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Abstract. In this paper we consider a two-node setting with a sender transmitting
packets to a receiver over a wireless channel. Unfortunately, the channel can be
jammed, thus corrupting the packet that is being transmitted at the time. The
sender has a specific amount of data that needs to be sent to the receiver and its
objective is to complete the transmission of the data as quickly as possible in the
presence of jamming.
We assume that the jamming is controlled by a constrained adversary. In particu-
lar, the adversary’s power is constrained by two parameters, ρ and σ. Intuitively,
ρ represents the rate at which the adversary can jam the channel, and σ the length
of the largest bursts of jams it can cause. This definition corresponds to the trans-
lation of the Adversarial Queuing Theory (AQT) constrains, typically defined for
packet injections in similar settings, to channel jamming.
We propose deterministic scheduling algorithms that decide the lengths of the
packets to be sent by the sender in order to minimize the transmission time. We
first assume all packets being of the same length (uniform) and characterize the
corresponding optimal packet length. Then, we show that if the packet length can
be adapted, for specific values of ρ and σ the transmission time can be improved.

Keywords: Packet scheduling, Wireless Channel, Unreliable communication,
Adversarial jamming, Adversarial Queueing Theory

1 Introduction

1.1 Motivation

The fast transmission of data across wireless channels under different conditions has
been an area of investigation for quite some time now [3, 6, 10, 11, 14, 18, 21–25]. How-
ever, it presents several challenges depending on the model and applications it focuses
on; especially when considering channel jamming.
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In our work we look at a wireless channel between a single pair of stations (sender
and receiver), with the sender’s goal to fully transmit a specific amount of data in the
most efficient way. As efficiency measures, we look both at the transmission time and
the goodput ratio (successful transmission rate), which are intuitively reversely propor-
tional. Nonetheless, the communication between the sender and the receiver is being
“watched” by a malicious entity that sporadically introduces noise in the channel, jam-
ming the packet that happens to be transmitted at that time. More precisely, we model
the errors in the channel to be controlled by an adversary with constrained power; de-
fined by parameters ρ and σ. Parameter ρ represents the rate at which the adversary can
jam the channel and σ the largest size of a burst of jams that can be caused. A packet
that is jammed needs to be retransmitted; hence a feedback mechanism is assumed that
informs the sender when a packet was jammed. The sender must transmit data of total
size P . Each packet sent contains a header of fixed size h and some payload whose
size, l, is algorithm-depended. Note that this payload counts towards the total size of P
to be transmitted. For simplicity and without loss of generality we assume that h = 1
and the time to transmit a packet is equal to its length.

The constrained power of the adversary models a jamming entity with limited re-
source of energy, e.g., military drones [13, 17] or malicious mobile devices [1, 2]. For
the adversarial jammer in our model, we consider having a battery of capacity σ units,
where each unit can be used to cause one jam. Furthermore, in every 1/ρ time the bat-
tery is charged by one unit, e.g. with solar cells. More details on the model we consider
are given in Section 2.

In a previous work [4], we studied the impact of adversarial errors on packet schedul-
ing, focusing on the long term competitive ratio of throughput, termed relative through-
put. We explored the effect of feedback delay and proposed algorithms that achieve
close to optimal relative throughput under worst-case errors, and adversarial or stochas-
tic packet arrivals. One of the main differences with this work is that the adversary was
not constrained. Another difference is the fact that in the current work the packet sizes
are to be chosen by the sender in order to send the desired amount of data efficiently.
Furthermore, in [4], jammed packets were not retransmitted; the objective was to route
packets as fast as possible and not strive to have each packet transmitted. In the current
work, the choice of the packet size is precisely the most critical part from the side of
the sender. Thus, we focus in devising scheduling algorithms for the decision of packet
length to be used and conduct worst-case analysis for the efficiency measures.

1.2 Contributions

First, we introduce an AQT-based adversarial jamming model in wireless networks.
To the best of our knowledge, this is the first work that uses such approach to restrict
the power of adversarial jamming in such networks. AQT has been widely used for
restricting packet arrivals in similar settings (see related work below). However, no
research work has considered the possibility of exploring its effects in the intent to
“damage” a network. As already mentioned, our approach of constrained adversarial
jamming could be used to model battery-operated malicious devices that have bounded
battery capacity and specific recharging rate. In Section 2 we formalize the constrained
adversarial jamming model we consider.



Then, we present the limitations it imposes on the efficiency of scheduling policies,
focusing on the transmission time Tr and the goodput G as our main performance
measures. More precisely, in Section 3 we show bounds on both measures, by focusing
on executions with uniform packet lengths. We first compute the quasi optimal payload
size l∗ and show that the optimal transmission time satisfies Tr ∈ [LB∗, LB∗+ l∗+1),
where LB∗ = [P+(σ−1)l∗](l∗+1)

l∗(1−ρ(l∗−1)) and the optimal goodput is G ∈ ( P
LB∗+l∗+1 ,

P
LB∗ ].

We also show, that for uniform packets, as the total amount of data P grows, G is
upper bounded by (1 − √ρ)2, and in infinity (P → ∞) the goodput grows to optimal
G∗ = (1−√ρ)2 regardless of σ.

From the above, one might wonder whether scheduling uniform packets is in fact the
overall best strategy. In Section 4 we show that this is not the case. Focusing on σ = 1
we show that the optimal goodput derived from uniform packet length transmission,G∗,
can be exceeded using an adaptive algorithm; an algorithm that decides the length of
the packet to be sent next, based on the information provided by a feedback mechanism
up to that point in time. In particular, we present the adaptive scheduling algorithm
ADP-1 that achieves goodput G = 1 − ρ

2

(
1 +

√
1 + 8

ρ

)
, which is greater than G∗

for ρ < 1
2 (7 − 3

√
5). Then, using a parameterized version of ADP-1 and performing

case analysis we show its superiority over the uniform packet strategy for 1/ρ > 4.
Specifically, for 1/ρ > 4 the algorithm achieves greater goodput than G∗.

1.3 Related Work

Adversarial queueing has been used in wireless networks as a methodology for studying
their stability under worst case scenarios, removing the stochastic assumptions usually
made for the generation of traffic. It concerns the arrival process of packets in the sys-
tem and it has been introduced by Borodin et al. [7] as a well defined theoretical model
since 2001. It has been further studied by Andrews et al. [3] who emphasized the notion
of universal stability in such adversarial settings. A variety of works has then followed,
using AQT in different network settings, such as on multiple access channels [10, 11]
and routing in communication networks [8, 9]. We associate our constrained type of
adversarial channel jams with the AQT model for the arrival process of packets in the
following way. Classical AQT considers a window adversary that accounts packets be-
ing injected within a time window w in such a way that they give a total load of at
most wr at each edge of the paths they need to follow, where w ≥ 1 and r ≤ 1. In our
channel jams, for every window of duration 1/ρ, there is exactly one new error token
available for the adversary to use. In a long execution, considering for example a time
interval T > 1/ρ, there will be up to Tρ new error tokens available to the adversary.

As stated already, several studies have been done on throughput maximization as
well as the effects of jamming in wireless channels. For example, Gummandi et al. [16]
consider radio frequency interference on 802.11 networks and show that such networks
are surprisingly vulnerable. As a method to withstand these vulnerabilities they pro-
pose and analyze a channel hopping design. Tsibonis et al. [24] studied the case of
scheduling transmissions to multiple users over a wireless channel with time-varying
connectivity and proposed an algorithm that focuses on the weighted sum of channel
throughputs, considering saturated packet queues. Thuente et al. [23] studied the effects



of different jamming techniques in wireless networks and the trade-off with their en-
ergy efficiency. Their study includes from trivial/continuous to periodic and intelligent
jamming (taking into consideration the size of packets being transmitted). On a differ-
ent flavor, Awerbuch et al. [5] design a MAC protocol for single-hop wireless networks
that is robust against adaptive adversarial jamming and requires only limited knowledge
about the adversary (an estimate of the number of nodes, n, and an approximation of a
time threshold T ). One of the differences with our work is that the adversary they con-
sider is allowed to jam (1 − ε)-fraction of the time steps. On a later work [21], Richa
et al. explored the design of a robust medium access protocol that takes into consid-
eration the signal to interference plus noise ratio (SINR) at the receiver end. In [22]
they extended their work to the case of multiple co-existing networks; they proposed
a randomized MAC protocol which guarantees fairness between the different networks
and efficient use of the bandwidth. Gilbert et al. [15] worked on a theoretical analysis
of the damage that can be introduced by a tiny malicious entity having limited power
in the sense that it can only broadcast up to β times. Our model can be viewed as a
generalization of this restriction, by allowing recharging. What is more, Pelechrinis et
al. [18] present a detailed survey of the Denial of Service attacks in wireless networks.
They present the various techniques used to achieve malicious behaviors and describe
methodologies for their detection as well as for the network’s protection from the jam-
ming attacks. Finally, Dolev et al. [12] present a survey of several existing results in
adversarial interference environments in the unlicensed bands of the radio spectrum,
discussing their vulnerability. However, none of the models studied considers an AQT
modeling of the power of the adversarial entity.

As mentioned in Section 1.1, our adversarial jammer has limited sources of energy
and can be used to model, for example, military drones or mobile jammers. Drones or
Unmanned Aerial Vehicles (UAV) are at the peak of their development. As an upcoming
technology that is rapidly improving, it has already attracted the colossi of industry,
like Google or Amazon, to invest in UAV research and development, creating even
commercial models. There have already been a few research works [13, 17] but the
area is still being studied; the work in [13] focuses on UAV’s risk analysis and the
work in [17] focuses in analyzing cellular network coverage using UAV’s and software
defined radio. Regarding mobile jammers, in the recent years, many companies have
made available battery-operated 3G/4G, WiFi or GPS mobile jammers (e.g., [1, 2]);
this market can only increase, as wireless communication is becoming the dominating
communication technology.

2 Model

2.1 Network setting

We consider a setting of a sending station (sender) that transmits packets to a receiving
station (receiver) over an unreliable wireless channel. The sender has some initial data
of size P to be transmitted, and follows some online scheduling [20, 19] in order to
decide the lengths of the packets to be sent in the transmission. The decisions need
to be made during the course of the execution, taking into consideration (or not) the
channel jams. Each packet p consists of a header of a fixed predefined size h and a



payload of length l chosen by the algorithm. The payload represents the useful data
to be sent across the channel and is to be chosen by the sender. The total length of
the packet is then denoted by p.len = h + l. Note that the total payload from all the
packets received successfully by the receiver in the execution must sum up to P . For
simplicity and without loss of generality we use h = 1 throughout our analysis, and
hence p.len = l + 1. (Note that l needs not be an integer.) Furthermore, we consider
constant bit rate for the channel, which means that the transmission time of each packet
is proportional to its length (i.e., a packet of size l + 1 takes l + 1 time units to be
transmitted in full).

2.2 Packet failures

We model the unavailability of the channel to be controlled by the adversary (σ, ρ)-A,
which is defined by its two “restrictive” parameters, ρ ∈ [0, 1] and σ ≥ 1 as follows.
The adversary has a token bucket of size σ where it stores “error tokens” and is initially
full. From the beginning of the execution and up to a time t, within interval T = [0, t],
there will be bρT c such error tokens created, where ρ is the rate at which they become
available to the adversary. In other words, a new error token becomes available at times
1/ρ, 2/ρ, . . .. Note that the values of the adversary parameters are given to it (are not
chosen by it) and it can only use them in a “smart” way in order to control the packet
jams in the channel. If there is at least one token in the bucket, the adversary can intro-
duce an error in the channel and jam the current packet, consuming one token. If the
token bucket if full (i.e., there are already σ error tokens in the bucket) and a new token
arrives, then one token is lost (this models the fact that a fully charged battery cannot
be further charged). As a worst case analysis, we consider that the adversary jams some
bit in the header of the packets in order to ensure their destruction. Therefore, adver-
sary (σ, ρ)-A defines the error pattern as a collection of jamming events on the channel,
jamming the packet that is being transmitted in that instant.

2.3 Efficiency measure

For the efficiency of a scheduling algorithm, we look at the total transmission time, Tr ;
that is the time from the beginning of an execution to the moment that the complete
payload P has been successfully received. We also look at the goodput rate, G; that
is the ratio of the total amount of payload successfully transmitted over time, despite
the jams in the channel. Note that the goodput rate will eventually be maximized in the
long-run, assuming infinite amount of data P . Note also, that in most of our analysis we
avoid using floors and ceilings in order to keep the readability of our results as simple
as possible for the reader. Nonetheless, this does not affect the correctness of our results
since when being applied on large enough time intervals and data, the “losses” become
negligible.

2.4 Feedback mechanism

As for the feedback mechanism, instantaneous feedback to the sender about a packet be-
ing received is being considered, as in [4]. We also assume that the notification packets



cannot be jammed by the errors in the channel because of their relatively small size. In
particular, we consider notification / acknowledgement messages sent for every packet
that is received successfully. If such a message is not received by the sender, then it
considers the packet to be jammed.

3 Uniform Packet Length

In this section we explore the case in which all packets are of the same length. Nonethe-
less, we first make the following observation, which bounds the error availability rates
used, being such that they permit some data transmission (this holds also for non-
uniform packet lengths).

Observation 1 Let c be the smallest packet size used by an algorithm (i.e., ∀p, p.len ≥
c). For any error rate ρ ≥ 1/c, no goodput larger than zero can be achieved.

Proof. If the error rate is ρ ≥ 1/c, a new error token arrives during the transmission of
any packet (recall that packets are of size at least c). Hence, there are error tokens in the
bucket at all times for the adversary to corrupt all packets being transmitted. Using an
error token every c time, is sufficient to keep the goodput at zero. ut

From this observation, it can be derived that algorithms that only use packets of
length p.len ≥ 1/ρ are not interesting. In particular, since in this section we consider
an algorithm that systematically sends packets of the same length, we asume that the
packets used satisfy p.len < 1/ρ.

The main goal for the algorithms to be designed is to minimize the transmission
time needed to successfully transmit the total amount of data P to the receiver. Knowing
both adversarial parameters, ρ and σ, and considering uniform packets of size p.len =
l + 1 < 1/ρ, we can find the quasi optimal value for the length of the payload l in
each packet that minimizes the transmission time. For simplicity, we will assume that
the total length of the data to be transmitted P is a multiple of the payload length l.
(For large values of P the error introduced by this assumption is negligible.) Then, the
objective is that P/l packets arrive successfully at the receiver.

Let us now derive a lower bound on the transmission time that can be achieved using
uniform packets. We denote with Tr(l) the transmission time with packets of uniform
payload l. Let r be the number of packets jammed and retransmitted by the sender.
Then,

Tr(l) = (P/l + r)(l + 1). (1)

Observe that the last packet transmitted was correctly received, since otherwise the
data would have been completely transmitted by time Tr(l)−(l+1), which contradicts
the fact that Tr(l) is the transmission time. Hence, the number of packets jammed and
retransmitted is upper bounded as

r ≤ d(Tr(l)− (l + 1))ρe − 1 + σ, (2)

where we apply the fact that the last error used by the adversary must have been avail-
able before time Tr(l) − (l + 1). We claim that the number of packets jammed by the



adversary and retransmitted is in fact equal to the bound of Eq. 2. Otherwise, the ad-
versary could have jammed the last packet sent (at time Tr(l) − (l + 1)), achieving a
longer transmission time. Hence,

r = d(Tr(l)− (l + 1))ρe − 1 + σ. (3)

Moreover, since the adversary could not jam the last packet sent, it must also hold
that r+1 ≥ Tr(l)ρ+ σ = (P/l+ r)(l+1)ρ+ σ, from which we can bound the value
of r as

r ≥ Pρ(l + 1) + (σ − 1)l

l − lρ(l + 1)
. (4)

Let us define the lower bound of the transmission time when packets of uniform
payload l are used, as function LB(l). Then,

Lemma 1. Using uniform packets of payload l, the lower bound of the transmission
time is

Tr(l) ≥ LB(l) =
P + (σ − 1)l

l(1− ρ(l + 1))
(l + 1).

Proof. Replacing the lower bound of r (Eq. 4) in Eq. 1 we have

Tr(l) ≥
(
P

l
+
Pρ(l + 1) + (σ − 1)l

l − lρ(l + 1)

)
(l + 1) =

P + (σ − 1)l

l(1− ρ(l + 1))
(l + 1),

which when combined with the definition of LB(l), completes the proof. ut

Using Calculus, we can find the payload length l∗ that minimizes LB(l), which
yields the following theorem.

Theorem 1. Using uniform packets the transmission time is lower bounded as

Tr ≥ LB(l∗) =
P + (σ − 1)l∗

l∗(1− ρ(l∗ + 1))
(l∗ + 1)

and the goodput is upper bounded as

G ≤ P

LB(l∗)
=

Pl∗(1− ρ(l∗ + 1))

(P + (σ − 1)l∗)(l∗ + 1)
,

where

l∗ =

√
P (Pρ+ (σ − 1)(1− ρ))− Pρ

Pρ+ σ − 1
.

Obviously, when P tends to∞, so does the transmission time Tr . However, we can
derive in this case an upper bound on the goodput as follows.

Corollary 1. Using uniform packets, the goodput is upper bounded asG ≤ (1−√ρ)2,
and in the limit as the value of P grows,

G∗ = lim
P→∞

G = (1−√ρ)2



Proof. Using Calculus it can be shown that the upper bound ofG obtained in Theorem 1
grows with P . Observe that lim

P→∞
G = l∗(1 − ρ(l∗ + 1))/(l∗ + 1) and lim

P→∞
l∗ =

(
√
ρ− ρ)/ρ = 1/

√
ρ− 1. Replacing the latter in the former the claims follow. ut

We now show a corresponding upper bound on the transmission time. We start by
combining Eqs. 3 and 1 as follows:

r = d(Tr(l)− (l + 1))ρe − 1 + σ

< (Tr(l)− (l + 1))ρ+ σ

= ((P/l + r)(l + 1)− (l + 1))ρ+ σ

= (P/l + r)(l + 1)ρ+ σ − (l + 1)ρ.

This allows us to find an upper bound of r as

r <
Pρ(l + 1) + (σ − (l + 1)ρ)l

l − lρ(l + 1)
. (5)

Let us now define the upper bound of the transmission time when packets of payload
l are used, as function UB(l). Then,

Lemma 2. Using uniform packets of payload l, the upper bound of the transmission
time is

Tr(l) < UB(l) =
P + (σ − (l + 1)ρ)l

l(1− ρ(l + 1))
(l + 1).

Proof. Replacing the upper bound of r (Eq. 5) in Eq. 1 we have

Tr(l) <

(
P

l
+
Pρ(l + 1) + (σ − (l + 1)ρ)l

l − lρ(l + 1)

)
(l+1) =

P + (σ − (l + 1)ρ)l

l(1− ρ(l + 1))
(l+1),

which when combined with the definition of UB(l), completes the proof. ut

From Observation 1, ρ < 1/(l+1) must hold. Then, (l+1)ρ < 1 and the bound ob-
tained in the above lemma is strictly bigger than the lower bound presented in Lemma 1,
as expected. In fact, the gap between bounds can be obtained as shown in the following
lemma.

Lemma 3. Using uniform packets of payload l, the transmission time satisfies Tr(l) ∈
[LB(l), LB(l) + l + 1).

Proof. Recall that the lower bound LB(l) is obtained in Lemma 1. Subtracting this
expression from the upper bound UB(l) presented in Lemma 2, we have

UB(l)− LB(l) =
P + (σ − (l + 1)ρ)l

l(1− ρ(l + 1))
(l + 1)− P + (σ − 1)l

l(1− ρ(l + 1))
(l + 1)

=
l(1− ρ(l + 1))

l(1− ρ(l + 1))
(l + 1) = l + 1.

From the above and the fact that Tr(l) < UB(l) the claim follows. ut



Corollary 2. Using uniform packets of payload l, Tr(l) is the only multiple of l + 1
that falls in the interval [LB(l), LB(l) + l + 1).

Finally, combining Lemma 3 with Theorem 1 we derive the following theorem.

Theorem 2. Consider l∗ as defined in Theorem 1. Then

– the transmission time Tr(l∗) observed is less that l∗ + 1 (one packet) longer that
the optimal. I.e., Tr(l∗) < Tr + l∗ + 1.

– the goodput G(l∗) converges to the optimal goodput G as P grows. Additionally,
when P goes to infinity the goodput matches the optimal G∗, i.e. lim

P→∞
G(l∗) =

lim
P→∞

G = (1−√ρ)2.

Proof. The first claim follow directly from Lemma 3, since the value of l∗ is the one
that minimizes LB(l). For the second, recall that G(l∗) = P

Tr(l∗) . Hence, observing
again Lemma 3 we get that

G(l∗) >
P

LB(l∗) + l∗ + 1
=

1
LB(l∗)
P + l∗+1

P

.

As P grows l∗+1
P tends to 0, making G(l∗) converge to P/LB(l∗) which is an upper

bound on the optimal goodput. Finally, as shown in Corollary 1, when P tends to infin-
ity, P/LB(l∗) tends to (1−√ρ)2, which completes the proof. ut

4 Adaptive Packet Length

As we have shown in the previous section, if all packets have the same size, more
precisely size l∗ + 1, then there is an upper bound on the achievable goodput G∗ =
(1−√ρ)2. In this section, focusing on the case σ = 1, we lift the restriction on uniform
packet length and consider an algorithm that adapts the packet length it uses as a func-
tion of the observed jams. We show that by using this approach it is possible to achieve
a goodput greater than (1−√ρ)2, under the restriction of ρ < 1/4.

We divide the execution into consecutive periods of length 1/ρ. In particular, the ith

period, i = 1, 2, . . ., spans the time interval Ii =
[
i−1
ρ , iρ

)
. Note that since error tokens

arrive at time instants 1/ρ, 2/ρ, . . . and σ = 1, at most one packet can be jammed by the
adversary in each period. For simplicity, and since we focus on periods of fixed length
1/ρ, we will use the useful payload sent in the period as one of the goodness metrics
used, denoted UP. Observe that UP = G/ρ and therefore, the upper bound on the useful
payload that can be achieved with uniform packets is UP∗ = (1−√ρ)2/ρ.

4.1 Algorithm ADP-1 for ρ < 1
2
(7− 3

√
5).

We start by proposing the following algorithm, to be used for small values of ρ (and
σ = 1).



Algorithm ADP-1 Description: Each period starts by scheduling packets of decreasing
length pi.len = Z − i for i = 0, 1, 2, 3 . . .. If a packet pj is jammed during the period,
this transmission sequence is stopped, and after pj , a single more packet is scheduled
by the algorithm whose length spans the rest of the period.

We will now show that for ρ small enough, we can specify the parameter Z such
that the useful payload achieved in each period is at least UPu.

Theorem 3. Adaptive algorithm ADP-1, with Z = 1
2

(√
1 + 8

ρ − 1
)

, achieves good-

put G = 1 − ρ
2

(
1 +

√
1 + 8

ρ

)
. This value is larger than the upper bound for the

uniform case if ρ < 1
2 (7− 3

√
5) ≈ 0.1459.

Proof. There are two cases to be considered in a period:
(a) If the adversary jams a packet pj , the useless data sent in the period adds to

Z + 1. This number comes from the j headers of the packets sent before pj , plus the
length pj.len = Z − j of the packet jammed, plus the header of the last packet sent
in the period (which cannot be jammed). Hence, in this case, the useful payload of the
period is 1/ρ− (Z + 1).

Otherwise, (b) if no packet is jammed, the useless data sent in the period correspond
only to the headers of the packets sent. Then, if the last packet sent in the interval is pk,
the useless data is k + 1, and the corresponding useful payload is 1/ρ − (k + 1). The
value Z is chosen so that the total length of the packets sent in this case is equal the
length of the interval. From this property,

∑k
i=0 pi.len = 1

ρ , the value of Z must satisfy

Z(k + 1)− k(k+1)
2 = 1

ρ and hence

Z =
k

2
+

1

ρ(k + 1)
. (6)

In a given period the choice of whether case (a) or (b) occurs is up to the adversary,
since she can decide which packet to jam, if any. This means that the useful payload
achieved will be the minimum of the two cases, UP = min{1/ρ − (Z + 1), 1/ρ −
(k + 1)}. Observe from this Eq. 6 that the length Z of the initial packet increases if the
number of packets k decreases. Additionally, it must hold that Z ≥ k and therefore UP
is maximized when when Z = k. Hence, the optimal k is the suitable solution of the
equation k = k

2 + 1
ρ(k+1) , which is k = 1

2

(√
1 + 8

ρ − 1
)
= Z.

The useful payload achieved is then UP = 1
ρ −

(
1
2

√
1 + 8

ρ −
1
2 + 1

)
= 1

ρ −
1
2

(√
1 + 8

ρ + 1
)
, which is more that UP∗ = (1 − √ρ)2/ρ for ρ < 1

2 (7 − 3
√
5) ≈

0.1459. The corresponding goodput is G = UP
1/ρ = 1− ρ

2

(√
1 + 8

ρ + 1
)
. ut

Corollary 3. Adaptive algorithm ADP-1, with Z = 1
2

(√
1 + 8

ρ − 1
)

achieves trans-

mission time Tr = 2P

2−ρ−
√
ρ(ρ+8)

.



4.2 Exhaustive Case Study for ρ ≥ 1
2
(7− 3

√
5).

From the above results, we see that in the case of σ = 1, instead of using packets
of uniform length l∗ + 1, it is better to use an adaptive algorithm. More precisely,
we have shown that for ρ < 1

2 (7 − 3
√
5), ADP-1 achieves a better useful payload

and goodput rate than the optimal uniform packet algorithm (the one that uses packet
length p.len = l∗ + 1). We now explore the case of ρ ≥ 1

2 (7 − 3
√
5). As before, we

look at periods of length 1/ρ, which means that the length of the period is at most
2

7−3
√
5
≈ 6.85 < 7. Hence, we consider only periods of such lengths.

In general, we are going to deal with subintervals of the period of length 1/ρ. We
will denote with T = [t, t′) an interval in the execution (subinterval of the period) such
that t is an instant at which the adversary has one error token in the error bucket, and t′

the time instant at which the next error token becomes available. Hence, the adversary
has one error token (and only one) to be used in T . We use |T | to denote the length
of the interval, and UPT to denote the useful payload that has been sent and correctly
received by the receiver during T .

Let us first make the following observation.

Observation 2 If there is at most one packet p of length p.len > 1 sent in an interval
T , then UPT = 0.

Proof. Since the adversary has one error token at the beginning of the interval, it uses
it to jam packet p. The rest of packets (if any) have length 1 and carry no payload. ut

We consider now different cases depending on the length of the interval, |T |, to be
explored. We use the following algorithm for any interval T .

Algorithm ADP-1T Description: As a base case, if |T | < 2 then ADP-1T simply sends a
packet that spans the whole interval. Otherwise, let i the integer such that |T | ∈ [i, i+1).
Then ADP-1T sends a packet p whose length depends on i. If p is jammed, it sends a
packet p′ that spans the rest of the interval T . Otherwise, it applies recursively algorithm
ADP-1T ′ to the interval T ′ = [t+ p.len, t

′). Observe that |T ′| < i.

Lemma 4. If |T | < 2, then UPT = 0.

Proof. For any packet sent, the header requires 1 unit of length. Since |T | < 2, it means
that only one packet can be sent within T . Hence, UPT = 0 from Observation 2. ut

Lemma 5. If |T | ∈ [2, 3), Algorithm ADP-1T uses uniform packets with p.len = |T |/2
and achieves useful payload UPT = |T |

2 − 1. The packets used in such interval are
uniform.

Proof. First observe that the algorithm essentially sends two packets of length |T |/2.
This in fact achieves useful payload UPT = |T |

2 − 1, since the adversary has only one
error token to be used in T , and it jams only one packet. No matter which one is jammed,
the payload of the unjammed packet, whose length is |T |2 − 1, is received correctly.

We show now that this is in fact the best possible useful payload that ADP-1T can
achieve for period T . Since |T | < 3 and the header has length one, the algorithm cannot
send more than 2 packets. Consider an algorithm ALG that:



– First sends a packet p of length larger than |T |/2. Then, the adversary jams p.
Since the length of the rest of the interval is |T |−p.len < |T |/2, the useful payload
UPT <

|T |
2 − 1.

– First sends a packet p of length smaller than |T |/2 (but at least 1). Then, the ad-
versary does not jam p. After sending p, until the end of T there is a subinterval
T ′ of length |T ′| = |T | − p.len < 2. From Lemma 4, the useful payload of T ′ is
UPT ′ = 0. Then, the useful payload of T is UPT = p.len − 1 < |T |

2 − 1.

In both cases the useful payload of ALG is smaller than the one achieved by the algo-
rithm proposed. Hence, the algorithm proposed gives the best possible useful payload
for an interval T , where |T | ∈ [2, 3). ut

Lemma 6. If |T | ∈ [3, 4), Algorithm ADP-1T uses uniform packets with p.len = |T |/2
and achieves useful payload UPT = |T |

2 − 1. The packets used in such interval are
uniform.

Proof. The proof is similar to that of the previous lemma, with a small difference. In
the case that algorithm ALG sends a packet with length p.len < |T |/2, the adversary
does not jam p and after it is received, there is a subinterval T ′ of length |T ′| = |T | −
p.len < 3 until the end of T . From Lemmas 4 and 5, the useful payload of T ′ is upper
bounded as UPT ′ ≤ |T

′|
2 − 1 = |T |−p.len

2 − 1. Then, the useful payload of T is UPT ≤
p.len−1+ |T |−p.len2 −1 = |T |+p.len

2 −2 < |T |+|T |/2
2 −2, which is smaller than |T |2 −1

for |T | < 4. Hence, the algorithm proposed gives the best possible useful payload for
an interval T , where |T | ∈ [3, 4). ut

Lemma 7. If |T | ∈ [4, 5), Algorithm ADP-1T with p.len = (|T |+2)/3 achieves useful
payload UPT = 2|T |−5

3 . The packets used in the whole interval are not uniform in this
case.

Proof. Let Algorithm ADP-1T send first packet p with p.len = (|T | + 2)/3. If it is
jammed, a packet p′ of length |T | − (|T |+ 2)/3 is sent successfully. Then, in this case
the useful payload is UPT = |T | − (|T | + 2)/3 − 1 = 2|T |−5

3 . Otherwise, observe

that |T ′| = |T | − p.len ∈ [2, 4). Then, form Lemmas 5 and 6 the UPT ′ =
|T ′|
2 − 1 =

|T |−p.len
2 − 1. Hence, UPT = p.len − 1 + |T |−p.len2 − 1 = 2|T |−5

3 .
To prove that this is the best approach for the choice of the packet length, consider

an algorithm ALG that

– First sends a packet p of length larger than (|T | + 2)/3. Then, the adversary jams
p. Since the length of the rest of the interval is |T | − p.len < |T | − (|T |+2)/3, the
useful payload UPT < |T | − (|T |+ 2)/3 = 2|T |−5

3 .
– First sends a packet p of length smaller than (|T | + 2)/3, but at least 1. Then,

the adversary does not jam p. After p there is a subinterval T ′ of length |T ′| =
|T | − p.len < 4. Then, from Lemmas 4, 5, and 6, the useful payload of T ′ is upper
bounded as UPT ′ ≤ |T ′|

2 − 1 = |T |−p.len
2 − 1. Then, the useful payload of T is

UPT = p.len − 1 + |T |−p.len2 − 1 < 2|T |−5
3 .



In both cases the useful payload is smaller than the ones achieved by the algorithm
proposed. Hence, the algorithm proposed with the packet length chosen, gives the best
possible useful payload in an interval T , where |T | ∈ [4, 5). ut

Lemma 8. If |T | ∈ [5, 6), Algorithm ADP-1T with p.len = (|T |+2)/3 achieves useful
payload UPT = 2|T |−5

3 . The packets used in the whole interval are not uniform in this
case.

Proof. The proof is similar to that of lemma 7, with some small differences. The main
difference is in the case that algorithm ALG sends a packet with length p.len < (|T |+
2)/3. As above, the adversary will not jam p and after sending it successfully, there
will be a subinterval T ′ of length |T ′| = |T | − p.len < 5 until the end of T . Then,
from Lemmas 4 to 7, the useful payload of T ′ is upper bounded as UPT ′ ≤ 2|T ′|−5

3 =
2(|T |−p.len)−5

3 . Hence, the useful payload of T becomes UPT ≤ p.len−1+ 2(|T |−p.len)−5
3

which is smaller than 2|T |−5
3 for p.len < 3. The latter holds, since p.len < (|T |+ 2)/3

and |T | < 6. Hence again, the algorithm proposed with the packet length chosen, gives
the best possible useful payload in an interval T , where |T | ∈ [5, 6). ut

Lemma 9. If |T | ∈ [6, 7), Algorithm ADP-1T with p.len = (|T |+2)/3 achieves useful
payload UPT = 2|T |−5

3 . The packets used in the whole interval are not uniform in this
case either.

Proof. The proof follows the same exact logic as lemmaa 7 and 8. The only difference
is in the case that algorithm ALG sends a packet with length p.len < (|T | + 2)/3. As
above, the adversary will not jam p and after sending it successfylly, the subinterval
T ′ that remains is of length |T ′| = |T | − p.len < 6. Then, from Lemmas 4 to 8, the
useful payload of T ′ is upper bounded as UPT ′ ≤ 2|T ′|−5

3 = 2(|T |−p.len)−5
3 . Hence,

the useful payload of T becomes UPT ≤ p.len − 1 + 2(|T |−p.len)−5
3 which is smaller

than 2|T |−5
3 for p.len < 3. The latter holds, since p.len < (|T | + 2)/3 and |T | < 7.

Hence, the algorithm proposed with the packet length chosen, gives the best possible
useful payload in an interval T , where |T | ∈ [6, 7). ut

Putting all these results together, and fixing |T | = 1/ρ, we get the following theo-
rem.

Theorem 4. For σ = 1, ρ ≥ 1
2 (7−3

√
5) and 1/ρ ∈ [4, 7), adaptive algorithm ADP-1T

has goodputG = 2−5ρ
3 . This is achieved using first packet p with length p.len = 1

3ρ+
2
3 ;

the packets used are not of uniform length.

Note that for 1/ρ > 4, the goodput achieved is bigger than the upper bound of the
uniform packet approach, G > G∗, and for 1/ρ = 4 it is equal to the upper bound,
G = G∗.

5 Conclusions

In this paper we have applied Adversarial Queuing Theory (AQT), a well known theo-
retical modeling tool, for the first time to restrict adversarial packet jamming on wire-
less networks. We have chosen to study a constrained adversarial entity, considering a



bounded error-token capacity σ and an error-token availability rate ρ. This model could
be applied in various battery-operated malicious devices such as drones or mobile jam-
mers. We have first shown upper and lower bounds on transmission time and goodput
by exploring the case of uniform packet lengths. Then, focusing on σ = 1, we have
shown that an adaptive algorithm that changes the packet length based on feedback re-
ceived for jammed packets, can achieve better goodput and transmission time. What
might seem surprising is that even for the “simple” case of σ = 1, the analysis of the
adaptive algorithm is nontrivial, and imposes constraints also on ρ.

An intriguing open question is whether it is still possible to obtain better efficiency
than the uniform packet lengths “policy” for adaptive algorithms with σ > 1. Consid-
ering for example σ = 2 seems to already be a challenging task. Another interesting
future direction is to investigate the case where one or both parameters ρ and σ are not
known; here one will need to monitor the history of the observed jams in an attempt to
estimate these parameters. On the other hand, the adversary will try to “hide” the true
value of these parameters, yielding an interesting gameplay between the adversary and
an algorithm. Another direction to follow would be to consider in addition the channel
errors due to congestion and transmission rate.
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