that
can cancel `j = maxj [j]

Table 1: The notation used to identify the possible positions of label pairs `j and `k that can cause
canceling as used in Lemmas 3.5 to 3.7 and in Theorem 3.3.

and they have the same creator pi. Algorithm 2 suggests only two possible routes for some label pair `′ to
find its way in the system through pj . Either by pj adopting `′ (line 27), or by creating it as a new label
(the else part of line 28). Note, however, that pj is not allowed to create a label in the name of pi and
since `′ =lCreator i, the only way for `′ to disturb the system is if this is adopted by pj as in line 27. We
use the following definitions for estimating whether there are such label pairs as ` and `′ in the system.

There is a risk for two label pairs from pi’s domain, `j and `k, to cause such a disturbance when either
they cancel one another or when it can be found that one is not greater than the other. Thus, we use
the predicate riski,j,k(`j , `k) = (`j =i `k) ∧ legit(`j) ∧ (notGreater(`j , `k) ∨ canceled(`j , `k)) to estimate
whether pj ’s state encodes a label pair, `j =lCreator i, from pi’s domain that may disturb the system
due to another label, `k, from pi’s domain that pk’s state encodes, where canceled(`j , `k) = (legit(`j) ∧
¬legit(`k) ∧ `j =ml `k) refers to a case in which label `j is canceled by label `k, notGreater(`j , `k) =
(legit(`j) ∧ legit(`k) ∧ `k.ml 6�lb `j .ml) that refers to a case in which label `k is not �lb-greater than `j
and (`j =i `k) ≡ (`j =lCreator `k =lCreator i).

These two label pairs, `j and `k, can be the ones that processors pj and pk name as their local maximal
label, as in maxi,j,k = {(maxj [j],maxk[k])}, or recently received from one another, as in acki,j,k =
{(maxj [j],maxk[j])}. These two cases also appear when considering the communication channel (or
buffers) from pk to pj , as in hNamei,j,k = {(`j , `k) : `j = maxj [j] ∧ (∃〈`k, •〉 ∈ Hk,j)} and hAcki,j,k =
{(`j , `k) : `j = maxj [k]∧(∃〈•, `k〉 ∈ Hk,j)}. We also note the case in which pk stores a label pair that might
disturb the one that pj names as its (local) maximal, as in storedi,j,k = {{maxj [j]} × storedLabelsk[i]}
We define the union of these cases to be the set risk = {(`j , `k) ∈ maxi,j,k ∪ acki,j,k ∪ hNamei,j,k ∪
hAcki,j,k ∪ storedi,j,k : ∃pi, pj , pk ∈ P ∧ stoppedj ∧ stoppedk ∧ riski,j,k(`j , `k)}, where stoppedi = true
when processor pi is inactive (crashed) and false otherwise. The above notation can also be found in
Table 1.

Lemma 3.5 Suppose that there exists at least one processor, punknown ∈ P whose identity is unknown,
that takes practically infinite number of steps in R during a period where pj never adopts labels (line 27),
`j : (`j =lCreator i), from pi’s unknown domain (`j /∈ labelsj(`j)). Then eventually risk = ∅ .

Proof. Suppose this Lemma is false, i.e., the assumptions of this Lemma hold and yet in any configura-
tion c ∈ R, it holds that (`j , `k) ∈ risk 6= ∅. We use risk’s definition to study the different cases. By the
definition of risk, we can assume, without the loss of generality, that pj and pk are alive throughout R.

Claim: If pj and pk are alive throughout R, i.e. stoppedj = stoppedk = False, then risk 6= ∅ ⇐⇒
riski,j,k = True. This means that there exist two label pairs (`j , `k) where `k can force a cancellation
to occur. Then the only way for this two labels to force risk 6= ∅ is if, throughout the execution, `k
never reaches pj .

The above claim is verified by a simple observation of the algorithm. If `k reaches pj then lines 20,
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24 and 26 guarantee a canceling and lines 22 and 23 ensure that these labels are kept canceled inside
storedLabelsj []. The latter is also ensured by the bounds on the labels given in Lemmas 3.3 and 3.4
that do not allow queue overflows. Thus to include these two labels to risk, is to keep `k hidden from
pj throughout R. We perform a case-by-case analysis to show that it is impossible for label `k to be
“hidden” from pj for an infinite number of steps in R.
The case of (`j , `k) ∈ hNamei,j,k. This is the case where `j = maxj [j] and `k is a label in Hk,j
that appears to be maxk[k]. This may also contain such labels from the corrupt state. We note that pj
and pk are alive throughout R. The stabilizing implementation of the data-link ensures that a message
cannot reside in the communication channel during an infinite number of transmit() – receive() events
of the two ends. Thus `k, which may well have only a single instance in the link coming from the initial
corrupt state, will either eventually reach pj or it become lost. In the both cases (the first by the Claim
for the second trivially) the two clashing labels are removed from risk and the result follows.
The case of (`j , `k) ∈ hAcki,j,k. This is the case where `j = maxj [j] and `k is a label in Hk,j that
appears to be maxk[j]. The proof line is exactly the same as the previous case.

This case follows by the same arguments to the case of (`j , `k) ∈ acki,j,k.
The case of (`j , `k) ∈ maxi,j,k. Here the label pairs `j and `k are named by pj and pk as their local
maximal label. We note that pj and pk are alive throughout R. By our self-stabilizing data-links and
by the assumption on the communication that a message sent infinitely often is received infinitely often,
then pk transmits its maxk[k] label infinitely often when executing line 16. This implies that pj receives
`k infinitely often. By the Claim the canceling takes place, and the two labels are eventually removed
from the global observer’s risk set, giving a contradiction.
The case of (`j, `k) ∈ acki,j,k. This is the case case where the labels (`j , `k) belong to
{(maxj [j],maxk[j])}. Since processor pk continuously transmits its label pair in maxk[j] (line 16) the
proof is almost identical to the previous case.
The case of (`j, `k) ∈ storedi,j,k. This case’s proof, follows by similar arguments to the case of

(`j , `k) ∈ maxi,j,k. Namely, pk eventually receives the label pair `j = maxj [j]. The assumption that
riski,j,k(`j , `k) holds implies that one of the tests in lines 23 and 26 will either update storedLabelsk[i],
and respectively, maxk[j] with canceling values. We note that for the latter case we argue that pj
eventually received the canceled label pair in maxk[j], because we assume that pj does not change the
value of maxj [j] throughout R.

By careful and exhaustive examination of all the cases, we have proved that there is no way to to keep
`k hidden from pj throughout R. This is a contradiction to our initial assumption, and thus eventually
risk = ∅. �

These two label pairs, `j and `k, can be the ones that processors pj and pk name as their local maximal
label, as in maxi,j,k = {(maxj [j],maxk[k])}, or recently received from one another, as in acki,j,k =
{(maxj [j],maxk[j])}. These two cases also appear when considering the communication channel (or
buffers) from pk to pj , as in hNamei,j,k = {(`j , `k) : `j = maxj [j] ∧ (∃〈`k, •〉 ∈ Hk,j)} and hAcki,j,k =
{(`j , `k) : `j = maxj [j]∧(∃〈•, `k〉 ∈ Hk,j)}. We also note the case in which pk stores a label pair that might
disturb the one that pj names as its (local) maximal, as in storedi,j,k = {{maxj [j]} × storedLabelsk[i]}.

Lemma 3.6 Suppose that risk = ∅ in every configuration throughout R and that there exists at least one
processor, punknown ∈ P whose identity is unknown, that takes practically infinite number of steps in R.
Then pj never adopts labels (line 27), `j : (`j =lCreator i), from pi’s unknown domain (`j /∈ labelsj(`j)).

Proof. Note that the definition of risk considers almost every possible combination of two label pairs
`j and `k from pi’s domain that are stored by processor pj , and respectively, pk (or in the channels to
them). The only combination that is not considered is (`j , `k) ∈ storedLabelsj [i] × storedLabelsk[i].
However, this combination can indeed reside in the system during a legal execution and it cannot lead
to a disruption for the case of risk = ∅ in every configuration throughout R because before that could
happen, either pj or pk would have to adopt `j , and respectively, `k, which means a contradiction with
the assumption that risk = ∅.

The only way that a label in storedLabels[] can cause a change of the local maximum label and be
communicated to also disrupt the system, is to find its way to max[]. Note that pj cannot create a
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label under pi’s domain (line 28) since the algorithm does not allow this, nor can it adopt a label from
storedLabelsj [i] (by the definition of legitLabels(), line 14). So there is no way for `j to be added to
maxj [j] and thus make risk 6= ∅ through creation or adoption.

On the other hand, we note that there is only one case where pk extracts a label from storedLabelsk[i] :
i 6= k and adds it to maxk[j]. This is when it finds a legit label `j ∈ maxk[j] that can be canceled by
some other label `k in storedLabelsk[i]), line 26. But this is the case of having the label pair (`j , `k) in
storedi,j,k. Our assumption that risk = ∅ implies that storedi,j,k = ∅. This is a contradiction. Thus a
label `k cannot reach maxk[] in order for it to be communicated to pj .

In the same way we can argue for the case of two messages in transit, Hj,k ×Hk,j and that risk = ∅
throughout R. �

Lemma 3.7 Suppose that risk = ∅ in every configuration throughout R and that there exists at least
one processor, punknown ∈ P whose identity is unknown, that takes practically infinite number of steps
in R. There is a legitimate label `max, such that for any processor pi ∈ P (that takes a practically
infinite number of steps in R), it holds that maxi[i] = `max. Moreover, for any processor pj ∈ P
(that takes a practically infinite number of steps in R), it holds that ((maxi[j].ml �lb `max.ml) ∧ ((∀` ∈
storedLabelsi[j] : legit(`))⇒ (`.ml �lb `max.ml))).

Proof. We initially note that the two processors pi, pj that take an infinite number of steps in R will
exchange their local maximal label maxi[i] and maxj [j] an infinite number of times. By the assumption
that risk = ∅, there are no two label pairs in the system that can cause canceling to each other that are
unknown to pi or pj and are still part of maxi[i] or maxi[j]. Hence, any differences in the local maximal
label of the processors must be due to the labels’ lCreator difference.

Since maxi[i] and maxj [j] are continuously exchanged and received, assuming maxi[i].ml ≺lb
maxj [j].ml where the labels are of different label creators, then pi will be led to a receive() event of
〈sentMaxj , lastSentj〉 where maxi[i].ml ≺lb sentMaxj .ml. By line 19, sentMaxj is added to maxi[j]
and since risk = ∅ no action from line 20 to line 26 takes place. Line 27 will then indicate that the great-
est label in maxi[•] is that in maxi[j] which is then adopted by pi as maxi[i], i.e., pi’s local maximal.
The above is true for every pair of processors taking an infinite number of steps in R and so we reach
to the conclusion that eventually all such processors converge to the same `max label, i.e., it holds that
((maxi[j].ml �lb `max.ml) ∧ ((∀` ∈ storedLabelsi[j] : legit(`))⇒ (`.ml �lb `max.ml))). �

3.2.5 Convergence

Theorem 3.3 combines all the previous lemmas to demonstrate that when starting from an arbitrary
starting configuration, the system eventually reaches a configuration in which there is a global maximal
label.

Theorem 3.3 Suppose that there exists at least one processor, punknown ∈ P whose identity is unknown,
that takes practically infinite number of steps in R. Within a bounded number of steps, there is a legitimate
label pair `max, such that for any processor pi ∈ P (that takes a practically infinite number of steps in R),
it holds that pi has maxi[i] = `max. Moreover, for any processor pj ∈ P (that takes a practically infinite
number of steps in R), it holds that ((maxi[j].ml �lb `max.ml) ∧ ((∀` ∈ storedLabelsi[j] : legit(`)) ⇒
(`.ml �lb `max.ml))).

Proof. For any processor in the system, which may take any (bounded or practically infinite) number of
steps in R, we know that there is a bounded number of label pairs, Li = `i0 , `i1 , . . ., that processor pi ∈ P
adds to the system configuration (the else part of line 28), where `ik =lCreator i (Lemma 3.4). Thus, by
the pigeonhole principle we know that, within a bounded number of steps in R, there is a period during
which punknown takes a practically infinite number of steps in R whilst (all processors) pi do not add any
label pair, `ik =lCreator i, to the system configuration (the else part of line 28).

During this practically infinite period (with respect to punknown), in which no label pairs are added
to the system configuration due to the else part of line 28, we know that for any processor pj ∈ P that

16



Variables: A label lbl is extended to the triple 〈lbl, seqn,wid〉 called a counter where seqn, is the sequence number
related to lbl, and wid is the identifier of the creator of this seqn. A counter pair 〈mct, cct〉 extends a label pair.
cct is a canceling counter for mct, such that cct.lbl 6≺lb mct.lbl or cct.lbl = ⊥. We rename structures max[] and
storedLabels[] of Alg. 2 to maxC[] and storedCnts[] that hold counter pairs instead of label pairs. Variable status ∈
{MAX REQUEST,MAX WRITE,COMPLETE}.
Operators: add(ctp) - places a counter pair ctp at the front of a queue. If ctp.mct.lbl already exists in the queue, it
only maintains the instance with the greatest counter w.r.t. ≺ct, placing it at the front of the queue. If one counter
pair is canceled then the canceled copy is retained. We consider an array field as a single sized queue and use add().

Figure 2: Variables and Operators for Counter Increment; code for pi.

takes any number of (bounded or practically infinite) steps in R, and processor pk ∈ P that adopts labels
in R (line 27), `j : (`j =lCreator j), from pj ’s unknown domain (`j /∈ storedLabelsk(j)) it holds that pk
adopts such labels (line 27) only a bounded number times in R (Lemma 3.3). Therefore, we can again
follow the pigeonhole principle and say that there is a period during which punknown takes a practically
infinite number of steps in R whilst neither pi adds a label, `ik =lCreator i, to the system (the else part of
line 28), nor pk adopts labels (line 27), `j : (`j =lCreator j), from pj ’s unknown domain (`j /∈ labelsk(`j)).

We deduce that, when the above is true, then we have reached a configuration in R where risk = ∅
(Lemma 3.5) and remains so throughout R (Lemma 3.6). Lemma 3.7 concludes by proving that, whilst
punknown takes a practically infinite number of steps, all processors (that take practically infinite number
of steps in R) name the same �lb-greatest legitimate label pair which the theorem statement specifies.
Thus no label ` =lCreator j in maxi[•] or in storedLabelsi[j] may satisfy `.ml 6�lb `max.ml. �

3.2.6 Algorithm complexity

The required local memory of a processor comprises of a queue of size (in labels) 2(n3cap + 2n2 − 2n)
that hosts the labels with the processor as a creator (Corollary 3.2). The local state also includes n− 1
queues of size n + n2cap to store labels by other processors, and a single label for the maximal label of
every processor. We conclude that the space complexity is of order O(n3) in labels. Given the number
of possible labels in the system by the same processor is β = n3cap+ 2n2 − 2n, as shown in the proof of
Lemma 3.4, we deduce that the size of a label in bits is O(β log β).

By Theorem 3.3 we can bound the stabilization time based on the number of label creations. Namely,
in an execution with O(n · β) label creations (e.g., up to n processors can create O(β) labels), there is
a practically infinite execution suffix (of size 2τ iterations) where the receipt of a label which starts an
iteration never changes the maximal label of any processor in the system.

3.3 Increment Counter Algorithm

We adjust the labeling algorithm to work with counters, so that our counter increment algorithm is a
stand-alone algorithm. In this subsection, we explain how we can enhance the labeling scheme presented
in the previous subsection to obtain a practically (infinite) self-stabilizing counter increment algorithm.

3.3.1 From labels to counters and to a counter version of Algorithm 2

Counters. To achieve this task, we now need to work with practically unbounded counters. A counter
cnt is a triplet 〈lbl, seqn,wid〉, where lbl is an epoch label as defined in the previous subsection, seqn
is a τ -bit integer sequence number and wid is the identifier of the processor that last incremented the
counter’s sequence number, i.e., wid is the counter writer. Then, given two counters cnti, cntj we define
the relation cnti ≺ct cntj ≡ (cnti.lbl ≺lb cntj .lbl) ∨ ((cnti.lbl = cntj .lbl) ∧ (cnti.seqn < cntj .seqn)) ∨
((cnti.lbl = cntj .lbl)∧ (cnti.seqn = cntj .seqn)∧ (cnti.wid < cntj .wid)). Observe that when the labels of
the two counters are incomparable, the counters are also incomparable.
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// Where macros coincide with Algorithm 2 we do not restate them.

1 Macros:
2 exhausted(ctp) = (ctp.mct.seqn ≥ 2τ )
3 cancelExh(ctp) : ctp.cct← ctp.mct
4 cancelExhMaxC() : foreach pj ∈ P, c ∈ maxC[j] : exhausted(c) do cancelExh(maxC[j]);
5 legit(ctp) = (ctp.cct = ⊥〉)
6 staleCntrInfo() = staleInfo() ∨ (∃pj ∈ P, x ∈ storedCnts[j] : exhausted(x) ∧ legit(x))
7 retCntrQ(ct) : return (storedCnts[ct.lbl.lCreator])
8 retMaxCnt(ct) = return (max≺ct (ct, ct′)) where ct′ ∈ retCntrQ(ct) ∧ (ct =lbl ct

′)
9 legitCnts() = {maxC[j].mct : ∃pj ∈ P ∧ legit(maxC[j])}

10 useOwnCntr() = if (∃cp ∈ storedCnts[i] : legit(lp)) then maxC[i] ← cp else storedCnts[i].add(maxC[i] ←
〈〈nextLabel(), 0, i〉,⊥〉) // For every cp ∈ storedCnts[i], we pass to nextLabel() both cp.mct.lbl and

cp.cct.lbl.
11 getMaxSeq() : return maxwid({maxseqn({ctp : ctp.mct ∈ legitCnts() ∧ maxC[i] =mct.lbl ctp})})
12 initWrite = {〈maxC[i], responseSet, status〉 ← 〈maxC[i](), ∅,MAX WRITE〉; }
13 increment() = {maxC[i]← 〈maxC[i].mct.lbl,maxC[i].mct.seqn + 1, i〉; }
14 correctResponse(A,B) = return ((status = MAX REQUEST ∧ (A,B /∈ {⊥})) ∨ ((status = MAX WRITE) ∧

(〈A,B〉 = 〈⊥,maxCi[i]〉))

Figure 3: Macros for Algorithm 3.

The relation ≺ct defines a total order (as required by practically unbounded counters) for counters
with the same label, thus, only when processors share a globally maximal label. Conceptually, if the
system stabilizes to use a global maximal label, then the pair of the sequence number and the processor
identifier (of this sequence number) can be used as an unbounded counter, as used, for example, in
MWMR register implementations [18, 21].
Structures. We convert the label structures max[] and storedLabels[] of the labeling algorithm into the
structures maxC[] and storedCnts[] that hold counters rather than labels (see Figure 2). Each label can
yield many different counters with different 〈seqn,wid〉. Therefore, in order to avoid increasing the size
of the queues of storedCnts (with respect to the number of elements stored), we only keep the highest
sequence number observed for each label (breaking ties with the wid).

This is encapsulated in the definition of the add() operator (Figure 2 – Operators). In particular, we
define the operator add(ctp) (Fig. 2) to enqueue a counter pair ctp to a queue of storedCnts[n], where in
case a counter with the same label already exists, the following two rules apply: (1) if at least one of the
two counters is canceled we keep a canceled instance, and (2) if both counters are legitimate, we keep the
greatest counter with respect to 〈seqn,wid〉. The counter is placed at the front of the queue. In this way
we allow for labels for which the counters have not been exhausted to be reused. We denote a counter
pair by 〈mct, cct〉, with this being the extension of a label pair 〈ml, cl〉, where cct is a canceling counter
for mct, such that either cct.lbl 6≺lb mct.lbl (i.e., the counter is canceled), or cct.lbl = ⊥.
Exhausted counters. These are the ones satisfying seqn ≥ 2τ , and they are treated in a way similar
to the canceled labels in the labeling algorithm; an exhausted counter mct in a counter pair 〈mct, cct〉 is
canceled, by setting mct.lbl = cct.lbl (i.e., the counter’s own label cancels it) and hence cannot be used
as a local maximal counter in maxCi[i]. This cannot increase the number of labels that are created,
since the initial set of corrupt counters remains the same as the one for labels, for which we have already
produced a proof in Section 3.1.
The enhanced labeling algorithm. Figure 4 presents a standalone version of the labeling algorithm
adjusted for counters. Each processor pi uses the token-based communication to transmit to every other
processor pj its own maximal counter and the one it currently holds for pj in maxCi[j] (line 1). Upon
receipt of such an update from pj , pi first performs canceling of any exhausted counters in storedCnts[]
(line 4), in maxC[] (line 6) and in the received couple of counter pairs (line 5). Having catered for
exhaustion, it then calls maintainCntrs(〈•, •〉) with the received two counter pairs as arguments. This
is essentially a counter version of Algorithm 2. Macros that require some minor adjustments to handle
counters are seen in Figure 3 lines 5 to 10. We also address the need to update counters of maxC[] w.r.t.
seqn and wid based on counters from the storedCnts[] structure and vice versa in lines 19 and 10.
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// Lines 1 and 2 run in the background.

1 upon transmitReady(pj ∈ P \ {pi}) do transmit(〈maxC[i],maxC[j]〉);
2 upon receive(〈sentMax, lastSent〉) from pk do processCntr(sentMax, lastSent, j)

3 procedure processCntr(counter pair sentMax, counter pair lastSent), int k) begin
4 foreach pj ∈ P, ctp ∈ storedCnts[j] : legit(ctp) ∧ exhausted(ctp) do cancelExh(ctp);
5 if (∃ctp′ ∈ 〈sentMax, lastSent〉 : exhausted(ctp′)) then cancelExh(ctp′);
6 cancelExhMaxC(); maintainCntrs(sentMax, lastSent);

7 operator maintainCntrs(counter pair sentMax, counter pair lastSent), int k)
8 begin
9 if sentMax 6= NULL then maxC[k] ← sentMax;

10 if lastSent 6= NULL ∧ ¬legit(lastSent) ∧ maxC[i] =mct.lbl lastSent then maxC[i].add(lastSent);
11 if staleCntrInfo() then storedCnts.emptyAllQueues();
12 foreach pj ∈ P : recordDoesntExist(j) do retCntrQ(maxC[j]).add(maxC[j]);
13 foreach pj ∈ P, cp ∈ storedCnts[j] : (legit(cp) ∧ (notgeq(j, cp) 6= ⊥)) do
14 cp.cct← notgeq(j, cp)

15 foreach pj ∈ P : ((¬legit(maxC[j]) ∨ (cp <mct.seqn maxC[j])) ∧ (maxC[j] =ml cp) ∧ legit(cp) where
cp ∈ retCntrQ(maxC[j]) do cp← maxC[j];

16 foreach pj ∈ P, cp ∈ storedCnts[j] : double(j, cp) do cp.remove();
17 foreach pj ∈ P : (legit(maxC[j]) ∧ (canceled(maxC[j]) 6= 〈⊥,⊥〉)) do
18 maxC[j]← canceled(maxC[j])

19 foreach pj ∈ P, cp ∈) do maxC[j]← getMaxCnt(maxC[j]);
20 if legitCnts() 6= ∅ then maxC[i]← 〈max≺ct (legitCnts()),⊥〉;
21 else useOwnCntr();

Figure 4: The maintainCntrs() operator (code for pi).

We define the operator add(ctp) (Fig. 2) to enqueue a counter pair ctp to a queue of storedCnts[n],
where in case a counter with the same label already exists the following two rules apply: (1) if at least
one of the two counters is cancelled we keep a canceled instance, and (2) if both counters are legitimate,
we keep the greatest counter with respect to 〈seqn,wid〉. The counter is placed at the front of the queue.

3.3.2 Counter Increment Algorithm

Algorithm 3 shows a self-stabilizing counter increment algorithm where multiple processors can increment
the counter. We start with some useful definitions and proceed to describe the algorithm.

Quorums We define a quorum set Q based on processors in P , as a set of processor subsets of P (named
quorums), that ensure a non-empty intersection of every pair of quorums. Namely, for all quorum pairs
Qi, Qj ∈ Q such that Qi, Qj ⊂ P , it must hold that Qi ∩ Qj 6= ∅. This intersection property is useful
to propagate information among servers and exploiting the common intersection without having to write
a value v to all the servers in a system, but only to a single quorum, say Q. If one wants to retrieve
this value, then a call to any of the quorums (not necessarily Q), is expected to return v because there
is least one processor in every quorum that also belongs to Q. In the counter algorithm we exploit the
intersection property to retrieve the currently greatest counter in the system, increment it, and write
it back to the system, i.e., to a quorum therein. Note that majorities form a special case of a quorum
system.

Algorithm description To increment the counter, a processor pi enters status MAX REQUEST (line 2)
and starts sending a request to all other processors, waiting for their maximal counter (via line 8).
Processors receiving this request respond with their current maximal counter and the last sent by pi
(line 12). When such a response is received (line 15), pi adds this to the local counter structures via the
counter bookkeeping algorithm of Figure 4. Once a quorum of responses (line 4) have been processed,
maxC[i] holds the maximal counter that has come to the knowledge of pi about the system’s maximal
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Algorithm 3: Increment Counter; code for pi
1 interface function incrementCounter() begin
2 let 〈responseSet, status〉 ← 〈∅,MAX REQUEST〉;
3 repeat
4 if status = MAX REQUEST ∧ (∃Q ∈ Q : Q ⊆ {responseSet}) then
5 initWrite(); increment()

6 else if status = MAX WRITE ∧ (∃Q ∈ Q : Q ⊆ {responseSet}) then
7 〈status← COMPLETE〉
8 foreach pj ∈ P do send 〈status,maxC[i],maxC[j]〉;
9 until status = COMPLETE;

10 return maxC[i]

11 upon receive of m = 〈subj, sentMax, lastSent〉 from pj begin
12 if (m.subj = MAX REQUEST) then send 〈ACK,maxCi[i],maxCi[j]〉 to pj ;
13 else if (m.subj = MAX WRITE) then
14 processCntr(sentMax, lastSent, j); send 〈ACK,⊥, lastSent〉 to pj ;

15 else if (m.subj = ACK ∧ correctResponse(sentMax, lastSent)) then
16 processCntr(sentMax, lastSent, j); responseSet← j

counter. This counter is then incremented locally and pi enters status MAX WRITE by initiating the
propagation of the incremented counter (line 5), and waiting to gather acknowledgments from a quorum
(the condition of line 6). When the latter condition is satisfied, the function returns the new counter.
This is, in spirit, similar to the two-phase write operation of MWMR register implementations, focusing
on the sequence number rather than on an associated value.

3.3.3 Proof of correctness

Proof outline Initially we prove, by extending the proof of the labeling algorithm, that starting from an
arbitrary configuration the system eventually reaches to a global maximal label (as given in Theorem 3.3),
even in the presence of exhausted counters (Lemma 3.4). By using the intersection property of quorums we
establish that a counter that was written is known by at least one processor in every quorum (Lemma 3.5.
We then combine the two previous lemmas to prove that counters increment monotonically.

Lemma 3.4 In a bounded number of steps of Algorithm 4 every processor pi has counter maxCi[i] = ct
with ct.lbl = `max the globally maximal non-exhausted label.

Proof. For this lemma we refer to the enhanced labeling algorithm for counters (Figure 4). The lemma
proof can be mapped on the arguments proving lemmas Lemma 3.1 to Lemma 3.4 of Algorithm 2.
Specifically, consider a processor pi that has performed a full execution of processCntr() (Fig. 4 line 3)
at least once due to a receive event. This implies a call to maintainCntrs and thus to staleCntrInfo()
(Fig. 4 line 11) which will empty all queues if exhausted non-canceled counters exist. Also there is a call
to cancelExhaustedMaxC() which cancels all counters that are exhausted in maxC[]. By observation
of the code, after a single iteration, there is no local exhausted counter that is not canceled.

Since every counter that is received and is exhausted becomes canceled, and since the arbitrary
counters in transit are bounded, we know that there is no differentiation between exhausted labels that
may cause a counter’s label to be canceled. Namely, the size of the queues of storedCnts[] remain the
same while at the same time provide the guarantees provided by the proof of the labeling algorithm. It
follows from the labeling algorithm correctness and by our cancellation policy on the exhausted counters,
that Theorem 3.3 can be extended to also include the use of counters without any need to locally keep
more counters than there are labels.

We proceed to deduce that, eventually, any processor taking practically infinite number of steps in R
obtains a counter with globally maximal label `max.

�
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For the rest of the proof we refer to line numbers in Algorithm 3.

Lemma 3.5 In an execution where Lemma 3.4 holds, it also holds that ∀Q ∈ Q,∃pj ∈ Q : maxCj [j] =
ct ∧ (ct′ ≺ct ct), where ct′ ∈ {storedCntsk[k′] ∪maxCk[k′] : ct′ =lbl ct}pk,pk′∈P \ {ct}, i.e., ct′ is every
counter in the system with identical label but less than ct w.r.t. seqn or wid and ct is the last counter
increment.

Proof. Observe that upon a quorum write, the new incremented counter ct with the maximal label lb
is propagated (lines 6 and 8) until a quorum of acknowledgments have been received. Upon receiving
such a counter by pi, a processor pj will first add ct to its structures via processCntr() and will then
acknowledge the write. If this is the maximal counter that it has received (there could be concurrent
ones) then the call to processCntr() will also have the following effects: (i) the counter’s seqn and wid
will be updated in the storedCntsj [] structure in the queue of the creator of lb, (ii) maxCj [j]← ct.

Since pi waits for responses by a quorum before it returns, it follows that by the intersection property
of the quorums, the lemma must hold when pi reaches status COMPLETE. �

Theorem 3.6 Given an execution R of the counter increment algorithm in which at least a majority
of processors take a practically infinite number of steps, the algorithm ensures that counters eventually
increment monotonically.

Proof. Consider a configuration c ∈ R′ where R′ is a suffix of R in which Lemma 3.4 holds, and in which
ctmax is the counter which is maximal with respect to ≺ct. There are two cases that the counter may be
incremented.

In the first case, a legal execution, the counter ctmax is only incremented by a call to
incrementCounter(), By Lemma 3.5 any call to incrementCounter() will return the last written max-
imal counter (namely ctmax). When this is incremented giving ct′max then ct′max.seqn = ctmax.seqn+ 1
which is monotonically greater than ct′max and in case of concurrent writes the wid is unique and can
break symmetry enforcing the monotonicity.

The second case arises when ctmax comes from the arbitrary initial state, is not known by a quorum,
and resides in either a local state or is in transit. When ctmax eventually reaches a processor, it becomes
the local maximal and it is propagated either via counter maintenance or in the first stage of a counter
increment when the maximal counters are requested by the writer. In this case the use of ctmax is also
a monotonic increment, and from this point onwards any increment in R′ proceeds monotonically from
ctmax, as described in the previous paragraph. �

3.3.4 Algorithm Complexity

The local memory of a processor implementing the counter increment is not different in order to the la-
beling algorithm’s, since converting to the counter structures only adds an integer (the sequence number).
Hence the space complexity of the algorithm is O(n3) in counters. The upper bound on stabilization time
in the number of counter increments that are required to reach a period of practically infinite counter
increments can be deduced by Theorem 3.6. For some t such that 0 ≤ t ≤ 2τ in an execution with
O(n · β · t) counter increments (recall that β = n3cap+ 2n2 − 2n), there is a practically infinite period of
(2τ ) monotonically increasing counter increments in which the label does not change.

3.3.5 MWMR Register Emulation

Having a practically-self-stabilizing counter increment algorithm, it is not hard to implement a practically-
self-stabilizing MWMR register emulation. Each counter is associated with a value and the counter
increment procedure essentially becomes a write operation: once the maximal counter is found, it is
increased and associated with the new value to be written, which is then communicated to a majority
of processors. The read operation is similar: a processor first queries all processors about the maximum
counter they are aware of. It collects responses from a majority and if there is no maximal counter,
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it returns ⊥ so the processor needs to attempt to read again (i.e., the system hasn’t converged to a
maximal label yet). If a maximal counter exists, it sends this together with the associated value to all
the processors, and once it collects a majority of responses, it returns the counter with the associated
value (the second phase is a required to preserve the consistency of the register (c.f. [3, 18]).

4 Virtually Synchronous Stabilizing Replicated State Machine

Group communication systems (GCSs) that guarantee the virtual synchrony property, essentially suggest
that processes that remain together in consecutive groups (called views) will deliver the same messages
in the desired order [5]. This is particularly suited to maintain a replicated state machine service, where
replicas need to remain consistent, by applying the same changes suggested by the environment’s requests.
A key advantage of multicast services (with virtual synchrony) is the ability to reuse the same view during
many multicast rounds, and which allows every automaton step to require just a single multicast round,
as compared to other more expensive solutions.

GCSs provide the VS property by implementing two main services: a reliable multicast service, and
a membership service to provide the membership set of the view, whilst they also assume access to
unbounded counters to use as unique view identifiers. We combine existing self-stabilizing versions of the
two services (with adaptations where needed), and we use the counter from the previous section to build
the first (to our knowledge) practically self-stabilizing virtually synchronous state machine replication.
While the ideas appear simple, combining the services is not always intuitive, so we first proceed to
a high-level description of the algorithm and the services, and then follow the algorithm with a more
technical description and the correctness proof.

4.1 Preliminaries

The algorithm progresses in state replication by performing multicast rounds, when a view, a tuple
composed of a members set taken from P , and of a unique identifier (ID) that is a counter as defined
in the previous section, is installed. This view must include a primary component (defined formally in
Definition 4.1), namely it must contain a majority of the processors in P , i.e., n/2 + 1. In our version, a
processor, the coordinator, is responsible: (1) to progress the multicast service which we detail later, (2)
to change the view when its failure detector suggests changes to the composition of the view membership.
Therefore, the output of the coordinator’s failure detector defines the set of view members; this helps to
maintain a consistent membership among the group members, despite inaccuracies between the various
failure detectors.

On the other hand, the counter increment algorithm that runs in the background allows the coordina-
tor to draw a counter for use as a view identifier and in this case, the counter’s writer identifier (wid) is
that of the view’s coordinator. This defines a simple interface with the counter algorithm, which provides
an identical output. Pairing the coordinator’s member set with a counter as view identity we obtain a
view. Of course as we will describe later, reaching to a unique coordinator may require issuing several
such view proposals, of which one will prevail. We first suggest a possible implementation of a failure
detector (to provide membership) and of a reliable multicast service over the self-stabilizing FIFO data
link given in Section 2, and then proceed to an algorithm overview.

Definition 4.1 We say that the output of the (local) failure detectors in execution R includes a primary
partition when it includes a supporting majority of processors Pmaj : Pmaj ⊆ P , that (mutually) never
suspect at least one processor, i.e., ∃p` ∈ P for which |Pmaj | > bn/2c and (pi ∈ (Pmaj ∩ FD`)) ⇐⇒
(p` ∈ (Pmaj ∩ FDi)) in every c ∈ R, where FDx returns the set of processors that according to px’s
failure detector are active.

Failure detector We employ the self-stabilizing failure detector of [7] which is implemented as follows.
Every processor p uses the token-based mechanism to implement a heartbeat (see Section 2) with every
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other processor, and maintain a heartbeat integer counter for every other processor q in the system.
Whenever processor p receives the token from processor q over their data link, processor p resets the
counter’s value to zero and increments all the integer counters associated with the other processors by
one, up to a predefined threshold value W . Once the heartbeat counter value of a processor q reaches
W, the failure detector of processor p considers q as inactive. In other words, the failure detector at
processor p considers processor q to be active, if and only if the heartbeat associated with q is strictly
less than W.

As an example, consider a processor p which holds an array of heartbeat counters for processors
pi, pj , pk such that their corresponding values are 〈2, 5,W − 1〉. If pj sends its heartbeat, then p’s array
will be changed to 〈3, 0,W 〉. In this case, pk will be suspected as crashed, and the failure detector reading
will return the set pi, pj as the set of processors considered correct by p.

Note that our virtual synchrony algorithm, employs the same implementation but has weaker re-
quirements than [7] that solve consensus, and thus they resort to a failure detector at least as strong as
Ω [10]. Specifically, in Definition 4.1 we pose the assumption that just a majority of the processors do
not suspect at least one processor of P for sufficiently long time, in order to be able to obtain a long-lived
coordinator. This is different, as we said before, to an eventually perfect failure detector that ensures
that after a certain time, no active processor suspects any other active processor.

Our requirements, on the other hand, are stronger than the weakest failure detector required to
implement atomic registers (when more than a majority of failures are assumed), namely the Σ failure
detector [11], since virtual synchrony is a more difficult task. In particular, whilst the Σ failure detector
eventually outputs a set of only correct processors to correct processors, we require that this set in at least
half of the processors, will contain at least one common processor. In this perspective our failure detector
seems to implement a self-stabilizing version of a slightly stronger failure detector than Σ. It would
certainly be of interest for someone to study what is the weakest failure detector required to achieve
practically-self-stabilizing virtually synchronous state replication, and whether this coincides with our
suggestion.

Reliable multicast implementation The coordinator of the view controls the exchange of messages
(by multicasting) within the view. The coordinator requests, collects and combines input from the group
members, and then it multicasts the updated information. Specifically, when the coordinator decides to
collect inputs, it waits for the token (see Section 2) to arrive from each group participant. Whenever
a token arrives from a participant, the coordinator uses the token to send the request for input to that
participant, and waits the token to return with some input (possibly ⊥, when the participant does not
have a new input). Once the coordinator receives an input from a certain participant with respect to this
multicast invocation, the corresponding token will not carry any new requests to receive input from the
same participant; of course, the tokens continue to move back and forth to sustain the heartbeat-based
failure detector. When all inputs are received, the processor combines them and again uses the token
to carry the updated information. Once this is done, the coordinator can proceed to the next input
collection.

We provide the pseudocode for the practically-stabilizing replicate state machine implementation as
Algorithm 4, a high level description, and proceed to a line-by-line description and correctness analysis.

4.2 Virtual Synchrony Algorithm

4.2.1 High-level algorithm description

Each participant maintains a replica of the state machine and the last processed (composite) message.
Note that we bound the memory used to store the history of the replicated state machine by deciding
to have the (encapsulated influence of the history represented by the) current state of the replicated
state machine. In addition, each participant maintains the last delivered (composite) message to ensure
common reliable multicast, as the coordinator may stop being active prior to ensuring that all members
received a copy of the last multicast message. Whenever a new coordinator is installed, the coordinator
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Algorithm 4: A practically-self-stabilizing automaton replication using virtual synchrony, code for
processor pi
1 Constants: PCE (periodic consistency enforcement) number of rounds between global state check;
2 Interfaces: fetch() next multicast message, apply(state,msg) applies the step msg to state (while producing side effects),
synchState(replica) returns a replica consolidated state, synchMsgs(replica) returns a consolidated array of last
delivered messages, failureDetector() returns a vector of processor pairs 〈pid, crdID〉, inc() returns a counter from the
increment counter algorithm;

3 Variables: rep[n] = 〈view = 〈ID, set〉, status ∈ {Multicast, Propose, Install}, (multicast round number) rnd, (replica)
state, (last delivered messages) msg[n] (to the state machine), (last fetched) input (to the state machine), propV =
〈ID, set〉, (no coordinator alive) noCrd, (recently live and connected component) FD〉 : an array of state replica of the
state machine, where rep[i] refers to the one that processor pi maintains. A local variable FDin stores the
failureDetector() output. FD is an alias for {FDin.pid}, i.e. the set of processors that the failure detector considers as
active. Let crd(j) = {FDin.crdID : FDin.pid = j}, i.e. the id of pj ’s local coordinator, or ⊥ if none.

4 Do forever begin
5 let FDin = failureDetector();
6 let seemCrd = {p` = rep[`].propV.ID.wid ∈ FD : (|rep[`].propV.set| > bn/2c) ∧ (|rep[`].FD| > bn/2c) ∧ (p` ∈

rep[`].propV.set) ∧ (pk ∈ rep[`].propV.set ↔ p` ∈ rep[k].FD) ∧ ((rep[`].status = Multicast) → (rep[`].(view =
propV ) ∧ crd(`) = `)) ∧ ((rep[`].status = Install)→ crd(`) = `)};

7 let valCrd = {p` ∈ seemCrd : (∀pk ∈ seemCrd : rep[k].propV.ID �ct rep[`].propV.ID)};
8 noCrd ← (|valCrd| 6= 1); crdID ← valCrd;
9 if (|FD| > bn/2c) ∧ (((|valCrd| 6= 1) ∧ (|{pk ∈ FD : pi ∈ rep[k].FD ∧ rep[k].noCrd}| > bn/2c)) ∨ ((valCrd =

{pi}) ∧ (FD 6= propV.set) ∧ (|{pk ∈ FD : rep[k].propV = propV }| > bn/2c))) then (status, propV ) ← (Propose,
〈inc(), FD〉);

10 else if (valCrd = {pi}) ∧ (∀ pj ∈ view.set : rep[j].(view, status, rnd) = (view, status, rnd)) ∨ ((status 6=
Multicast) ∧ (∀ pj ∈ propV.set : rep[j].(propV, status) = (propV,Propose)) then

11 if status = Multicast then
12 apply(state,msg); input← fetch();
13 foreach pj ∈ P do if pj ∈ view.set then msg[j]← rep[j].input else msg[j]← ⊥;
14 rnd← rnd+ 1;

15 else if status = Propose then (state, status,msg)← (synchState(rep), Install, synchMsgs(rep));
16 else if status = Install then (view, status, rnd)← (propV,Multicast, 0);

17 else if valCrd = {p`} ∧ ` 6= i ∧ ((rep[`].rnd = 0 ∨ rnd < rep[`].rnd ∨ rep[`].(view 6= propV )) then
18 if rep[`].status = Multicast then
19 if rep[`].state = ⊥ then rep[`].state← state /∗ PCE optimization, line 25 ∗/;
20 rep[i]← rep[`]; apply(state, rep[`].msg); /∗ for the sake of side-effects ∗/
21 input← fetch();

22 else if rep[`].status = Install then rep[i]← rep[`];
23 else if rep[`].status = Propose then (status, propV )← rep[`].(status, propV );

24 let m = rep[i] /∗ sending messages: all to coordinator and coordinator to all ∗/ ;
25 if status = Multicast ∧ rnd(mod PCE) 6= 0 then m.state ← ⊥ /∗ PCE optimization, line 19 ∗/ ;
26 let sendSet = (seemCrd ∪ {pk ∈ propV.set : valCrd = {pi}} ∪ {pk ∈ FD : noCrd ∨ (status = Propose)})
27 foreach pj ∈ sendSet do send(m);

28 Upon message arrival m from pj do rep[j]← m;
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inquires all members (forming a majority) for the most updated state and delivered message. Since at
least one of the members, say pi, participated in the view in which the last completed state machine
transition took place, pi’s information will be recognized as associated with the largest counter, adopted
by the coordinator that will in turn assign the most updated state and available delivered message to all
the current group members, in essence satisfying the virtual synchrony property.

After this, the coordinator, as part of the multicast procedure, will collect inputs received from the
environment before ensuring that all group members apply these inputs to the replica state machine.
Note that the received multicast message consists of input (possibly ⊥) from each of the processors, thus,
the processors need to apply one input at a time, the processors may apply them in an agreed upon
sequential order, say from the input of the first processor to the last. Alternatively, the coordinator may
request one input at a time in a round-robin fashion and multicast it. Finally, to ensure that the system
stabilizes when started in an arbitrary configuration, every so often, the coordinator assigns the state of
its replica to the other members.

If the system reaches a configuration with no coordinator, e.g., due to an arbitrary configuration
that the system starts in, or due to the coordinator’s crash. Each participant detecting the absence if a
coordinator, seeks for potential candidates based on the exchanged information. A processor p regards
a processor q as a candidate, if q is active according to p’s failure detector, and there is a majority of
processors that also think so (all these are based on p’s knowledge, which due to asynchrony might not be
up to date). When there is more than one such candidate, processor p checks whether there is a candidate
that has proposed a view with a highest identifier (i.e., counter) among the candidates. If there is one,
then p considers this to be the coordinator and waits to hear from it (or learn that it is not active).

If there is none such, and if based on its local knowledge there is a majority of processors that also
do not have a coordinator, then processor p acquires a counter from the counter increment algorithm
and proposes a new view, with view ID, the counter, and group membership, the set of processors that
appear active according to its failure detector. As we show, if p receives an “accept” message from
all the processors in the view, then it proceeds to install the view, unless another processor who has
obtained a higher counter does so. In a transition from one view to the next, there can be several
processors attempting to become the coordinator (namely, those who according to their knowledge have
a supporting majority). Still, by exploiting the intersection property of the supporting majorities we
prove that each of these processors will propose a view at most once, and out of these, one view will be
installed (i.e., we do not have never-ending attempts for new views to be installed).

As an aside, we note that GCSs that provide VS often leverage on the system’s ability to preserve
(when possible) the coordinator during view transitions rather than venturing to install a new one, a
certainly more expensive procedure. Our solution naturally follows this approach through our assumption
of a supportive majority (Definition 4.1), where coordinators enjoy the support of a majority of processors
by never being supported throughout a very long period. During such a period, our algorithm persists
on using the same coordinator, even when views change.

4.2.2 Detailed algorithm description

The existence of coordinator p` is in the heart of Algorithm 4. Processors that belong to and accept p`’s
view proposal are called the followers of p`. The algorithm determines the availability of a coordinator
and acts towards the election of a new one when no valid such exists (lines 5 to 9). The pseudocode
details the coordinator-side (lines 10 to 16) and the follower-side (lines 17 to 22) actions. At the end of
each iteration the algorithm, defines how p` and its followers exchange messages (lines 25 to 28).

The processor state and interfaces The state of each processor includes its current view, and
status = {Propose, Install,Multicast}, which refers to usual message multicast operation when in Multicast,
or view establishment rounds in which the coordinator can Propose a new view and proceed to Install it
once all preparations are done (line 3). During multicast rounds, rnd denotes the round number, state
stores the replica, msg[n] is an array that includes the last delivered messages to the state machine,
which is the input fetched by each group member and then aggregated by the coordinator during the
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previous multicast round. During multicast rounds, it holds that propV = view. However, whenever
propV 6= view we consider propV as the newly proposed view and view as the last installed one. Each
processor also uses noCrd and FD to indicate whether it is aware of the absence of a recently active and
connected valid coordinator, and respectively, of the set of processor present in the connected component,
as indicated by its local failure detector. The processors exchange their state via message passing and
store the arriving messages in the replica’s array, rep[n] (line 28), where rep[i].(view, . . ., noCrd) is an
alias to the aforementioned variables and rep[j] refers to the last arriving message from processor pj
containing pj ’s rep[j]. Our presentation also uses subscript k to refer to the content of a variable at
processor pk, e.g., repk[j].view, when referring to the last installed view that processor pk last received
from pj .

Algorithm 4 assumes access to the application’s message queue via fetch(), which returns the next
multicast message, or ⊥ when no such message is available (line 2). It also assumes the availability of the
automaton state transition function, apply(state,msg), which applies the aggregated input array, msg,
to the replica’s state and produces the local side effects. The algorithm also collects the followers’ replica
states and uses synchState(replica) to return the new state. The function failureDetector() provides
access to pi’s failure detector, and the function inc() (counter increment) fetches a new and unique
(view) identifier, ID, that can be totally ordered by �ct and ID.wid is the identity of the processor
that incremented the counter, resulting to the counter value ID (hence view IDs are counters as defined
in Section 3.3). Note that when two processors attempt to concurrently increment the counter, due to
symmetry breaking, one of the two counters is the largest. Each processor will continue to propose a new
view based on the counter written, but then (as described below) the one will the highest counter will
succeed (line 7).

Determining coordinator availability The algorithm takes an agile approach to multicasting with
atomic delivery guarantees. Namely, a new view is installed whenever the coordinator sees a change to
its local failure detector, failureDetector(), which pi stores in FDi (line 5). Nevertheless, we might
reach a configuration without a view coordinator as a result of an arbitrary initial configuration, or of a
coordinator becoming inactive. Using the failure detector heartbeat exchange, processors can detect such
initially corrupted states. Each participant that detects that it has no coordinator, seeks for potential
candidates based on the exchanged information.

Processor pi can see the set of processors, seemCrdi, that each seems to be the view coordinator,
because pi stored a message from p` ∈ FDi in which p` = rep[`].propV.ID.wid. Note that pi cannot
consider p` as a (seemly) coordinator unless the conditions in line 6 hold. Intuitively, such a processor
must be active according to pi’s failure detector, and there is a majority of processors that also think so.
Note that all these are based on local knowledge, which due to asynchrony might not be up to date. The
next step is for pi to consider the processor in seemCrdi with the �ct-greatest view identifier (line 7) as the
valid coordinator. Here, set valCrdi is either a singleton or empty (line 8). If pi considers some processor
p` as a valid coordinator, it waits to hear from p` (or learn that it is not active). We call pi a follower
of p`. If there is no such processor, pi will only propose a new view if its failure detector indicates that
there exists a supportive majority of active processors that are also without a valid coordinator (line 9).
If such a majority exists, pi acquires a counter from the counter increment algorithm and proposes a new
view, with the counter as the view ID, and the set of processors that appear active according to its failure
detector as the group membership.

As we show, if pi’s view is accepted from all the processors in the view, then it proceeds to install the
view, unless another processor who has obtained a higher counter does so. In a transition from one view
to the next, there can be several processors attempting to become the coordinator (namely, those who
according to their knowledge have a supporting majority). Still, by exploiting the intersection property
of the supporting majorities we prove that each of these processors will propose a view at most once,
and out of these, one view will be installed (i.e., we do not have never-ending attempts for new views to
be installed). To satisfy the VS property, no new multicast message is delivered to a new view, before
the coordinator of this new view has collected all the participants’ last delivered messages (of their prior

26



views) and has resent the messages appearing not to have been delivered uniformly.

The coordinator-side Processor pi is aware of its valid coordinatorship when (valCrdi = {pi})
(line 10). It takes action related to its role as a coordinator when it detects the round end, based
on input from other processors. During a normal Multicast round, pi observes the round end once for
every view member pj it holds that (repi[j].(view, status, rnd) = (viewi, statusi, rndi)) in line 10. In
the cases of Propose and Install rounds, the algorithm does not need to consider the round number, rnd.

Depending on its status, the coordinator pi proceeds once it observes the successful round conclusion.
At the end of a normal Multicast round (line 11), the coordinator increments the round number (line 14)
after applying the changes to its local replica (line 12) and aggregating the followers’ input (line 13). The
coordinator continues from the end of a Propose round to an Install round after using the most recently
received replicas to install a synchronized state of the emulated automaton (line 15). At the end of a
successful Install round, the coordinator proceeds to a Multicast round after installing the proposed view
and the first round number (line 16). (Note that implicitly the coordinator creates a new view if it detects
that the round number is exhausted (rnd > 2τ ), or if there is another member of its view that has a
greater round number than the one this coordinator has. This can only be due to corruption in the initial
arbitrary state which affected rnd part of the state.)

The follower-side Processor pi is aware of its coordinator’s identity when (valCrdi = {p`}) and i 6= `
(line 17). Being a follower, pi only enters this block of the pseudocode when it receives a new message,
i.e., the first message round when installing a new view (rep[`].rnd = 0), the first time a message arrives
(rnd < rep[`].rnd) or a new view is proposed (rep[`].(view 6= propV )).

During normal Multicast rounds (lines 18–21) the follower pi adopts the coordinator’s replica, applies
the aggregated message of this round to its current automaton state so that it produces the needed side-
effects, and then fetches new messages from the environment. Note that, in the case of a Propose round
(line 23), the algorithm design stops pi from overwriting its round number, thus allowing the coordinator
to know what was the last round number that it delivered during the last installed view. This is only
overwritten on upon the installation of the new view (line 22).

The exchanging message and PCE optimization Each processor periodically sends its current
replica (line 27) and stores the received ones (line 28). As an optimization, we propose to avoid sending the
entire replica state in every Multicast round. Instead, we consider a predefined constant, PCE (periodic
consistency enforcement), that determines the maximum number of Multicast rounds during which the
followers do not transmit their replica state to the coordinator and the coordinator does not send its
state to them (lines 19 and 25). Note that the greater the PCE’s size, the longer it takes to recover
from transient faults. Therefore, one has to take this into consideration when extending the approach of
periodic consistency enforcement to other elements of replica, e.g., in view and propV , one might want
to reduce the communication costs that are associated with the set field and the epoch part of the ID
field.

4.3 Correctness Proof of Algorithm 4

The correctness proof shows that starting from an arbitrary state in an execution R of Algorithm 4
and once the primary partition property (Definition 4.1) holds throughout R, we reach a configuration
c ∈ R in which some processor with supporting majority p` will propose a view including its supporting
majority. This view is either accepted by all its member processors or in the case where p` experiences a
failure detection change, it can repropose a view.

We conclude by proving that any execution suffix of R that begins from such a configuration c will
preserve the virtual synchrony property and implement state machine replication. We begin with some
definitions. Intuitively, the latter part of the proof is deduced as follows: once a processor does not
have a coordinator, it stops participating in group multicasting, and prior to delivering a new multicast
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message in a new view, the algorithm assures that the coordinator of this new view has collected all
the participants’ last delivered messages (in their prior views) and resends the messages appearing not
to have been delivered uniformly. To do so, each participant keeps the last delivered message and the
view identifier that delivered this message. This, together with the intersection property of majorities,
provides the virtual synchrony property. We begin with some definitions.

Once the system considers processor p` as the view coordinator (Definition 4.1) its supporting majority
can extend the support throughout R and thus p` continues to emulate the automaton with them.
Furthermore, there is no clear guarantee for a view coordinator to continue to coordinate for an unbounded
period when it does not meet the criteria of Definition 4.1 throughout R. Therefore, for the sake of
presentation simplicity, the proof considers any execution R with only definitive suspicions, i.e., once
processor pi suspects processor pj , it does not stop suspecting pj throughout R. The correctness proof
implies that eventually, once all of R’s suspicions appear in the respective local failure detectors, the
system elects a coordinator that has a supporting majority throughout R.

Consider a configuration c in an execution R of Algorithm 4 and a processor pi ∈ P . We define the
local (view) coordinator of pi, say pj , to be the only processor that, based on pi’s local information, has a
proposed view satisfying the conditions of lines 6 and 7 such that valCrd = {pj}. pj is also considered the
global (view) coordinator if for all pk in pj ’s proposed view (propVj), it holds that valCrdk = {pj}. When
pi has a (local) coordinator then pi’s local variable noCrd = False, whilst when it has no local coordinator,
noCrd = True. Moving to the proof, we consider the following useful remark on Definition 4.1 of page 22.

Remark 4.1 Definition 4.1 suggests that we can have more than one processor that has supporting
majority. In this case, it is not necessary to have the same supporting majority for all such processors.
Thus for two such processors pi, pj with respective supporting majorities Pmaj(i) and Pmaj(j) we do not
require that Pmaj(i) = Pmaj(j), but Pmaj(i) ∩ Pmaj(j) 6= ∅ trivially holds.

Lemma 4.1 Let R be an execution with an arbitrary initial configuration, of Algorithm 4 such that
Definition 4.1 holds. Consider a processor pi ∈ Pmaj which has a local coordinator pk, such that pk is
either inactive or it does not have a supporting majority throughout R. There is a configuration c ∈ R,
after which pi does not consider pk to be its local coordinator.

Proof. There are the two possibilities regarding processor pk.
Case 1: We first consider the case where pk is inactive throughout R. By the design of our failure
detector, pi is informed of pk’s inactivity such that line 5 will return an FDi to pi where pk /∈ FDi.
The threshold W that we set for our failure detector determines how soon pk is suspected. By the first
condition of line 6 we have that pk /∈ FDi ⇒ pk /∈ seemCrd ⇒ pk /∈ valCrdi, i.e., pi stops considering
pk as its local coordinator. By definitive suspicions, that pi does not stop suspecting pk throughout R.

We now turn to the case where pk is active, however it does not have a supporting majority throughout
R, but pi still considers pk as its local coordinator, i.e. valCrdi = {pk}. Two subcases exist:
Case 2(a): pk considers itself to have a supporting majority, and pi ∈ propVk. Note that the latter
assumption implies that pk is forced by lines 24 - 27 to propagate repk[k] to pi in every iteration. By
the failure detector, there exists an iteration where pk will have |FDk = n/2 + 1| and is informed that
some pj ∈ propVk has pk /∈ FDj and so the condition of line 6 (FD > bn/2c) fails for pk, which stops
being the coordinator of itself. If pk does not find a new coordinator, hence noCrdk = True, then pk
propagates its repk[k] to pi. But this implies that pi receives repk[k] and stores it in repi[k]. Upon the
next iteration of this reception, pi will remove pk from its seemCrd set because pk does not satisfy the
condition |repi[k].FD| < bn/2c of line 6. We conclude that pi stops considering pk as its local coordinator
if pk does not find a new coordinator. Nevertheless, pk may find a new coordinator before propagating
repk[k]. If pk has a coordinator other than itself, then it only propagates repk[k] to its coordinator and
thus pi does not receive this information. We thus refer to the next case:
Case 2(b): pk has a different local coordinator than itself. This can occur either as described in Case
2(a) or as a result of an arbitrary initial state in which pi believes that pk is its local coordinator but pk
has a different local coordinator. We note that the difficulty of this case is that pk only sends repk[k]
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to its coordinator, and thus the proof of Case 2(a) is not useful here. As explained in Algorithm 4, the
failure detector returns a set with the identities (pid) of all the processors it regards as active, as well
as the identity of the local coordinator of each of these processors. As per the algorithm’s notation,
the coordinator of processor pk is given by crd(k). Since pi’s failure detector regards pk as active, then
crd(k) is indeed updated (remember that pi receives the token with pk’s crd(k) infinitely often from pk),
otherwise pk is removed from FD and is not a valid coordinator for pi. But pk does not consider itself
as the coordinator (by the assumption of Case 2(b)), and thus it holds that crd(k) 6= k. Therefore, in
the first iteration after pi receives crd(k) 6= k, one of the last two conditions of line 6 fails (depending on
what is the view status that pi has in repi[k]) so pk 6∈ seemCrdi and thus valCrdi 6= {pk}. We conclude
that any such pk stops being pi’s coordinator and by the assumption of definitive suspicions we reach to
the result. It is also important to note that pk never again satisfies all the conditions of line 9 to create
a new view. �

We now define the notion of “propose” more rigorously to be used in the sequel.

Definition 4.2 Processor p` ∈ P with status = Propose, is said to propose a view propV`, if in a
complete iteration of Algorithm 4, p` either satisfies valCrd` = {p`} or satisfies all the conditions of
line 9 to create propV`. A proposal is completed when propV` is propagated through lines 24–27 to all the
members of FD`.

The above definition does not imply that p` will continue proposing the view propV , since the replicas
received from other processors may force p` to either exclude itself from valCrd` or create a new view
(see Lemma 4.3). If the view is installed, then the proposal procedure will stop, although propV` will
still be sent as part of the replica propagation at the end of each iteration. Also note that the origins
of such a proposed view are not defined. Indeed it is possible for a view that was not created by p` but
bears p`’s creator identity to come from an arbitrary state and be proposed, as long as all the conditions
of lines 6 and 7 are met.

Lemma 4.2 If the conditions of Definition 4.1 hold throughout an execution R of Algorithm 4, then
starting from an arbitrary configuration in which there is no global coordinator, the system reaches a
configuration in which at least one processor with a supporting majority will propose a view (with “propose”
defined as in Definition 4.2).

Proof. By Definition 4.1, at least one processor with supporting majority exists. Denote one such
processor as p`. Assume for contradiction that throughout R, no processor p` with supporting majority
proposes a view. p` either has a local coordinator (that is not global) or does not have a coordinator.
Case 1: p` does not have a coordinator (noCrd` = True). If p` does not propose a view (as per
the “propose” Definition 4.2), this is because it does not hold a proposal that is suitable and it does not
satisfy some condition of line 9 which would allow it to create a new view. The first condition of line 9,
(|FD| > bn/2c) is always satisfied by our assumption that p` is not suspected by a majority throughout
R. In the second condition, both (i) ((|valCrd`| 6= 1) ∧ (|{pi ∈ FD` : p` ∈ rep`[i].FD` ∧ rep`[i].noCrd}|
> bn/2c)) and (ii) ((valCrd` = {p`}) ∧ (FD` 6= propV`.set) ∧ (|{pi ∈ FD : rep[i].propV = propV }|
> bn/2c)) must fail due to our assumption that p` never proposes. Indeed (ii) fails since noCrd` =
True ⇒ valCrd` 6= {p`}. If the first expression also fails, this implies that throughout R, p` does not
know of a majority of processors with noCrd = True and so it cannot propose a new view.

Let’s assume that only one processor pj ∈ Pmaj(`) ⊆ FD` is required to switch from noCrdj = False
to True in order for p` to gain a majority of processors without a coordinator. But if noCrdj = False
then pj must already have a coordinator, say pk. We have the following two subcases:
Case 1(a): pk does not have a supporting majority. Lemma 4.1 guarantees that pj stops considering pk
as its local coordinator. Thus pj eventually goes to noCrd = True and by the propagation of its replica,
p` receives the required majority to go into proposing a view. But this contradicts our initial assumption,
so we are lead to the following case.
Case 1(b): pk has a supporting majority and a view proposal propVk from the initial arbitrary config-
uration but is not the global coordinator. But this implies that the Lemma trivially holds, and so the
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following case must be true.
Case 2: p` has a coordinator, say pk′ . The two subcases of whether pk′ has a supporting majority or
not, are identical to the two subcases 1(a) and 1(b) concerning pk that we studied above. Thus, it must
be that either p` will eventually propose a label, or that pk′ has a proposed view, thus contradicting our
assumption and so the lemma follows. �

Lemma 4.2 establishes that at least one processor with supporting majority will propose a view in
the absence of a valid coordinator. We now move to prove that such a processor will only propose one
view, unless it experiences changes in its FD that render the view proposal’s membership obsolete. The
lemma also proves that any two processors with supporting majority will not create views in order to
compete for the coordinatorship.

Lemma 4.3 (Closure and Convergence) If the conditions of Definition 4.1 hold throughout an exe-
cution R of Algorithm 4, then starting from an arbitrary configuration, the system reaches a configuration
in which any processor p` with a supporting majority proposes a view propv`, and cannot create a new
proposed view in R unless FD` 6= propV`.set and a majority of processors has adopted propV`. As a
consequence, the system reaches a configuration in which one processor with supporting majority is the
global coordinator until the end of the execution.

Proof. We distinguish the following cases:
Case 1: Only one processor with supporting majority exists. Assume there is only a single
processor p` that has a supporting majority throughout R. According to Lemma 4.2, p` must eventually
propose a view propV`, based on the current FD` reading (line 5) which becomes the propV`.set. By
Lemma 4.1, any other processor without a supporting majority will eventually stop being the local
coordinator of any pj ∈ propV`.set and since such processors do not have a supporting majority, the first
condition of line 9 will prevent them from proposing.

Processor p` continuously proposes propV` until all processors in propV`.set have sent a replica showing
that they have adopted propV` as their propV . Every processor that is alive throughout R and in FD`

should receive this replica through the self-stabilizing reliable communication. The only condition that
may prevent pj to adopt propV` is if for some pr ∈ repj [`].propV`.set it holds that p` 6∈ repj [r].FD
(line 6). Plainly put, pj believes that pr suspects p`.

Case 1(a): If pj ’s information is correct about pr, then pr 6∈ Pmaj(`). Thus at some point p` will
suspect pr and exclude pr from FD`.

Case 1(b): If pj ’s information is false –remnant of some arbitrary state– then p` ∈ FDr and since
pr, by the last condition of line 26, sends repr[r] infinitely often to pj , then repj [r] will be corrected and
pj will accept propV`.

Since p` has a majority Pmaj(`) ⊆ propV`.set, then at least a majority of processors have received
propV` and eventually accept it. If some processor pj ∈ propV` does not adopt p`’s proposal in R, it is
eventually removed from FD` and thus does not belong to the supporting majority of p` (as detailed in
Case 1(a) above). By the above we note that p` is able to get at least the supporting majority Pmaj(`) to
accept its view if not all of the members in propV`.set. In the last case it can proceed to the installation
of the view. If there is any change in the failure detector of p` before it installs a view, p` can satisfy the
second case of line 9, to create a new updated view. Note that in the mean time no processor other than
p` can satisfy the conditions of that line, and thus it is the only processor that can propose and become
the coordinator.
Thus p` eventually becomes the coordinator if it is the single majority-supported processor.

Case 2: More than one processor with supporting majority. Consider two processors p`, p`′ that
have a supporting majority such that each creates a view (line 9). By the correctness of our counter
algorithm, inc() returns two distinct and ordered counters to use as view identifiers. Without loss of
generality, we assume that propV` proposed by p` has the greatest identifier of all the counters created
by calls to inc(). We identify the following four subcases:

Case 2(a): p` ∈ FD`′ ∧ p`′ ∈ FD`. In this case p`′ will propose its view propV`′ and wait for all
pi ∈ propV`′ .set to adopt it (line 10). Whenever p` receives propV`′ , it will store it but will not adopt it,
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since propV`′ .ID �ct propV`.ID (line 7). The proposal propV` is also propagated to every pi ∈ propV`.set.
Since there is no greater proposed view identifier than propV`.ID, this is adopted by all pi ∈ propV` which
also includes p`′ as well. Thus any processor with supporting majority that belonged to the proposed set
of p` will propose at most once, and p` will become the sole coordinator. Note that if p`′ is prevented
from adopting propV` for some time, this is due to reasons detailed and solved in Case 1 of the previous
lemma. The case where the failure detection reading changes for p` is also tackled as in Case 1 of this
lemma, by noticing that if p` manages to get a majority of processors of propV.set then p` will change
its proposed view without losing this majority.

Case 2(b): p` 6∈ FD`′ ∧ p`′ 6∈ FD`. Since both processors were able to propose, this implies that
a majority of processors that belonged to each of p`’s and p`′ ’s supporting majority had informed that
they had no coordinator (line 9). Each of p` and p`′ , proposes its view to its propV.set, and waits
for acknowledgments from all the processors in propV.set (line 10), in order to install the view. Since
p` 6∈ FD`′ , p`′ does not consider propV` a valid proposal (line 6) and retains its own proposal that it
propagates. The same is done by p`. Since p` has the greatest label, any pi ∈ propV`.set ∩ propV`′ .set
might initially adopt propV`′ but it will eventually choose the greatest propV`. If p`′ ’s proposal was
accepted by all members of propV`′ then this means that p`′ became the global coordinator but will then
lose the coordinatorship to p` because propV` has a greater view identifier.

What is more crucial, is that p`′ cannot make another proposal, since it will not have a majority of
processors that do not have a coordinator. This is deduced from the intersection property of the two
majorities (propV`.set and propV`′ .set). Since any processor pk in the intersection propV`.set∩propV`′ .set
has p` as its coordinator, p`′ does not satisfy the condition |{pk ∈ FD`′ : p`′ ∈ rep[k].FD ∧ rep[k].noCrd}|
> bn/2c of line 9, and thus cannot propose a new view. Processor p` will install its view and remains the
sole coordinator. Also, p` is the only one that can change its view due to failure detector change since it
manages to get a majority of processors in propV`.set as opposed to p`′ .

Case 2(c): p` ∈ FD`′ ∧ p`′ 6∈ FD`. Here we note that since p` has the greatest counter but has
not included p`′ to its propV`.set, it should eventually be able to get all the processors in propV`.set to
follow propV` by using the arguments of Case 2(a). In the mean time p`′ will, in vain, be waiting for a
response from p` accepting propV`′ . We note that p`′ will not be able to initiate a new view once propV`
is accepted, since it will not be able to gather a majority of processors with either noCrd = True or
proposed view propV`′ .

Case 2(d): p` 6∈ FD`′ ∧ p`′ ∈ FD`. This case is not symmetric to the above due to our assumption
that p` is the one that has drawn the greatest view identifier from inc(). Here propV`.set includes p`′ so
p` waits for a response from p`′ to proceed to the installation of propV`. On the other hand, p`′ will be
waiting for responses from the processors in propV`′ .set. Any pi ∈ propV`.set ∩ propV`′ .set cannot keep
propV` (even if initially it has accepted it, since it does not satisfy condition p`′ ∈ rep[`].propV.set ⇔
p` ∈ rep[`′].FD of line 6. Thus pi accepts propV`′ instead of propV`, p` cannot propose a different view
since it will not be able to get a majority of processors that have propV`.

By the above exhaustive examination of cases, we reach to the result. Note that the above proof
guarantees both convergence and closure of the algorithm to a legal execution, since p` remains the
coordinator as long as it has a supporting majority. �

Theorem 4.4 Starting from an arbitrary configuration, any execution R of Algorithm 4 satisfying Defi-
nition 4.1, simulates automaton replication preserving the virtual synchrony property.

Proof. Consider a finite prefix R′ of R. Assume that in this prefix Lemma 4.3 holds, i.e., we reach a
configuration in which a processor p` has a supporting majority and is the global coordinator with view
v. We define a multicast round to be a sequence of ordered events: (i) fetch() input and propagate to
coordinator, (ii) coordinator propagates the collected messages of this round, (iii) messages are delivered
and (iv) all view members apply() side effects. The VS property is preserved between two consecutive
rounds r, r′ that may belong to different views v, v′ (with possibly identical coordinators p`, p`′) respec-
tively, if and only if ∀pi ∈ v.set ∩ v′.set it holds that every repi[i].input at round r is in rep[`

′].msg[i] of
round r′. Our proof is progressive: Claim 4.5 proves that VS is preserved between any two consecutive
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multicast rounds, Claim 4.6 that VS is preserved in two consecutive views with the same coordinator and
Claim 4.7 preservation in two consecutive view installations where the coordinator changes.

Claim 4.5 VS is preserved between r and r′ where v = v′.

Proof. Suppose that there exists an input and a related message m in round r that is not delivered
within r. We follow the multicast round r. First observe the following.
Remark: Within any multicast round, the coordinator executes lines 12 to 14 only once and a follower
executes lines 18 to 21 only once, because the conditions are only satisfied the first time that the coordi-
nator’s local copy of the replica changes the round number.

By our Remark we notice that fetch() is called only once per round to collect input from the envi-
ronment. This cannot be changed/overwritten since followers can never access rep[i]← rep[`] of line 20
that is the only line modifying the input field, unless they receive a new round number greater than
the one they currently hold. We notice that the followers have produced side effects for the previous
round (using apply()) based on the messages and state of the previous round. Similarly, the coordinator
executes fetch() exactly once and only before it populates the msg array and after it has produced the
side effects for the environment that were based on the previous messages (line 12). Line 13 populates the
msg array with messages and including m. The coordinator p`then continuously propagates its current
replica but cannot change it by the Remark and until condition (∀ pi ∈ v.set : rep`[i].(view, status, rnd)
= (view`, status`, rnd`)) (line 10) holds again. This ensures that the coordinator will change its msg
array only when every follower has executed line 20 which allows the aforementioned condition to hold.

Any follower that keeps a previous round number does not allow the coordinator to move to the next
round. If the coordinator moves to a new round, it is implied that rep[i] ← rep[`] and thus message m
was received by any follower pi, by our assumptions that the replica is propagated infinitely often and
the data links are stabilizing. Thus, by the assumptions, any message m is certainly delivered within the
view and round it was sent in, and thus the virtual synchrony property is preserved, whilst at the same
time common state replication is achieved. �

Claim 4.6 VS is preserved between r and r′ where v 6= v′ and p` = p`′ .

Proof. We now turn to the case where from one configuration csafe we move to a new c′safe that has
a different view v′ but has the same coordinator p`. Once p` is in an iteration where the condition
FD 6= propV.set of line 9 holds, a view change is required. Since p` is the global coordinator holds, no
other processor can satisfy the condition (|{pk ∈ FD` : rep[k]`.propV = propV`}| > bn/2c) of line 9,
and so only p`. For more on why this holds one can prefer to Lemma 4.2. Processor p` creates a
new propV with a new view ID taken from the increment counter algorithm, which is greater than the
previous established view ID in v.ID. The last condition of line 10 guarantees that p` will not execute
lines 12 to 16 and thus will not change its rep.(state, input,msg) fields, until all the expected followers
of the proposed view have sent their replicas. Followers that receive the proposal will accept it, since
none of the conditions that existed change and so the new view proposal enforces that valCrd = {p`}.
Moreover, the proposal satisfies the condition of line 17 and the followers of the view enter status Propose
leading to the installation of the view. What is important is that virtual synchrony is preserved since
no follower is changing rep.(state, input,msg) during this procedure, and moreover each sends its replica
to p` by line 26. Once the replicas of all the followers have been collected, the coordinator creates a
consolidated state and msg array of all messages that were either delivered or pending. p`’s new replica
is communicated to the followers who adopt this state as their own (line 22). Thus virtual synchrony
is preserved and once all the processors have replicated the state of the coordinator, a new series of
multicast rounds can begin by producing the side effects required by the input collected before the view
change.
�

Claim 4.7 VS is preserved between r and r′ where v 6= v′ and p` 6= p`′ .
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Proof. We assume that p` had a supporting majority throughout R′. We define a matching suffix R′′ to
prefix R′, such that R′′ results from the loss of supporting majority by p`. Notice that since Definition 4.1
is required to hold, then some other processor with supporting majority p`′ , will by Lemma 4.2 propose
the view v′ with the highest view ID. We note that by the intersection property and the fact that a
view set can only be formed by a majority set, ∃pi ∈ v ∩ v′. Thus, the “knowledge” of the system,
(state, input,msg) is retained within the majority.

As detailed in step 2, if a processor pi had noCrd = True for some time or was in status Propose it did
not incur any changes to its replica. If it entered the Install phase, then this implies that the proposing
processor has created a consolidated state that pi has replicated. What is noteworthy is that whether in
status Propose or Install, if the proposer collapses (becomes inactive or suspected), the virtual synchrony
property is preserved. It follows that, once status Multicast is reached by all followers, the system can
start a practically infinite number of multicast rounds.

Thus, by the self-stabilization property of all the components of the system (counter increment algo-
rithm, the data links, the failure detector and multicast) a legal execution is reached in which the virtual
synchrony property is guaranteed and common state replication is preserved. content... � �

4.4 Algorithm Complexity

The local memory for this algorithm consists of n copies of two labels, of the encapsulated state (say of
size |S| bits) and of other lesser size variables. These give a space complexity of order O(nβ log β+n|S|);
recall that β = n3cap + 2n2 − 2n. Stabilization time can be provided by a bound on view creations. It
is, therefore, implicit that stabilization is dependent upon the stabilization of the counter algorithm, i.e.,
O(n · β · t), before processors can issue views with identifiers that can be totally ordered. When this
is satisfied, then Lemma 4.3 suggests that O(n) view creations are required to acquire a coordinator,
namely, in the worse case where every processor is a proposer. Once a coordinator is established then
Theorem 4.4 guarantees that there can be practically infinite multicast rounds (0 to 2τ ).

5 Conclusion

State-machine replication (SMR) is a service that simulates finite automata by letting the participating
processors to periodically exchange messages about their current state as well as the last input that has led
to this shared state. Thus, the processors can verify that they are in sync with each other. A well-known
way to emulate SMRs is to use reliable multicast algorithms that guarantee virtual synchrony [4, 19].
To this respect, we have presented the first practically-self-stabilizing algorithm that guarantees virtual
synchrony, and used it to obtain a practically-self-stabilizing SMR emulation; within this emulation, the
system progresses in more extreme asynchronous executions in contrast to consensus-based SMRs, like
the one in [7]. One of the key components of the virtual synchrony algorithm is a novel practically-
self-stabilizing counter algorithm, that establishes an efficient practically unbounded counter, which in
turn can be directly used to implement a practically-self-stabilizing MWMR register emulation; this
extends the work in [1] that implements SWMR registers and can also be considered simpler and more
communication efficient than the MWMR register implementation presented in [7].
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paxos replicated state-machine. In In Revised Selected Papers of the Second International Conference
on Networked Systems, NETYS 2014, volume 8593 of Lecture Notes in Computer Science, pages 99–
121. Springer, 2014.

[9] James E. Burns, Mohamed G. Gouda, and Raymond E. Miller. Stabilization and pseudo-
stabilization. Distributed Computing, 7(1):35–42, 1993.

[10] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for solving
consensus. J. ACM, 43(4):685–722, 1996.

[11] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Vassos Hadzilacos, Petr Kouznetsov,
and Sam Toueg. The weakest failure detectors to solve certain fundamental problems in distributed
computing. In Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed
Computing, PODC 2004, St. John’s, Newfoundland, Canada, July 25-28, 2004, pages 338–346, 2004.

[12] Edsger W Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the
ACM, 17(11):643–644, 1974.

[13] Shlomi Dolev. Self-stabilization. The MIT press, 2000.

[14] Shlomi Dolev, Swan Dubois, Maria Potop-Butucaru, and Sébastien Tixeuil. Stabilizing data-link
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