
A Distributed Algorithm for Gathering Many Fat Mobile
Robots in the Plane∗

Chrysovalandis Agathangelou Chryssis Georgiou Marios Mavronicolas
Department of Computer Science

University of Cyprus
CY-1678 Nicosia, Cyprus

{cs06ac2, chryssis, mavronic}@cs.ucy.ac.cy

ABSTRACT
We revisit the problem of gathering autonomous robots in the plane.
In particular, we consider non-transparent unit-disc robots (i.e., fat)
in an asynchronous setting with vision as the only means of coor-
dination and robots only make local decisions. We use a state-
machine representation to formulate the gathering problem and de-
velop a distributed algorithm that solves the problem for any num-
ber of fat robots. The main idea behind the algorithm is to enforce
the robots to reach a configuration in which all the following hold:

(i) The robots’ centers form a convex hull in which all robots
are on the convex hull’s boundary;

(ii) Each robot can see all other robots;
(iii) The configuration is connected: every robot touches another

robot and all robots form together a connected formation.
We show that starting from any initial configuration, the fat robots
eventually reach such a configuration and terminate yielding a so-
lution to the gathering problem.

Categories and Subject Descriptors
I.2.9 [Robotics]: Autonomous vehicles; F.2.2 [Nonnumerical Al-
gorithms and Problems]: Geometric problems and computations;
C.2.4 [Distributed Systems]: Distributed applications

General Terms
Algorithms, Theory

Keywords
Gathering, Fat robots, Asynchrony, State-machines

1. INTRODUCTION
Motivation and Prior Work. There is an increasing number of
applications that benefit from having a team of autonomous robots
to cooperate and complete various tasks in a self-organizing man-
ner. Such application tasks may require, for example, that robots

∗This work is supported by research funds from the University of
Cyprus.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM or the author must be honored. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PODC’13, July 22–24, 2013, Montréal, Québec, Canada.
Copyright 2013 ACM 978-1-4503-2065-8/13/07 ...$15.00.

work in dangerous and harsh environments (e.g., for space, under-
water or military purposes) or achieve high accuracy or speed (e.g.,
in nanotechnology, scientific computing). It is usually desirable for
the robots to be as simple as possible and have limited computing
power, in order to be able to produce them fast in large numbers
and cheap.

A fundamental problem that has drawn much attention recently
is gathering [2, 3, 5, 12, 14, 15], where a team of autonomous
mobile robots must gather to a certain point or region or form a
certain formation (e.g., geometric shape) in the plane. The prob-
lem has been studied under various modeling assumptions; for ex-
ample, asynchronous, semi-synchronous and synchronous settings
have been considered. Robots may have a common coordination
system, or have common sense of direction and use compasses to
navigate in the plane; they may have stable memory or be history-
oblivious. In all considered models, robots are equipped with a
vision device (e.g., a camera) and their range of visibility is ei-
ther limited or unlimited. Robots operate under the Look-Compute-
Move cycle. Within a cycle, a robot takes a snapshot of the plane
(Look), performs some local computation (Compute), and possibly
decides to move to some other point in the plane (Move). We refer
the reader to surveys [5, 15] and the recent monograph [11] for a
more comprehensive exposition of works on the gathering problem.

Up until the work of Czyzowicz et al. [9], the gathering prob-
lem was considered only under the assumption that each robot is a
point on the plane and transparent: a robot can “see” through an-
other robot. This assumption does not reflect reality as real robots
are not points but have a physical extent. This means that robots
may collide with each other. Furthermore, robots are not transpar-
ent: they may block the view of other robots. To depart from such
assumptions, Czyzowicz et al. [9] initiated the study of the gath-
ering problem with fat robots: non-transparent, unit discs. As fat
robots cannot occupy the same space on the plane, the gathering
problem no longer requires robots to gather at the same point. In-
stead, per [9], gathering fat robots means forming a configuration
for which the union of all discs is connected.

In the model considered in [9], robots operate in Look-Compute-
Move cycles, they are identical, anonymous, history-oblivious, non-
transparent, and fat. They do not share a common coordination sys-
tem and vision is the only mean of coordination; robots have unlim-
ited visibility unless their view is obstructed by another robot. An
asynchronous setting is considered, where an adaptive adversary
can stop a robot for finite time, control the “speed” of a robot, or
cause robots moving into intersecting trajectories to collide. Under
this model, the authors present solutions to the gathering problem
for three and four robots. The proposed solutions rely on exhaustive
consideration of all possible classes of configurations; a different
gathering strategy corresponds to each possible case. As the num-

ber of cases may grow exponentially with the number of robots, this
approach fails to generalize. The authors of [9] left open the ques-
tion of whether it is possible to solve gathering for any collection
of n ≥ 5 fat robots.

Our Contribution. We provide a positive answer to the above
question. In particular, we consider the model of [9] with the addi-
tional assumption of chirality [11]: robots agree on the orientation
of the axes of their local coordination system. We present a dis-
tributed algorithm for the gathering problem for any number n of
fat robots.

The key feature of our algorithm is to bring the robots into a con-
figuration of full visibility where all robots can see all other robots.
Given the power of the adversary and the fact that robots are non-
transparent, this task becomes challenging; that was in fact, the
main challenge of our work. The idea for settling the challenge is
for the robots to aim in forming a convex hull in which all robots
will be on the convex hull’s boundary. During the computation,
robots on the boundary do not move; robots inside the convex hull
try to move towards the boundary. However, if robots that are on
the hull’s boundary realize that they obstruct other robots that are
also on the boundary from seeing each other, then they move away
from the convex hull so that they no longer cause any obstruction.
If a robot on the boundary realizes that there is no “enough space”
for robots inside the convex hull to be placed on the boundary, then
it moves to a direction away from the convex hull to make space.
Asynchrony only makes things harder as robots may have very dif-
ferent local views of the system. We show that eventually the con-
vex hull will “expand” so that all robots will be on the boundary of
the convex hull and no three robots are on the same line1; this leads
to a configuration that all robots have full visibility. This is the first
conceptual phase of the algorithm.

In the second conceptual phase, once all robots have full visibil-
ity and are aware of this, robots start to converge in a way that full
visibility is not lost. To do so, robots exploit their knowledge of
n and the common unit of distance (since all robots are unit-discs,
this gives them “for free” a common measure of distance [9]). We
show that eventually all robots form a connected configuration and
terminate yielding a solution to the gathering problem. Note that
robots must have full visibility to be aware that gathering is accom-
plished [9].

The key to successfully proving the correctness of the algorithm
is the formulation of the model, the problem and the algorithm
with a state-machine representation. This enables employing typi-
cal techniques for proving safety and liveness properties and argue
on the state transitions of the robots, which, against asynchrony,
becomes a very challenging task.

Other Works Considering Fat Robots. After the work in [9]
some attempts were made to solving the gathering problem with
n ≥ 5 fat robots in different models [6, 7, 8, 10]. In [7], it is as-
sumed that the fat robots are transparent. This assumption makes
the problem significantly easier as robots have full visibility at all
times. As discussed above, having the robots reach a configuration
with full visibility was the main challenge in our work. In [8], fat
robots are non-transparent and have limited visibility, but a syn-
chronous setting is considered. Furthermore, the gathering point is
predefined and given as an input to the robots; the goal is for the
robots to gather in an area as close as possible to this point. Two
versions of the problem are studied: in continuous space and time,
and in discrete space (essentially Z2) and time. In the continuous
case, a randomized solution is proposed; in the discrete case the

1Note that there are cases where having all robots on the boundary
does not necessarily imply that all robots can see each other.

proposed solutions require additional modeling assumptions such
as unique robot ids, or direct communication between robots. The
work in [10] also considers fat robots with limited visibility, but in
an asynchronous setting. In contrast with the model we consider,
robots have a common coordination system: they agree both on a
common origin and axes (called Consistent Compass in [11]). The
objective of the robots is to gather to a circle with a center given
as an input along with the radius of the circle. The common co-
ordination system and the predefined knowledge of the circle to be
formed enables the use of geometric techniques that cannot be used
in our model. In [6], they consider fat robots with limited visibility
and without a common coordination system, but in a synchronous
setting. Furthermore the correctness of their proposed algorithm is
not proven but rather demonstrated via simulations.

2. MODEL AND DEFINITIONS
Our model of computation is a formalization of the one presented

in [9] with the additional assumption of chirality; the formalism
follows the one from [4].

Robots. We assume n asynchronous, fault-free robots that can
move along straight lines on the (infinite) plane. The robots are
fat [9]: they are closed unit discs. They are identical and anony-
mous (i.e., they are indistinguishable). They do not have access to
any global coordination system, but we assume chirality [11]: the
robots agree on the orientation of the axes2. Robots are equipped
with a 360-degree-angle vision device (e.g., camera) that enables
the robots to take snapshots of the plane. The vision device has
unlimited range and captures any point of the plane provided there
is no obstacle (e.g., another robot). We assume that robots know n.

Geometric configuration. A geometric configuration is a vector
G = (c1, c2, . . . , cn) where each ci represents the center of the
position of robot ri on the plane. So, a configuration can be viewed
as a snapshot of the robots on the plane. Note that the fact that
robots are fat prohibits the formation of a configuration in which
any two robots share more than a point in the plane. (Two robots
share a point if the discs representing them touch each other.)

We say that a geometric configuration G is connected if between
any two points of any two robots there is a polygonal line each of
whose points belongs to some robot. Informally, a configuration is
connected if every robot touches another robot and all robots form
together a connected formation.

Visibility and fully visible configuration. We say that point p in
the plane is visible by a robot ri (or equivalently, ri can see p)
if there is a point pi in the circle bounding robot ri such that the
straight segment (pi, p) does not contain any point of any other
robot. So, a robot ri can see another robot rj if there is at least
one point on the bounding circle of rj that is visible by ri. Given a
geometric configuration G, robot ri has full visibility in G if ri can
see all other n−1 robots. If all robots have full visibility in G, then
configuration G is fully visible.

Robots’ states. Each robot ri is modeled as a (possibly infinite)
state machine with state set Si; i is the index of robot ri (used only
for reference purposes). Each set Si contains five states: Wait,
Look, Compute, Move, and Terminate. Initially each robot is
in state Wait. State Terminate is a terminal state: once a robot
reaches this state it does not take any further steps. We now de-
scribe each state:

• In state Wait, robot ri is idling. In addition, the robot has

2Note that this is a weaker assumption than having a common co-
ordinate system or having a consistent compass [11, Section 2.7].

no memory of the steps occurred prior entering this state, i.e.,
robots are history-oblivious.
• In state Look, robot ri takes a snapshot of the plane and iden-

tifies all robots that are visible to it. We denote by Vi the set
of the centers of the robots that are visible to robot ri when it
takes a snapshot in configuration G. So, Vi ⊆ G is the local
view of robot ri in configuration G. This view does not change
in subsequent configurations unless the robot takes a new snap-
shot. In a nutshell, in state Look, the robot takes as an input a
configuration G and outputs the local view Vi ⊆ G.
• In state Compute, robot ri runs a local algorithm Ai that takes

as an input the local view Vi (i.e., the output of the previous
state Look) and outputs a point p in the plane. This point is
specified from Vi, hence we will write p = Ai(Vi). If Ai re-
turns the special output ⊥, then the robot’s state changes into
state Terminate. Otherwise it changes into state Move; intu-
itively, in this case p is the point that the center of the robot will
move to. Note that it is possible for p = ci — the robot might
decide not to move.
• In state Move, robot ri, starting from its current position, called

start point, moves on a straight line towards point Ai(Vi) (as
calculated in state Compute). We call Ai(Vi) the target point
of ri. If during its motion the robot touches another robot (i.e.,
the circles representing these robots become tangent), then it
stops and the robot’s state changes into state Wait. As we dis-
cuss next, the adversary may also stop a robot at any point be-
fore reaching its target point. Again, in this case, the robot’s
state changes into state Wait. If the robot finds no obstacles or
it is not stopped by the adversary, then it eventually reaches its
target point (its center is placed onAi(Vi)) and its state changes
into state Wait.

State configuration. A state configuration is a vector S =
(s1, s2, . . . , sn) where each si represents the state of robot ri. An
initial state configuration is a configuration S in which each si is
an initial state of robot ri (that is, ∀i ∈ [1, n], si = Wait). Sim-
ilarly, a terminal state configuration is a configuration S in which
each si is a terminal state of robot ri (that is, ∀i ∈ [1, n], si =
Terminate).

Robot configuration. A robot configuration is a vector R =
(〈s1, c1〉, . . . , 〈sn, cn〉) where each pair 〈si, ci〉 represents the state
of robot ri and the position of its center on the plane. Informally, a
robot configuration is the combination of a geometric configuration
with the corresponding state configuration.

Adversary and events. We model asynchrony as a sequence of
events caused by an online and omniscient adversary. The adver-
sary can control the speeds of the robots, it can stop moving robots,
and it may cause moving robots to collide, provided that their tra-
jectories have an intersection point. Specifically, we consider the
following events (state transitions — see Figure 1 for a pictorial):

Look(ri): Causes robot ri that is in state Wait to get into state
Look.
Compute(ri): Causes robot ri that is in state Look to get into
state Compute.
Done(ri): Causes robot ri that is in state Compute and its local
algorithm Ai has returned the special point ⊥, to get into the
terminating state Terminate.
Move(ri): Causes robot ri that is in state Compute and its local
algorithm Ai has returned a point other than ⊥, to get into state
Move.
Stop(ri): Causes ri that is in state Move to get into state Wait.
Robot ri is stopped at some point in the straight segment between

6

& %
��
��
��
���
�
�
���
��

�
�
�
�

�
�
�
�

- - -

?

Wait Look Compute Move

Terminate

ComputeLook Move

Arrive, Collide, Stop

Done

Figure 1: A cycle of the state transitions of robot ri.

its start point and its target point Ai(Vi) (under a constraint dis-
cussed next).
Collide(R): Causes a subset of the robots R that are in state
Move and their trajectories have an intersecting point to collide
(i.e., their circles become tangent). Note that 2 ≤ |R| ≤ n (two
or more robots could collide between them but only one collusion
occurs per a Collide event). Also, other robots that are in state
Move could be stopped (without colluding with other robots).
Then all affected robots enter in state Wait.
Arrive(ri): Causes robot ri that is in state Move to arrive at its
target point and change its state into Wait.

Note that events Look(ri), Move(ri), Stop(ri) and Arrive(ri) may
also cause robots other than ri that are in state Move to remain in
that state, but on a different position (along their trajectories, and
closer to their destination).

Execution. A distributed algorithm is a collection of local al-
gorithms, one per robot. An execution fragment α of a dis-
tributed algorithm is a (finite or infinite) alternating sequence
R0, e1,R1, e2, . . ., where each Rk is a robot configuration and
each ek is an event. If α is finite, then it ends in a configuration.
An execution of an algorithm is an execution fragment where R0

is an initial configuration.

Liveness conditions. We impose the following liveness conditions
(i.e., restrictions on the adversary):

1. In an infinite execution, each robot is allowed to take infinitely
many steps.

2. During a Move event, each robot traverses at least a
distance δ > 0 unless its target point is closer than
δ. Formally, each robot ri traverses at least a distance
min{disti(start, target), δ}, where disti(start, target) is
the distance between the start and target points of robot ri.
Parameter δ is not known to the robots.

Gathering problem. We now state the problem studied in this
work:

DEFINITION 1 (GATHERING). In any execution, there is a
connected, fully visible, terminal robot configuration.

3. GEOMETRIC FUNCTIONS
We list a collection of functions that perform geometric calcula-

tions. These functions are used by the robots’ local algorithm as
shown in Section 4. Here we present the problems these functions
solve. Pseudocodes, their proofs of correctness and more details
and insights can be found in the full paper [1].

Function On-Convex-Hull: We denote by
CH(c1, c2, . . . , cm) the convex hull formed by points
c1, c2, . . . , cm, and by ϑCH(c1, c2, . . . , cm) ⊆ {c1, c2, . . . , cm}
the set of points that are on the boundary of the convex hull.
Then, function On-Convex-Hull gets as input a set of
m points c1, c2, . . . , cm and another point c and outputs (i)
CH(c1, c2, . . . , cm) and (ii) whether c ∈ ϑCH(c1, c2, . . . , cm)
or not.

cl-1

cl cr

cr-1

μ

p t

Figure 2: An example where point p is not valid and hence it
will not be returned by Function Find-Points.

Function Move-to-Point: This function gets as input two
points c1 and c2 and a positive integer m and outputs a point µ de-
fined as follows: Consider the straight segment c1c2 and let pc2 be
the straight segment which is vertical to c1c2 with p on the perime-
ter of the unit disc with center c2, and with direction towards inside
of the convex hull. Next consider the point c on segment pc2 which
has distance 1

2m
− ε from c2. Then point µ is the intersection of

the straight segment c1c and the perimeter of the unit disc with
center c2.

Function Find-Points: This function is significant for our
algorithm. It gets as input a convex hull of n points, where
ϑCH(c1, c2, . . . , cm), m ≤ n, and outputs a set of k < m points
p1, . . . , pk so that a unit disc with center pi, 1 ≤ i ≤ k, can
be placed on the convex hull without causing the convex hull to
change. (It is possible that k = 0.) The following claim is essential
for our solution to gathering.

LEMMA 3.1. Given a convex hull, let cl and cr be the centers
of any two unit discs that are adjacent on the hull’s boundary. Then
there is a minimum distance between cl and cr for which Function
Find-Points returns a point between them. We refer to this
distance as safe.

PROOF. Consider that given a number of points, a convex hull
always exists. Consider four neighbor points on a convex hull, as
shown on Figure 2, without loss of generality. In order for a unit
disc with center p to be on the convex hull and not cause the current
convex hull to change, the distance between µ , the middle point of
clcr and p must be at least 1

n
. Note that p is outside of the current

convex hull. Additionally, consider q the point on the line segment
pcr+1, where a vertical line to cr starts from line segment pcr+1

with direction to the inside of the convex hull. Then d(q, cr) must
be equal with at least 1

n
, where r is the point that pcr+1 is tangent

with µcr . Angle p̂rµ is equal with angle ĉrrq.
We need to calculate the distance between cl and cr which will

give us the safe distance. The distance between cl to µ must be
equal with the distance between cr to µ. We need to calculate both
d(µ, cr) and d(µ, cl), find the biggest and double it, in order to find
the safe distance. First we must calculate the necessary distance be-
tween µ and cr . Observe that d(µ, cr) = d(µ, r) + d(r, cr). We

now have that tan(p̂rµ) =
1
n

d(µ,r)
, hence d(µ, r) = 1

n·tan(p̂rµ) .

We now calculate d(r, cr); we have that sin(ĉrrq) =
1
n

d(r,cr)
,

hence d(r, cr) = 1
n·sin((ĉrrq)) = 1

n·sin((p̂rµ)) . Finally, it follows
that d(µ, cr) = 1

n·tan(p̂rµ) +
1

n·sin((p̂rµ)) .
This is the minimum distance that µcr must be. We do the same

as above with µcl and choose the biggest distance between the two,
double it and set it as the safe distance. �

Function Connected-Components: Consider a set of m unit
discs on the plane. A connected component of this set is a collection
of connected unit discs; in a connected component there can be up

to two empty spaces of distance less or equal to 1/2m among the
unit discs. Note that a given set of unit discs may contain many
connected components and only one in the case that all unit discs
are connected. Then, Function Connected-Components gets
as input a set of m points c1, c2, . . . , cm and an additional point
c and outputs a set of pairs of the form 〈(cl, cr), k〉. Each pair
(cl, cr) represents a connected component of unit discs, where cl is
the center of the leftmost (counter clock-wise) unit disc and cr the
center of the rightmost (clock-wise) unit disc in the component; k
is the number of unit discs contained in this component (including
those with centers cl and cr).

As this function plays an important role in forming the final,
single connected component, we provide some additional insight:
Function Connected-Components is called by a robot r with
center c. The m points are the centers of the robots that robot r
can see (its local view) in the current configuration. As we will see
later, this function is called when the robot can see all other robots,
i.e., m = n. The robot wishes to find the connected components
formed in the current configuration. Intuitively, we can include
two spaces of length 1/2n in a configuration, since if all the robots
can see each other, then the robots can move taking steps of length
1/2n until they meet (see also the proof of Lemma 5.4).
Function In-Straight-Line-2: This function gets as input
three points cl, cm and cr and outputs Y ES, if the three points are
on the same line, and NO otherwise.

The next three functions make use of Function
Connected-Components.
Function How-Much-Distance: This function gets as input a
set of m points c1, c2, . . . , cm and an additional point c and out-
puts 1,2 or 3. Consider the connected components formed by the
unit discs with centers c1, c2, . . . , cm. If the unit disc with center c
is the rightmost (the straight direction is considered to be the inside
of the convex hull) element of the component that has the smallest
(space-wise) distance between the components, then the answer is
1. If all components have the same distance, then the answer is 2.
Otherwise the answer is 3.
Function In-Largest-Component: This function gets as in-
put a set of m points c1, c2, . . . , cm and an additional point c and
outputs 1,2 or 3. Consider the connected components formed by
the unit discs with centers c1, c2, . . . , cm. If the unit disc with cen-
ter c belongs in the largest component (wrt the number of discs),
then the answer is 1; if all the components are larger than the one it
belongs, then the answer is 2. Otherwise the answer is 3.
Function In-Smallest-Component: This function gets as
input a set ofm points c1, c2, . . . , cm and an additional point c and
outputs 1,2 or 3. Consider the connected components formed by
the unit discs with centers c1, c2, . . . , cm. If the unit disc with cen-
ter c belongs in the smallest component (wrt the number of discs),
then the answer is 1; if all the components are smaller than the one
it belongs, then the answer is 2. Otherwise the answer is 3.

4. LOCAL ALGORITHM FOR COMPUTE
We present the algorithm that each robot runs locally while in

state Compute. It takes as input the view of the robot (obtained in
state Look) and calculates the position the robot should move next
(in state Move). In Section 4.1 we overview in verbose the states of
the algorithm; in Section 4.2 we list the procedures that implement
the transitions from one state to another. Full details are given in
the full paper [1].

4.1 States of the Algorithm
Once a robot ri is in state Compute it starts executing the local

algorithm Ai. Recall that Vi denotes robot’s ri local view: the set

of robots that are visible to ri upon entering state Compute. The
algorithm consists of 17 states; we refer to them using the nota-
tion Compute.〈algorithm-state-name〉. Figure 3 describes these
states and Figure 4 depicts all possible states and transitions of the
algorithm run by robot ri.

4.2 Description of the Algorithm
The algorithm consists of 17 procedures, each treating a corre-

sponding algorithmic state. In particular, once the algorithm is in a
state Compute.〈algorithm-state-name〉 it runs the corresponding
procedure algorithm-state-name that either implements a
state transition or outputs a point the robot should move to (in the
next state Move); it implements a state transition if it is in a non-
terminal state and outputs a point otherwise. In a nutshell, the al-
gorithm consists of conditional expressions:

LOCAL ALGORITHM

if state= Compute.〈algorithm-state-name〉 then run procedure
algorithm-state-name.

We now overview the procedures and their properties. The proce-
dures are given with respect to a robot ri and its center ci. The
robot takes action based on its local view Vi, which might be dif-
ferent from other robots’ views. But as we show in Section 5, the
local decisions made by each robot are designed in such a way that
robots coordinate correctly in the face of asynchrony and eventually
reach a solution to the gathering problem. Recall that ϑCH(Vi) is
the set of points that are on the boundary of the convex hull formed
by the points in Vi. Detailed pseudocodes and omitted proofs can
be found in the full paper [1].

1. Procedure Start: It calls Function On-Convex-Hull
and if ci ∈ ϑCH(Vi), it changes the state from Com-
pute.Start to Compute.OnConvexHull; otherwise it changes the
state to Compute.NotOnConvexHull. The correctness of Func-
tion On-Convex-Hull (e.g., Graham’s algorithm [13]) yields
the following:

LEMMA 4.1. Start(Compute.〈Start〉) = Compute.〈On-
ConvexHull〉 iff ci ∈ ϑCH(Vi).

2. Procedure OnConvexHull: It changes the state from
Compute.OnConvexHull to Compute.AllOnConvexHull if
|ϑCH(Vi)| = n and no three robots are on the same line;
otherwise it changes the state to Compute.NotAllOnConvexHull.
It checks whether three robots are on the same line, using Function
In-Straight-Line-2. Then:

LEMMA 4.2. OnConvexHull(Compute.〈OnConvexHull〉)
= Compute.〈AllOnConvexHull〉 iff |Vi| = n and
|ϑCH(Vi)| = n and all robots have full visibility in Vi.

3. Procedure AllOnConvexHulll: It changes the state from
Compute.AllOnConvexHull to Compute.Connected if all robots
form a connected configuration; otherwise it changes state to Com-
pute.NotConnected. Then:

LEMMA 4.3. AllOnConvexHull(Compute.〈AllOnConvex-
Hull〉) = Compute.〈Connected〉 iff Vi is a connected configura-
tion.

4. Procedure Connected: It returns the special output ⊥, which
leads to the termination of the algorithm for robot ri (it enters state
Terminate in which ri does not perform any further steps).

5. Procedure NotConnected: Its purpose is to eventually cause
all robots to form a connected configuration. This procedure

gives first priority to components with the smallest size, and then
to components that the distance to their neighboring component
on the right is the smallest distance between any two compo-
nents. The rightmost robot of the component with the highest
priority moves to the left of its right neighbor component using
Function Move-To-Point. If all components have equal pri-
ority (i.e., all components have the same size and the distance
between any two components is the same), then, using Function
Connected-Components, the robots start to converge. Of
course, the procedure is run by each robot locally and individually,
but as it is shown in Section 5, global convergence is eventually
reached. Robots can start moving only if for any three neighboring
robots of the component, say rl, rm and rr , the vertical distance
from line rlrr to rm is equal or greater than 1

n
. Then:

LEMMA 4.4. The point returned by
NotConnected(Compute.〈NotConnected〉) keeps Vi as a
fully visible configuration and |ϑCH(Vi)| = n.

6. Procedure NotAllOnConvexHull: It changes the state from
Compute.NotAllOnConvexHull to Compute.OnStraightLine if
ri is on the same line with at least two other robots that are also on
the boundary of the convex hull; otherwise it changes the state to
Compute.NotOnStraightLine. Then:

LEMMA 4.5. NotAllOnConvexHull(Compute.〈NotAllOn-
ConvexHull〉) = Compute.〈OnStraightLine〉 iff ri is on the same
line with any two other robots that are also on the boundary of the
convex hull.

7. Procedure NotOnStraightLine: It changes the state
from Compute.NotOnStraightLine to Compute.SpaceForMore
if there is enough space for at least one robot on the bound-
ary of the convex hull; otherwise it changes the state to Com-
pute.NoSpaceForMore. Then:

LEMMA 4.6. NotOnStraightLine(Compute.〈NotOn-
StraightLine〉) = Compute.〈SpaceForMore〉 iff |ϑCH(Vi)| = n
or there is enough space for at least one robot between any two
adjacent robots that are on the boundary of the convex hull.

8. Procedure SpaceForMore: It returns a point p outside the
convex hull if ri is touching with another robot on the convex hull’s
boundary that is not adjacent to ri on the boundary. Otherwise, it
returns ci and the robot does not move.

LEMMA 4.7. SpaceForMore(Compute.〈SpaceForMore〉)
= ci iff ri is not tangent with any robot rj , rj ∈
ϑCH(Vi) that they are not adjacent on ϑCH(Vi), else
SpaceForMore(Compute.〈SpaceForMore〉) = p, were p
is at distance 1

2n
− ε away from ϑCH(Vi).

The reason that p is outside of the convex hull by a distance
1
2n
− ε is because if two robots are not adjacent on the boundary

and are touching, then it would be possible to obstruct other robots
from seeing each other.

9. Procedure NoSpaceForMore: It returns a point p with direc-
tion away from the convex hull such that:

LEMMA 4.8. NoSpaceForMore(Compute.〈NoSpaceForMore〉)
= p, were p is at distance 1

2n
− ε away from ϑCH(Vi).

10. Procedure OnStraightLine: It changes the state from
Compute.OnStraightLine to Compute.SeeOneRobot if ri is not
in straight line with its left and right neighbors on the bound-
ary of the convex hull; otherwise it changes the state to Com-
pute.SeeTwoRobot.

1. Compute.Start:
• The initial state of the algorithm run by robot ri.

2. Compute.OnConvexHull:
• Robot ri is on the boundary of the convex hull formed by

the robots in Vi: ci ∈ ϑCH(Vi).
3. Compute.AllOnConvexHull:
• ci ∈ ϑCH(Vi)
• Robot ri has full visibility.
• ∀k ∈ [1, n], k 6= i, ck ∈ ϑCH(Vi) and Vi is a fully visible

configuration.
4. Compute.Connected:
• Same conditions as in state 3.
• Vi is a connected component.

5. Compute.NotConnected:
• Same conditions as in state 3.
• Vi is not a connected component.

6. Compute.NotAllOnConvexHull:
• ci ∈ ϑCH(Vi).
• |Vi| 6= n or ∃ rk s.t. ck 6∈ ϑCH(Vi) or |Vi| = n, ∀k ∈

[1, n], ck ∈ ϑCH(Vi), but ∃rj with no full visibility.
7. Compute.NotOnStraightLine:
• Same conditions as in state 6.
• There are no two other robots on the same line with robot
ri (on the boundary).

8. Compute.SpaceForMore:
• Same conditions as in state 7.
• According to Vi there is space on the boundary for another

robot: there are two neighboring robots on the boundary
with distance at least 2.

9. Compute.NoSpaceForMore:
• Same conditions as in state 7.

• According to Vi there is no space on the boundary for an-
other robot.

10. Compute.OnStraightLine:

• Same conditions as in state 6.
• There are at least two other robots on the same line with

robot ri on the boundary.

11. Compute.SeeOneRobot:
• Same conditions as in state 10.
• Robot ri can see only one robot on the line.

12. Compute.SeeTwoRobot:
• Same conditions as in state 10.
• Robot ri can see two robots on the line; this implies that

robot ri is between these two robots.

13. Compute.NotOnConvexHull:
• Robot ri is inside the convex hull CH(Vi).

14. Compute.IsTouching:

• Same conditions as in state 13.
• Robot ri is touching another robot.

15. Compute.NotTouching:

• Same conditions as in state 13.
• Robot ri does not touch another robot.

16. Compute.ToChange:

• Same conditions as in state 15.
• If robot ri moves as calculated, then the convex hull will

change, and this cannot be avoided.

17. Compute.NotChange:

• Same conditions as in state 15.
• If robot ri moves as calculated, then there is a way to avoid

a change to the convex hull.

Figure 3: The states of the local algorithm, given for a robot ri, its center ci and its local view Vi.

LEMMA 4.9. OnStraightLine(Compute.〈OnStraightLine〉)
= Compute.〈SeeTwoRobots〉 iff ri is on the same line with two
robots on the boundary, its left neighbor rl and its right neigh-
bor rr .

11. Procedure SeeOneRobot: It returns ci.

LEMMA 4.10. SeeOneRobot(Compute.〈SeeOneRobot〉)=
ci.

12. Procedure SeeTwoRobot: It returns a point p with direction
away from the convex hull such that:

LEMMA 4.11. The point p returned by
SeeTwoRobot(Compute.〈SeeTwoRobot〉) is such that if
robot ri moves there (ci is on p), then ri will no longer be in a
straight line with its two adjacent robots on the boundary of the
convex hull.

13. Procedure NotOnConvexHull: It changes the state from
Compute.NotOnConvexHull to Compute.IsTouching if ri is
touching another robot; otherwise it changes the state to Com-
pute.NotTouching.

LEMMA 4.12. NotOnConvexHull(Compute.〈NotOn-
ConvexHull〉) = Compute.〈IsTouching〉 iff ri’s unit disc is
tangent with a unit disc of another robot.

14. Procedure IsTouching: Given a geometric configuration
(e.g., a robot’s local view), we consider that a robot has higher
proximity compared to the other robots of the configuration if it is
the closest to its closest point on the boundary of the convex hull or
to the closest point that Function FindPoints returns (depending
on the case). If more than one robots in the configuration have
the same distance to the closest point, then the rightmost of these
robots has the highest proximity (straight direction is considered to
be towards the outside of the convex hull of the target point). If ri
has the highest proximity, then Procedure IsTouching returns a
point on the boundary of the convex hull; otherwise it returns ci.

LEMMA 4.13. IsTouching(Compute.〈IsTouching〉) will
result robot ri’s unit disc to no longer be tangent with any other
robot’s unit disc (from the robots that ri touches) if ri has the
highest proximity (among the robots that are touching). If there is
no space of size at least 2 on the boundary of the convex hull, then
ri stays in the same position.

LEMMA 4.14. IsTouching(Compute.〈IsTouching〉) will
cause at least one of the robots touching each other to move
towards the convex hull if there is space of size at least 2 on the
boundary.

15. Procedure NotTouching: It calls Function
Find-Points. If it returns at least one point, then the state

Figure 4: All possible states and transitions of the algorithm run by robot ri. For better readability the prefix Compute is voided.
States with no transition to another state are terminal, and they output the position that the robot will move next (and the robot
exits state Compute and enters state Move). State Compute.Connected outputs the special point⊥ which causes robot ri to exit state
Compute and enter state Terminate, in which the robot takes no further steps.

changes from Compute.NotTouching to Compute.NotChange;
else it changes to Compute.ToChange.

LEMMA 4.15. NotTouching(Compute.〈NotTouching〉) =
Compute.〈NotChange〉 iff ri can move on the boundary of the
convex hull while maintaining the convex hull.

16. Procedure ToChange: If there is space of size at least 2 on
the convex hull’s boundary, then it returns the closest space to ri;
else it returns ci.

LEMMA 4.16. ToChange(Compute.〈ToChange〉) = p, when
p ∈ ϑCH(Vi) if there is space of size at least 2 on the convex hull;
else ToChange(Compute.〈ToChange〉) = ci.

17. Procedure NotChange: It returns the closest point to ri
among the points that Function Find-Points returns.

LEMMA 4.17. NotChange(Compute.〈NotChange〉) = p,
where p ∈ ϑCH(Vi).

5. THE DISTRIBUTED ALGORITHM
The high level idea of the algorithm is as follows: The objective

is for the robots to form a convex hull and be able to see each other.
In particular, all robots are intended to be on the boundary of the
convex hull in such a way that no three robots are on the same
line. Once this is achieved, then the robots start to converge (to get
closer) while maintaining the convex hull formation, so that they
form a connected component. It follows that when all robots are on
the boundary of the convex hull, they can see each other, and are
connected, then each robot terminates and the gathering problem
has been solved. The distributed algorithm is essentially composed
of the asynchronous execution of the robots’ state transition cycles,
including the local algorithm when in state Compute.

Before showing that the distributed algorithm correctly solves
the gathering problem, we provide necessary definitions. Given a
robot configuration R, we denote by GR the geometric configura-
tion of R. Recall that for a geometric configuration G, we denote
by CH(G) the convex hull formed by the points in G. Also, we de-
note by ϑCH(G)⊆G the set of points in G that are on the boundary
of the convex hull.

5.1 Bad and Safe Configurations
Our proof of correctness (presented in the next subsection) relies

on the notions of bad and safe configurations, which we discuss
here.

Bad Configurations. A robot configuration Rx is a bad configu-
ration when one of the two following cases is true:

1. Bad configuration of Type 1. When all of the following hold:
• Configuration GRx is fully visible and |ϑCH(GRx)| = n;
• A robot ri in this configuration has as local view
Vi, a previous configuration GRy , y < x, such that
|ϑCH(GRy)| < n, ri ∈ ϑCH(Ry) and ri sees that there
is not enough space for more robots to get on the boundary
of the convex hull.

2. Bad configuration of Type 2. When all of the following hold:
• Configuration GRx is fully visible and |ϑCH(GRx)| = n;
• There is a preceding configuration GRy , y < x, in which

at least four robots, call them rl, rm1, rm2 and rr , are on
a straight line and rl, rm1, rm2, rr ∈ ϑCH(GRy).

Both types are considered bad since they can potentially lead to
a configuration following Rx that is no longer fully visible or all
robots are on the boundary of the convex hull; these are proper-
ties that we would like, once holding, to hold for all succeeding
configurations.

We now explain how the adversary can cause such bad configu-
rations:
Type 1. According to the local algorithm, when robot ri witnesses a
view as described in the second bullet of Type 1 bad configuration,
robot ri must start moving with direction outside of the convex
hull so to make space for more robots to get on the convex hull’s
boundary. This is also the case for all robots sharing the same or
similar view with ri. When ri starts moving (it gets in state move),
the adversary can impose the following strategy: It makes ri to
“move too slow" and lets the other robots move with such “a speed”
that the robots reach configuration Rx. Since ri has not changed
its state (it is still in state move), it continues to move outside of
the convex hull. This may cause a neighboring robot of ri not to
be on the convex hull’s boundary anymore or not be able to see
all robots. Hence, while GRx was a fully visible configuration and

|ϑCH(GRx)| = n, it is possible for a succeeding configuration not
to have one (or both) of the these properties anymore.
Type 2. According to the local algorithm, if robots rl, rm1, rm2, rr
witness configuration GRy , then robots rm1 and rm2 must start
moving with direction outside of the convex hull (the robots that
realize they are in the middle of the straight line must move outside
so to enable the “edge” robots to see each other; the “edge” robots
do not move). When rm1 and rm2 start moving (they get in state
move) the adversary can impose the following strategy: It lets robot
rm1 to move slightly and then it stops it (with a stop(rm1) event).
It lets robot rm2 to move slightly and then the adversary makes
it to move very slow (so robot rm2 is still in state move). The
adversary could stop robot rm1 and delay rm2 in such a way that
configuration Rx is reached (recall that |ϑCH(GRx)| = n and
GRx is a fully visible configuration). But since rm2 continues to
move, it is possible to cause robot rm1 to no longer be in ϑCH or
some other robot (including rm2) not be able to see all other robots.
Hence it is possible for a succeeding configuration of GRx not to
have one (or both) of the these properties anymore.

Safe Configurations. We say that a robot configurationR is a safe
configuration, when the following is true:

|ϑCH(GR)| = n, GR is fully visible and ∀ri, |ϑCH(Vi)| = n
and Vi is a fully visible configuration (i.e., all robots know that
the configuration is fully visible).

The reason we consider such configurations as safe is that, as we
will show in the next subsection, once an execution of the algorithm
reaches a safe configuration, then no succeeding configuration can
be a bad configuration.

We define a bad execution fragment (resp., bad execution) of
the algorithm to be an execution fragment (resp., execution) that
contains at least one bad robot configuration. Similarly, we define a
good execution fragment (resp., good execution) to be an execution
fragment (resp., execution) that contains only good configurations.

5.2 Proof of Correctness
The proof of correctness is broken into two parts. In the first

part we prove safety and liveness properties considering only good
executions. Then we show that the algorithm is correct for any
execution, including ones containing bad configurations. Omitted
and full proofs can be found in the full paper [1].

5.2.1 Correctness for Good Executions
We first prove safety and then liveness properties.

Safety Properties. The following lemma states that as long as not
all robots are on the convex hull’s boundary, or even if all robots
are on the boundary but there is at least one robot that cannot see
all other robots, then the convex hull can only “expand”. (Note that
this property holds even for bad execution fragments.)

LEMMA 5.1. Given an execution fragment R0, e1, ...,Rm−1

such that for allRk, 0 ≤ k ≤ m− 1 holds that:
c1: |ϑCH(GRk)| < n, or
c2: |ϑCH(GRk)| = n and GRk is not a fully visible configu-

ration.
Then for any step 〈Rm−1, em,Rm〉, CH(GRm−1) ⊆
CH(GRm).

PROOF SKETCH: For each possible event em, we show that ei-
ther the invariant is not affected or it is reestablished in configu-
ration Rm. The challenge lies to the fact that robots, due to asyn-
chrony, might have different local views. The detailed case-by-case
analysis can be found in [1]. �

The next lemma states that if in a non-connected configuration
all robots are on the boundary of the convex hull and it is fully
visible, then these properties are not lost and the convex hull can
only “shrink”.

LEMMA 5.2. Given a good execution fragment
Rx, ex, . . . ,Rm−1 such that ∀Rk, x ≤ k ≤ m − 1 holds
that

c1: |ϑCH(GRk)| = n and GRk is a fully visible configura-
tion, and

c2: GRk is not a connected configuration.
Then, for any step 〈Rm−1, em,Rm〉, c1 holds for GRm and
CH(GRm−1) ⊇ CH(GRm).

As with the previous proof, all possible events em are examined.

Liveness Properties. The first liveness lemma states that a config-
uration where all robots are on the convex hull’s boundary and it is
fully visible is eventually reached.

LEMMA 5.3. Given any good execution of the algorithm, there
is a configurationRm such that |ϑCH(GRm)| = n and GRm is a
fully visible configuration.

PROOF SKETCH: If R0 has the stated properties we are done.
So consider the case thatR0 satisfies either c1: |ϑCH(GR0)| < n
or c2: |ϑCH(GR0)| = n and GR0 is not a fully visible configura-
tion. By Lemma 5.1, if c1 or c2 holds, then ϑCH(GR0) can only
expand; hence, ϑCH(GR0) will not shrink unless c1 and c2 do not
hold. Then several cases need to be examined, depending whether
c1 or c2 is true. For example, if c1 is true, then based on the local
algorithm, the robots that are on the boundary of the convex hull do
not move (but the robots inside the convex hull do move towards
the boundary), unless there is no space for more robots to get on
the boundary; in such a case they move to the outside of the convex
hull. From Lemma 3.1, and using chirality and the liveness condi-
tions, we argue that eventually there is space for all robots to get
on the convex hull’s boundary. Then we consider the case of full
visibility (i.e., c2 holds). In this case we investigate the cases of
how robots might “block” the views of other robots and how the
local algorithm arranges so that eventually all robots are able to
see all other robots, while all robots keep being on the convex hull.
The proof completes by examining various combinations of cases;
see [1] for full details. �

The next lemma states that starting from any initial configura-
tion, when the robots form a configuration where all robots are on
the convex hull and they can see each other, they eventually form a
connected configuration.

LEMMA 5.4. Given any good execution of the algorithm, ifRl
is such that |ϑCH(GRl)| = n and GRl is a fully visible configu-
ration and not a connected configuration, then ∃ Rk, l ≤ k so that
Rk is a connected configuration.

PROOF. Based on Lemma 5.2, if a configuration Rm is such
that |ϑCH(GRm)| = n and GRm is a fully visible configuration,
then |ϑCH(GRm+1)| = n, GRm+1 is a fully visible configuration
and CH(GRm) ⊆ CH(GRm+1).

Based on Procedure NotConnected, no robot will start mov-
ing unless: Between any three adjacent robots on the convex hull’s
boundary, say rl, rm and rr left robot, middle robot and right robot
respectively, the distance between line segment rlrr and rm must
be equal or more than 1

n
. This, along with Lemma 5.3 guaran-

tee that no robot will move unless the distance of at least 1
n

exists
and that eventually all robots will be on the convex hull’s boundary
and have full visibility. Because no robot moves unless the dis-
tance of at least 1

n
exists, all robots will eventually move to state

Look and see that the observed configuration is fully visible and
|ϑCH(Vi)| = n. We get the three following cases:

1. There exists at least one component that is smaller than at
least one other component, with respect to the number of the
robots that consist each component (size).

Function NotConnected results in all robots of the small-
est component(s) to join another larger component. Given
the liveness condition that whenever a robot decides to move,
it moves at least a distance of δ, eventually the number of the
components become smaller and eventually the convex hull
shrinks. Also the robots of the components that are not the
smallest, do not move.

2. All components are of the same size. The distance be-
tween two neighboring components is not the same for all
the neighboring components.

Function NotConnected results in all robots of the com-
ponent that has the smallest distance to its neighbor compo-
nent on the right, to join the component on its right (here
chirality is needed). Given the liveness condition that when-
ever a robot decides to move, it moves at least a distance of
δ, eventually the number of the components become smaller
and eventually the convex hull shrinks. The robots of the
other components do not move.

3. All components are of the same size, and the distance be-
tween any two neighboring components is the same.

Function NotConnected results in all the components
start moving with direction to the inside of the convex hull.
First, the leftmost and rightmost robots need to move forward
at distance 1

2n−ε (due to the required minimum distance of
1
n

, the small steps of 1
2n−ε cannot cause three robots to be

on the same line). These robots will not move again until the
component has no spaces (this is the reason that a compo-
nent can have up to 2 spaces). After these robots, the sec-
ond leftmost and second rightmost robots move to touch the
first robots; these robots will not move again until there is
a space between them and the first robots. The same hap-
pens for the remaining robots. Full visibility and the design
of Function NotConnected results the component to con-
verge with small steps each time. Given the liveness condi-
tion that whenever a robot decides to move, it moves at least
a distance of δ, it follows that eventually all the components
will touch, because the convex hull shrinks (while preserving
its formation).

From the cases above, it follows that either all the robots of any
component that has the smallest number of robots (first case) or of
any component that has the smallest distance (second case) to its
right neighbor will move to its right neighbor until the number of
components become one, or the components will move to the inside
of the convex hull until all the components touch (third case).

In every case, robot ri runs the Procedure NotConnected.
Hence, per Lemma 4.4, robot ri moves in such a way that it does
not cause |ϑCH(GRm+1)| < n or GRm+1 not to be a fully
visible configuration. This completes the proof. �

From Lemmas 5.3 and 5.4 we get the following:

COROLLARY 5.5. Given any good execution of the algorithm,
there is a configuration Rm so that GRm is a connected and fully
visible configuration.

5.2.2 Correctness for All Executions
We now consider any execution (including ones with bad config-

urations).

LEMMA 5.6. Given any execution of the algorithm, if there is a
bad execution fragment αbad, then eventually a safe configuration
Rsafe is reached, after which there are no longer bad configura-
tions.

PROOF. There are 2 possible cases:
(a) The adversary deploys a strategy that aims in causing bad con-
figurations as long as it can (i.e., indefinitely if possible).
(b) The adversary, at some point of the execution, stops causing bad
configurations.

We focus on the first case and we show that any execution un-
der this adversarial strategy will eventually reach a configuration in
which the adversary will no longer be able to cause bad configura-
tions. It is easy to see that this case covers also the second case.

Recall that both types of bad configurations involve configura-
tions in which the robots are momentarily in a configuration in
which all robots are on the convex hull and it is fully visible, but
the adversary manages to break this property. The adversary, as
explained, exploits the fact that some robots, due to asynchrony,
are not aware that such a configuration has been reached. We now
consider the two types of bad configurations.
(i) Bad configuration of type 1. Consider the case in which the
first bad configuration, call it Rx, that appears in the bad execu-
tion fragment αbad is of type 1 (the other type is considered later).
As explained, the adversary may deploy a strategy which can re-
sult into a configuration Rz, z > x, so that GRz is no longer
fully visible or/and not all robots are on the convex hull. The ad-
versary can do so, if there is at least one robot that according to
its local view in configuration Rx, not all robot are on the con-
vex hull and there is no more space for an “internal” robot to get
on the convex hull (per Function NoSpaceForMore this robot
will move to a direction outside of the convex hull). It follows that
CH(GRz) ⊇ CH(GRx). Furthermore, from Lemma 5.1 we get
that for all successive configurations of Rz in which not all robots
are on the convex hull or are fully visible, the convex hull can
only expand (until a configuration in which these properties hold
is reached). The adversary may repeat this strategy (e.g., involv-
ing other robots on the convex hull), every time causing the convex
hull to expand. However, per Lemma 3.1, this cannot be repeated
indefinitely, as the convex hull will expand that much, that the safe
distance will be reached for all pairs of adjacent robots on the con-
vex hull. From this and that the adversary must allow a robot to
move by at least δ distance, it follows that a configuration is even-
tually reached after which no bad configuration of type 1 can exist
(no robot will get into state Compute.NoSpaceForMore). Ob-
serve that when such a configuration is reached, it is still possible
for a bad configuration of type 2 to be reached. This is covered by
the next case we consider (with the difference that this bad config-
uration is not the first appearing in αbad).
(ii) Bad configuration of type 2. Consider the case in which the
first bad configuration, call it Rx, that appears in the bad execu-
tion fragment αbad is of type 2. This is the situation where in a
preceding configuration there are at least four robots on a straight
line on the convex hull. As explained in Section 2, the adversary
can yield a configuration in which not all robots are any longer on
the convex hull, or there is no full visibility. However, per Func-
tion SeeOneRobot and Lemma 4.10 the robots on the straight
line that are not in the middle (i.e., they see only one robot) do
not move. In contrast, according to Function SeeTwoRobot and
Lemma 4.11, each robot in the middle of the straight line moves

in a direction outside of the convex hull, in such a way that it will
no longer be in a straight line with its two adjacent robots (on the
convex hull). It follows that if every time the adversary repeats the
same strategy, and say initially there are x robots on straight line,
then in every iteration the number of robots that are on the same
line is x− 2. This may continue only until x is less than 3, hence it
eventually stops. Observe that during these iterations, since robots
in the middle move towards a direction outside of the convex hull
and per Lemma 5.1, the convex hull can only expand. Hence a bad
configuration of type 2 can no longer exist. Furthermore, note that
if during this expansion, the robots involved have also reached the
safe distance (per Lemma 3.1’s definition), then as explained above,
a bad configuration of type 1 also cannot exist. Otherwise, we are
back in case (i) as discussed above. Note however that once robots
reach the safe distance, and a bad configuration of type 2 is reached,
a configuration of type 1 can no longer exist again: when a robot
has already safe distance between its adjacent robots on the convex
hull, then the middle robots by moving towards outside the convex
hull can only increase the safe distance (and hence it will not be
possible for a robot to get into state Compute.NoSpaceForMore).

From cases (i) and (ii) and Lemma 5.3 it follows that a fully
visible configuration in which |ϑCH| = n is reached. By a similar
argument as in the proof of Lemma 5.4 we get that eventually a
safe configuration is reached (all robots are on the convex and they
are aware that the configuration is fully visible). From Function
NotConnected and Lemma 4.4 it follows that any succeeding
configuration maintains the property that all robots can see each
other and that are on the convex hull. Hence, the algorithm is such
that once a safe configuration is reached, it is no longer possible for
a bad configuration to exist. This completes the proof. �

Finally, we prove the correctness of our gathering algorithm.

THEOREM 5.7 (GATHERING). In any execution of the algo-
rithm, there is a configuration Rm, so that GRm is a connected,
fully visible configuration and ∀si ∈ SRm , si = Terminate.

PROOF. Consider the following two cases.

• If no bad configurations exist, based on Corollary 5.5, given
any good execution of the algorithm, there existsRm so that
GRm is a connected and fully visible configuration.

• If bad configurations exist, based on Lemma 5.6, given any
execution of the algorithm, if there is a bad execution frag-
ment αbad, then eventually a safe configuration Rsafe is
reached, and after a safe configuration there are no longer
any bad configurations in the execution until termination.
Therefore, from this point onward, we get from Corollary
5.5 that there exists Rm so that GRm is a connected and
fully visible configuration.

When a connected and fully visible configuration is reached,
it is easy to see that robots no longer move and eventually all robots
get into state Compute.Connected and hence into state Termi-
nate. �

6. CONCLUSIONS
We have considered the problem of gathering non-transparent,

fat robots in an asynchronous setting. We formulated the problem
and the model with a state-machine representation and developed
a distributed algorithm for any number of robots. The correctness
of the algorithm exploits the assumption of chirality [11]: robots
agree on the orientation of the axes of their local coordination sys-
tem. This is the only assumption we needed to add to the model
considered in [9]. We believe this is a very small price to pay,

while we feel it would not be manufacturally unrealistic to pro-
vide, in order to solve the gathering problem for any number of fat
robots. Nevertheless, an intriguing open problem is to investigate
whether it is possible to remove the assumption of chirality and still
be able to solve the gathering problem for any number of fat robots,
or whether chirality is necessary.

7. REFERENCES
[1] Ch. Agathangelou, Ch. Georgiou, and M. Mavronicolas. A

distributed algorithm for gathering many fat robots in the
plane. In arXiv:1209.3904, 2012.

[2] N. Agmon and D. Peleg. Fault-tolerant gathering algorithms
for autonomous mobile robots. In Proc. of the 15th
ACM-SIAM Symposium on Discrete Algorithms (SODA
2004), pages 1070–1078.

[3] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed
memoryless point convergence algorithm for mobile robots
with limited visibility. IEEE Transactions on Robotics and
Automation, 15(5):818–828, 1999.

[4] H. Attiya and J. Welch. Distributed Computing:
Fundamentals, Simulations and Advanced Topics. Second
edition, Wiley & Sons, 2004.

[5] A. Bandettini, F. Luporini, G. Viglietta. A survey on open
problems for mobile robots. In arXiv:1111.2259v1, 2011.

[6] K. Bolla, T. Kovacs, and G. Fazekas. Gathering of fat robots
with limited visibility and without global navigation. In
Proc. of ICAISC/SIDE-EC 2012, pages 30–38.

[7] S.G. Chaudhuri and K. Mukhopadhyaya. Gathering
asynchronous transparent fat robots. In Proc. of the 6th
International Conference on Distributed Computing and
Internet Technology (ICDCIT 2010), pages 170–175.

[8] A. Cord-Landwehr, B. Degener, M. Fischer, M. Hüllmann,
B. Kempkes, A. Klaas, P. Kling, S. Kurras, M. Märtens,
F.M.A Der Heide, C. Raupach, K. Swierkot, D. Warner, C.
Weddemann, and D. Wonisch. Collisionless gathering of
robots with an extent. In Proc. of SOFSEM 2011, pages
178–189.

[9] J. Czyzowicz, L. Gasieniec, and A. Pelc. Gathering few fat
mobile robots in the plane. Theoretical Computer Science,
410(6–7):481–499, 2009.

[10] A. Dutta, S. G. Chaudhuri, S. Datta, and K. Mukhopadhyaya.
Circle formation by asynchronous fat robots with limited
visibility. In Proc. of ICDCIT 2012, pages 83–93.

[11] P. Flocchini, G. Prencipe, N. Santoro. Distributed Computing
by Oblivious Mobile Robots. Synthesis Lectures on
Distributed Computing Theory, Morgan & Claypool, 2012.

[12] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer.
Gathering of asynchronous robots with limited visibility.
Theoretical Computer Science, 337(1–3):147–168, 2005.

[13] R.L. Graham. An efficient algorithm for determining the
convex hull of a finite planar set. Information Processing
Letters, 1(4):132–133, 1972.

[14] S. Kamei, A. Lamani, F. Ooshita, and S. Tixeuil. Gathering
an even number of robots in an odd ring without global
multiplicity detection. In Proc. of the 37th International
Symposium on Mathematical Foundations of Computer
Science (MFCS 2012), pages 542–553.

[15] S. Souissi, T. Izumi, and K. Wada. Distributed algorithms for
cooperative mobile robots: A survey. In Proc. of the 2nd
Second International Conference on Networking and
Computing (ICNC 2011), pages 364–371.

