
Coordinated Cooperative Task Computing Using
Crash-Prone Processors with Unreliable MulticastI

Seda Davtyana, Roberto De Priscob, Chryssis Georgiouc,∗, Theophanis
Hadjistasid, Alexander A. Schwarzmannd

aJW Player Inc, New York, NY 10016, USA.
bUniversità di Salerno, 84084 Fisciano (SA), Italy.

cUniversity of Cyprus, 1678 Nicosia, Cyprus
dUniversity of Connecticut, Storrs, CT 06269, USA

Abstract

This paper presents a new message-passing algorithm, called Do-UM , for dis-

tributed cooperative task computing in synchronous settings where processors

may crash, and where any multicasts (or broadcasts) performed by crashing

processors are unreliable. We specify the algorithm, prove its correctness and

analyze its complexity. We show that its worst case available processor steps

is S = Θ
(
t+ n logn

log logn + f(n− f)
)

and that the number of messages sent is

less than n
(

2t+ nf
2

)
, where n is the number of processors, t is the number of

tasks to be executed and f is the number of failures. To assess the performance

of the algorithm in practical scenarios, we perform an experimental evaluation

on a planetary-scale distributed platform. This also allows us to compare our

algorithm with the currently best algorithm that is, however, explicitly designed

to use reliable multicast; the results suggest that our algorithm does not lose

much efficiency in order to cope with unreliable multicast.

Keywords: Task computing, Fault-tolerant distributed algorithms, Crash

faults, Unreliable multicast.

IA preliminary version of this work appears in [1].
∗Corresponding author – chryssis@cs.ucy.ac.cy, +35722892745 (tel), +35722892701 (fax)
Email addresses: seda@jwplayer.com (Seda Davtyan), robdep@unisa.it (Roberto De

Prisco), chryssis@cs.ucy.ac.cy (Chryssis Georgiou), theo@uconn.edu (Theophanis
Hadjistasi), aas@uconn.edu (Alexander A. Schwarzmann)

Preprint submitted to JPDC June 20, 2017

1. Introduction

With the end of Moore’s Law in sight, parallelism became the main

means for speeding up computationally-intensive applications, especially in

the cases where large collections of tasks need to be performed. Network

supercomputing—taking advantage of very large numbers of computers in dis-5

tributed environments—is an effective approach to massive parallelism that

harnesses the processing power inherent in large networked settings. In such

settings, processor failures are no longer an exception, but the norm. Any algo-

rithm designed for realistic settings must be able to deal with failures.

Network supercomputing enables harnessing the immense computational10

power of the global Internet platform. A typical Internet supercomputer con-

sists of a master computer or server and a large number of computers called

workers, performing computation tasks on behalf of the master, cf. [2, 3]. De-

spite the simplicity and benefits of a single master approach, as the scale of such

computing environments grows, it becomes unrealistic to assume the existence15

of an infallible master that is able to coordinate the activities of multitudes of

workers. Furthermore, large-scale distributed systems are inherently dynamic

and are subject to perturbations, such as failures of computers and network

links, thus it is also necessary to consider fully distributed peer-to-peer solu-

tions. In the study of cooperative algorithms, the standard abstract problem is20

called Do-All [4], and is defined as follows.

Do-All: n processors must cooperatively perform t tasks

in the presence of adversity.

Simple but unrealistic solutions of the problem make use of a master proces-

sor which is not subject to failures and thus can easily coordinate the execution25

of the tasks. To remove the troublesome assumption of having an infallible

master, coordinator-based solutions have been proposed: the approach is to use

more than one coordinator to manage the computation, and if coordinators fail,

they are dynamically replaced by other coordinators. Coordinator algorithms

are usually simpler and more practical than other peer-to-peer algorithms. In30

2

particular, single-coordinator algorithms can be very efficient when failures are

infrequent, and they have substantial advantages over master-worker algorithms

as they allow any processor to act as a coordinator, thus eliminating a single

point of failure. However, such single coordinator solutions become very inef-

ficient in adversarial settings where there are stretches of time during which35

each appointed coordinator crashes without accomplishing the needed coordi-

nation [5].

Thus, it is advantageous to explore solutions that allow multiple concurrent

coordinators. Using multiple coordinators raises the new challenge of dealing

with potential inconsistency in workers’ states in the cases when, due to failures,40

multiple coordinators provide different information to the workers. To solve this

problem, some algorithms resorted to using reliable broadcast, where the mes-

sages are delivered either to all destinations or to none if the sender crashes

during the broadcast. With reliable broadcast/multicast, whenever coordina-

tors share information with each other, it is guaranteed that all non-crashed45

coordinators will receive the same messages, leading to a consistent state.

In synchronous deterministic settings, combining reliable broadcast with

coordinator-based approach allows one to construct very efficient algorithms,

such as Algorithm AN, presented in [6]. However, reliable broadcast is a very

strong assumption. Thus it is interesting to explore multiple-coordinator solu-50

tions that do not rely on reliable broadcast. Interestingly, algorithm AN may

become very inefficient if used with unreliable broadcast because the partici-

pants may be fragmented into two or more groups, with each group believing

that all other processors crashed.

Contributions. In this paper we aim to advance the state of the art in this55

direction, viz., to design algorithms for synchronous settings that use multiple

coordinators to achieve good performance in the presence of processor crashes,

while using only unreliable broadcast. We aim to develop efficient point-to-

point message-passing algorithms for the Do-All problem that are simple and

easy to implement. We note that there is a simple brute-force approach, where60

3

all processors always broadcast all of their knowledge to all other processors (as

suggested in [6]). Such an all-to-all solution is very efficient in terms of work,

but its message complexity is prohibitive. Thus we aim for a more balanced

algorithm that trades work for better communication efficiency. As our point of

departure, we use the multi-coordinator approach introduced in algorithm AN65

[6] (see Section 2 on related work for more details about algorithm AN). In this

paper, we present an iterative algorithm that is simpler than algorithm AN in

that each iteration consists of two send-receive-compute stages as compared to

three similar stages in algorithm AN. More importantly, the new algorithm does

not assume reliable multicast, and it is not subject to the partitioning problem70

in algorithm AN. In more detail our contributions are as follows.

1. We present a new algorithm, called algorithm Do-UM , that is designed to

work with both unreliable and reliable multicast and that tolerates up to n− 1

crashes. The algorithm solves Do-All for n processors and t tasks, where n ≤ t.

When using reliable multicast, the algorithm has the same work and message75

complexity bounds as algorithm AN (this can be shown using the same analysis

as in [6]).

2. We prove that algorithm Do-UM solves the Do-All problem when the mul-

ticast is unreliable. That is, we show that if the algorithm terminates, then

all tasks have been performed. We also show that no correct processor is ever80

considered faulty by any other processor (thus the algorithm does not suffer

from the partitions of correct processors that are possible in algorithm AN [7]).

3. We prove that the algorithm has the worst case available processor steps S =

Θ
(
t+ n logn

log logn + f(n− f)
)

and that it uses at most n
(

2t+ nf
2

)
messages,

where f is the number of crashes.85

Thus from a theoretical point of view, algorithm Do-UM has an available

processor steps complexity similar to that of algorithm AN. However algorithm

Do-UM does not require reliable multicast.

4. To support the theoretical analysis, we also implemented algorithms Do-UM

and AN using YALPS [8] and evaluated them experimentally over PlanetLab [9].90

4

The experiments assert the performance of the algorithms in real-life scenarios.

Since algorithm AN has been designed explicitly for settings with reliable mul-

ticast, we run the tests for AN using reliable multicast. Instead, for algorithm

Do-UM the tests have been run with unreliable multicast. The results of the

tests show that Do-UM does not lose too much efficiency in order to be able to95

cope with unreliable multicast (we remark that the performance of algorithm

AN is measured under reliable multicast).

As we noted earlier, in settings with reliable multicast, the efficiency of algo-

rithms Do-UM and AN is equivalent. We also note that algorithm AN remains

correct when multicast/broadcast is unreliable: this is so for the very simple100

reason that each active processor, regardless of any coordination or lack of it,

will ultimately perform all undone tasks by itself, thus solving the problem.

However the efficiency analysis of AN does not apply to the setting with unreli-

able broadcast, and the performance of the algorithm can be rather poor. The

algorithm operates under the assumption that all live processors receive consis-105

tent information. In the event that this does not happen (e.g., when a processor

crashes in the middle of a broadcast, and broadcast is not reliable, some pro-

cessors may receive the message and some not), then the set of processors may

partition into several groups where different knowledge about the number of live

processors and pending tasks, leading to inefficient load balancing and the high110

resulting task execution redundancy.

Thus, if we consider settings with unreliable broadcast, AN becomes a poor

choice, while algorithm Do-UM , as the theoretical analysis and the results of

the experiments show, exhibits a behaviour that is only slightly worse than

that of the reliable broadcast case. This demonstrates the benefit and value of115

algorithm Do-UM .

Tables 1 and 2 summarize the comparison of algorithms Do-UM and AN.

Document structure. Section 2 presents related work. Section 3 gives the

model of computation, definitions, and measures of efficiency. We present and

analyse algorithm Do-UM in Sections 4 and 5. Section 6 discusses the experi-120

5

Algorithm Communication Theoretical Performance
AN Designed for S = O((t+ n log n/ log log n) log f)

reliable broadcast M = O(t+ n log n/ log log n+ fn)

Do-UM Works with S = Θ
(
t+ n logn

log logn + f(n− f)
)

unreliable broadcast M ≤ n
(

2t+ nf
2

)
Table 1: Theoretical comparison of AN and Do-UM

Algorithm Experimental Performance
Reliable broadcast Unreliable broadcast

AN good poor
Do-UM comparable to AN much better than AN

Table 2: Experimental comparison of AN and Do-UM (details in Section 6)

mental evaluation of algorithms Do-UM and AN. We conclude in Section 7.

2. Prior and Related Work

The Do-All problem has been studied in a variety of settings, e.g., in shared-

memory models [10, 11, 12, 13, 14, 15], in message-passing models [4, 5, 6, 16,

17, 18, 19, 20, 21, 22] and in partitionable networks [23, 24]. Kanellakis and125

Shvartsman [10], who initially formulated the Do-All problem, introduce the

available processor steps work complexity measure S and provide a lower bound

of S = Ω(t+n log n/ log log n) for synchronous crash-prone processors, and this

bound holds both for the shared-memory model and for message-passing. A

comprehensive treatment of the Do-All problem in the message-passing setting130

is given in [4]; basic techniques used in solving Do-All can be found in [7].

Dwork, Halpern, and Waarts [16] consider the Do-All problem in the

message-passing model and develop several deterministic algorithms for syn-

chronous crash-prone processors. They evaluate the efficiency of their solutions

using the task-oriented complexity measure that accounts only for task execu-135

tions. Most work in the message-passing model focus on synchronous models

(for an example of an asynchronous setting see [25]). The work in [5] presents

6

an algorithm for Do-All for the synchronous setting with processor crashes us-

ing the available processor steps work complexity. In particular, it provides a

deterministic algorithm that has work O(t + (f + 1)n) and message complex-140

ity (total number of point-to-point messages sent) O((f + 1)n), where f is the

number of processor crashes. The algorithm deploys a single-coordinator ap-

proach: At each step all processors have a consistent (over)estimate of the set

of all the available processors (using checkpoints). One processor is designated

to be the coordinator. The coordinator allocates the undone tasks according145

to a certain load balancing rule and waits for notifications of the tasks which

have been performed. The coordinator changes over time (due to coordinator

crashes). To avoid a quadratic upper bound, substantial processor slackness is

assumed (n � t). Paper [5] also shows a work lower bound of Ω(t + (f + 1)n)

for any algorithm using the stage-checkpoint strategy; this bound is quadratic150

in n for f comparable with n. Moreover, any protocol that has at most one

active coordinator is bound to have work Ω(t+ (f + 1)n).

The work in [26] provides a Do-All algorithm that beats the lower bound

shown in [5]; this work does not assume reliable multicast, and instead of us-

ing coordinators it pursues a gossip-based coordination technique in conjunc-155

tion with scheduling based on permutations satisfying certain properties and

expander graphs. The results in [27] show how to construct the needed per-

mutations efficiently, yet the algorithm in [26] remains complex and hard to

implement.

The work in [6] presents algorithm AN whose work also beats the lower160

bound of [5] by using multiple coordinators. In order to achieve this, the al-

gorithm, unlike other solutions, uses reliable multicast, where if a processor

crashes while multicasting a message, this message is either received by all tar-

geted processors or by none. The algorithm operates in iterations. Initially

there is a single coordinator. If it fails in some iteration, then two processors165

become coordinators in the next iteration. If they both fail, then four proces-

sors act as coordinators, and so on. If in a given iteration at least one of the

coordinators survives the iteration, then the next iteration has one coordinator.

7

Algorithm AN achieves work O((t + n log n/ log log n) log f) and message com-

plexity O(t+ n log n/ log log n+ fn), where f < n is a bound on the number of170

processor crashes. The reliable multicast assumption is essential for maintain-

ing consistent views of the processors in the presence of multiple coordinators.

If this assumption is removed, the algorithm is still able to solve the problem,

but some executions of the algorithm may be very inefficient because the set of

processors may partition into several groups (see [7]).175

The Do-All problem has also been considered in other models of failure, in

particular in models with Byzantine failures [28]. The Byzantine case is quite

challenging due to the more virulent adversarial setting where tasks may be

performed incorrectly by faulty processors. Thus the performance of algorithms

that tolerate Byzantine failures is worse compared to the algorithms that deal180

with crash failures. To deal with Byzantine failures, models have been proposed

that allow processors within a single constant time stage to verify that a certain

number of tasks were performed correctly.

Finally, we remark that in [1] we have provided preliminary results which

have been extended in this paper. More specifically the differences between this185

paper and [1] can be summarized as follows.

• In this paper we provide a theoretical analysis of the work and message

complexities of Do-UM . In [1] only the correctness of the algorithm is

proven; the complexity analysis is mentioned as future work. The analysis

provided in this paper first presents an upper bound on the work (available190

processor steps) complexity of Do-UM , and then a lower bound showing

the tightness (Θ()) of the upper bound analysis. Then, the message com-

plexity of the algorithm is shown. The analysis increases significantly the

understanding of the algorithm, especially on how the algorithm is han-

dling subtle issues. Furthermore, the theoretical analysis allows a precise195

comparison of the efficiency of Do-UM with that of AN, the currently

best algorithm that requires reliable multicast (the new algorithm does

not require reliable multicast). Also, the formal analysis shows that, in

8

the presence of reliable multicast, the new algorithm has the same (asymp-

totic) complexity as algorithm AN.200

• In [1] an experimental evaluation via simulation is presented. Instead, in

this paper, we have implemented (using YALPS) Do-UM (and algorithm

AN) and run real-life experiments on PlanetLab (an adverse planetary-

scale distributed platform). This not only demonstrates the practicality of

Do-UM but it also enables us to compare its performance with AN under205

realistic scenarios. This evaluation has resulted in interesting observations

(see Section 5).

3. Model of Computation and Definitions

Processors and Tasks. We consider a set of n processors P = {p1, . . . , pn},

each with a unique processor identifier (pid). For simplicity we will let the210

pid of processor pi to be i, for i ∈ [n]. The processors must execute a set

of t tasks T = {τ1, . . . , τt}. Each task has a unique identifier and we let the

identifier of task τi to be i, for i ∈ [t]. Processors obtain tasks from some

repository (or processors initially know all tasks). The tasks are (a) similar,

meaning that any task can be done in constant time by any processor, (b)215

independent, meaning that each task can be performed independently of other

tasks, and (c) idempotent, meaning that the tasks admit at-least-once semantics

and can be performed concurrently. Several applications involving tasks with

such properties are discussed in [4].

Computation. The system is synchronous and computation proceeds in steps,220

where each step has a fixed and known duration. In any step a processor can

either send or receive messages, or can perform some local computation. We

define a computation stage to consist of a Send step, a Receive step, and a

Compute step.

Communication. Processors communicate by exchanging messages. We as-225

sume that any processor can send messages to every other processor, that is, the

9

underlying communication network is fully connected. Processors can commu-

nicate by means of point-to-point messages and multicasts, where a message to

each multicast destination is treated as a point-to-point message. Point-to-point

messages are not lost or corrupted, however multicasts are not reliable in the230

sense that if a processor crashes during a multicast, then some arbitrary subset

of the target processors receives the message. We assume that there is a known

upper bound on message delivery time and that if a message sent to a processor

in a Send step, then it is delivered in the subsequent Receive step (provided

the receiving processor does not crash). Note that in any step a processor may235

receive up to n messages, thus we assume that the time needed to process a

received message is insignificant compared to the duration of the step. We let

the set M stand for all possible messages.

Model of failures. Processors may crash (stop) at any point in the execution,

subject only to the constraint that at least one processor does not crash. In240

particular, a processor can crash during a Send step. In this case it is possible

that the messages sent are received by some recipients and not by others. Once

crashed, a processor does not recover. In stating our results we use f to stand

for the allowable number of crash failures.

The problem. The Do-All problem requires the execution of the tasks T in245

the distributed system consisting of the processors P , where the processors are

subject to the above failure model.

Measures of efficiency. Do-All algorithms are evaluated in terms of work

complexity and communication complexity. Work complexity is given as the

total number of steps, i.e., we use available processor steps complexity [10]. In250

our algorithm each iteration consists of a constant number of steps and each

correct processor performs one task in each iteration. Thus, asymptotically, it

is sufficient to assess the total number of times each task is executed (a task

may be performed more than once). Message complexity is given by the total

number of point-to-point messages sent during an execution, where a multicast255

contributes as many messages as there are destinations.

10

4. Algorithm Description

We now present algorithm Do-UM . All processors act as workers and perform

tasks according to a load balancing rule; additionally, some workers also act as

coordinators using a multi-coordinator approach. The algorithm proceeds in260

iterations, each consisting of two stages, a Collect stage and a Disseminate

stage. The algorithm uses two types of messages: the report message and the

summary message. Each message contains three values: a set of done task ids,

a set of failed processor ids, and the id of the sender.

In the Collect stage each processor sends a report message to every coordi-265

nator. Every processor that receives a report message in this stage updates its

knowledge according to the information contained in the messages. In the subse-

quent Disseminate stage, coordinators send summary messages to all processors.

A processor p acts as a coordinator when it either believes to be a coordinator,

or if it receives a report message in the preceding Collect stage from some270

other processor q that considers p to be a coordinator. Failure of processors,

and in particular failure of coordinators, can prevent global progress. In order

to cope with coordinator failures the algorithm uses a martingale strategy: if a

processor suspects that all coordinators crashed in a given iteration, it doubles

the number of coordinators for the next iteration. In order to handle multiple275

coordinators we will use a layered structure. Each level of the structure is a

“layer” of coordinators to be used in a given iteration. The first layer consists

of a single processor, and each following layer has twice as many processors as

the preceding layer.

The above approach is similar to that of algorithm AN [6]. However, there280

are fundamental differences. The most important is that algorithm AN makes

a very strong assumption of reliable multicast, making it possible for the local

knowledge of processors to be consistent. This is no longer true with unreliable

multicast that might cause processors to have different views of the current

status of the system (i.e., performed tasks and crashed processors). Thus, while285

in algorithm AN all workers agree on the set of coordinators, in algorithm Do-

11

UM two processors p and q may have inconsistent views of coordinators. E.g.,

q may be a coordinator in p’s view, but not in its own view, or q may be

a coordinator in its own view, but only a worker in p’s view. To deal with

such inconsistencies in local knowledge, a processor has to be able to react to290

unexpected messages. Accordingly, in algorithm Do-UM if a worker receives an

unexpected report message, that is, the message addressed to a coordinator,

it acts as a coordinator in the second stage of the iteration. Note that the

case of “unexpected” summary messages never arises because every processor

is ready to receive summary messages in each iteration from processors acting295

as coordinators (if any). If a processor receives at least one summary message

in an iteration, it considers the iteration to be “attended” by (at least one)

coordinator; otherwise it considers the iteration to be “unattended.”

The main state variables at each processor are D, recording the set of ids of

the tasks that the processor knows to be complete, and F , the set of pids of the300

processors that the processor knows as crashed. Sets D and F are communicated

by the processors in report and summary messages. The algorithm terminates

when D = T , i.e., all tasks are done. Next we present the data structure used

to implement the martingale strategy for selecting coordinators, then we give

and explain the code for the algorithm.305

Layered coordinator structure. Each processor computes locally the set L

of correct (non-crashed) processors ids as P − F . The pids in set L are listed

in the ascending order, and L is interpreted as a structure of h = 1 + dlog2 |L|e

layers. If L = 〈q1, q2, ..., qk〉, for k = |L|, at processor p, it is interpreted

by p as follows. The first layer, denoted L(0), is the set {q1}, consisting of310

one processor. Each layer L(`) for the next h − 2 layers, with ` ∈ [h − 2], is

defined to be {q2` , . . . , q2`+1−1}. The lowest layer L(`) for ` = h− 1 consists of

the remaining pids, being {q2` , . . . , qk}. Thus the number of processors in any

L(`) is 2`, except possibly for the lowest layer that may contain fewer pids if

k < 2h − 1.315

Initially, any processor p has ` = 0 and it considers the processor in L(0) to be

12

the coordinator. In each iteration where p does not hear from any coordinators,

it increments `, and considers processors in L(`) as the next coordinators. Thus,

following each iteration unattended by coordinators, the number of coordinators

is doubled (until all processors in the lowest layer act as coordinators). Following320

each attended iteration, ` is reset to 0, leaving one processor as the coordinator.

Example.

Suppose that we have a system of n = 13 processors. Initially processor p assumes

that all the processors are alive. The layered structure L = 〈q1, q2, . . . , q13〉 is as below:

Layer L(0) consists of processor 1, layer L(1) consists of processors 2 and 3, etc. At325

some point later in the computation, processor p may learn that processors 1, 2, 5, and

12 crashed, setting F accordingly. When the local view is updated taking into account

F we have L = 〈p3, p4, p6, . . . , p11, p13〉 and the corresponding structure becomes:

Algorithm details. We now describe the algorithm in greater detail. The

algorithm proceeds in iterations and each iteration consists of two stages. Recall330

that a stage consists of a Send step, a Receive step, and a Compute step. The

pseudocode for the algorithm is shown in Figure 1.

The report and the summary messages contain triples (D,F, i) consisting

of a set D of task identifiers, a set F of processor identifiers, and the pid i of

the sender. For any message m we denote by m.D the set D of (done) task335

13

Algorithm Do-UM for processor pi
1: external T, P
2: D : 2T init ∅ /* set of done tasks */
3: F : 2P init ∅ /* set of crashed processors */
4: L : 2P init P /* coordinator layered structure */
5: ` : N≥0 init 0 /* current level in L */
6: C : 2P init ∅ /* last active coordinators */
7: R : 2M init ∅ /* set of received report messages */
8: S : 2M init ∅ /* set of received summary messages */

9: repeat
10: Collect Stage
11: Send:
12: send report(D,F, i) to all j ∈ L(`)
13: Receive:
14: R := set of received report messages
15: Compute:
16: D := D ∪

⋃
m∈Rm.D

17: F := F ∪
⋃

m∈Rm.F
18: Disseminate Stage
19: Send:
20: If i ∈ L(`) or R 6= ∅ then
21: send summary(D,F, i) to all j ∈ P − F
22: Receive:
23: S := the set of received summary messages
24: C := {m.pid | m ∈ S} /* Acting coordinators */
25: Compute:
26: D := D ∪

⋃
m∈S m.D

27: F := F ∪
⋃

m∈S m.F
28: F := F ∪ L(`) \ C
29: If (C 6= ∅) then /* Coordinators attended */
30: L := P − F
31: ` = 0
32: Else /* No coordinator attended */
33: ` := `+ 1
34: Let τ be Bal(T −D,P − F, i)
35: Perform task τ
36: D := D ∪ {τ}
37: until D = T

Figure 1: Algorithm Do-UM at processor pi ∈ P .

14

identifiers contained in m, by m.F the set F of (crashed) processor identifiers

in m and by m.pid the pid i contained in m, that is the sender of the message.

Collect stage. In the Send step (line 12) each processor sends a report message

to the coordinators. In the Receive step (line 14) processors receive the report

messages sent in the Send step. (The messages sent in the very first stage do340

not contain useful information, although, as a local optimization, we could let

the coordinator detect crashes of processors that fail to send a message; we

choose to keep the code simple.) In the Compute step (lines 16-17), using the

information received in the messages each processor updates its D and F .

Disseminate stage. In the Send step (lines 20-21), any processor that either345

considers itself a coordinator, or receives a report message in the Collect stage,

sends summary messages to all non-crashed processors. In the Receive step

(lines 23-24) processors receive the summary messages sent in the Send step. In

the Compute step (lines 26-37), sets D and F are updated using the information

received in the messages. The processors also update the layered coordinator350

structure L by removing coordinators that failed to send the summary message.

If coordinators were silent (i.e., crashed) and the iteration is unattended, proces-

sors follow the martingale strategy, incrementing `, so that in the next iteration

the number of coordinators is doubled.

At this point each processor uses the load balancing rule Bal, performs a355

task and records this in D.

Load balancing rule Bal. We consider the following simple load balancing

rule Bal(T −D,P − F, i) for each processor p: the processor ranks the tasks in

T −D with respect to task ids and ranks the processors in P − F with respect

to processor ids. Say that processor p has rank r in P −F . Then p chooses the360

task with rank r mod |T −D| to perform.

5. Analysis of Algorithm Do-UM

In this section we analyse the algorithm. We start, in Section 5.1, by proving

that the algorithm is correct, that is it executes all the tasks. Then in Section 5.2

15

we assess the performance of the algorithm by giving upper and lower bounds365

on its running time.

5.1. Correctness

We now show that in any execution with up to n− 1 crashes algorithm Do-

UM solves the Do-All problem, and that in each execution a processor considers

another processor as crashed only if that processor actually crashed (thus the370

set of active processors never partitions).

We first show that no task is ever considered to be performed unless the

task has indeed been performed. Note that a task is considered performed if at

least one processor completes its execution; if a processor crashes during a task

execution, then the task remains not done. (Note also that if a processor crashes375

after executing a task and before it communicates this fact to other processors,

then the task is still considered not done.)

We number the iterations of the algorithm in an execution consecutively,

starting with 1. In the following, we denote by Dk
i and by F ki , the value of,

respectively, set D and set F at processor pi at the end of iteration k. We let380

D0
i and by F 0

i stand for the initial values of Di and Fi respectively. When the

iteration number is implicit, we use Di and Fi to denote the sets D and F at

processor pi. We use the notation mk to denote a message m sent in iteration

k.

Intuitively, if a new task τ is included in Dk
i , then either processor i executes385

the task in iteration k, or processor i learns from some other processor about

the execution of task τ . In the first case it is obvious that the task is performed.

In the second case we can get to the same conclusion by an inductive argument

(on the number of iterations).

Lemma 5.1. In any execution of algorithm Do-UM , if a task τ is in D1
i for390

any processor pi, then task τ has been executed by processor pi.

Proof. Prior to iteration 1 we have Di = ∅ for any i, thus m.D = ∅ in all

report messages in iteration 1, and consequently the same holds for all summary

16

messages, since Di = ∅ at the end of the Collect stage. Hence the only way for

a task τ to be added to D1
i is for τ to be executed by processor i and added in395

line 36. �

Lemma 5.2. In any execution of algorithm Do-UM , if a task τ is in Dk
i for

some processor pi in iteration k ≥ 2, then either task τ is executed by processor

pi in iteration k, or t ∈ Dk−1
j for some processor pj.

Proof. Consider iteration k ≥ 2 of any execution of the algorithm. Let τ be a400

task in Dk
i . If τ ∈ Dk−1

i we are done. Otherwise processor i adds τ to Di in

lines 16, 26, or 36.

Case 1: τ is added in line 16 or 26. In this case it means that τ ∈ m.D for

some message m sent in iteration k. But this implies that t ∈ Dk−1
j for some

processor j.405

Case 2: τ is added in line 36. In this case task τ is executed by pi. �

This leads to the following lemma.

Lemma 5.3. In any execution of algorithm Do-UM , if a task τ is in Dk
i for

some processor pi, then task τ is executed at least once in iterations 1, 2, ..., k.

Proof. By induction on the number of iterations using Lemma 5.1 for the base410

case and Lemma 5.2 in the inductive step. �

We next show that a processor is never wrongfully considered to be faulty:

if some processor i considers another processor j as crashed, then it is indeed

the case that j crashed. We start by proving the following.

Lemma 5.4. In any execution of algorithm Do-UM , if processor j is in F 1
i of415

some processor i, then j = 1 and it crashed in iteration 1.

Proof. By the code, processor j can be added by processor i to Fi in lines 17, 27,

or 28. In the Collect stage of iteration 1, Fp = ∅ for all p, thus m.F = ∅ for

any message m. The only possibility for i to add j to Fi is in line 28. The only

17

processor that sends summary messages in iteration 1 is processor 1, so it must420

be that j = 1. The only way for j to be added to Fi is for j to not be in C.

But if 1 6∈ Ci this means that processor 1 did not send a summary message to

i. Thus processor j = 1 crashed. �

Lemma 5.5. In any execution of algorithm Do-UM , if a processor j is in F ki of

some processor i for iteration k ≥ 2, then either processor j crashes in iteration425

k or j ∈ F k−1p for some p ∈ P .

Proof. If j ∈ F k−1i , we are done. Otherwise, by the code, processor i can add

processor j to Fi in lines 17, 27, or 28.

Case 1: j is added in line 17 or 27. In this case we have that j ∈ m.D for

some message m sent during iteration k. This implies that j ∈ F k−1p of some430

processor p ∈ P .

Case 2: j is added in line 28. In this case we have that processor j is in L(`)

but not in C at processor i. If j ∈ L(`) then processor i believes j to be

coordinator, and thus processor i sends a report message to j in the Collect

stage. If j /∈ C, this means that processor j does not send a summary message435

to i. Thus processor j crashed. �

Next we state and prove the following.

Lemma 5.6. In any execution of algorithm Do-UM , if a processor j is in F ki of

some processor i for iteration k, then processor crashes in one of the iterations

1, 2, ..., k.440

Proof. By induction on iterations using Lemma 5.4 for the base case, and

Lemma 5.5 in the inductive step. �

The above lemma allows us to conclude that the set of active processors

never partitions.

Corollary 5.7. In any execution of algorithm Do-UM , the set P − Fi for any445

i ∈ P includes all non-crashed processors.

18

Finally we show that each non-faulty processor makes local progress. This

means that the algorithm terminates.

Lemma 5.8. In any execution of algorithm Do-UM , if processor i does not

crash by the end of iteration k > 0, then Dk−1
i ⊂ Dk

i .450

Proof. This follows from the facts that Dk−1
i ⊆ Dk

i (trivially, by the code), and

that even if processor i does not receive messages from other processors (e.g.,

due to coordinator failures) in iteration k, it still performs a task from the set

T −Dk−1
i and adds it to D. Hence in the worst case |Dk

i | = |D
k−1
i |+ 1. �

Now we give the main result of this section.455

Theorem 5.9. Algorithm Do-UM for n processors and t tasks, using unreliable

broadcast, correctly solves the Do-All problem in any execution with up to n− 1

crashes.

Proof. Lemma 5.3 shows that a task is never considered done by any processor

unless the task was indeed performed by some processor. Lemma 5.8 shows460

that each processor makes monotone progress. By the failure model, at least

one processor does not crash. Thus all non-crashed processors ultimately learn

that all tasks are complete, and hence the problem is correctly solved (by O(n)

time). �

Remark. Algorithm Do-UM solves Do-All for any t. This is done “automati-465

cally” by having any processor always being able to compute locally a balanced

processor-to-task allocation to decide which (single) task it has to perform in a

given iteration. There is an alternative approach that can be used when t > n.

This is done with the help of the conventional “chunking” strategy that parti-

tions the t tasks into n chunks, each containing dt/ne tasks. Now the algorithm470

is used to perform all n chunks of tasks (instead of individual tasks). The main

algorithmic difference for this approach is that each iteration now takes time

Θ(t/n). However the qualitative properties of the algorithm assessed in this

section remain invariant.

19

5.2. Worst-case available processor steps475

We now provide bounds on the performance of the algorithm. We start by

proving an upper bound on the available processor steps. Then we show that

this upper bound is tight.

5.2.1. Upper bound

Consider an execution α of the algorithm. We know that the algorithm

terminates. So let αz be the last iteration of α. Hence α is made up of z

iterations:

α = α1, α2, α3, . . . , αz−1, αz.

By Theorem 5.9 it must be the case that there are no tasks left unaccounted480

after iteration αz.

Definition 5.10. In an execution of the algorithm, a live processor considers

an iteration attended if it receives at least one summary message.

Notice that the notion of attended iteration is a local notion.

Definition 5.11. In an execution of the algorithm an iteration is called com-485

pletely attended if each live processor receives a summary message from the same

coordinator.

Definition 5.12. In an execution of the algorithm an iteration is called

uniquely attended if there is a unique coordinator.

Definition 5.13. In an execution of the algorithm an iteration is called good490

if

1. All live processors send report messages to a processor c

2. And the iteration is completely and uniquely attended by c.

Notice that in a good iteration the attending coordinator receives a report

message from every live processor (recall that there are no message failures) and495

since the phase is completely attended every live processor receives the summary

20

message sent by the attending coordinator. Hence at the end of a good phase

the information held by each live processor is consistent. More formally we have

the following lemma.

Lemma 5.14. At the end of a good iteration, for any two live processors i and500

j we have that Di = Dj and that Fi = Fj.

Proof. Let k be the good iteration and let c be the attending coordinator. Let

i and j be any two live processors, that is any two processor that belong to Ak

(the set of live processors at the end of iteration k). Since iteration k is good all

live processors send a report message to c. Hence the sets D and F computed505

by c in lines 16 and 17 contain all the information known by any processor in

Ak. The sets D and F are sent by c in the summary message of the disseminate

stage. Since both i and j are alive they will receive the summary message sent

by c, and hence we have that Di = Dj after the assignment in line 26 and

that Fi = Fj after the assignment in line 27. Moreover since the iteration is510

completely and uniquely attended, no new processor ids can be included in F

at line 28. �

Definition 5.15. A crash is attributed to the iteration where its effect is per-

ceived, that is, to the iteration where a message that is supposed to be sent by

the crashed processor is not received by a live processor.515

Notice that the actual point in time when a crash occurs is not important

as long as the crashed processor does not send messages because all changes are

local. Hence we could think of crashes as occurring exactly before a processor

sends a message (all the actions taken by the processor since the sending of the

previous message will be anyway lost).520

We use bad iteration, to stand for an iteration that is not good. Let SG be

the available processor steps spent during all the good iterations and let SB be

the available processor steps used during all the bad iterations. Then, we have

that S = SG + SB .

21

Since all the good iterations are uniquely and completely attended by525

a coordinator then all processors have consistent views of the computation

(Lemma 5.14). This allows us to evaluate SG using the same approach used

to assess the upper bound on Sa for AN [6].

Lemma 5.16. The work performed in all the good iterations of an execution of

Do-UM is SG = O(t+ n log n/ log log n).530

Since the proof is basically the same as that of the upper bound on Sa for

AN [6] we omit it from the main text. For the benefit of the reader however we

provide the proof in the Appendix.

Assessing SB requires a different approach. This is because of the unreliable

broadcast that might cause inconsistencies in the views. The following lemma is535

immediate by the definition of the available processor steps complexity measure.

Lemma 5.17. The work in any single bad iteration αi is at most ni, where ni

is the number of processors alive at the beginning of iteration αi.

The following lemma provides a bound on the total number of iterations in

the bad periods.540

Lemma 5.18. In any execution of the algorithm that contains k crashes, the

total number of bad iterations is at most 2k.

Proof. We prove the lemma by induction on the number of crashes in the

prefix.

Base case: k = 1. If the crash happens on the last iteration then the only545

iteration that is bad is that one. If the crash happens before, say at iteration

number x, then iteration x can be bad. The subsequent iteration x + 1 might

also be bad because two processors might have different local views and thus

they might be sending report messages to different coordinators. Since, however,

there are no other crashes, iteration x + 2 (and any subsequent ones) must be550

good.

22

Inductive step: Assume the lemma is true for a fixed value k, we need to

prove that is true for k + 1. Take any execution and consider the last iteration

x where one or more crashes happen. We can apply the inductive hypothesis to

the first x− 1 iterations of the algorithm. By the inductive hypothesis we know555

that in the first x − 1 iterations there can be at most 2(k − 1) bad iterations.

The crashes that happen during iteration x might cause iteration x to be bad.

Moreover, also iteration x+1 can be bad because processors might have different

views and thus they might be sending report messages to different coordinators.

Since, however, there are no other crashes, iteration x+ 2 (and any subsequent560

ones) must be good. �

Corollary 5.19. In any execution with f failures, the total number of bad it-

erations is at most 2f .

Lemma 5.20. In any execution with f failures, we have that SB = O(f(n−f))

Proof. Consider all the bad iterations. By Lemma 5.19 we have that there can

be at most 2k bad iterations, with k ≤ f . Moreover we can have exactly 2k bad

iterations only if each bad iteration with failures is followed by a bad iteration

without failures. Roughly speaking this is the worst case scenario where we have

one failure rendering two iterations bad. Thus we will consider this worst case

scenario to estimate the upper bound: we have I1, I2, . . . , I2k, with k ≤ f , bad

iterations where I2i−1 is a bad iteration with a failure and I2i, is a bad iteration

without failures, for i = 1, . . . , k. Let let ni be the number of processors alive

at the beginning of Ii. Each single iteration Ii might cause at most ni work.

Thus we have that the total work SB expended in bad iterations is

SB ≤
2k∑
i=1

ni.

Because failures happen in iterations with an odd index, we have that the565

number of processors decreases at least by one for the subsequent iteration. More

specifically, while the first bad iteration I1 can have the full set of n processors,

23

the second bad iteration can have at most n − 1 processors. Similarly, while

the third bad iteration I3 can have at most n− 1 live processors the fourth bad

iteration I4 can have at most n − 2 live processors, and so on. Thus the total570

number of processor steps expended during the bad iterations is

SB ≤
2k∑
i=1

ni

≤ n+ (n− 1) + (n− 1) + (n− 2) + . . .+ (n− k + 1) + (n− k)

= 2kn− k(k − 1).

Since k is upper bounded by f we have that SB = Θ(f(n− f)), as claimed. �

From Lemmas 5.16 and 5.20 we conclude the following.

Theorem 5.21. In any execution with f failures we have that S =

O
(
t+ n logn

log logn + f(n− f)
)
.575

Proof. The total number of steps S spent by the algorithm is given by the sum

of steps spent in all iterations that can be partitioned in good and bad. Thus

we have that

S = SB + SG.

From Lemma 5.16 we have that

SG = O(t+ n log n/ log log n),

while from Lemma 5.20 we have that

SB = Θ(f(n− f)).

Summing up these two bounds we get the bound on S claimed in the statement

of the theorem. �

Remark 1: One might wonder: is the definition of a good iteration too strong?

In other words, is it possible to have executions that do not have any good

24

iterations? This is only possible when t is small. According to Lemma 5.19580

an adversary can only cause a linear number (in f) of bad iterations and the

maximum work that can be done in those iterations is O(fn), thus since t can

vary independently of n it might be not possible to perform all tasks during

such iterations. Thus for large t, even for worst-case adversary, there must exist

executions with some good iterations.585

Remark 2: When t is the dominant factor the bound on S given by

Theorem 5.21 reduces to O(t). The bound on S provided in [6], namely

O
(

log f
(
t+ p log p

log log p

))
, for large t, becomes O(t log f). Since our bound holds

also for the setting of [6], when t is the dominant factor, we get a better upper

bound on S.590

5.2.2. A lower bound for Do-UM

In this section we are going to show an execution with S =

Ω
(
t+ n logn

log logn + f(n− f)
)

for t > n. Remember that the load balancing rule

allocates tasks according to the ids of the outstanding tasks and the ids of the

processors giving the ith outstanding task to the ith alive processor.595

The run starts with a bad iteration in which processor 1, the sole coordinator,

fails in the middle of the send step of the summary messages. The summary

message is received by half of the processors, and therefore the processors get

partitioned into two subsets, P1 and P2. In particular we set

P1 = {2, 4, 6, 8, . . . , n}

P2 = {3, 5, 7, 9, 11 . . . , n− 1}.

Processors in P1 receive the summary message hence they will have F = ∅

while processors in P2 will set F = {1}. The set of done tasks at this point

is for everybody D = ∅. According to the load balancing rule, processors in

P1 will get a task allocating the tasks over P , which means that processor i,

i = 2, 4, 6, 8, . . ., executes task i, while processors in P2 will get a task allocating600

the task over P \ {1}, which means that processor i, i = 3, 5, 7, 9, . . ., executes

25

task i − 1. This means that task i, i = 2, 4, 6, 8, . . . , n gets executed by two

processors (processor i and processor i + 1) while tasks 3, 5, 7, 9, . . . don’t get

executed. This implies that in this iteration we have n/2 wasted steps. Phase 2

is attended by processor 2 and 3, as expected by processors in P2. Notice that605

also processors in P1 will receive the summary messages of processors 2 and 3

so for the load balancing rule of the second stage all processors have the same

views (although in our definition this second iteration is also bad).

A single failure has caused n/2 wasted steps in this first bad period of two

iterations. The run now has a good period.610

The above pattern (with the appropriate adjustments of the processors and

tasks indexes) repeats f times. In all the f times we always have more out-

standing tasks than alive processors (recall that t > n). For each repetition the

total number of alive processors decreases by one, so in the ith repetition there

are n − i alive processors and thus (n − i)/2 wasted steps. The repetitions of615

the pattern go on until there are processors than can be crashed.

Having used all the available f failures causing a total of O(f(n−f)) wasted

steps, the computation now proceeds with a good period until the completion

of the tasks. During the good periods the steps spent are t + n logn
log logn . Hence

for this specific run we have:

S = Θ

(
t+ n

log n

log log n
+ f(n− f)

)
.

5.3. Message analysis

In this section we provide a simple upper bound on the number of messages

needed by Do-UM . The bound uses a coarse analysis and thus is not tight.

Lemma 5.22. The number of messages sent in all the good iterations of Do-620

UM is MG ≤ 2nt.

Proof. By definition in any good phase at most 2n messages are sent (at most

n report messages and at most n summary messages). The total number of

26

good iterations cannot exceed t because in a good iteration at least one task is

performed. �625

Lemma 5.23. The number of messages sent in all the bad iterations of Do-UM

is MB ≤ fn2

2 .

Proof. By Corollary 5.19 we have that the total number of bad iterations

is at most 2f . In each bad iteration workers might send report messages to

multiple coordinators which will respond with multiple summary message. The630

total number of messages sent in such a case is 2nc, where c is the number of

coordinators. Due to the layered structure used to elect coordinators, such a

number cannot be more than n/2. Hence the total number of messages sent in

a bad iteration is upper bounded by n2/4. �

Theorem 5.24. The number of messages sent in an execution of Do-UM is635

M ≤ n(2t+ fn
2).

Proof. Immediate from Lemmas 5.22 and 5.23. �

6. Experimental Evaluation

In the previous section we have analysed the Do-UM algorithm providing

the worst-case analysis. In this section we are concerned with providing an640

assessment of the performance in real-life scenarios. In order to evaluate the

performance of algorithm Do-UM , we have implemented algorithms Do-UM

and AN. Then we have run various experiments under different adversarial as-

sumptions. Before presenting the implementation results, we briefly discuss how

this implementation was developed and thereafter where it was executed.645

Implementation design. The implementation of both algorithms, Do-UM

and AN, was developed using YALPS [8]. YALPS is an open-source Java library

developed by a group of researchers from INRIA institute. The main purpose of

YALPS is to facilitate the development, deployment, and testing of distributed

27

applications. More specific, the implementation is written in Java using the650

YALPS library and the message passing network was an actual physical network

formed from a selection of physical nodes which constitute PlanetLab.

PlanetLab [9] is a planetary-scale research network that allows researchers,

regardless of their location, to develop, apply, test and evaluate distributed

applications. Currently, PlanetLab consists of 1353 nodes at 717 sites and we655

were able to allocate 150 physical nodes. From those, 128 were used in the

executions and the rest were ready to replace any node from the 128 ones that

was not acting as expected. In addition, since we were able to allocate the

desired number of nodes, we limit the load on any node only to one process.

The master computer, that was in charge of (i) distributing all the commands660

to all those physical nodes, (ii) collecting back all the data and the logs after an

execution, and (iii) processing the collected information, was a MacBook Pro

OSX with 2.4 GHz Inter Core 2 Duo with 8GB of RAM.

Since algorithm AN operates under the assumption of reliable broadcast,

we used methods from YALPS that support the use of TCP when exchanging665

messages in the physical network. In contrast, since algorithm Do-UM does not

rely on reliable multicast, we used methods from YALPS that support the use

of UDP protocol.

In addition, since both algorithms require a synchronous setting in order to

behave as expected, the big challenge was to synchronize the physical machines670

that we allocate from PlanetLab and they were forming our physical network.

This was achieved by:

1. Selecting carefully nodes from PlanetLab that their processing clocks were

mostly identical or in the same range - clock rates range 2.4 - 2.6GHz.

2. Providing a shell script to each node such that after receiving a command675

from a “master” computer will start the execution on a specific time; this

enforced all nodes to start their execution at the same time.

3. Introducing delays in the code in each round in order to allow any “slow”

nodes to catch up.

28

4. Collecting and processing the logs after each complete execution to a mas-680

ter computer to validate the fact that all rounds were synchronized.

This implementation is designed to compare the work and the message com-

plexities of the two algorithms. Thus, it is sufficient to use the actual node

logs after a successful execution to account for processing steps and exchanged

messages.685

Failure models for the experiments. We implemented the following failure

patterns: failure free pattern where failures do not exist, random failure pattern

where processors fail with some probability, coordinators failure pattern where

an adversary crashes coordinators, and lower bound failure pattern that follows

the construction from [10]. The failure free pattern may not be a realistic690

situation; however its interest is to emphasize the efficiency of the algorithms

in the case where processor failures do not exist. The random failure pattern is

the failure pattern that is indicative of realistic situations where failures are not

correlated. (We remark that correlated failures can actually arise under certain

conditions, see for example [29] and thus, as we point out in the directions695

for future work, this failure scenario is also interesting, although we are not

considering it in this paper.) The coordinator failure pattern is of interest

because it models a nefarious scenario where crashes target the coordinators.

Finally the lower bound failure pattern is of interest because it models a known

worst case scenario.700

(1) Failure Free Pattern. As we previously mentioned, such an execution where

processor failures do not exist, nowadays is not a realistic situation. Nonetheless,

it is interesting to emphasize the efficiency of both algorithms Do-UM and AN

in the absence of failures. Note that due to the adverse nature of PlanetLab,

some failures could occur during the execution; in gathering our results, for this705

scenario we ignored these cases (we repeated the run).

(2) Random failures. Such failures may be expected in realistic executions. Here

a processor crashes with probability error rate during the Send step of each

stage, and each message multicast by the crashing processor is delivered with

29

probability 0.5, simulating the unreliable broadcast model. The fixed probability710

of crashes is chosen to be high enough to prevent the algorithm from terminating

too quickly, while being low enough to maintain the expectation that all tasks are

performed before all processors fail. We term such probability as the maximum

sustainable error rate and denote it by mser. We ran experiments to determine

the threshold mser such that for error rate<mser all tasks are expected to be715

completed, while for error rate>mser all processors are expected to crash before

completing all the tasks. For our runs with t = n we approximated mser to be

about 16%.

(3) Coordinator failures. While crashing coordinators is perhaps an unrealis-

tic scenario, nevertheless it is useful to understand the impact of coordinator720

crashes. We chose the failure patterns where the adversary crashes coordinators

before the Send step of the Disseminate stage. Any active coordinator is crashed

until only one layer remains in the layered coordinator structure. This forces

the surviving processors at the lowest layer to behave similarly to the all-to-all

strategy.725

(4) Coordinator send failures. This is the same as coordinator failures, except

that the adversary crashes coordinators during the Send step of the Disseminate

stage.

(5) Lower bound failures. Here the adversary crashes processors only when

they are assigned to tasks in the Compute steps. The construction follows730

the adversarial strategy U of [4] (page 24). The adversary determines the set of

undone tasks U , computed as T−D in each iteration (in these scenarios the sets

D are the same for all correct processors). Then the adversary chooses 1
logn |U |

tasks with the least number of processors assigned to them, and crashes those

processors, if any. The adversary continues as long as the number of undone735

tasks is greater than 1. As soon as only one undone task remains, the adversary

allows all remaining processors to perform the task. This adversarial strategy

is proved (in [10]) to cause work Ω(t+ n logn
log logn). Note that for this adversarial

strategy, the processors are crashed only prior to executing the assigned task,

and not when sending a message. Thus no message is lost due to the unreliable740

30

broadcast.

Communication reliability. We remark that for algorithm AN we used a

setting with reliable multicasts. Hence a message sent by processor that fails,

either gets completely discarded or it gets delivered to all of its recipients. In-

stead for algorithm Do-UM we used a setting with unreliable multicasts. In this745

setting a processor can fail during the Send step possibly causing the message to

be delivered only to a subset of the recipients. Notice that for the Coordinator

failures pattern there is no difference since we assume that the failure happens

before the send step so even if broadcast is unreliable the unreliability will never

happen (and this is why the results for two algorithms are nearly identical, as750

will be shown in Figures 4 and 9).

Experimental Evaluation. For our experimental evaluation of algorithms Do-

UM and AN we used n = t parameterization. This is because all Do-All al-

gorithms published work complexity become more asymptotically efficient as

t grows with respect to n (cf. in algorithm AN this is due to the additive755

term t present in the asymptotic expression). Thus the differences among the

algorithms are most evident when n = t.

For our experiments we used n ∈ { 8,16,32,64,128 }. The upper limit was

chosen for practical reasons based on the physical nodes we were able to allocate

and the time it took to run each execution. To make the result measurement760

more statistically meaningful, for the Random Failures patterns and for the

Coordinator Failures patterns each test was repeated 8 times and the outcome

measurements were averaged. For the rest of the scenarios, Failures Free; Co-

ordinator Send Failures; and Lower-Bound ; a single run for each n is sufficient

because the failures, in case they exist, are deterministic. All the failures were765

simulated meaning that we did not force actual nodes to crash, but we just

considered them as crashed by forcing them not to participate in any future

steps of the execution. Due to the adverse conditions in PlanetLab, some nodes

could become unresponsive, but with the exception of the Failure free scenario,

these nodes did not affect the results.770

31

Finally, as we already mentioned in the implementation design, when running

algorithm AN we used methods for exchanging messages over the network that

support reliable broadcast (TCP), while running algorithm Do-UM we used

methods that do not ensure reliable broadcast (UDP).

As a next step we present and analyse the results gathered from those exe-775

cutions regarding work and message complexities.

Work complexity. Here we present and discuss work measurements recorded

in the executions.

(1) Failure Free Pattern. The results are in Figure 2. The analysis is straight-

forward. In each iteration each processor executes one task, so in each iteration780

n tasks are executed. In order to execute all tasks d tne iterations needed. Hence

a total of nd tne tasks are executed (in the last iteration some tasks might be

executed twice by two different processors). Thus the work complexity is O(t).

For comparison purposes, we note that when broadcast is reliable, the anal-

ysis in [6] is readily adapted for use with algorithm Do-UM to show that its785

performance is identical to that of algorithm AN. Specifically, the work is

O((t + n log n/ log log n) + log f) where f < n is a bound on the number of

processor crashes.

(2) Random Failures. The results are in Figure 3. For these simulations we used

error rate = 12% (this is lower than the approximated mser = 16%). Note790

that for higher error rates it is possible for all processors to crash, and thus not

all tasks may be performed. In such cases the Do-All problem is not solved and

it does not make sense to evaluate the executions of the algorithm when the

problem is not solved. We chose the error rate of 12% because it is somewhat

lower than the expected threshold 16%. We expect that tests with different795

values of the error rate would not substantially change the results (as long as

we avoid the possibility of all processors crashing).

Random failures is a relatively benign failure pattern that infrequently im-

pacts all coordinators. The work of algorithm Do-UM is substantially the same

as the work of algorithm AN. In both cases the work is bounded by 2n from800

32

Figure 2: Work for the Failure Free pattern

Figure 3: Work for Random Failures

Figure 4: Work for Coordinator Failures

Figure 5: Work for Coordinator Send Failures

Figure 6: Work for the Lower Bound pattern

Figure 7: Messages for the Failure Free pattern

Figure 8: Messages for Random Failures

Figure 9: Messages for Coordinator Failures

Figure 10: Messages for Coord. Send Failures

Figure 11: Messages for the Lower Bound
pattern

33

above, although it appears that work grows in a slight superlinear pattern.

(3) Coordinator Failures. The results are in Figure 4. As anticipated, the work

in this scenario is substantially worse than in the random failure model. This

is because coordinator failures are particularly damaging to coordinator-based

algorithms. The two algorithms show nearly identical work trend: this is not805

surprising since the crashes always happen before a Send step and thus there is

no difference due to the reliability/unreliability of the multicast. Algorithm Do-

UM is slightly more efficient than algorithm AN, due to its more compact

iteration structure.

(4) Coordinator Send Failures. The results are in Figure 5 and they illustrate810

the strength of reliable broadcast. We simulate algorithm Do-UM and algorithm

AN, except that crashes now occur during a coordinator multicast. As expected,

the work of both algorithms is better than the scenario where crashes happen

before a multicast. However the work of algorithm AN is substantially lower.

This, because the reliable broadcast used by algorithm AN allows the processors815

to make consistent progress, while algorithm Do-UM is disadvantaged by the

unreliable broadcast.

(5) Lower Bound Failures. The results are in Figure 6. Here we simulate al-

gorithm Do-UM and algorithm AN each subjected to the lower-bound failure

pattern as discussed. We also plot the function n log n/ log log n that expresses820

the lower bound on work [10]. As anticipated, the two coordinator-based al-

gorithms and the all-to-all algorithm track the lower bound closely due to the

complete information provided to all workers in each iteration.

Message complexity. We now present and discuss message measurements

recorded in executions.825

(1) Failure Free Pattern. The results are in Figure 7. Similarly to the work

complexity analysis, the total number of messages is 2nd tne since in each itera-

tion 2n messages are sent (n report messages and n summary messages). Thus

both the work and message complexities are O(t).

For comparison purposes, we note that when broadcast is reliable, the anal-830

34

ysis in [6] is readily adapted for use with algorithm Do-UM to show that its

performance is identical to that of algorithm AN. Specifically, the message com-

plexity is O(t+ n log n/ log log n+ fn), where f < n is a bound on the number

of processor crashes.

(2) Random failures. The results are in Figure 8. Recall that for these simula-835

tions we used error rate = 12%. Although this is a relatively benign failure pat-

tern that infrequently impacts all coordinators, it apparently causes substantial

increase in communication in algorithm Do-UM as compared to algorithm AN.

In particular, algorithm Do-UM sends up to twice as many messages. Recall

that algorithm AN has the significant advantage of being able to broadcast reli-840

ably, while algorithm Do-UM is at a disadvantage, endowed only with unreliable

broadcast. We observe that algorithm Do-UM is forced to double coordinators

earlier than this occurs in algorithm AN.

(3) Coordinator failures. The results are in Figure 9. The communication

burden in this scenario is substantially worse than in the random failure model.845

Here coordinator failures are particularly damaging, pushing the martingale

strategy to its limit, when the workers in the lowest layer of the coordinator

structure become coordinators, sending quadratic number of messages. Thus,

not surprisingly, the graph has a parabolic nature. As we noted for the work

complexity, also for the message complexity the two algorithms behave nearly850

identical. This, since the crashes always happen before a send step and thus the

reliability of the communication does not make any difference.

(4) Coordinator send failures. The results are in Figure 10. As anticipated, the

communication expense for both algorithms is smaller than above since coordi-

nators are able to send messages in at least some cases. However, algorithm AN855

is noticeably more efficient due to consistency afforded by the reliable broadcast.

(5) Lower bound failures. The results are in Figure 11. Here, the two algorithms

are subjected to the lower-bound failure pattern as previously discussed. The

messaging trends here are very similar, but with algorithm Do-UM incurring

somewhat greater expense due to its structure as it executes one more iteration860

than algorithm AN; this is because in algorithm Do-UM processors communicate

35

before performing tasks, while in algorithm AN processors communicate after

performing tasks, thus more information is communicated in each iteration of

algorithm AN.

Final remarks. The experimental evaluation assesses the value of the proposed865

algorithm Do-UM showing that in real life scenarios it achieves performances

comparable with those of AN. The drawbacks that emerge from the theoretical

analysis and from the experimental data are due to the intrinsic disadvantage

of the scenario in which Do-UM is supposed to run, that is, in systems with un-

reliable message passing multicast mechanisms. To cope with this unfavorable870

scenario the algorithm spends many more messages and processors steps due to

the doubling of the number of coordinators. This clearly induces an overhead

which, however, as the experimental data shows, is acceptable since the overall

performance, both with respect to work and with respect to messages is com-

parable to that of the algorithm that runs in the more favorable setting with875

reliable multicast.

7. Conclusions

We presented a new algorithm for cooperative computing in message-passing

settings with crash-prone processors. The algorithm allows participating pro-

cessors to collaboratively execute a set of identical and idempotent tasks despite880

possible processor failures. Previous solutions to this problem assume multicast

reliability: if a processor crashes while multicasting a message, then it is guar-

anteed that either the message is delivered to nobody or to all of its intended

recipients. Without this assumption the message could be delivered only to

some of the intended recipients causing processors to have different informa-885

tion about the system. The algorithm that we propose is able to cope with

unreliable multicast. We have analysed the algorithm both from a theoretical

point of view, proving its correctness and its theoretical efficiency, and from an

experimental point view, implementing it and running several tests to assess

its performance. The results of the tests show that the algorithm behaves well:890

36

even if multicast is unreliable, its performance is comparable to those algorithms

running under the assumption of reliable multicast.

Interesting directions for future work include a deeper experimental inves-

tigation of the practical behaviour of the algorithm under a variety of settings

that one can obtain by varying the parameters of the system, considering spe-895

cific job types (e.g., using real traces and workloads) or considering other failure

scenarios (e.g., correlated failures [29]).

Acknowledgments.. This work is supported in part by the NSF award 1017232,

by research grants of the University of Cyprus (ED2016-CG) and by the Italian

MIUR PRIN projects fund.900

References

[1] S. Davtyan, R. D. Prisco, C. Georgiou, A. A. Shvartsman, Coordinated co-

operative work using undependable processors with unreliable broadcast,

in: Proceedings of the 22nd Euromicro International Conference on Par-

allel, Distributed, and Network-Based Processing (PDP 2014), 2014, pp.905

17–26.

[2] Internet primenet server.

URL http://mersenne.org/ips/stats.html

[3] SETI@home.

URL http://setiathome.ssl.berkeley.edu/910

[4] C. Georgiou, A. A. Shvartsman, Do-All Computing in Distributed Systems:

Cooperation in the Presence of Adversity, Springer-Verlag, 2008.

[5] R. De Prisco, A. Mayer, M. Yung, Time-optimal message-efficient work

performance in the presence of faults, in: Proceedings of the 13th ACM

Symposium on Principles of Distributed Computing (PODC 1994), 1994,915

pp. 161–172.

37

http://mersenne.org/ips/stats.html
http://mersenne.org/ips/stats.html
http://setiathome.ssl.berkeley.edu/
http://setiathome.ssl.berkeley.edu/

[6] B. Chlebus, R. De Prisco, A. Shvartsman, Performing tasks on restartable

message-passing processors, Distributed Computing 14 (1) (2001) 49–64.

[7] C. Georgiou, A. A. Shvartsman, Cooperative Task-Oriented Computing:

Algorithms and Complexity, Synthesis Lectures on Distributed Computing920

Theory, Morgan & Claypool, 2011.

[8] Yalps.

URL http://yalps.gforge.inria.fr

[9] Planetlab.

URL https://www.planet-lab.org/925

[10] P. Kanellakis, A. Shvartsman, Fault-Tolerant Parallel Computation,

Kluwer Academic Publishers, 1997.

[11] Z. Kedem, K. Palem, A. Raghunathan, P. Spirakis, Combining tentative

and definite executions for dependable parallel computing, in: Proceedings

of the 23rd ACM Symposium on Theory of Computing (STOC 1991), 1991,930

pp. 381–390.

[12] J. Groote, W. Hesselink, S. Mauw, R. Vermeulen, An algorithm for the

asynchronous Write-All problem based on process collision, Distributed

Computing 14 (2) (2001) 75–81.

[13] R. Anderson, H. Woll, Algorithms for the certified Write-All problem,935

SIAM Journal of Computing 26 (5) (1997) 1277–1283.

[14] D. Alistarh, M. A. Bender, S. Gilbert, R. Guerraoui, How to allocate tasks

asynchronously, in: Proc. of the 53rd IEEE Symp. on Foundations of Com-

puter Science (FOCS 2012), 2012, pp. 331–340.

[15] D. Alistarh, J. Aspnes, M. A. Bender, R. Gelashvili, S. Gilbert, Dynamic940

task allocation in asynchronous shared memory, in: Proc. of the 25th ACM-

SIAM Symposium on Discrete Algorithms (SODA 2014), 2014, pp. 416–

435.

38

http://yalps.gforge.inria.fr
http://yalps.gforge.inria.fr
https://www.planet-lab.org/
https://www.planet-lab.org/

[16] C. Dwork, J. Halpern, O. Waarts, Performing work efficiently in the pres-

ence of faults, SIAM Journal on Computing 27 (5) (1998) 1457–1491.945

[17] B. Chlebus, D. Kowalski, A. Lingas, The Do-All problem in broadcast

networks, Distributed Computing 18 (6) (2006) 435–451.

[18] Z. Galil, A. Mayer, M. Yung, Resolving message complexity of byzantine

agreement and beyond, in: Proceedings of the 36th IEEE Symposium on

Foundations of Computer Science (FOCS 1995), 1995, pp. 724–733.950

[19] B. Chlebus, D. R. Kowalski, Randomization helps to perform independent

tasks reliably, Random Struct. Algorithms 24 (1) (2004) 11–41.

[20] K. M. Konwar, S. Rajasekaran, A. A. Shvartsman, Robust network super-

computing with unreliable workers, J. Parallel Distrib. Comput. 75 (2015)

81–92.955

[21] S. Davtyan, K. M. Konwar, A. Russell, A. A. Shvartsman, Dealing with

undependable workers in decentralized network supercomputing, Theor.

Comput. Sci. 561 (2015) 96–112.

[22] C. Georgiou, D. R. Kowalski, On the competitiveness of scheduling dynam-

ically injected tasks on processes prone to crashes and restarts, J. Parallel960

Distrib. Comput. 84 (2015) 94–107.

[23] S. Dolev, R. Segala, A. Shvartsman, Dynamic load balancing with group

communication, Theoretical Computer Science 369 (1–3) (2006) 348–360.

[24] C. Georgiou, A. Russell, A. Shvartsman, Work-competitive scheduling for

cooperative computing with dynamic groups, SIAM Journal on Computing965

34 (4) (2005) 848–862.

[25] D. Kowalski, A. Shvartsman, Performing work with asynchronous pro-

cessors: message-delay-sensitive bounds, Information and Computation

203 (2) (2005) 181–210.

39

[26] C. Georgiou, D. Kowalski, A. Shvartsman, Efficient gossip and robust dis-970

tributed computation, Theoretical Computer Science 347 (1) (2005) 130–

166.

[27] D. Kowalski, P. Musial, A. Shvartsman, Explicit combinatorial structures

for cooperative distributed algorithms, in: Proceedings of the 25th Interna-

tional Conference on Distributed Computing Systems (ICDCS 2005), 2005,975

pp. 48–58.

[28] A. Fernandez, C. Georgiou, A. Russell, A. Shvartsman, The Do-All problem

with Byzantine processor failures, Theoretical Computer Science 333 (3)

(2005) 433–454.

[29] J. Lu, H. Shen, A low-cost multi-failure resilient replication scheme for high980

data availability in cloud storage, in: Proceedings of the 23rd IEEE Inter-

national Conference on High Performance Computing, Data, and Analytics

(HiPC 2016), 2016.

40

Appendix

Appendix A. Proof of Lemma 5.16985

Proof. Consider all the iterations in good periods and call them αi1 , αi2 , ..., αi′z ,

with i′z ≤< z. Let uαi be the number of undone tasks at the beginning of

iteration αi, and nαi be the number of alive processors at the beginning of

iteration αi, for each i = i1, i2, . . . , i
′
z. Partition the iterations in two groups:

Group 1: All attended iterations αi such that nαi ≤ uαi . The load balancing990

rule assures that at most one processor is assigned to a task. Hence the available

processor steps used in this case can be charged to the number of tasks executed

which is at most t+ f ≤ t+ n. Hence S1 = O(t+ n).

Group 2: All attended iterations in which nαi > uαi . We let d(n) stand for

log n/ log log n. We consider the following two subcases.995

Subcase 2.1: All attended iterations αi after which uαi+1 < uαi/d(n). Since

uαi+1
< uαi < nαi < n and iteration αw is the last iteration for which uαw > 0,

it follows that Subcase 2.1 occurs O(logd(n) n) times. The quantity O(logd(n) n)

is O(d(n)) because d(n)d(n) = Θ(n). No more than n processors complete such

iterations, therefore the part S2.1 of SG spent in this case is

S2.1 = O

(
n

log n

log log n

)
.

Subcase 2.2: All attended iterations αi after which uαi+1 ≥ uαi/d(n). Con-

sider a particular iteration αi. Since in this case pαi > uαi , by the load balancing

rule at least bnαiuαi
c but no more than dnαiuαi

e processors are assigned to each of the

uαi unaccounted tasks. Since uαi+1
tasks remain unaccounted after iteration αi,

the number of processors that failed during this iteration is at least1000

uαi+1

⌊
nαi
nαi

⌋
≥ uαi

d(n)
· nαi

2uαi
=

nαi
2d(n)

.

41

Hence, the number of processors that proceed to iteration αi+1 is no more than

nαi −
nαi

2d(n)
= nαi(1−

1

2d(n)
).

Let αi0 , αi1 , ..., αik be the attended iterations in this subcase. Since the number

of processor in iteration αi0 is at most n, the number of processors alive in

iteration αij for j > 0 is at most n(1 − 1
2d(n))

j . Therefore the part S2.2 of SG

spent in this case is bounded as follows:1005

S2.2 ≤
k∑
j=0

n

(
1− 1

2d(n)

)j
≤ n

1− (1− 1
2d(n))

= n · 2d(n) = O(n · d(n)).

Summing up the contributions of all the cases considered we get

SG = S1 + S2.1 + S2.2 = O

(
t+ n

log n

log log n

)
,

as claimed. �

42

	Introduction
	Prior and Related Work
	Model of Computation and Definitions
	Algorithm Description
	Analysis of Algorithm Do-UM
	Correctness
	Worst-case available processor steps
	Upper bound
	A lower bound for Do-UM

	Message analysis

	Experimental Evaluation
	Conclusions
	Proof of Lemma 5.16

