
Coordinated Cooperative Work Using
Undependable Processors with Unreliable Broadcast

Seda Davtyan
University of Connecticut

371 Fairfield Way, U-4155
Storrs, CT 06269, USA

seda@engr.uconn.edu

Roberto De Prisco
Università di Salerno
84084 Fisciano (SA)

Italy
robdep@unisa.it

Chryssis Georgiou
University of Cyprus

1678 Nicosia
Cyprus

chryssis@ucy.ac.cy

Alexander A. Shvartsman
University of Connecticut

371 Fairfield Way, U-4155
Storrs, CT 06269, USA
aas@cse.uconn.edu

Abstract—With the end of Moore’s Law in sight, parallelism
became the main means for speeding up computationally-
intensive applications, especially in the cases where large
collections of tasks need to be performed. Network
supercomputing—taking advantage of very large numbers
of computers in a distributed environment—is an effective
approach to massive parallelism that harnesses the processing
power inherent in large networked settings. In such settings,
processor failures are no longer an exception, but the norm.
Any algorithm designed for realistic settings must be able to
deal with failures. This paper presents a new message-passing
algorithm for distributed cooperative work in synchronous
settings where processors may crash, and where any broadcasts
performed by crashing processors are unreliable. We specify
the algorithm, prove that it is correct, and perform extensive
simulations that show that its performance is close to similar
algorithms that use reliable broadcast, and that its work
compares favorably to the relevant lower bounds.

Keywords-distributed algorithms; fault-tolerance; processor
crashes; unreliable broadcast; task computing.

I. INTRODUCTION

Cooperative network supercomputing enables harnessing
the immense computational power of the global Internet
platform. A typical Internet supercomputer consists of a
master computer or server and a large number of computers
called workers, performing computation tasks on behalf of
the master, cf. [1], [2]. Despite the simplicity and benefits
of a single master approach, as the scale of such computing
environments grows, it becomes unrealistic to assume the
existence of the infallible master that is able to coordinate
the activities of multitudes of workers. Furthermore, large-
scale distributed systems are inherently dynamic and are
subject to perturbations, such as failures of computers and
network links, thus it is also necessary to consider fully
distributed peer-to-peer solutions. In the study of cooperative
algorithms, the standard abstract problem is called Do-All ,
where the goal is to use n processors to perform t tasks in
the presence of adversity [3].

To remove the troublesome assumption of having an infal-
lible master, coordinator-based solutions have been proposed
for the Do-All problem. Here the approach is to appoint

coordinators to manage the computation, and if coordinators
fail, they are dynamically replaced by other coordinators.
Coordinator algorithms are usually simpler and more practi-
cal than other peer-to-peer algorithms. In particular, single-
coordinator algorithms can be very efficient when failures
are infrequent, and they have substantial advantages over
master-worker algorithms as they allow any processor to act
as a coordinator, thus eliminating a single point of failure.
However, such single coordinator solutions become very
inefficient in adversarial settings where there are stretches
of time during which each appointed coordinator crashes
without accomplishing the needed coordination [4].

Thus, it is advantageous to explore solutions that allow
multiple concurrent coordinators. Using multiple coordi-
nators raises a new challenge of dealing with potential
inconsistency in workers’ states in the cases when, due to
failures, multiple coordinators provide different information
to the workers. To solve this problem, some algorithms
resorted to using reliable broadcast, where the messages
are delivered either to all destinations or to none if the
sender crashes during the broadcast. With reliable broadcast,
whenever coordinators share information with each other, it
is guaranteed that all non-crashed coordinators will receive
the same messages, leading to a consistent state.

In synchronous deterministic settings, combining reliable
broadcast with coordinator-based approach allows one to
construct very efficient algorithms [5]. However, reliable
broadcast is a very strong assumption. Thus it is interesting
to explore multiple-coordinator solutions that do not rely on
reliable broadcast. Interestingly, the algorithm in [5] may
become very inefficient if used with unreliable broadcast
because the participants may be fragmented into two or more
groups, with each group believing that all other processors
crashed.

In this paper we aim to advance the state of the art in this
direction, viz., to design algorithms for synchronous settings
that use multiple coordinators to achieve good performance
in the presence of processor crashes, while using only
the unreliable broadcast. The important attributes of target
algorithms must also be conceptual simplicity and ease of

implementation.

Prior and Related Work. The Do-All problem has been
studied in a variety of settings, e.g., in shared-memory mod-
els [6]–[11], in message-passing models [3]–[5], [12]–[15]
and in partitionable networks [16], [17]. Do-All was initially
formulated in the shared-memory model with the efficiency
of algorithms assessed using the available processor steps
work complexity measure S [6] that we consider in this
work. The lower bound on work for Do-All was shown to be
S = Ω(t + n log n/ log log n) for synchronous crash-prone
processors, and this bound holds both for the shared-memory
model and for message-passing model [6]. A comprehensive
treatment of the Do-All problem in the message-passing
setting is given in [3]; basic techniques used in solving Do-
All can be found in [18].

Dwork, Halpern, and Waarts [12] introduced the Do-
All problem in the message-passing model. They developed
several deterministic algorithms for synchronous crash-prone
processors. They evaluated the efficiency of their solutions
using the task-oriented complexity measure that accounts
only for task executions. Most work in the message-passing
model focuses on synchronous models (for an example
of an asynchronous setting see [19]). The work [4] gave
an algorithm for Do-All for the synchronous setting with
processor crashes using the available processor steps work
complexity. They present a deterministic algorithm that has
work O(t+(f+1)n) and message complexity (total number
of point-to-point messages sent) O((f + 1)n), where f is
the number of processor crashes. The algorithm deploys
a single-coordinator approach: At each step all processors
have a consistent (over)estimate of the set of all the available
processors (using checkpoints). One processor is designated
to be the coordinator. The coordinator allocates the undone
tasks according to a certain load balancing rule and waits for
notifications of the tasks which have been performed. The
coordinator changes over time (due to coordinator crashes).
To avoid a quadratic upper bound, substantial processor
slackness is assumed (n � t). The authors also show a
work lower bound Ω(t+ (f + 1)n) for any algorithm using
the stage-checkpoint strategy, this bound being quadratic in
n for f comparable with n. Moreover, any protocol that
has at most one active coordinator is bound to have work
Ω(t+ (f + 1)n).

The work [20] developed a Do-All algorithm that beats
the lower bound shown in [4]; this work does not assume
reliable multicast, and instead of using coordinators it pur-
sues a gossip-based coordination technique in conjunction
with scheduling based on permutations satisfying certain
properties and expander graphs. The results in [21] show
how to construct the needed permutations efficiently, yet the
algorithm in [20] remains complex and hard to implement.

The paper [5] presents algorithm AN whose work also
beats the lower bound of [4] by using multiple coordinators.

In order to achieve this the algorithm, unlike other solutions,
uses reliable multicast, where if a processor crashes while
multicasting a message, this message is either received by
all targeted processors or by none. The algorithm operates
in phases. Initially there is a single coordinator. If it fails
in some phase, then two processors become coordinators
in the next phase. If they both fail, then four processors
act as coordinators, and so on. If in a given phase at least
one of the coordinators survives the phase, then the next
phase has one coordinator. Algorithm AN achieves work
O((t + n log n/ log log n) log f) and message complexity
O(t + n log n/ log log n + fn), where f < n is a bound
on the number of processor crashes. The reliable multicast
assumption is essential for maintaining consistent views of
the processors in the presence of multiple coordinators. If
this assumption is removed, the algorithm is still able to
solve the problem, but some executions of the algorithm
may be very inefficient because the set of processors may
partition into several groups (see [18]).

This problem has also been considered in other models of
failure, in particular in models with Byzantine failures [22].
The Byzantine case is quite challenging due to the more
virulent adversarial setting where tasks may be performed
incorrectly by faulty processors. Thus the performance of al-
gorithms that tolerate Byzantine failures is worse compared
to the algorithms that deal with crash failures. To deal with
Byzantine failures, models have been proposed that allow
processors within a single constant time round to verify that
a certain number of tasks were performed correctly.

Contributions. We aim to develop efficient point-to-point
message-passing algorithms for the Do-All problem that are
simple and easy to implement. We note that there is a simple
brute-force approach, where all processors always broadcast
all of their knowledge to all other processors (as suggested
in [5]). Such all-to-all solution is very efficient in terms
of work, but its message complexity is prohibitive. Thus we
aim for a more balanced algorithm that trades work for better
communication efficiency. As our point of departure, we use
the multi-coordinator approach introduced in algorithm AN
[5]. We present an iterative algorithm that is simpler than
algorithm AN in that each iteration consists of two send-
receive-compute rounds as compared to three similar rounds
in algorithm AN. More importantly, the new algorithm does
not assume reliable multicast, and it is not subject to the
partitioning problem in algorithm AN. In more detail our
contributions are as follows.

1. We present a new algorithm, called algorithm Do-UM ,
that is designed to work with both unreliable and reliable
multicast and that tolerates up to n−1 crashes. The algorithm
solves Do-All for n processors and t tasks, where n ≤ t.
When using reliable multicast, the algorithm has the same
work and message complexity bounds as algorithm AN (this
can be shown using the same analysis as in [5]).

2. We prove that algorithm Do-UM solves the Do-All
problem when the multicast is unreliable. That is, we show
that if the algorithm terminates, then all tasks have been
performed. We also show that no correct processor is ever
considered faulty by any other processor (thus the algorithm
does not suffer from the partitions of correct processors that
are possible in algorithm AN [18]).

3. We perform an extensive simulation study that exam-
ines the performance of algorithm Do-UM (with unreliable
broadcast) in various adversarial settings, and we compare
its performance to that of algorithm AN (with reliable
broadcast) and that of all-to-all algorithm (with unreliable
broadcast). The simulation study shows that algorithm Do-
UM is reasonably efficient in these adversarial settings. In
particular, we show that when subjected to a particular strong
adversary its performance is close to what is anticipated by
the corresponding lower bound.

We emphasize that in our simulation studies we do not
expect algortihm Do-UM to outperform algorithm AN. This
is because algorithm AN uses a very strong assumption that
reliable broadcast is available. In all simulations algorithm
AN relies on this assumption, while the new algorithm
does not rely on this, as it uses unreliable broadcast. How-
ever, algorithm AN presents an idealistic benchmark against
which we compare algorithm Do-UM . We do note that both
algorithms have the same complexity when the broadcast is
reliable.

Document structure. In Section II we give the model of
computation, definitions, and measures of efficiency. Sec-
tion III presents our algorithm. In Section IV we show the
correctness of the algorithm. In Section V we discuss algo-
rithm performance and the simulation results. We conclude
in Section VI.

II. MODEL OF COMPUTATION AND DEFINITIONS

Processors and Tasks. We consider a set of n processors
P = {p1, . . . , pn}, each with a unique processor identifier
(pid). For simplicity we will let the pid of processor pi to
be i, for i ∈ [n]. The processors must execute a set of t
tasks T = {τ1, . . . , τt}. Each task has a unique identifier
and we let the identifier of task τi to be i, for i ∈ [t].
Processors obtain tasks from some repository (or processors
initially know all tasks). The tasks are (a) similar, meaning
that any task can be done in constant time by any processor,
(b) independent, meaning that each task can be performed
independently of other tasks, and (c) idempotent, meaning
that the tasks admit at-least-once semantics and can be
performed concurrently. Several applications involving tasks
with such properties are discussed in [3].

Computation. The system is synchronous and computation
proceeds in steps, where each step has a fixed and known
duration. In any step a processor can either send or receive
messages, or can perform some local computation. We define

a computation round to consist of a Send step, a Receive
step, and a Compute step.

Communication. Processors communicate by exchanging
messages. We assume that any processor can send messages
to every other processor, that is, the underlying communica-
tion network is fully connected. Processors can communicate
by means of point-to-point messages and multcasts, where a
message to each multicast destination is treated as a point-
to-point message. Point-to-point messages are not lost or
corrupted, however multicasts are not reliable in the sense
that if a processor crashes during a multicast, then some ar-
bitrary subset of the target processors receives the message.
We assume that there is a known upper bound on message
delivery time and that if a message sent to a processor in
a Send step, then it is delivered in the subsequent Receive
step (provided the receiving processor does not crash). Note
that in any step a processor may receive up to n messages,
thus we assume that the time needed to process a received
message is insignificant compared to the duration of the step.
We let the set M stand for all possible messages.

Model of failures. Processors may crash (stop) at any point
in the execution, subject only to the constraint that at least
one processor does not crash. In particular, a processor can
crash during a Send step. In this case it is possible that the
messages sent are received by some recipients and not by
others. Once crashed, a processor does not recover.

Measures of efficiency. Algorithms are evaluated in terms
of work complexity and communication complexity. Work
complexity is given as the total number of steps, i.e., we use
available processor steps complexity. In our algorithm each
iteration consists of a constant number of steps and each
correct processor performs one task in each iteration. Thus,
asymptotically, it is sufficient to assess the total number
of times each task is executed (a task may be performed
more than once.) Message complexity is given by the total
number of point-to-point messages sent during an execution,
where a multicast contributes as many messages as there are
destinations.

III. ALGORITHM DESCRIPTION

We now present algorithm Do-UM . Here all processors
act as workers and perform tasks according to a load balanc-
ing rule; additionally, some workers also act as coordinators
using a multi-coordinator approach. The algorithm proceeds
in iterations, each consisting of two rounds, a Collect round
and a Disseminate round. In the Collect round each proces-
sor sends a report message to every coordinator. Every
processor that receives a report message in this round
updates its knowledge according to the information con-
tained in the messages. In the subsequent Disseminate round,
coordinators send summary messages to all processors. A
processor p acts as a coordinator when it either believes to
be a coordinator, or if it receives a report message in

the preceding Collect round from some other processor q
that considers p to be a coordinator. Failure of processors,
and in particular failure of coordinators, can prevent global
progress. In order to cope with coordinator failures the
algorithm uses a martingale strategy: if a processor suspects
that all coordinators crashed in a given iteration, it doubles
the number of coordinators for the next iteration. In order to
handle multiple coordinators we will use a layered structure.
Each level of the structure is a “layer” of coordinators to
be used in a given iteration. The first layer consists of a
single processor, and each following layer has twice as many
processors as the preceding layer.

The above approach is similar to that of algorithm
AN [5]. However, there are fundamental differences. The
most important is that algorithm AN makes a very strong
assumption of reliable multicast, making it possible for the
local knowledge of processors to be consistent. This is
no longer true with unreliable multicast that might cause
processors to have different views of the current status of
the system (i.e., performed tasks and crashed processors).
Thus, while in algorithm AN all workers agree on the set of
coordinators, in algorithm Do-UM two processors p and q
may have inconsistent views of coordinators. E.g., q may
be a coordinator in p’s view, but not in its own view,
or q may be a coordinator in its own view, but only a
worker in p’s view. To deal with such inconsistencies in
local knowledge, a processor has to be able to react to
unexpected messages. Accordingly, in algorithm Do-UM if a
worker receives an unexpected report message, that is, the
message addressed to a coordinator, it acts as a coordinator
in the second round of the iteration. Note that the case
of “unexpected” summary messages never arises because
every processor is ready to receive summary messages in
each iteration from processors acting as coordinators (if
any). If a processor receives at least one summary message
in an iteration it considers the iteration to be “attended” by
(at least one) coordinator; otherwise it considers the iteration
to be “unattended.”

The main state variables at each processor are D, record-
ing the set of ids of the tasks that the processor knows to
be complete, and F , the set of pids of the processors that
the processor knows as crashed. D and F are communicated
by the processors in report and summary messages. The
algorithm terminates when D = T , i.e., all tasks are done.
Next we present the data structure used to implement the
martingale strategy for selecting coordinators, then we give
and explain the code for the algorithm.

Layered coordinator structure. Each processor computes
locally the set L of correct (non-crashed) processors ids as
P − F . The pids in set L are listed in the ascending order,
and L is interpreted as a structure of h = 1 + dlog2 |L|e
layers. If L = 〈q1, q2, ..., qk〉, for k = |L|, at processor p, it
is interpreted by p as follows. The first layer, denoted L(0),

is the set {q1}, consisting of one processor. Each layer L(`)
for the next h − 2 layers, with ` ∈ [h − 2], is defined to
be {q2` , . . . , q2`+1−1}. The lowest layer L(`) for ` = h− 1
consists of the remaining pids, being {q2` , . . . , qk}. Thus the
number of processors in any L(`) is 2`, except possibly for
the lowest layer that may contain fewer pids if k < 2h − 1.

Initially, any processor p has ` = 0 and it considers the
processor in L(0) to be the coordinator. In each iteration
where p does not hear from any coordinators, it increments
`, and considers processors in L(`) as the next coordinators.
Thus, following each iteration unattended by coordinators,
the number of coordinators is doubled (until all processors
in the lowest layer act as coordinators). Following each
attended iteration, ` is reset to 0, leaving one processor as
the coordinator.

Example. Suppose that we have a system of n = 13 processors.
Initially processor p assumes that all the processors are alive. The
layered structure L = 〈q1, q2, . . . , q13〉 looks like

Layered coordinator structure L
Layer 0 1
Layer 1 2 3
Layer 2 4 5 6 7
Layer 3 8 9 10 11 12 13

Layer L(0) consists of processor 1, layer L(1) consists of proces-
sors 2 and 3, etc. At some point later in the computation, processor
p may learn that processors 1, 2, 5, and 12 crashed, setting F
accordingly. When the local view is updated taking into account
F we have L = 〈p3, p4, p6, . . . , p11, p13〉 and the corresponding
structure becomes

Updated layered coordinator structure L at p
Layer 0 3
Layer 1 4 6
Layer 2 7 8 9 10
Layer 3 11 13

Algorithm details. We now describe the algorithm in greater
detail. The algorithm proceeds in iterations, each iteration
consisting of two rounds. Recall that a round consists
of a Send step, a Receive step, and a Compute step.
The pseudocode for the algorithm is in Figure 1. Both
the report and the summary messages contain triples
(D,F, i) consisting of a set D of task identifiers, a set F
of processor identifiers, and the pid i of the sender. For any
message m we denote by m.D the set D of (done) tasks
identifiers contained in m, by m.F the set F of (crashed)
processor identifiers in m and by m.pid the pid i contained
in m, that is the sender of the message.

Collect round. In the Send step each processor sends a
report message to the coordinators. In the Receive step
processors receive the report messages sent in the Send
step. (The messages sent in the very first round do not
contain useful information, although, as a local optimization,
we could let the coordinator detect crashes of processors that
fail to send a message; we choose to keep the code simple.)

In the Compute step, using the information received in
the messages each processor updates its D and F .

Disseminate round. In the Send step, any processor that
either considers itself a coordinator, or receives a report
message in the Collect round, sends summary messages to
all non-crashed processors. In the Receive step processors
receive the summary messages sent in the Send step.

In the Compute step, sets D and F are updated using
the information received in the messages. The processors
also update the layered coordinator structure L by removing
coordinators that failed to send the summary message.
If coordinators were silent (i.e., crashed) and the iteration
is unattended, processors follow the martingale strategy,
incrementing `, so that in the next iteration the number of
coordinators is doubled.

At this point each processor uses the load balancing rule
Bal, performs a task and records this in D.

Load balancing rule Bal. We consider the following
simple load balancing rule Bal(T − D,P − F, i) for each
processor p: the processor ranks the tasks in T − D with
respect to task ids and ranks the processors in P − F with
respect to processor ids. Say that processor p has rank r in
P − F . Then p chooses the task with rank r mod |T −D|
to perform.

IV. CORRECTNESS OF ALGORITHM Do-UM
We now show that in any execution with up to n − 1

crashes algorithm Do-UM solves the Do-All problem, and
that in each execution a processor considers another proces-
sor as crashed only if that processor actually crashed (thus
the set of active processors never partitions).

We first show that no task is ever considered to be
performed unless the task has indeed been performed. Note
that a task is considered performed if at least one processor
completes its execution; if a processor crashes during a task
execution, then the task remains not done. (Note also that
if a processor crashes after executing a task and before it
communicates this fact to other processors, then the task is
still considered not done.)

We number the iterations of the algorithm in an execution
consecutively, starting with 1. In the following, we denote
by Dk

i and by F k
i , the value of, respectively, set D and set

F at processor pi at the end of iteration k. We let D0
i and

by F 0
i stand for the initial values of Di and Fi respectively.

When the iteration number is implicit, we use Di and Fi to
denote the sets D and F at processor pi. We use the notation
mk to denote a message m sent in iteration k.

Intuitively, if a new task τ is included in Dk
i , then either

processor i executes the task in iteration k, or processor
i learns from some other processor about the execution
of task τ . In the first case it is obvious that the task is
performed. In the second case we can get to the same
conclusion by an inductive argument (on the number of
iterations).

Algorithm Do-UM for processor pi
1: external T, P
2: D : 2T init ∅ /* set of done tasks */
3: F : 2P init ∅ /* set of crashed processors */
4: L : 2P init P /* coordinator layered structure */
5: ` : N≥0 init 0 /* current level in L */
6: C : 2P init ∅ /* last active coordinators */
7: R : 2M init ∅ /* set of received report messages */
8: S : 2M init ∅ /* set of received summary messages */

9: repeat
10: COLLECT ROUND
11: Send:
12: send report(D,F, i) to all j ∈ L(`)
13: Receive:
14: R := set of received report messages
15: Compute:
16: D := D ∪

⋃
m∈Rm.D

17: F := F ∪
⋃

m∈Rm.F
18: DISSEMINATE ROUND
19: Send:
20: If i ∈ L(`) or R 6= ∅ then
21: send summary(D,F, i) to all j ∈ P − F
22: Receive:
23: S := the set of received summary messages
24: C := {m.pid | m ∈ S} /* Acting coordinators */
25: Compute:
26: D := D ∪

⋃
m∈S m.D

27: F := F ∪
⋃

m∈S m.F
28: F := F ∪ L(`) \ C
29: If (C 6= ∅) then /* Coordinators attended */
30: L := P − F
31: ` = 0
32: Else /* No coordinator attended */
33: ` := `+ 1
34: Let τ be Bal(T −D,P − F, i)
35: Perform task τ
36: D := D ∪ {τ}
37: until D = T

Figure 1. Algorithm Do-UM at processor pi ∈ P .

Lemma 4.1: In any execution of algorithm Do-UM , if a
task τ is in D1

i for any processor pi, then task τ has been
executed by processor pi.

Proof: Prior to iteration 1 we have Di = ∅ for any i,
thus m.D = ∅ in all report messages in iteration 1, and
consequently the same holds for all summary messages,
since Di = ∅ at the end of the Collect round. Hence the
only way for a task τ to be added to D1

i is for τ to be
executed by processor i and added in line 36.

Lemma 4.2: In any execution of algorithm Do-UM , if a
task τ is in Dk

i for some processor pi in iteration k ≥ 2,
then either task τ is executed by processor pi in iteration k,
or t ∈ Dk−1

j for some processor pj .
Proof: Consider iteration k ≥ 2 of any execution of the

algorithm. Let τ be a task in Dk
i . If τ ∈ Dk−1

i we are done.
Otherwise processor i adds τ to Di in lines 16, 26, or 36.
Case 1: τ is added in line 16 or 26. In this case it means

that τ ∈ m.D for some message m sent in iteration k. But
this implies that t ∈ Dk−1

j for some processor j.
Case 2: τ is added in line 36. In this case task τ is executed
by pi.

This leads to the following lemma.
Lemma 4.3: In any execution of algorithm Do-UM , if a

task τ is in Dk
i for some processor pi, then task τ is executed

at least once in iterations 1, 2, ..., k.
Proof: By induction on iterations using Lemma 4.1 for

the base case and Lemma 4.2 in the inductive step.

We next show that a processor is never wrongfully con-
sidered to be faulty: if some processor i considers another
processor j as crashed, then it is indeed the case that j
crashed. We start by proving the following.

Lemma 4.4: In any execution of algorithm Do-UM , if
processor j is in F 1

i of some processor i, then j = 1 and it
crashed in iteration 1.

Proof: By the code, processor j can be added by
processor i to Fi in lines 17, 27, or 28. In the Collect round
of iteration 1, Fp = ∅ for all p, thus m.F = ∅ for any
message m. The only possibility for i to add j to Fi is in
line 28. The only processor that sends summary messages
in iteration 1 is processor 1, so it must be that j = 1. The
only way for j to be added to Fi is for j to not be in C.
But if 1 6∈ Ci this means that processor 1 did not send a
summary message to i. Thus processor j = 1 crashed.

Lemma 4.5: In any execution of algorithm Do-UM , if a
processor j is in F k

i of some processor i for iteration k ≥ 2,
then either processor j crashes in iteration k or j ∈ F k−1

p

for some p ∈ P .
Proof: If j ∈ F k−1

i , we are done. Otherwise, by the
code, processor i can add processor j to Fi in lines 17, 27,
or 28.
Case 1: j is added in line 17 or 27. In this case we have
that j ∈ m.D for some message m sent during iteration k.
This implies that j ∈ F k−1

p of some processor p ∈ P .
Case 2: j is added in line 28. In this case we have that
processor j is in L(`) but not in C at processor i. If
j ∈ L(`) then processor i believes j to be coordinator, and
thus processor i sends a report message to j in the Collect
round. If j /∈ C, this means that processor j does not send
a summary message to i. Thus processor j crashed.

Next we state and prove the following.
Lemma 4.6: In any execution of algorithm Do-UM , if a

processor j is in F k
i of some processor i for iteration k,

then processor crashes in one of the iterations 1, 2, ..., k.
Proof: By induction on iterations using Lemma 4.4 for

the base case, and Lemma 4.5 in the inductive step.
The above lemma allows us to conclude that the set of

active processors never partitions.
Corollary 4.7: In any execution of algorithm Do-UM , the

set P−Fi for any i ∈ P includes all non-crashed processors.

Finally we show that each non-faulty processor makes
local progress. This means that the algorithm terminates.

Lemma 4.8: In any execution of algorithm Do-UM , if
processor i does not crash by the end of iteration k > 0,
then Dk−1

i ⊂ Dk
i .

Proof: This follows from the facts that Dk−1
i ⊆ Dk

i

(trivially, by the code), and that even if processor i does
not receive messages from other processors (e.g., due to
coordinator failures) in iteration k, it still performs a task
from the set T −Dk−1

i and adds it to D. Hence in the worse
case |Dk

i | = |D
k−1
i |+ 1.

Now we give the main result of this section.
Theorem 4.9: Algorithm Do-UM for n processors and t

tasks, using unreliable broadcast, correctly solves the Do-All
problem in any execution with up to n− 1 crashes.

Proof: Lemma 4.3 shows that a task is never considered
done by any processor unless the task was indeed performed
by some processor. Lemma 4.8 shows that each processor
makes monotone progress. By the failure model, at least one
processor does not crash. Thus all non-crashed processors
ultimately learn that all tasks are complete, and thus the
time complexity of the algorithm is O(n) and the algorithm
terminates.

Remark. Algorithm Do-UM solves Do-All for any t. This
is done “automatically” by having any processor always
being able to compute locally a balanced processor-to-task
allocation. There is an alternative approach for dealing with
t > n. This is done with the help of the conventional
“chunking” strategy that partitions the t tasks into n chunks,
each containing dt/ne tasks. Now the algorithm is used
to perform all n chunks of tasks (instead of individual
tasks). The main algorithmic difference for this approach
is that each iteration now takes time Θ(t/n). However
the qualitative properties of the algorithm assessed in this
section remain invariant.

V. SIMULATIONS AND PERFORMANCE ANALYSIS

In order to evaluate the performance of algorithm Do-
UM , we developed a simulator for algorithm Do-UM ,
algorithm AN, and the all-to-all broadcast algorithm. Before
presenting the simulation results, we discuss the analysis of
algorithm Do-UM for the failure-free case and for reliable
broadcast.
Failure-free case. In the failure free case the analysis is
easy. In each iteration each processor executes one task, so
in each iteration n tasks are executed. In order to execute all
tasks dt/ne iterations are needed. Hence a total of ndt/ne
tasks are executed (in the last iteration some tasks might be
executed twice by two different processors). Similarly, the
total number of messages is 2ndt/ne since in each iteration
2n messages are sent (n report messages and n summary
messages). Thus both the work and message complexities
are O(t).

Using reliable broadcast. For comparison purposes, we
note that when broadcast is reliable, the analysis in [5] is
readily adapted for use with algorithm Do-UM to show
that its performance is identical to that of algorithm AN.
Specifically, the work is O((t+n log n/ log log n) log f) and
the message complexity is O(t + n log n/ log log n + fn),
where f < n is a bound on the number of processor crashes.

Next we present our approach to simulation and the
simulation results.

Simulator design. We simulated the algorithms (algorithm
Do-UM , algorithm AN, and the all-to-all broadcast algo-
rithm) in a variety of adversarial settings for the purpose
of comparing their performance. The simulator is written in
C++ and the message passing network is simulated using
a shared array of messages. The dummy simulated tasks
consist of storing values in shared memory. The simulation
is designed to compare work and messaging expense of the
three algorithms, thus it is sufficient to use discrete counters
to account for processing steps and messages. Were the
algorithms actually implemented, the main distinction would
be in the work performance, where instead of counting
abstract unit steps, the cost of actual steps will include the
time needed to perform real tasks, to do local bookkeeping,
and deliver and process messages.

All simulations were run on a multicore Linux server with
X5650 Intel Xeon and a Mac OSX with 2.3 GHz Intel
Core i7.

Failure models for simulations. We implemented the
following failure patterns: random failure pattern where
processors fail with some probability, coordinators failure
pattern where an adversary crashes coordinators, and lower
bound failure pattern that follows the construction from [6].
The random failure pattern is the failure pattern that is
indicative of realistic situations where failures are not corre-
lated. The coordinator failure pattern is of interest because
it models a nefarious scenario where crashes target the
coordinators. Finally the lower bound failure pattern is of
interest because it models a known worst case scenario.

(1) Random failures. Such failures may be expected in re-
alistic executions. Here a processor crashes with probability
error rate during the Send step of each round, and each
message multicast by the crashing processor is delivered
with probability 0.5, simulating the unreliable broadcast
model. The fixed probability of crashes is chosen to be
high enough to prevent the algorithm from terminating too
quickly, while being low enough to maintain the expectation
that all tasks are performed before all processors fail. We
term such probability the maximum sustainable error rate
and denote it by mser. We ran experiments to determine
the threshold mser such that for error rate<mser all tasks
are expected to be completed, while for error rate>mser all
processors are expected to crash before completing all the
tasks. For our simulations with t = n we approximated mser

to be about 16%.
(2) Coordinator failures. While crashing coordinators is

perhaps an unrealistic scenario, nevertheless it is useful to
understand the impact of coordinator crashes. We chose the
failure patterns where the adversary crashes coordinators
before the Send step of the Disseminate round. Any active
coordinator is crashed until only one layer remains in
the layered coordinator structure. This forces the surviving
processors at the lowest layer to behave similarly to the all-
to-all strategy.

(3) Coordinator send failures. This is the same as coordi-
nator failures, except that the adversary crashes coordinators
during the Send step of the Disseminate round.

(4) Lower bound failures. Here the adversary crashes
processors only when they are assigned to tasks in the
Compute steps. The construction follows the adversarial
strategy U of [3] (page 24). The adversary determines the
set of undone tasks U , computed as T −D in each iteration
(in these scenarios the sets D are the same for all correct
processors). Then the adversary chooses 1

logn |U | tasks with
the least number of processors assigned to them, and crashes
those processors, if any. The adversary continues as long as
the number of undone tasks is greater than 1. As soon as only
one undone task remains, the adversary allows all remaining
processors to perform the task. This adversarial strategy is
proved (in [6]) to cause work Ω(t + n logn

log logn). Note that
for this adversarial strategy, the processors are crashed only
prior to executing the assigned task, and not when sending
a message. Thus no message is lost due to the unreliable
broadcast.

Simulations. For our simulations of algorithm Do-UM ,
algorithm AN, and all-to-all broadcast algorithm we used
n = t parameterization. This is because all Do-All al-
gorithms with published work complexity become more
asymptotically efficient as t grows with respect to n (cf.
in algorithm AN this is due to the additive term t present in
the asymptotic expression). Thus the differences among the
algorithms are most evident when n = t. For our simulation
runs we used n ∈ {128, 256, 512, 1024, 2048, 4096, 8192}.
The upper limit was chosen for practical reasons based on
the time it took to run each simulation. To make the result
measurement more statistically meaningful, for the random
failures pattern and for the coordinator failures patterns each
test was repeated 100 times and the outcome measurements
were averaged. For the lower-bound pattern a single run for
each n is sufficient because the failures are deterministic.

When simulating algorithm AN we always used reliable
broadcast that it was designed for (recall that this is a
strong assumption). Next we present the results referring to
Figures 2 to 9 (the left column of figures reports the work
observations and the right column reports the corresponding
messaging observations).

Work complexity. Here we present and discuss work mea-

5000

10000

15000

2000 4000 6000 8000
Number of processors n

W
or
k Algorithm

Do-UM
AN
All to All

Figure 2. Work for the random failure pattern

2e+04

4e+04

6e+04

8e+04

1e+05

2000 4000 6000 8000
Number of processors n

W
or
k Algorithm

Do-UM
AN

Figure 3. Work for the coordinator failure pattern

10000

20000

30000

40000

50000

2000 4000 6000 8000
Number of processors n

W
or
k Algorithm

Do-UM
AN

Figure 4. Work for the coordinator send failure pattern

5000

10000

15000

20000

25000

2000 4000 6000 8000
Number of processors n

W
or
k

Algorithm
Do-UM
AN
All to All
nlog n/
loglog n

Figure 5. Work for the lower bound pattern

10000

20000

30000

40000

50000

60000

2000 4000 6000 8000
Number of processors n

M
es
sa
ge
s

Algorithm
Do-UM
AN

Figure 6. Messages for the random failure pattern

2e+07

4e+07

6e+07

8e+07

2000 4000 6000 8000
Number of processors n

M
es
sa
ge
s

Algorithm
Do-UM
AN

Figure 7. Messages for the coordinator failure pattern

1e+05

2e+05

3e+05

4e+05

2000 4000 6000 8000
Number of processors n

M
es
sa
ge
s

Algorithm
Do-UM
AN

Figure 8. Messages for the coordinator send failure pattern

20000

40000

60000

2000 4000 6000 8000
Number of processors n

M
es
sa
ge
s

Algorithm
Do-UM
AN

Figure 9. Messages for the lower bound pattern

surements recorded in simulations.
(1) Random failures. The results are in Figure 2. For these

simulations we used error rate = 12% (this is lower than the
approximated mser = 16%). Note that for higher error rates
it is possible for all processors to crash, and thus not all tasks
may be performed. In such cases the Do-All problem is not
solved and it does not make sense to evaluate the executions
of the algorithm when the problem is not solved. We chose
the error rate of 12% because it is somewhat lower than the
expected threshold 16%. We expect that tests with different
values of the error rate would not substantially change the
results (as long as we avoid the possibility that all processors
crashing).

All three algorithms were simulated. As anticipated, the
random failures is a relatively benign failure pattern that
infrequently impacts all coordinators. The work of algorithm
Do-UM is substantially the same as the work of algorithm
AN. The work of all-to-all algorithm is slightly lower; this
is also expected because all information is shared by all
processors in each iteration. In all cases the work is bounded
by 2n from above, although it appears that work grows in
a slight superlinear pattern.

(2) Coordinator failures. The results are in Figure 3. Here
we simulate only the coordinator-based algorithm Do-UM
and algorithm AN (all-to-all algorithm has no coordinators).
As anticipated, the work in this scenario is substantially
worse than in the random failure model. This is because co-
ordinator failures are particularly damaging to coordinator-
based algorithms. The two algorithms show nearly identical
work trend; algorithm Do-UM is slightly more efficient,
by about the work spent in one iteration, due to its more
compact iteration structure.

(3) Coordinator send failures. The results are in Figure 4
and they illustrate the strength of reliable broadcast. As
above, we again simulate algorithm Do-UM and algorithm
AN, except that crashes occur during coordinator multicasts.
As anticipated, the work of both algorithms is better than
for the scenario with crashes before multicasts, however
the work of algorithm AN is substantially lower. It can
be observed that this is because the reliable broadcast used
by algorithm AN allows the processors to make consistent
progress, while algorithm Do-UM is disadvantaged by the
unreliable broadcast.

(3) Lower bound failures. The results are in Figure 5. Here
we simulate algorithm Do-UM , algorithm AN, and all-to-all
algorithm, each subjected to the lower-bound failure pattern
as discussed. We also plot the function n log n/ log log n
that expresses the lower bound on work [6]. As anticipated,
the two coordinator-based algorithms and the all-to-all al-
gorithm track the lower bound closely due to the complete
information provided to all workers in each iteration.
Message complexity. We now present and discuss message
measurements recorded in simulations. We present only the
results for algorithm Do-UM and algorithm AN because the

message complexity of all-to-all broadcast is unacceptably
high—it is literally off-the-chart (the main purpose of that
algorithm is to use it in work comparisons).

(1) Random failures. The results are in Figure 6. Re-
call that for these simulations we used error rate = 12%.
Although this is a relatively benign failure pattern that
infrequently impacts all coordinators, it apparently causes
substantial increase in communication in algorithm Do-UM
as compared to algorithm AN. In particular, algorithm Do-
UM sends up to twice as many messages. Recall that
algorithm AN has the significant advantage of being able to
broadcast reliably, while algorithm Do-UM is at a disadvan-
tage, endowed only with unreliable broadcast. We observe
that algorithm Do-UM is forced to double coordinators
earlier than this occurs in algorithm AN.

(2) Coordinator failures. The results are in Figure 7.
As anticipated, the communication burden in this scenario
is substantially worse than in the random failure model.
Here coordinator failures are particularly damaging, pushing
the martingale strategy to its limit, when the workers in
the lowest layer of the coordinator structure become co-
ordinators, sending quadratic number of messages. Thus,
not surprisingly, the graph has a parabolic nature and both
algorithms have nearly identical messaging pattern.

(3) Coordinator send failures. The results are in Figure 8.
As anticipated, the communication expense for both algo-
rithms is smaller than above because coordinators are able
to send in at least some cases. However algorithm AN is
noticeably more efficient due to consistency afforded by the
reliable broadcast.

(4) Lower bound failures. The results are in Figure 9.
Here the two algorithms are subjected to the lower-bound
failure pattern as previously discussed. The messaging trends
here are very similar, but with algorithm Do-UM incurring
somewhat greater expense due to its structure as it executes
one more iteration than algorithm AN; this is because in al-
gorithm Do-UM processors communicate before performing
tasks, while in algorithm AN processors communicate after
performing tasks, thus more information is communicated
in each iteration of algorithm AN.

VI. CONCLUSIONS

We presented a new algorithm for cooperative computing
in message-passing settings with crash-prone processors.
Here the participating processors must perform a collec-
tion of tasks despite failures. The algorithm pursues a
coordinator-based approach, where multiple concurrent co-
ordinators direct the work of all processors in a way that
helps balance the load on all processors. The algorithm does
not assume reliable broadcast as some prior coordinator-
based algorithms—this means that if a processor crashes
during a broadcast, then only some arbitrary subset of
processors may receive the message. We prove that the al-
gorithm solves the distributed cooperation problem, and that

the entire set of non-crashed processors is able to cooperate
during the computation. We then simulate our algorithm
in different failure settings, and compare its performance
with an algorithm that depends on reliable broadcast, and
a benchmark algorithm that uses all-to-all broadcast. The
simulations show that although our algorithm does not rely
on reliable broadcast, its performance is comparable to that
of the algorithm that requires reliable broadcast. In compar-
ison with the all-to-all broadcast algorithm, our algorithm
has slightly worse work complexity but substantially better
message complexity.

Future work will focus on developing more effective
algorithms, and on analytical assessments of performance.

Acknowledgments.: This work is supported in part by
the NSF award 1017232, by the Cyprus Research Promotion
Foundation grant TΠE/ΠΛHPO/0609(BE)/05 and by the
Italian MIUR PRIN projects fund.

REFERENCES

[1] “Internet primenet server,” http://mersenne.org/ips/stats.html.

[2] “SETI@home,” http://setiathome.ssl.berkeley.edu/.

[3] C. Georgiou and A. A. Shvartsman, Do-All Computing in Dis-
tributed Systems: Cooperation in the Presence of Adversity.
Springer-Verlag, 2008.

[4] R. De Prisco, A. Mayer, and M. Yung, “Time-optimal
message-efficient work performance in the presence of faults,”
in Proceedings of the 13th ACM Symposium on Principles of
Distributed Computing (PODC 1994), 1994, pp. 161–172.

[5] B. Chlebus, R. De Prisco, and A. Shvartsman, “Performing
tasks on restartable message-passing processors,” Distributed
Computing, vol. 14, no. 1, pp. 49–64, 2001.

[6] P. Kanellakis and A. Shvartsman, Fault-Tolerant Parallel
Computation. Kluwer Academic Publishers, 1997.

[7] Z. Kedem, K. Palem, A. Raghunathan, and P. Spirakis,
“Combining tentative and definite executions for dependable
parallel computing,” in Proceedings of the 23rd ACM Sympo-
sium on Theory of Computing (STOC 1991), 1991, pp. 381–
390.

[8] J. Groote, W. Hesselink, S. Mauw, and R. Vermeulen, “An
algorithm for the asynchronous Write-All problem based on
process collision,” Distributed Computing, vol. 14, no. 2, pp.
75–81, 2001.

[9] R. Anderson and H. Woll, “Algorithms for the certified Write-
All problem,” SIAM Journal of Computing, vol. 26, no. 5, pp.
1277–1283, 1997.

[10] D. Alistarh, M. A. Bender, S. Gilbert, and R. Guerraoui, “How
to allocate tasks asynchronously,” in Proc. of the 53rd IEEE
Symp. on Foundations of Computer Science (FOCS 2012),
2012, pp. 331–340.

[11] D. Alistarh, J. Aspnes, M. A. Bender, R. Gelashvili, and
S. Gilbert, “Dynamic task allocation,” in Proc. of the 25th

ACM-SIAM Symposium on Discrete Algorithms (SODA 2014),
2014.

[12] C. Dwork, J. Halpern, and O. Waarts, “Performing work
efficiently in the presence of faults,” SIAM Journal on Com-
puting, vol. 27, no. 5, pp. 1457–1491, 1998.

[13] B. Chlebus, D. Kowalski, and A. Lingas, “The Do-All prob-
lem in broadcast networks,” Distributed Computing, vol. 18,
no. 6, pp. 435–451, 2006.

[14] Z. Galil, A. Mayer, and M. Yung, “Resolving message com-
plexity of byzantine agreement and beyond,” in Proceedings
of the 36th IEEE Symposium on Foundations of Computer
Science (FOCS 1995), 1995, pp. 724–733.

[15] B. Chlebus and D. R. Kowalski, “Randomization helps to per-
form independent tasks reliably,” Random Struct. Algorithms,
vol. 24, no. 1, pp. 11–41, 2004.

[16] S. Dolev, R. Segala, and A. Shvartsman, “Dynamic load
balancing with group communication,” Theoretical Computer
Science, vol. 369, no. 1–3, pp. 348–360, 2006.

[17] C. Georgiou, A. Russell, and A. Shvartsman, “Work-
competitive scheduling for cooperative computing with dy-
namic groups,” SIAM Journal on Computing, vol. 34, no. 4,
pp. 848–862, 2005.

[18] C. Georgiou and A. A. Shvartsman, Cooperative Task-
Oriented Computing: Algorithms and Complexity. Synthesis
Lectures on Distributed Computing Theory, Morgan & Clay-
pool, 2011.

[19] D. Kowalski and A. Shvartsman, “Performing work with
asynchronous processors: message-delay-sensitive bounds,”
Information and Computation, vol. 203, no. 2, pp. 181–210,
2005.

[20] C. Georgiou, D. Kowalski, and A. Shvartsman, “Efficient
gossip and robust distributed computation,” Theoretical Com-
puter Science, vol. 347, no. 1, pp. 130–166, 2005.

[21] D. Kowalski, P. Musial, and A. Shvartsman, “Explicit com-
binatorial structures for cooperative distributed algorithms,”
in Proceedings of the 25th International Conference on
Distributed Computing Systems (ICDCS 2005), 2005, pp. 48–
58.

[22] A. Fernandez, C. Georgiou, A. Russell, and A. Shvartsman,
“The do-all problem with byzantine processor failures,” Theo-
retical Computer Science, vol. 333, no. 3, pp. 433–454, 2005.

