
Internet Computing: Using Reputation to Select
Workers from a Pool

Evgenia Christoforou1,2, Antonio Fernández Anta1, Chryssis Georgiou3, and
Miguel A. Mosteiro4

1 IMDEA Networks Institute, Madrid, Spain
2 Universidad Carlos III de Madrid, Madrid, Spain

3 University of Cyprus, Nicosia, Cyprus
4 Kean University, Union, NJ, USA

Abstract. The assignment and execution of tasks over the Internet is an inex-
pensive solution in contrast with supercomputers. We consider an Internet-based
Master-Worker task computing approach, such as SETI@home. A master process
sends tasks, across the Internet, to worker processors. Workers execute, and report
back a result. Unfortunately, the disadvantage of this approach is the unreliable
nature of the worker processes. Through different studies, workers have been cat-
egorized as either malicious (always report an incorrect result), altruistic (always
report a correct result), or rational (report whatever result maximizes their ben-
efit). We develop a reputation-based mechanism that guarantees that, eventually,
the master will always be receiving the correct task result. We model the behav-
ior of the rational workers through reinforcement learning, and we present three
different reputation types to choose, for each computational round, the most rep-
utable from a pool of workers. As workers are not always available, we enhance
our reputation scheme to select the most responsive workers. We prove sufficient
conditions for eventual correctness under the different reputation types. Our anal-
ysis is complemented by simulations exploring various scenarios. Our simulation
results expose interesting trade-offs among the different reputation types, workers
availability, and cost.

Keywords: Volunteer computing, reinforcement learning, reputation, worker reliabil-
ity, task computing, worker unresponsiveness, pool of workers.

1 Introduction
Internet-based computing has emerged as an inexpensive alternative for scientific high-
performance computations. The most popular form of Internet-based computing is vol-
unteer computing, where computing resources are volunteered by the public to help
solve (mainly) scientific problems. BOINC [4] is a popular platform where volunteer
computing projects run, such as SETI@home [20]. Profit-seeking computation plat-
forms, such as Amazon’s Mechanical Turk [3], have also become popular. One of the
main challenges for further exploiting the promise of such platforms is the untrustwor-
thiness of the participating entities [4, 5, 16, 18].

In this work we focus on Internet-based master-worker task computing, where a
master process sends tasks, across the Internet, to worker processes to compute and
return the result. Workers, however, might report incorrect results. Following [9, 11],
we consider three types of worker. Malicious1 workers that always report an incorrect

1 We call these workers malicious for compliance with Volunteer Computing [4] literature. This
must not be confused with Byzantine malice assumed in classical distributed computing.



result, altruistic workers that always report a correct result, and rational workers that
report a result driven by their self-interest. In addition, a worker (regardless of its type)
might be unavailable (e.g., be disconnected, be busy performing other tasks, etc). Our
main contribution is a computing system where the master eventually obtains always
the correct task result despite the above shortcomings. Our mechanism is novel in two
fronts: (i) it leverages the possibility of changing workers over time, given that the
number of workers willing to participate is larger than the number of workers needed,
and (ii) it is resilient to some workers being unavailable from time to time.

Worker unreliability in master-worker computing has been studied from both a clas-
sical Distributing Computing approach and a Game Theoretic one. The first treats work-
ers as malicious or altruistic. Tasks are redundantly allocated to different workers, and
voting protocols that tolerate malicious workers have been designed (e.g., [13, 19, 21]).
The Game Theoretic approach views the workers as rational [1, 15, 22], who follow
the strategy that would maximize their benefit. In the latter approach, incentive-based
mechanisms have been developed (e.g., [14, 27]) that induce workers to act correctly.

Other works (e.g., [9, 11]) have considered the co-existence of all three types of
worker. In [9], a “one-shot” interaction between master and workers was implemented.
In that work, the master assigns tasks to workers without using knowledge of past in-
teractions (e.g., on the behavior of the workers). In [11], a mechanism was designed
taking advantage of the repeated interaction (rounds) of the master with the workers.
The mechanism employs reinforcement learning [25] both for the master and for the
workers. In each round, the master assigns a task to the same set of workers (which are
assumed to be always available). The master may audit (with a cost) the responses of
the workers and a reward-punishment scheme is employed. Depending on the answers,
the master adjusts its probability of auditing. Rational workers cheat (i.e., respond with
an incorrect result to avoid the cost of computing) with some probability, which over
the rounds increases or decreases depending on the incentive received (reward or pun-
ishment). Rational workers have an aspiration level [8] which determines whether a re-
ceived payoff was satisfactory or not. To cope with malicious workers (whose behavior
is not affected by the above mentioned learning scheme) a reputation scheme [17] was
additionally employed. The main objective is to “quickly” reach a round in the com-
putation after which the master always receives the correct task result, with minimal
auditing.

Unlike assumed in [11] (and most previous literature), in practice workers are not
always available. For instance, Heien et al. [16] have found that in BOINC [4] only
around 5% of the workers are available more than 80% of the time, and that half of
the workers are available less than 40% of the time. In this work, we extend the work
in [11] to cope with worker unavailability.

A feature that has not been leveraged in [11] and previous works is the scale of
Internet-based master-worker task computing systems. For example, in BOINC [7] ac-
tive workers are around a few hundred thousand. In such a large system, replicating
the task and sending it to all workers is neither feasible nor practical. On the other
hand, randomly selecting a small number of workers to send the task does not guaran-
tee correctness with minimum auditing. For instance, consider a pool of workers where
the malicious outnumber those needed for the computation. Then, there is a positive



probability that only malicious workers are selected and the master would have to au-
dit always to obtain the correct result. All previous works assume the existence of a
fixed/predefined set of workers that the master always contacts. In this work we con-
sider the existence of a pool of N workers out of which the master chooses n < N .

Our contributions.
– We present a mechanism (in Section 3) where the master chooses the most rep-

utable workers for each round of computation, allowing the system to eventually
converge to a state where the correct result will be always obtained, with minimal
auditing. Our mechanism does not require workers to be available all the time. To
cope with the unavailability of the workers, we introduce a responsiveness reputa-
tion that conveys the percentage of task assignments to which the worker replies
with an answer. The responsiveness reputation is combined with a truthfulness rep-
utation that conveys the reliability of the worker. We enrich our study considering
three types of truthfulness reputation. Namely, BOINC reputation (inspired in the
“adaptive replication” of BOINC), EXPONENTIAL reputation (that we presented
in [11]), and LINEAR reputation (inspired on the work of Sonnek et al. [24]).

– We also show formally (in Section 4) negative and positive results regarding the fea-
sibility of achieving correctness in the long run in the absence of rational workers.
Specifically, we show configurations (worker types, availability, etc.) of the pool
of workers such that correctness cannot be achieved unless the master always au-
dits, and the existence of configurations such that eventually correctness is achieved
forever with minimal auditing.

– We evaluate experimentally (in Section 5) our mechanism with extensive simula-
tions under various conditions. Our simulations complement the analysis taking
into account scenarios where rational workers exist. The different reputation types
are compared showing trade-offs between reliability and cost.

2 Model
Master-Worker Framework. We consider a master and a pool (set) of workers N ,
where |N | = N . The computation is broken into rounds r = 1, 2, .... In each round
r, the master selects a set W r of n < N workers, and sends them a task. The workers
in W r are supposed to compute the task and return the result, but may not do so (e.g.,
unavailable computing other task). The master, after waiting for a fixed time t, proceeds
with the received replies. Based on those replies, the master must decide which answer
to take as the correct result for this round. The master employs a reputation mechanism
put in place to choose the n most reputable workers in every round. We assume that
tasks have a unique solution; although such limitation reduces the scope of application
of the presented mechanism [26], there are plenty of computations where the correct
solution is unique: e.g., any mathematical function.

Worker unavailability. In Internet-based master-worker computations, and especially
in volunteering computing, workers are not always available to participate in a compu-
tation [16] (e.g., they are off-line for a particular period of time). We assume that each
worker’s availability is stochastic and independent of other workers. Formally, we let
di > 0 be the probability that the master receives the reply from worker i within time t
(provided that the worker was chosen by the master to participate in the computation for



the given round r, i.e., i ∈ W r). In other words, this is the probability that the worker
is available to compute the task assigned.
Worker types. We consider three types of workers: rational, altruistic, and malicious.
Rational workers are selfish in a game-theoretic sense and their aim is to maximize
their utility (benefit). In the context of this paper, a worker is honest in a round, when
it truthfully computes and returns the correct result, and it cheats when it returns some
incorrect value. Altruistic and malicious workers have a predefined behavior: to always
be honest and cheat respectively. Instead, a rational worker decides to be honest or cheat
depending on which strategy maximizes its utility. We denote by pCi(r) the probability
of a rational worker i cheating in round r, provided that i ∈W r. The worker adjusts this
probability over the course of the multiround computation using a reinforcement learn-
ing approach. The master is not aware of each worker type, neither of the distribution
over types. That is, our mechanism does not rely on any statistical information.

While workers make their decision individually and with no coordination, follow-
ing [13,21], we assume that all the workers that cheat in a round return the same incor-
rect value. This yields a worst case scenario for the master to obtain the correct result
using a voting mechanism. This assumption subsumes models where cheaters do not
necessarily return the same answer, and it can be seen as a weak form of collusion.

Auditing, Payoffs, Rewards and Aspiration. When necessary, the master employs au-
diting and reward/punish schemes to induce the rational workers to be honest. In each
round, the master may decide to audit the response of the workers, at a cost. In this
work, auditing means that the master computes the task by itself, and checks which
workers have been honest. We denote by pA(r) the probability of the master auditing
the responses of the workers in round r. The master can change this auditing probabil-
ity over the course of the computation, but restricted to a minimum value pmin

A > 0.
When the master audits, it can accurately reward and punish workers. When the master
does not audit, it rewards only those in the weighted majority (see below) of the replies
received and punishes no one.

We consider three worker payoff parameters: (a)WPC : worker’s punishment for
being caught cheating, (b) WCT : worker’s cost for computing a task, and (c) WBY :
worker’s benefit (typically payment) from the master’s reward. As in [8], we also as-
sume that a worker i has an aspiration ai, which is the minimum benefit that worker i
expects to obtain in a round. We assume that the master has the freedom of choosing
WBY and WPC with the goal of satisfying eventual correctness, defined next. E.g., in
order to motivate the worker to participate in the computation, the master ensures that
WBY −WCT ≥ ai; in other words, the worker has the potential of its aspiration to be
covered even if it computes the task.

Eventual Correctness. The goal of the master is to eventually obtain a reliable compu-
tational platform: After some finite number of rounds, the system must guarantee that
the master obtains the correct task results in every round with probability 1 and audits
with probability pmin

A . We call such property eventual correctness. Observe that even-
tual correctness implies that eventually the master receives at least one (correct) reply
in every round.

Reputation. The reputation of each worker is measured and maintained by the mas-
ter. Reputation is used by the master to cope with the uncertainty about the workers’



truthfulness and availability. In fact, the workers are unaware that a reputation scheme
is in place, and their interaction with the master does not reveal any information about
reputation; i.e., the payoffs do not depend on a worker’s reputation. The master wants
to assign tasks to workers that are reliable, that is, workers that are both responsive and
truthful. Hence, we consider the worker’s reputation as the product of two factors: re-
sponsiveness reputation and truthfulness reputation. Thus, the malicious workers will
obtain a low reputation fast due to their low truthfulness reputation, and also the workers
that are generally unavailable will get a low reputation due to their low responsiveness
reputation. Consequently, these workers will stop being chosen by the master.

More formally, we define the reputation of a worker i as ρi = ρrsi ·ρtri , where ρrsi
represents the responsiveness reputation and ρtri the truthfulness reputation of worker
i. We also define the reputation of a set of workers Y ⊆W as the aggregated reputation
of all workers in Y . That is, ρY (r) =

∑
i∈Y ρi(r).

In this work, we consider three truthfulness reputation types: LINEAR, EXPONEN-
TIAL, and BOINC. In the LINEAR reputation type (introduced in [24]) the reputation
changes at a linear rate. The EXPONENTIAL reputation type (introduced in [11]) is
“unforgiving”, in the sense that the reputation of a worker caught cheating will never
increase. The reputation of a worker in this type changes at an exponential rate. The
BOINC reputation type is inspired by BOINC [6]. In the BOINC system this reputa-
tion method is used to avoid redundancy if a worker is considered honest2. For the
responsiveness reputation we use the LINEAR reputation, adjusted for responses. For
the worker’s availability it is natural to use a “forgiving” reputation, especially when
considering volunteer computing. For the detailed description of the reputation types
we introduce some necessary notation as follows.
selecti(r): the number of rounds the master selected worker i up to round r.
reply selecti(r): the number of rounds up to round r in which worker i was selected
and the master received a reply from i.
audit reply selecti(r): the number of rounds up to round r where the master selected
worker i, received its reply and audited.
correct auditi(r): the number of rounds up to round r where the master selected
worker i, received its reply, audited and i was truthful.
streaki(r): the number of rounds ≤ r in which worker i was selected, audited, and
replied correctly after the latest round in which it was selected, audited, and caught
cheating.

Then, the reputation types we consider are as follows.

Responsiveness reputation: ρrsi(r) =
reply selecti(r)+1

selecti(r)+1
.

Truthfulness reputation:

LINEAR: ρtri(r) =
correct auditi(r) + 1

audit reply selecti(r) + 1
.

EXPONENTIAL: ρtri(r) = εaudit reply selecti(r)−correct auditi(r), where ε ∈ (0, 1).

BOINC: ρtr(r) =

{
0, if streak(r) < 10.

1− 1
streak(r)

, otherwise.

2 In BOINC, honesty means that the worker’s task result agrees with the majority, while in our
work this decision is well-founded, since the master audits.



All workers are assumed to have the same initial reputation before the master inter-
acts with them. The goal of the above definitions is for workers who are responsive and
truthful to eventually have high reputation, whereas workers who are not responsive or
not truthful, to eventually have low reputation.

3 Reputation-based Mechanism
We now present our reputation-based mechanism. The mechanism is composed by an
algorithm run by the master and an algorithm run by each worker.

Master’s Algorithm. The algorithm followed by the master, Algorithm 1, begins by
choosing the initial probability of auditing and the initial reputation (same for all work-
ers). The initial probability of auditing will be set according to the information the mas-
ter has about the environment (e.g., workers’ initial pC). For example, if it has no in-
formation about the environment, a natural approach would be to initially set pA = 0.5
or pA = 1 (as a more conservative approach). The master also chooses the truthfulness
reputation type to use.

At the beginning of each round, the master chooses the n most reputable workers
out of the total N workers (breaking ties uniformly at random) and sends them a task
T . In the first round, since workers have the same reputation, the choice is uniformly at
random. Then, after waiting t time to receive the replies from the selected workers, the
master proceeds with the mechanism. The master updates the responsiveness reputation
and audits the answers with probability pA. In the case the answers are not audited, the
master accepts the value returned by the weighed majority. In Algorithm 1, m is the
value returned by the weighted majority and Rm is the subset of workers that returned
m. If the master audits, it updates the truthfulness reputation and the audit probability
for the next round. Then, the master rewards/penalizes the workers as follows. If the
master audits and a worker i is a cheater (i.e., i ∈ F ), then Πi = −WPC ; if i is honest,
then Πi = WBY . If the master does not audit, and i returns the value of the weighted
majority (i.e., i ∈ Rm), then Πi = WBY , otherwise Πi = 0.

In the update of the audit probability pA, we include a threshold, denoted by τ ,
that represents the master’s tolerance to cheating (typically, we will assume τ = 1/2
in our simulations). If the ratio of the aggregated reputation of cheaters with respect
to the total is larger than τ , pA is increased, and decreased otherwise. The amount by
which pA changes depends on the difference between these values, modulated by a
learning rate αm [25]. This latter value determines to what extent the newly acquired
information will override the old information. For example, if αm = 0 the master will
never adjust pA.

Workers’ Algorithm. Altruistic and malicious workers have predefined behaviors. When
they are selected and receive a task T from the master, if they are available, they com-
pute the task (altruistic) or fabricate an arbitrary solution (malicious), replying accord-
ingly. If they are not available, they do not reply. Rational workers run the algorithm
described in Algorithm 2. The execution of the algorithm begins with a rational worker
i deciding an initial probability of cheating pCi. Then, the worker waits to be selected
and receive a task T from the master. When so, and if it is available at the time, then
with probability 1 − pCi, worker i computes the task and replies to the master with
the correct answer. Otherwise, it fabricates an answer, and sends the incorrect response



Algorithm 1 Master’s Algorithm
1 pA← x, where x ∈ [pmin

A , 1]
2 for i← 0 to N do
3 selecti← 0; reply selecti← 0; audit reply selecti← 0; correct auditi← 0; streaki ← 0
4 ρrsi ← 1; initialize ρtri // initially all workers have the same reputation
5 for r← 1 to∞ do
6 W r ← {i ∈ N : i is chosen as one of the n workers with the highest ρi = ρrsi · ρtri }
7 ∀i ∈W r : selecti← selecti + 1
8 send a task T to all workers in W r

9 collect replies from workers in W r for t time
10 wait for t time collecting replies as received from workers in W r

11 R← {i ∈W r : a reply from i was received by time t}
12 ∀i ∈ R : reply selecti← reply selecti + 1
13 update responsiveness reputation ρrsi of each worker i ∈W r

14 audit the received answers with probability pA
15 if the answers were not audited then
16 accept the value m returned by workers Rm ⊆ R,
17 where ∀m′, ρtrRm

≥ ρtrR
m′ // weighted majority of workers in R

18 else // the master audits
19 foreach i ∈ R do
20 audit reply selecti← audit reply selecti + 1
21 if i ∈ F then streaki← 0 // F ⊆ R is the set of responsive workers caught cheating
22 else correct auditi← correct auditi + 1, streaki← streaki + 1 // honest responsive workers
23 update truthfulness reputation ρtri // depending on the type used
24 if ρtrR = 0 then pA←min{1, pA + αm}
25 else
26 p′A← pA + αm(ρtrF /ρtrR − τ)
27 pA←min{1,max{pmin

A , p′A}}
28 ∀i ∈W r : return Πi to worker i // the payoff of workers in W r \R is zero

Algorithm 2 Algorithm for Rational Worker i

1 pCi← y, where y ∈ [0, 1]
2 repeat forever
3 wait for a task T from the master
4 if available then
5 decide whether to cheat or not independently with distribution P (cheat) = pCi

6 if the decision was to cheat then
7 send arbitrary solution to the master
8 get payoff Πi

9 pCi←max{0,min{1, pCi + αw(Πi − ai)}}
10 else
11 send compute(T ) to the master
12 get payoff Πi

13 pCi←max{0,min{1, pCi − αw(Πi −WCT − ai)}}



to the master. After receiving its payoff, worker i changes its pCi according to payoff
Πi, the chosen strategy (cheat or not cheat), and its aspiration ai. Similarly to the mas-
ter, the workers have a learning rate αw. We assume that all workers have the same
learning rate, that is, they learn in the same manner (in [25], the learning rate is called
step-size). In a real platform the workers learning rate can slightly vary (since workers
in these platforms have similar profiles), making some worker more or less susceptible
to reward and punishment. Using the same learning rate for all workers is representative
of what happens in a population of different values with small variations around some
mean.

4 Analysis
In this section, we prove some properties of the system. We start by observing that, in
order to achieve eventual correctness, it is necessary to change workers over time. 3

Observation 1 If the number of malicious workers is at least n and the master assigns
the task to the same workers in all rounds, eventual correctness cannot be guaranteed.
The intuition behind this observation is that there is always a positive probability that
the master will select nmalicious workers at the first round and will have to remain with
the same workers. This observation justifies that the master has to change its choice of
workers if eventual correctness has to be guaranteed. We apply the natural approach of
choosing the n workers with the largest reputation among the N workers in the pool
(breaking ties randomly). In order to guarantee eventual correctness we need to add one
more condition regarding the availability of the workers.
Observation 2 To guarantee eventual correctness at least one non-malicious worker i
must exist with di = 1.

To complement the above observations, we show now that there are sets of workers
with which eventual correctness is achievable using the different reputation types (LIN-
EAR and EXPONENTIAL as truthfulness reputations) defined and the master reputation-
based mechanism in Algorithm 1.
Theorem 3. Consider a system in which workers are either altruistic or malicious and
there is at least one altruistic worker i with di = 1 in the pool. Eventual correctness
is satisfied if the mechanism of Algorithm 1 is used with the responsiveness reputation
and any of the truthfulness reputations LINEAR or EXPONENTIAL.

The intuition behind the proof is that thanks to the decremental way in which the
reputation of a malicious worker is calculated at some point the altruistic worker i with
full responsiveness (di = 1) will be selected and have a greater reputation than the
aggregated reputation of the selected malicious workers. A similar result does not hold
if truthfulness reputation of type BOINC is used. In this case, we have found that it is
not enough that one altruistic worker with full availability exists, but also the number
of altruistic workers with partial availability have to be considered.
Theorem 4. Consider a system in which workers are either altruistic or malicious and
there is at least one altruistic worker i with di = 1 in the pool. In this system, the mech-
anism of Algorithm 1 is used with the responsiveness reputation and the truthfulness
reputation BOINC. Then, eventual correctness is satisfied if and only if the number of
altruistic workers with dj < 1 is smaller than n.

3 The omitted proofs can be found at http://arxiv.org/abs/1603.04394.



Proof. In this system, it holds that every malicious worker k has truthfulness reputation
ρtrk = 0 forever, since the replies that the master receives from it (if any) are always in-
correct. Initially, altruistic workers also have zero truthfulness reputation. An altruistic
worker j has positive truthfulness reputation after it is selected, and its reply is received
and audited by the master 10 times. Observe that, once that happens, the truthfulness
reputation of worker j never becomes 0 again. Also note that the reponsiveness repu-
tation never becomes 0. Hence, the first altruistic workers that succeed in raising their
truthfulness reputation above zero are always chosen in future rounds. While there are
less than nworkers with positive reputation, the master selects at random from the zero-
reputation workers in every round. Then, eventually (in round r0) there are n altruistic
workers with positive reputation, or there are less than n but all altruistic workers are
in that set. After then, no new altruistic worker increase its reputation (in fact, is ever
selected), and the set of altruistic selected workers is always the same.

If the number of altruistic workers with dj < 1 is smaller than n, since worker i
has di = 1, after round r0 among the selected workers there are altruistic workers with
dj = 1 and positive reputation. Then, in every round there is going to be a weighted
majority of correct replies, and eventual correctness is guaranteed.

If, on the other hand, the number of altruistic workers with dj < 1 is at least n, there
is a positive probability that all the n workers with positive reputation are from this set.
Since there is a positive probability that n altruistic workers with dj < 1 are selected
in round r0 with probability one the worker i with di = 1 will never be selected. If
this is the case, eventual correctness is not satisfied (since there is a positive probability
that the master will not receive a reply in a round). Assume otherwise and consider that
after round r′0 it holds that pA = pmin

A . Then, in every round after r′0 there is a positive
probability that the master receives no reply from the selected workers and it does not
audit, which implies that it does not obtain the correct result. ut

This result is rather paradoxical, since it implies that a system in which all workers
are altruistic (one with di = 1 and the rest with dj < 1) does not guarantee even-
tual correctness, while a similar system in which the partially available workers are
instead malicious does. This paradox comes to stress the importance of selecting the
right truthfulness reputation. Theorem 4 shows a positive correlation among a truthful-
ness reputation with the availability factor of a worker in the case a large number of
altruistic workers.

5 Simulations
Theoretical analysis is complemented with illustrative simulations on a number of dif-
ferent scenarios for the case of full and partial availability. The simulated cases give
indications on the values of some parameters (controlled by the master, namely the type
of reputation and the initial pA) under which the mechanism performs better. The rest
of the parameters of the mechanism and the scenarios presented are essentially based on
the observations extracted from [2, 12], and are rather similar to our earlier work [11].
We have developed our own simulation setup by implementing our mechanism (Algo-
rithms 1 and 2, and the reputation types discussed above) using C++. The simulations
were executed on a dual-core AMD Opteron 2.5GHz processor, with 2GB RAM, run-
ning CentOS version 5.3.



For simplicity, we consider that all workers have the same aspiration level ai =
0.1, although we have checked that with random values the results are similar to those
presented here, provided their variance is not very large (ai ± 0.1). We consider the
same learning rate for the master and the workers, i.e., α = αm = αw = 0.1. Note that
the learning rate, as discussed for example in [25] (called step-size there), is generally
set to a small constant value for practical reasons. We set τ = 0.5 (c.f., Sect. 3; also
see [10]), pmin

A = 0.01, and ε = 0.5 in reputation EXPONENTIAL. We assume that
the master does not punish the workers WPC = 0, since depending on the platform
used this might not be feasible, and hence more generic results are considered. Also
we consider that the cost of computing a task is WCT = 0.1 for all workers and,
analogously, the master is rewarding the workers with WBY = 1 when it accepts their
result (for simplicity no further correlation among these two values is assumed). The
initial cheating probability used by rational workers is pCi = 0.5 and the number of
selected workers is set to n = 5.

The first batch of simulations consider the case when the workers are fully available
(i.e, all workers have d = 1), and the behavior of the mechanism under different pool
sizes is studied. The second batch considers the case where the workers are partially
available.

Full Availability. Assuming full worker availability we attempt to identify the impact
of the pool size on different metrics: (1) the number of rounds, (2) number of auditing
rounds, and (3) number of incorrect results accepted by the master, all of them mea-
sured until the system reaches convergence (the first round in which pA = pmin

A )4.
Additionally, we are able to compare the behavior of the three truthfulness reputation
types, showing different trade-off among reliability and cost.

We have tested the mechanism proposed in this paper with different initial pA val-
ues. We present here two interesting cases of initial audit probability, pA = 0.5 and
pA = 1. The first row of Figure 1 (plots (a1) to (c1)) presents the results obtained in
the simulations with initial pA = 0.5 and the second row (plots (a2) to (c2)) the case
pA = 1. The simulations in this section have been done for systems with only rational
and malicious workers, with 3 different ratios between these worker types (ratios 5/4,
4/5, and 1/8), with different pool sizes (N = {5, 9, 99}), and for the 3 truthfulness rep-
utation types. These ratios consider the three most “critical” cases in which malicious
workers can influence the results.

A general conclusion we can extract from the first row of Figure 1 (plots (a1) to (c1))
is that, independently of the ratio between malicious and rational workers, the trend that
each reputation type follows for each of the different pool size scenarios is the same.
(When the ratio of rational/malicious is 1/8 this trend is more noticeable.) Reputation
LINEAR does not show a correlation between the pool size and the evaluation metrics.
This is somewhat surprising given that other two reputation types are impacted by the
pool size.

For reputation EXPONENTIAL and BOINC we can observe that, as the pool size in-
creases, the number of rounds until convergence also increases. It seems like, for these
reputation types, many workers from the pool have to be selected and audited before
convergence. Hence, with a larger pool it takes more rounds for the mechanism to select

4 As we have seen experimentally, first the system reaches a reliable state and then pA = pmin
A .



L−p5 L−p9 L−p99 E−p5 E−p9 E−p99 B−p5 B−p9 B−p99
0

50

100

150

200

250

300

reputation type/pool size

ro
u

n
d

 

 
convergence

audits

incorrect results   .

L−p5 L−p9 L−p99 E−p5 E−p9 E−p99 B−p5 B−p9 B−p99
0

50

100

150

200

250

300

reputation type/pool size

ro
u

n
d

 

 
convergence

audits

incorrect results   .

L−p5 L−p9 L−p99 E−p5 E−p9 E−p99 B−p5 B−p9 B−p99
0

50

100

150

200

250

300

reputation type/pool size

ro
u

n
d

 

 
convergence

audits

incorrect results   .

(a1) (b1) (c1)

L−p5 L−p9 L−p99 E−p5 E−p9 E−p99 B−p5 B−p9 B−p99
0

50

100

150

200

250

300

reputation type/pool size

ro
u

n
d

 

 
convergence

audits

incorrect results   .

L−p5 L−p9 L−p99 E−p5 E−p9 E−p99 B−p5 B−p9 B−p99
0

50

100

150

200

250

300

reputation type/pool size

ro
u

n
d

 

 
convergence

audits

incorrect results   .

L−p5 L−p9 L−p99 E−p5 E−p9 E−p99 B−p5 B−p9 B−p99
0

50

100

150

200

250

300

reputation type/pool size

ro
u

n
d

 

 
convergence

audits

incorrect results   .

(a2) (b2) (c2)

Fig. 1: Simulation results with full availability. First row plots are for initial pA = 0.5. Second
row plots are for initial pA = 1. The bottom (red) errorbars present the number of incorrect
results accepted until convergence (pA = pmin

A ), the middle (green) errorbars present the number
of audits until convergence; and finally the upper (blue) errorbars present the number of rounds
until convergence, in 100 instantiations. In plots (a1) and (a2) the ratio of rational/malicious is
5/4. In plots (b1) and (b2) the ratio of rational/malicious is 4/5. In plots (c1) and (c2) the ratio of
rational/malicious is 1/8. The x-axes symbols are as follows, L: LINEAR, E: EXPONENTIAL and
B: BOINC reputation; p5: pool size 5, p9: pool size 9 and p99: pool size 99.

and audit these workers, and hence to establish valid reputation for the workers and to
reinforce the rational ones to be honest. For both reputation types (EXPONENTIAL and
BOINC) this is a costly procedure also in terms of auditing for all rational/malicious
ratios. (The effect on the number of audits is more acute for reputation BOINC as the
pool size increases.) As for the number of incorrect results accepted until convergence,
with reputation EXPONENTIAL they still increase with the pool size. However, reputa-
tion BOINC is much more robust with respect to this metric, essentially guaranteeing
that no incorrect result is accepted.

Comparing now the performance of the different reputation types based on our
evaluation metrics, it seems that reputation LINEAR performs better when the size of
the pool is big compared to the other two reputation types. On the other hand rep-
utation types EXPONENTIAL and BOINC perform slightly better when the pool size
is small. Comparing reputation types EXPONENTIAL and BOINC, while reputation
BOINC shows that has slightly faster convergence, this is traded for at least double
auditing than reputation EXPONENTIAL. On the other hand, reputation EXPONENTIAL
is accepting a greater number of incorrect results until convergence. This is a clear ex-



ample of the trade-off between convergence time, number of audits, and number of
incorrect results accepted.

Similar conclusions can be drawn when the master decides to audit with pA = 1
initially, see Figure 1 (a2) - (c2). The only difference is that the variance, of the different
instantiations on the three metrics is smaller. Hence, choosing pA = 1 initially is a
“safer” strategy for the master.

Partial Availability. Assuming now partial worker availability (i.e, workers may have
d < 1), we attempt to identify the impact of the unavailability of a worker on four dif-
ferent metrics: (1) the number of rounds, (2) number of auditing rounds, and (3) number
of incorrect results accepted by the master, all until the system reaches convergence. In
addition, we obtain (4) the number of incorrect results accepted by the master after the
system reaches convergence (which was zero in the previous section). Moreover, we
are able to identify how suitable each reputation is, under different workers’ ratio and
unavailability probabilities.

We keep the pool size fixed to N = 9, and the number of selected workers fixed to
n = 5; and we analyze the behavior of the system in a number of different scenarios
where the workers types and availabilities vary. The depicted scenarios present the cases
of initial audit probability: pA = {0.5, 1}.

Figure 2 (a1)-(b1) compares a base case where all workers are altruistic with d = 1
(scenario S1) with scenarios where 1 altruistic worker exists with d = 1 and the rest
of the workers are either altruistic (scenario S2) or malicious (scenario S3) with a par-
tial availability d = 0.5. Our base case S1 is the optimal scenario, and the mechanism
should have the best performance with respect to metrics (1)-(3); this is confirmed by
the simulations as we can observe. For scenario S2, where the 8 altruistic workers have
d = 0.5, reputations LINEAR and EXPONENTIAL are performing as good as the base
case. While BOINC is performing slightly worse than the base case. Comparing the
different reputation types for scenarios S1 and S2, it is clear that, for all metrics, LIN-
EAR and EXPONENTIAL are performing better than BOINC. Moving on to scenario S3,
where 8 malicious workers with d = 0.5 exist, as expected, the mechanism is perform-
ing worse according to our reputation metrics. What is interesting to observe, though,
is that reputation BOINC is performing much better than the other two reputation types.
It is surprising to observe, for reputation BOINC, how close are the results for scenario
S2 and especially scenario S3 to the base case S1. We believe that this is due to the
nature of reputation BOINC, which keeps reputation to zero until a reliability threshold
is achieved. From the observation of Figure 2 (a1)-(b1), we can conclude that, if there
is information on the existence of malicious workers in the computation, a “safer” ap-
proach would be the use of reputation BOINC. The impact of pA on the performance of
the mechanism, in the particular scenarios, as it is shown on Figure 2 (a1)-(b1), in all
cases setting pA = 0.5 initially improves the performance of the mechanism.

The results of Figure 2 (a1)-(b1) are confirmed by Theorem 3. Through the sim-
ulation results, we have observed that eventual correctness happens (i.e., no more er-
roneous results are further accepted) when the system converges, for the depicted sce-
narios. As for Theorem 4 we have observed that, although the condition of having 5
altruistic with d = 1 is not the case for scenarios S2 and S3, in the particular scenarios
simulated the system was able to reach eventual correctness. Although from the de-



L−S1 L−S2 L−S3 E−S1 E−S2 E−S3 B−S1 B−S2 B−S3
0

20

40

60

80

100

120

140

160

180

200

reputation type/scenario

ro
u

n
d

 

 
convergence

audits

incorrect results   .

L−S1 L−S2 L−S3 E−S1 E−S2 E−S3 B−S1 B−S2 B−S3
0

20

40

60

80

100

120

140

160

180

200

reputation type/scenario

ro
u

n
d

 

 
convergence

audits

incorrect results   .

(a1) (b1)

L−S4 L−S5 L−S6 E−S4 E−S5 E−S6 B−S4 B−S5 B−S6
0

50

100

150

200

250

reputation type/scenario

ro
u

n
d

 

 
convergence

audits

incorrect results after convergence   .

L−S4 L−S5 L−S6 E−S4 E−S5 E−S6 B−S4 B−S5 B−S6
0

50

100

150

200

250

reputation type/scenario

ro
u

n
d

 

 
convergence

audits

incorrect results after convergence   .

(a2) (b2)

Fig. 2: Simulation results with partial availability: (a1)-(a2) initial pA = 0.5, (b1)-(b2) initial
pA = 1 . For (a1)-(b1) The bottom (red) errorbars present the number of incorrect results ac-
cepted until convergence (pA = pmin

A ). For (a2)-(b2) the bottom (red) errorbars present the
number of incorrect results accepted after convergence. For all plots, the middle (green) errorbars
present the number of audits until convergence; and finally the upper (blue) errorbars present the
number of rounds until convergence, in 100 instantiations. The x-axes symbols are as follows, L:
reputation LINEAR, E: reputation EXPONENTIAL, B: reputation BOINC, S1: 9 altruistic workers
with d = 1, S2: 1 altruistic with d = 1 and 8 altruistic workers with d = 0.5, S3: 1 altruistic with
d = 1 and 8 malicious workers with d = 0.5, S4: 9 rational workers with d = 1, S5: 1 rational
with d = 1 and 8 rational workers with d = 0.5, S6: 1 rational with d = 1 and 8 malicious
workers with d = 0.5.

picted scenarios reputation BOINC seems like is a good approach, theory tells us that it
can only be used when we have info on the workers types.

Figure 2 (a2)-(b2), depicts more scenarios with different workers types ratios, in the
presence of rational and malicious workers. Following the same methodology as be-
fore, we compare a base case (scenario S4) where all workers are rational with d = 1,
with a scenarios where one rational with d = 1 exists and the rest are rational (scenario
S5) or malicious (scenario S6) with d = 0.5. We can observe that in the base scenario
S4, the mechanism is performing better than in the other two scenarios, for reputation
metrics (1),(2) and (4), independently of the reputation type. What we observe is that



the most difficult scenario for the mechanism to handle is scenario S5, independently of
the reputation type, because, although the system converges, eventual correctness has
not been reached and the master is accepting incorrect replies for a few more rounds
before reaching eventual correctness. This is due to the ratio of the workers’ type, and
some rational workers that have not been fully reinforced to a correct behavior may
have a greater reputation than the rational worker with d = 1, while the master has
already dropped pA = pmin

A . That would mean that the master would accept the re-
sult of the majority that might consist of rational workers that cheat. As we can see,
EXPONENTIAL is performing worse than the other two types, based on metric (4). As
for reputation LINEAR we can see that, for scenarios S4 and S5, although the varia-
tion on the convergence round is greater than reputation BOINC, this is traded for half
the auditing that reputation BOINC requires. As for scenario S6 (with malicious work-
ers), reputation LINEAR converges much slower, while the number of audits is roughly
the same, compared to reputation BOINC. This observation gives a slight advantage to
reputation BOINC for scenario S6, while reputation LINEAR has an advantage on S5.

Discussion. One conclusion that is derived by our simulations is that, in the case of
full availability, reputation BOINC is not a desirable reputation type if the pool of work-
ers is large. As simulations showed us, convergence is slow, and expensive in terms
of auditing. One could select one of the other two reputation types (according to the
available information on the ratio of workers’ type), since accepting a few more incor-
rect results is traded for fast eventual correctness and low auditing cost. Additionally,
in the scenario with full availability we have noticed that, selecting initially pA = 1 is a
“safer” option to have small number of incorrect results accepted, if no information on
the system is known and the master is willing to invest a bit more on auditing.

For the case of partial availability, the simulations with only altruistic or with al-
truistic and malicious converged in all cases. This was expected due to the analysis in
all cases except in S2 with reputation BOINC, when we expected to see some rounds
after convergence with no replies. The fact is that the altruistic worker with full avail-
ability was able to be selected forever in al cases. Simulations have also shown that, in
the presence of malicious and altruistic workers, reputation BOINC has an advantage
compared to the other two types. Finally, it is interesting to observe that, in the partial
availability case with only rational workers, our mechanism has not reached eventual
correctness when the system has converged, but a few rounds later. This means that,
although the rational workers are partially available, the mechanism is able to reinforce
them to an honest behavior eventually.
Acknowledgments: Supported in part by MINECO grant TEC2014- 55713-R, Re-
gional Government of Madrid (CM) grant Cloud4BigData (S2013/ICE-2894, co- funded
by FSE & FEDER), NSF of China grant 61520106005, EC H2020 grants ReCred and
NOTRE, U. of Cyprus (ED-CG2015), the MECD grant FPU2013-03792 and Kean Uni-
versity RTR2016.

References
[1] Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game theory:

robust mechanisms for rational secret sharing and multiparty computation. In Proc. of ACM
PODC 2006, pp. 53–62.

[2] Allen, B.: The Einstein@home project (2014). http://einstein.phys.uwm.edu.



[3] Amazon’s Mechanical Turk (2014), https://www.mturk.com.
[4] Anderson, D.P.: BOINC: A system for public-resource computing and storage. In Proc.of

the 5th IEEE/ACM International Workshop on Grid Computing, pp. 4–10 (2004).
[5] Anderson, D.P.: Volunteer computing: the ultimate cloud. ACM Crossroads 16(3):7–10

(2010).
[6] Anderson, D.P.: BOINC reputation (2014), http://boinc.berkeley.edu/trac/

wiki/AdaptiveReplication.
[7] Anderson, D.P.: BOINC (2016), http://boinc.berkeley.edu/.
[8] Bush, R.R., Mosteller, F.: Stochastic models for learning (1955).
[9] Christoforou, E., Fernández Anta, A., Georgiou, C., Mosteiro, M.A.: Algorithmic mech-

anisms for reliable master-worker internet-based computing. IEEE Trans. Computers
63(1):179–195 (2014).

[10] Christoforou, E., Fernández Anta, A., Georgiou, C., Mosteiro, M.A., Sánchez, A.: Applying
the dynamics of evolution to achieve reliability in master-worker computing. Concurrency
and Computation: Practice and Experience 25(17):2363–2380 (2013).

[11] Christoforou, E., Fernández Anta, A., Georgiou, C., Mosteiro, M.A., Sánchez, A.:
Reputation-based mechanisms for evolutionary master-worker computing. In Proc. of
OPODIS 2013, pp. 98–113.

[12] Estrada, T., Taufer, M., Anderson, D.P.: Performance prediction and analysis of BOINC
projects: An empirical study with EMBOINC. J. of Grid Computing 7(4):537–554 (2009).

[13] Fernández Anta, A., Georgiou, C., López, L., Santos, A.: Reliable Internet-based master-
worker computing in the presence of malicious workers. Par. Proc. Letters 22(01) (2012).

[14] Fernández Anta, A., Georgiou, C., Mosteiro, M.A.: Designing mechanisms for reliable
Internet-based computing. In Proc. of IEEE NCA 2008, pp. 315–324.

[15] Golle, P., Mironov, I.: Uncheatable distributed computations. Topics in Cryptology-CT-
RSA 2001, pp. 425–440.

[16] Heien, E.M., Anderson, D.P., Hagihara, K.: Computing low latency batches with unreliable
workers in volunteer computing environments. J. of Grid Computing 7(4):501–518 (2009).

[17] Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service
provision. Decision support systems 43(2):618–644 (2007).

[18] Kondo, D., Araujo, F., Malecot, P., Domingues, P., Silva, L.M., Fedak, G., Cappello, F.:
Characterizing result errors in Internet desktop grids. In Euro-Par 2007, pp. 361–371.

[19] Konwar, K.M., Rajasekaran, S., Shvartsman, A.A.: Robust network supercomputing with
malicious processes. In Proc. of DISC 2006, pp. 474–488.

[20] Korpela, E., Werthimer, D., Anderson, D.P., Cobb, J., Lebofsky, M.: SETI@home: mas-
sively distributed computing for SETI. Computing in Sci. & Eng. 3(1):78–83 (2001).

[21] Sarmenta, L.F.: Sabotage-tolerance mechanisms for volunteer computing systems. Future
Generation Computer Systems 18(4):561–572 (2002).

[22] Shneidman, J., Parkes, D.C.: Rationality and self-interest in peer to peer networks. Peer-to-
Peer Systems II, pp. 139–148 (2003).

[23] Smith, J.M.: Evolution and the Theory of Games. Cambridge university press (1982).
[24] Sonnek, J., Chandra, A., Weissman, J.B.: Adaptive reputation-based scheduling on unreli-

able distributed infrastructures. IEEE PDS 18(11):1551–1564 (2007).
[25] Szepesvári, C.: Algorithms for reinforcement learning. Synthesis Lectures on Artificial In-

telligence and Machine Learning 4(1):1–103 (2010).
[26] Taufer, M., Anderson, D.P., Cicotti, P., Brooks III, C.L.: Homogeneous redundancy: a tech-

nique to ensure integrity of molecular simulation results using public computing. In Proc.
of IEEE IPDPS 2005.

[27] Yurkewych, M., Levine, B.N., Rosenberg, A.L.: On the cost-ineffectiveness of redundancy
in commercial P2P computing. In Proc. of ACM CCS 2005, pp. 280–288.


