
Competitive Analysis of Task Scheduling Algorithms on a Fault-Prone Machine
and the Impact of Resource Augmentation

Antonio Fernández Antaa, Chryssis Georgioub, Dariusz R. Kowalskic, Elli Zavoua,d,1

aInstitute IMDEA Networks
bUniversity of Cyprus

cUniversity of Liverpool
dUniversidad Carlos III de Madrid

Abstract

Reliable task execution in machines that are prone to unpredictable crashes and restarts is challenging and of high
importance. However, not much work exists on the worst case analysis of such systems. In this paper, we analyze the
fault-tolerant properties of four popular scheduling algorithms: Longest In System (LIS), Shortest In System (SIS),
Largest Processing Time (LPT) and Shortest Processing Time (SPT), under worst case scenarios on a fault-prone
machine. We use three metrics for the evaluation and comparison of their competitive performance, namely, completed
time, pending time and latency. We also investigate the effect of resource augmentation in their performance, by
increasing the speed of the machine. To do so, we compare the behavior of the algorithms for different speed intervals
and show that between LIS, SIS and SPT there is no clear winner with respect to all the three considered metrics,
while LPT is not better than SPT.

Keywords: Scheduling, Online Algorithms, Different Task Processing Times, Failures, Competitive Analysis,
Resource Augmentation

1. Introduction

Motivation. The demand for processing computationally-intensive jobs has been increasing dramatically during the
last decades, and so has the research to face the many challenges it presents. In addition, with the presence of machine
failures (and restarts) things get even worse, especially when a malicious entity is causing them. In this work, we
apply speed augmentation [9, 1] in order to overcome such failures, that is, we increase the computational power of
the system’s machine. This is an alternative to increasing the number of processing entities, as done in multiprocessor
systems. Hence, we consider a speedup s ≥ 1, under which the machine performs a job s times faster than the baseline
execution time.

More precisely, we consider a setting with a single machine prone to crashes and restarts that are being controlled
by an adversary, and a scheduler that assigns injected jobs (or tasks) to be executed by the machine. These tasks
arrive continuously and have different computational demands and hence processing time. Specifically we assume
that each task has processing time π ∈ [πmin, πmax], where πmin and πmax are the smallest and largest values,
respectively. Since the scheduling decisions must be made continuously and without knowledge of the future, neither
the task injections nor the machine crashes and restarts, we look at the problem as an online scheduling problem [10,
4, 3, 12, 14]. The importance of using speedup lies on this online nature of the problem; the future failures, and the

1Partially supported by FPU Grant from MECD

instant of arrival of future new tasks and their processing time are unpredictable. Thus, the need to overcome this
lack of information. We evaluate the performance of the different scheduling policies (online algorithms) under worst-
case scenarios, which guarantee efficient scheduling even in the worst of cases. For that, we perform competitive
analysis [13]. The four scheduling policies we consider are Longest In System (LIS), Shortest In System (SIS), Largest
Processing Time (LPT) and Shortest Processing Time (SPT). Achieving reliable and stable computations in such an
environment withholds several challenges. One of our main goals is therefore to confront these challenges considering
the use of the smallest possible speedup. However, our primary intention is to discover the dependence of the efficiency
measures for each scheduling policy with respect to the speedup used.

Contributions. In this paper we explore the behavior of some of the most widely used algorithms in scheduling,
analyzing their fault-tolerant properties under worst-case combination of task injection and crash/restart patterns, as
described above. As already mentioned, the four algorithms we consider are:
(1) LIS: the task that has been waiting the longest is scheduled; i.e., it follows the FIFO (First In First Out) policy,
(2) SIS: the task that has been injected the latest is scheduled; i.e., it follows the LIFO (Last In First Out) policy,
(3) LPT: the task with the longest processing time is scheduled, and
(4) SPT: the task with the shortest processing time is scheduled.

We focus on three evaluation metrics, which we regard to embody the most important quality of service parame-
ters: the completed time, which is the aggregate processing time of all the tasks that have completed their execution
successfully, the pending time, which is the aggregate processing time of all the tasks that are in the queue waiting
to be completed, and the latency, which is the largest time a task spends in the system, from the time of its arrival
until it is fully executed. They represent the machine’s throughput, queue size and delay respectively, all of which
we consider essential. They show how efficient the scheduling algorithms are in a fault-prone setting from different
angles: machine utilization (completed time), buffering (pending time) and fairness (latency). The performance of
an algorithm ALG is evaluated under these three metrics by means of competitive analysis, in which the value of the
metric achieved by ALG when the machine uses speedup s ≥ 1 is compared with the best value achieved by any
algorithm X running without speedup (s = 1) under the same pattern of task arrivals and machine failures, at all time
instants of an execution.

Table 1 summarizes the results we have obtained for the four algorithms. Although not clearly stated in the table,
the first results we show in our work apply to any work conserving scheduling algorithm – ones that do not idle as
long as there are pending tasks and they do not break the execution of a task unless the machine crashes. These results
are: (a) When s ≥ ρ = πmax

πmin
, the completed time competitive ratio is lower bounded by 1/ρ and the pending time

competitive ratio is upper bounded by ρ. (b) When s ≥ 1 + ρ, the completed time competitive ratio is lower bounded
by 1 and the pending time competitive ratio is upper bounded by 1 (i.e., they are 1-competitive). Then, for specific
cases of speedup less than 1 + ρ we obtain better lower and upper bounds for the different algorithms.

However, it is clear that none of the algorithms is better than the rest. With the exception of SPT, no algorithm is
competitive in any of the three metrics considered when s < ρ. In particular, algorithm SPT is competitive in terms of
completed time, except in the case when tasks may have any arbitrary processing time in the range [πmin, πmax] and
the machine has no speedup (s = 1). In terms of latency, only algorithm LIS is competitive, when s ≥ ρ, which might
not be very surprising since algorithm LIS gives priority to the tasks that have been waiting the longest in the system.
Another interesting observation is that algorithms LPT and SPT become 1-competitive as soon as s ≥ ρ, both in terms
of completed and pending time, whereas LIS and SIS require greater speedup to achieve this.

What is more, this is the first thorough and rigorous online analysis of popular scheduling algorithms in a fault-
prone setting. In some sense, collectively our results demonstrate in a clear way the differences between two classes
of policies: the ones that give priority based on the arrival time of the tasks in the system (LIS and SIS) and the ones

2

Condition Completed Time, C Pending Time, P Latency, L

LIS

s < ρ 0 ∞ ∞
s ∈ [ρ, 1 + 1/ρ) [1ρ ,

1
2 + 1

2ρ] [1+ρ2 , ρ] (0, 1]

s ∈ [max{ρ, 1 + 1/ρ}, 2) [1ρ ,
1
2 + πmin

2π] [12 + π
2πmin

, ρ] (0, 1]

s ≥ max{ρ, 2} [1, s] 1 (0, 1]

SIS
s < ρ 0 ∞ ∞

s ∈ [ρ, 1 + ρ) [1ρ ,
πmin

π′] [π
′/πmin+ρ

1+ρ , ρ] ∞
s ≥ 1 + ρ [1, s] 1 ∞

LPT s < ρ 0 ∞ ∞
s ≥ ρ [1, s] 1 ∞

SPT
s < ρ [1

2+ρ ,
ρ̂
ρ̂+ρ] (*) ∞ ∞

s ≥ ρ [1, s] 1 ∞
Table 1: Metrics comparison of the four scheduling algorithms. Recall that s represents the speedup of the system’s machine,
πmax and πmin the largest and smallest task processing times respectively. Note that ρ = πmax

πmin
, ρ̂ = dρe − 1 and π, π′ ∈

(πmin, πmax) are task processing times such that π < πmin
s−1

and π′ < πmin+πmax
s

. Note also that by definition, 0-completed-time
competitiveness ratio equals to non-competitiveness, as opposed to the other two metrics where non-competitiveness corresponds to
an∞ competitiveness ratio. Finally note that the lower bound of result (*) is for injection patterns with tasks of only two processing
times πmin and πmax.

that give priority based on the required processing time of the tasks (LPT and SPT). Observe that different algorithms
scale differently with respect to the speedup, in the sense that with the increase of the machine speed the competitive
performance of each algorithm changes in a different way.

Related Work. We relate our work with the online version of the bin packing problem [15], where the objects to
be packed are the tasks and the bins are the time periods between two consecutive failures of the machine (i.e., alive
intervals). Wide research has taken place over the years around this problem, some of which we consider related to
ours. For example, Johnson et al. [8] analyzed the worst case performance of two simple algorithms (Best Fit and Next
Fit) for the bin packing problem, giving upper bounds on the number of bins needed (corresponding to the completed
time in our work). Epstein et al. [6] (see also [15]) considered online bin packing with resource augmentation in the
size of the bins (corresponding to the length of alive intervals in our work). Observe that the essential difference of the
online bin packing problem with the one that we are looking at in this work, is that in our system the bins and their
sizes (corresponding to the machine’s alive intervals) are unknown.

On a different tone, Boyar and Ellen [5] have looked into a problem similar to both online bin packing problem
and ours, considering job scheduling in the grid. The main difference with our setting is that they consider several
machines (or processors), but mainly the fact that the arriving items are processors with limited memory capacities
and there is a fixed amount of jobs in the system that must be completed. They also use fixed job sizes and achieve
lower and upper bounds that only depend on the fraction of such jobs in the system.

Another related problem is packet scheduling in a link. Andrews and Zhang [2] consider online packet scheduling
over a wireless channel whose rate varies dynamically, and perform worst case analysis regarding both the channel
conditions and the packet arrivals. A similar work is [3], where packets of two different sizes were scheduled through
an unreliable link. In that work, the goodness metric is the long-term competitive ratio, which is called relative
throughput and online algorithms as well as bounds for any online scheduling protocol are given.

We can also directly relate our work with research done on machine scheduling with availability constraints
(e.g., [11, 7]). One of the most important results in that area is the necessity of online algorithms in case of unex-

3

pected machine breakdowns. However, in most related works preemptive scheduling is considered and optimality is
shown only for nearly online algorithms (need to know the time of the next job or machine availability).

In a previous work [4], we looked at a system of multiple machines and at least two different task costs (i.e.,
processing times in our work). We applied distributed scheduling and performed worst-case competitive analysis,
considering the pending cost competitiveness (corresponding pending time competitiveness in the present work) as
our main evaluation metric. We showed the NP-hardness of the offline version of the problem and suggested the use
of speedup in order to achieve competitiveness. We defined ρ = πmax

πmin
and proved that if both conditions (a) s < ρ

and (b) s < 1 + γ/ρ hold for the system’s machines (γ is some constant that depends on πmin and πmax), then
no deterministic algorithm is competitive with respect to the queue size (pending cost). Additionally, we proposed
online algorithms to show that relaxing any of the two conditions is sufficient to achieve competitiveness. In fact, [4]
motivated this paper, since it made evident the need of a thorough study of simple algorithms even under the simplest
basic model of one machine and scheduler.

2. Model and Definitions

Computing Setting. We consider a system of one machine prone to crashes and restarts with a Scheduler responsible
for the task assignment to the machine following some algorithm. The clients submit jobs (or tasks) of different sizes
(processing time) to the scheduler, which in its turn assigns them to be executed by the machine.
Tasks. Tasks are injected to the scheduler by the clients of the system, an operation which is controlled by an arrival
pattern A (a sequence of task injections). Each task τ has an arrival time a(τ) and a processing time π(τ), being
the time it requires to be completed by a machine running with s = 1. We use the term π-task to refer to a task
of processing time π ∈ [πmin, πmax] throughout the paper. We also assume tasks to be atomic with respect to their
completion; in other words preemption is not allowed (tasks must be fully executed without interruptions).
Machine failures. The crashes and restarts of the machine are controlled by an error pattern E, which we assume to
coordinate with the arrival pattern in order to give the worst-case scenarios. We consider that the task being executed at
the time of the machine’s failure is not completed, and it is therefore still pending in the scheduler until it is eventually
re-scheduled (it is not discarded). The machine is active in the time interval [t, t∗], if it is executing some task at time t
and has not crashed by time t∗. Hence, an error pattern E can be seen as a sequence of active intervals of the machine.
Resource augmentation / Speedup. We also consider a form of resource augmentation by speeding up the machine
and the goal is to keep it as low as possible. As mentioned earlier, we denote the speedup with s ≥ 1.
Notation. Let us denote here some notation that will be extensively used throughout the paper. Because it is essential
to clarify the tasks being accounted at each timepoint in an execution, we introduce sets It(A), Ns

t (X,A,E) and
Qst (X,A,E), where X is an algorithm, A and E the arrival and error patterns respectively, t the time instant we
are looking at and s the speedup of the machine. It(A) represents the set of injected tasks within the interval [0, t],
Ns
t (X,A,E) the set of completed tasks within [0, t] and Qst (X,A,E) the set of pending tasks at time instant t.

Qst (X,A,E) contains the tasks that were injected by time t inclusively, but not the ones completed before and up to
time t. Observe that It(A) = Ns

t (X,A,E) ∪ Qst (X,A,E) and note that set I depends only on the arrival pattern
A, while sets N and Q also depend on the error pattern E, the algorithm run by the scheduler, X , and the speedup
of the machine, s. Note that the superscipt s is omitted in further sections of the paper for simplicity. However, the
appropriate speedup in each case is clearly stated.
Efficiency Measures. Considering an algorithm ALG running with speedup s under arrival and error patterns A and
E, we look at the current time t and focus on three measures; the Completed Time, which is the sum of processing
times of the completed tasks

4

Cst (ALG, A,E) =
∑

τ∈Ns
t (ALG,A,E)

π(τ),

the Pending Time, which is the sum of processing times of the pending tasks

P st (ALG, A,E) =
∑

τ∈Qs
t (ALG,A,E)

π(τ),

and the Latency, which is the maximum amount of time a task has spent in the system

Lst (ALG, A,E) = max

{
f(τ)− a(τ), ∀τ ∈ Ns

t (ALG, A,E)

t− a(τ), ∀τ ∈ Qst (ALG, A,E)

}
,

where f(τ) is the time of completion of task τ . Computing the schedule (and hence finding the algorithm) that
minimizes or maximizes correspondingly the measures Cst (X,A,E), P st (X,A,E), and Lst (X,A,E) offline (having
the knowledge of the patterns A and E), is an NP-hard problem [4].

Due to the dynamicity of the task arrivals and machine failures, we view the scheduling of tasks as an online
problem and pursue competitive analysis using the three metrics. Note that for each metric, we consider any time
t of an execution, combinations of arrival and error patterns A and E, and any algorithm X designed to solve the
scheduling problem:

An algorithm ALG running with speedup s, is considered α-completed-time-competitive if Cst (ALG, A,E) ≥
α · C1

t (X,A,E) + ∆C , for some parameter ∆C that does not depend on t,X,A or E; α is the completed-time
competitive ratio of ALG, which we denote by C(ALG).

Similarly, it is considered α-pending-time-competitive if P st (ALG, A,E) ≤ α ·P 1
t (X,A,E) + ∆P , for parameter

∆P which does not depend on t,X,A or E. In this case, α is the pending-time competitive ratio of ALG, which we
denote by P(ALG).

It is also considered α-latency-competitive if Lst (ALG, A,E) ≤ α · L1
t (X,A,E) + ∆L, where ∆L is a parameter

independent of t,X,A and E. In this case, α is the latency competitive ratio of ALG, which we denote by L(ALG).
Finally, note that α, is independent of t, X , A and E, for the three metrics accordingly.2

Both completed and pending time measures are important. Observe that they are not complementary of one
another. An algorithm may be completed-time-competitive but not pending-time-competitive, even though the sum
of processing times of the successfully completed tasks complements the sum of processing times of the pending
ones. For example, think of an online algorithm that manages to complete successfully half of the total injected task
processing times up to any point in any execution. This gives a completed time competitiveness ratio C(ALG) = 1/2.
However, it is not necessarily pending-time-competitive since in an execution with infinite task arrivals its total pending
time increases unboundedly and there might exist an algorithm X that manages to keep its total pending time constant
under the same arrival and error patterns. This is further demonstrated by our results summarized in Table 1.

3. Properties of Work Conserving Algorithms

In this section we present some general properties for all online work-conserving algorithms running with
speedup s. They also apply to the four policies we focus on in the rest of the paper.

Observation 1. Any work-conserving algorithm ALG running with speedup s, has a completed-time competitive ratio
C(ALG) ≤ 1 when we allowQt(ALG) = ∅ infinitely many times, or C(ALG) ≤ s when the queue never becomes empty
after a point in time.

2Parameters ∆C ,∆P ,∆L as well as α may depend on system parameters like πmin, πmax or s, which are not considered as inputs of the
problem.

5

Proof: Let us first consider the case at which the adversary allows the queue of pending tasks of ALG to become
empty infinitely many times in an execution. In particular, let us consider the arrival and error patterns A and E, such
that there are time instants tk, k = 0, 1, 2 . . . where tk = tk−1 + π and t0 = 0. At each tk there is a machine failure
(crash and restart) and exactly one π-task (π ∈ [πmin, πmax]) injected. We name time interval Ti = [ti, ti+1]. Observe
that an algorithm X (running with s = 1) completes π-task injected at ti in interval Ti, while any work-conserving
algorithm ALG running with speedup s will complete the same task at time ti + π/s < ti+1 resulting in an empty
queue. Hence, C(ALG) = 1 as claimed.

Let us now consider the case at which the adversary never lets the queue of ALG to become empty after some
point in time. More precisely we consider the arrival and error patterns A′ and E′ to be such that ALG always has
at least one pending task of any processing time π ∈ [πmin, πmax] available to schedule. Therefore, in a period of
time π an algorithm X ∈ X (running with s = 1) is able to complete a π-task while ALG may complete up to πs
processing time. This will result in a completed time competitive ratio C(ALG) ≤ s as claimed.

Observation 2. Any work-conserving algorithm ALG running with speedup s, has a pending-time competitive ratio
P(ALG) ≥ 1 when its queue of pending tasks never becomes empty after a point in time.

Proof: Let us consider arrival and error patterns A and E such that algorithm ALG always has at least one pending
task of any processing time π ∈ [πmin, πmax] available to schedule. We consider phases of arbitrarily chosen lengths
π, defined as intervals Ti = [tk, tk+1] where tk+1 = tk + π, t0 = 0 and k = 0, 1, 2 . . . being instants of machine
failures. As a result, in a phase of length π an algorithm X ∈ X will be able to complete a π-task, while ALG will
complete up to πs processing time. Assuming that there are no phases of length less than πmin, the complementing
pending time at a time tk will therefore be Ptk(X) ≥ Itk(A)− tk and Ptk(ALG) ≥ Itk(A)− tks. The pending time
competitive ratio becomes P(ALG) ≥ I(A)−ts

I(A)−t , which yields to P(ALG) ≥ 1, since we can make I(A) infinitely
big.

Lemma 1. No algorithm X (running without speedup) completes more tasks than a work conserving algorithm ALG
running with speedup s ≥ ρ. Formally, ∀t, A ∈ A and E ∈ E , |Nt(ALG, A,E)| ≥ |Nt(X,A,E)|, and hence
|Qt(ALG, A,E)| ≤ |Qt(X,A,E)|.

Proof: We will prove that ∀t, A ∈ A and E ∈ E , |Qt(ALG, A,E)| ≤ |Qt(X,A,E)|, which implies that
|Nt(ALG, A,E)| ≥ |Nt(X,A,E)|. Observe that the claim trivially holds for t = 0. We now use induction on
t to prove the general case. Consider any time t > 0 and the closest time t′ < t such that t′ is either a fail-
ure/restart time point or a point where ALG’s pending queue is empty. Let us assume by induction hypothesis that
|Qt′(ALG)| ≤ |Qt′(X)|.

Let iT be the number of tasks injected in the interval T = (t′, t]. Since ALG is work conserving, it is continuously
executing tasks in the interval T . Also, ALG needs at most πmax/s ≤ πmin time to execute any task using speedup
s ≥ ρ, regardless of the task being executed. Then it holds that

|Qt(ALG)| ≤ |Qt′(ALG)|+ iT −
⌊
t− t′

πmax/s

⌋
≤ |Qt′(ALG)|+ iT −

⌊
t− t′

πmin

⌋
.

On the other hand, X can complete at most one task every πmin time. Hence,

|Qt(X)| ≥ |Qt′(X)|+ iT −
⌊
t− t′

πmin

⌋
.

As a result, we have that

6

|Qt(X)| − |Qt(ALG)| ≥ |Qt′(X)|+ iT −
⌊
t− t′

πmin

⌋
− |Qt′(ALG)| − iT +

⌊
t− t′

πmin

⌋
≥ 0.

Since this holds for all times t, the claim follows.

Theorem 1. Any work-conserving algorithm ALG running with speedup s ≥ ρ has completed-time competitive ratio
C(ALG) ≥ 1/ρ and pending-time competitive ratio P(ALG) ≤ ρ.

Proof: It follows directly from Lemma 1, since for any algorithm X the processing time of every task completed by
ALG is at least πmin

πmax
times the processing time of every task completed by X . From Lemma 1, ALG always has at

least as many completed tasks as X , and hence its completed-time competitive ratio C(ALG) is at least πmin

πmax
= 1/ρ.

Complementary, since the processing time of any pending task in the queue of ALG is at most πmax

πmin
times bigger than

the processing time of any pending task in X , its pending-time competitive ratio P(ALG) is at most πmax

πmin
= ρ.

Theorem 2. Any work-conserving algorithm ALG running with speedup s ≥ 1 + ρ, has completed-time competitive
ratio C(ALG) ≥ 1 and pending-time competitive ratio P(ALG) ≤ 1.

Proof: Consider an execution of any work-conserving algorithm ALG running with speedup s ≥ 1 + ρ under any
arrival and error patterns A and E, as well as an algorithm X . Then, looking at any time t of an execution, we define
time instant t′ < t to be the latest time before t at which one of the following events happens: (1) an active period
starts (after a machine crash/restart), (2) algorithm X has successfully completed a task, or (3) the queue of pending
tasks of ALG is empty, Qt′(ALG) = ∅.

It is trivial that P0(ALG, A,E) ≤ P0(X,A,E) holds at the beginning of the executions. Now assuming that
Pt′(ALG, A,E) ≤ Pt′(X,A,E) holds at time t′, we prove by induction that Pt(ALG, A,E) ≤ Pt(X,A,E) still
holds at time t. This also means that the tasks successfully completed by ALG by time t have at least the same total
processing time as the ones completed by X .

Considering the interval T = (t′, t], there are two cases:
Case 1: X is not able to complete any task in the interval T . Then, it holds that Pt(X,A,E) = Pt′(X,A,E) +

iT , where iT denotes the processing time of the tasks injected during the interval T . Similarly, it holds that
Pt(ALG, A,E) ≤ Pt′(ALG, A,E) + iT even if ALG is not able to complete successfully any task in T .
Case 2: X completes successfully a task in the interval T . Note that by definition of time t′, during interval T there
can only be one task completed by X , and it must be completed at time t. (If that were not the case, t′ would not be
well defined.) There are two subcases.
(a) First, t′ is from case (3) of its definition. Hence, Qt′(ALG) = ∅ and Pt(ALG, A,E) ≤ iT . At time t′ algorithm X

was executing the task that was completed at time t. Hence, the task was injected before t′, and X has not completed
any of the tasks injected in T . Then, Pt(X,A,E) ≥ iT ≥ Pt(ALG, A,E).
(b) Second, t′ is from cases (1) or (2) of its definition. Then, the interval T has length π ≥ πmin, which is the
processing time of the task completed by X . In that interval ALG is continuously executing tasks. Hence, in
the interval (t′, t] if completes tasks whose aggregate processing time is at least πs − πmax. Then, the pending
time at time instant t of both algorithms satisfy Pt(X,A,E) = Pt′(X,A,E) + iT − π while Pt(ALG, A,E) <

Pt′(ALG, A,E) + iT − (πs−πmax). Observe that s ≥ 1 +ρ implies that π ≤ πs−πmax. Hence, from the induction
hypothesis, Pt(ALG, A,E) ≤ Pt(X,A,E).

This implies a completed-time competitive ratio C(ALG) ≥ 1 and a pending-time competitive ratio P(ALG) ≤ 1,
as claimed.

7

4. Completed and Pending Time Competitiveness

In this section we present a detailed analysis of the four algorithms with respect to the completed and pending time
metrics, first for speedup s < ρ and then for speedup s ≥ ρ.

4.1. Speedup s < ρ

Let us start with some negative results, whose proofs involve specifying the combinations of arrival and error
patterns that force the claimed bad performances of the algorithms. We also give some positive results for SPT, the
only algorithm that can achieve a non-zero completed-time competitiveness under some cases.

Lemma 2. When algorithms LIS and LPT run with speedup s < ρ, they both have a completed-time competitive ratio
C(LIS) = C(LPT) = 0 and a pending-time competitive ratio P(LIS) = P(LPT) =∞.

Proof: Let us use the same combination of algorithm X , arrival and error patterns A and E for the proof of non-
competitiveness for the two algorithms. We consider an infinite arrival pattern which injects one πmax-task at the
beginning of the execution, t = 0, and after that it keeps injecting one πmin-task every πmin time. Consider also
an infinite error pattern that sets the machine failure points (crash immediately followed by a restart) at time instants
ti = i · πmin, where i = 1, 2,

It can be easily seen, that an algorithmX running with no speedup (s = 1), will be able to complete the πmin-tasks
injected, while neither LIS nor LPT will manage to complete any task, since they will both insist on scheduling the
πmax-task injected at the beginning. In an interval of length πmin, algorithm X is able to complete a πmin-task but
neither LIS nor LPT can complete the πmax-task since it needs time πmax

s > πmin. This means that the number of
pending tasks in the queues of both LIS and LPT will be continuously increasing with time, while X is able to keep
them bounded, with no more than one πmax and one πmin tasks, and so will their pending processing time. As for the
total processing time of completed tasks, C(LIS, A,E) = C(LPT, A,E) = 0 at all times of the execution, while the
one of X grows to infinite as t goes to infinity.

Hence, for speedup s < ρ, algorithms LIS and LPT have completed-time competitive ratios C(LIS) = C(LPT) = 0

and pending-time competitive ratios P(LIS) = P(LPT) =∞ as claimed, which completes the proof.

Lemma 3. When algorithm SIS runs with speedup s < ρ, it has a completed-time competitive ratio C(SIS) = 0 and a
pending-time competitive ratio P(SIS) =∞.

Proof: Let us divide the proof in two parts giving different combinations of arrival and error patterns for the completed
time and the pending time respectively.

We first consider a combination of arrival and error patterns A and E that behave as follows. We define time
instants tk where k = 1, 2, . . . and ti = ti−1 + πmin with time t0 = 0 being the beginning of the execution. At every
such time instants there is a crash and restart at the machine and then an immediate injection of a πmin-task followed
by a πmax-task. This creates active intervals [ti, ti+1) of length πmin.

It is easy to observe that the patterns described cause algorithm SIS to assign the last πmax-task injected, every
time it has to make a scheduling decision, since it is the last task injected. Since the alive intervals are of length πmin
and SIS needs πmax

s > πmin time to complete the πmax-tasks, it is not able to complete any of the tasks it starts
executing, giving Ct(SIS) = 0 at all times t (and in particular at tk time instants). On the same time, an algorithm X

is able to schedule and complete all the πmin-tasks injected, one in every alive interval, giving a completed time of
Ctk(X) = k · πmin at every tk time instant.

8

Now let us consider another combination of arrival and error patterns, A′ and E′ respectively as well as algorithm
X ′. We define time instants tk′ where k′ = 1, 2, . . . and tk′ = tk′−1 + (πmin + πmax) with time t0 = 0 being
the beginning of the execution. At every such time instants there is a πmin-task injected followed by a πmax-task.
The crashes of the machine are set every time tk′ and tk′ + πmin, creating active intervals of length πmin or πmax
alternatively.

This behavior causes algorithm SIS to schedule the last πmax-task injected, after every tk′ time instant, since it is
the last task injected. The first alive interval after a tk′ time instant is of length πmin and thus the πmax-task scheduled
by SIS cannot be completed. On the same time, an algorithm X is able to complete the last πmin-task injected. On the
next alive period though, SIS will be able to complete successfully the πmax-task since it is of length πmax, while X
will do the same. As a result, looking at time instants tk′ , before the injection takes place, Ptk′ (SIS) = k′πmin while
Ptk′ (X) = 0, since algorithm SIS will never complete any πmin-task injected but X will be able to complete all tasks
injected up to that time.

Therefore, for speedup s < ρ algorithm SIS has completed-time competitive ratio C(SIS) = 0 and pending-time
competitive ratio P(SIS) =∞ as claimed.

Combining now Lemmas 2 and 3 we have the following theorem.

Theorem 3. NONE of the three algorithms LIS, LPT and SIS is competitive when speedup s < ρ, with respect to
completed or pending time, even in the case of only two task processing times (i.e., πmin and πmax).

Theorem 4. If tasks can be of only two processing times (πmin and πmax), algorithm SPT can achieve a completed-
time competitive ratio C(SPT) ≥ 1

2+ρ , for any speedup s ≥ 1. In particular, Ct(SPT) ≥ 1
2+ρCt(X)− πmax, for any

time t.

Proof: Let us assume fixed arrival and error patterns A and E respectively, as well as an algorithm X , and let us look
at any time t in the execution of SPT. Let τ be a task completed by X by time t (i.e., τ ∈ Nt(X)), where tτ is the
time τ was scheduled and f(τ) ≤ t the time it completed its execution. We associate τ with the following tasks in
Nt(SPT):

• The same task τ .

• The task w being executed by SPT at time tτ , if it was not later interrupted by a crash.

Not every task inNt(X) is associated to some task inNt(SPT), but we show now that most tasks are. In fact, we show
that the aggregate processing times of the tasks in Nt(X) that are not associated with any task in Nt(SPT) is at most
πmax. More specifically, there is only one task execution of a πmax-task, namely w, by SPT such that the πmin-tasks
scheduled and completed by X concurrently with the execution of w fall in this class.

Considering the generic task τ ∈ Nt(X) from above, we consider the following cases:

• If τ ∈ Nt(SPT) then task τ is associated at least with itself in the execution of SPT, regardless of τ ’s processing
time.

• If τ /∈ Nt(SPT), τ is in the queue of SPT at time tτ . By its greedy nature, SPT is executing some task w at time
tτ .

– If π(τ) ≥ π(w), then task w will complete by time f(τ) and hence it is associated with τ .

– If π(τ) < π(w) (i.e., π(τ) = πmin and π(w) = πmax), then τ was injected after w was scheduled by
SPT. If this execution of task w is completed by time t, then task w is associated with τ . Otherwise, task
τ is not associated to any task in Nt(SPT) if a crash occurs or the time t is reached before w is completed.

9

Let t∗ the time either event occurs. Since τ /∈ Nt(SPT), τ is not completed by SPT in the interval [t∗, t].
Then, SPT never schedules a πmax-task in the interval [t∗, t], and the case that a task from Nt(X) is not
associated to any task in Nt(SPT) cannot occur again in that interval.

Hence, all the tasks τ ∈ Nt(X) that are not associated to tasks in Nt(SPT) are πmin-tasks and have been scheduled
and completed during the execution of the same πmax-task by SPT. Hence, their aggregate processing time is at most
πmax.

Now let us evaluate the processing times of the tasks in Nt(X) associated to a task in w ∈ Nt(SPT). Let us
consider any task w successfully completed by SPT at a time f(w) ≤ t. Task w can be associated at most with itself
and all the tasks that X scheduled within the interval Tw = [f(w) − π(w), f(w)]. The latter set can include tasks
whose aggregate processing time is at most π(w) + πmax, since the first such tasks starts its execution no earlier
than f(w)− π(w) and in the extreme case a πmax-task could have been scheduled af the end of Tw and completed at
tw+πmax. Hence, if taskw is a πmin-task, it will be associated with tasks completed byX that have a total processing
time of at most 2πmin + πmax, and if w is a πmax-task, it will be associated with tasks completed by X that have a
total processing time of at most 3πmax. Observe that πmin

2πmin+πmax
< πmax

3πmax
. As a result, we can conclude that

Ct(SPT) ≥ πmin
2πmin + πmax

Ct(X)− πmax =
1

2 + ρ
Ct(X)− πmax.

Conjecture 1. The above lower bound on completed time, still holds in the case of any constant number of task
processing times in the range [πmin, πmax].

Theorem 5. For speedup s < ρ, algorithm SPT cannot have a completed-time competitive ratio more than x for
x < ρ̂

ρ̂+ρ . In other words, C(SPT) ≤ ρ̂
ρ̂+ρ . Additionally, it is NOT competitive with respect to the pending time, i.e.,

P(SPT) =∞.

Proof: Assuming speedup s < ρ we consider the following combination of arrival and error patterns A and E

respectively: We define time points tk, where k = 0, 1, 2 . . . , such that t0 is the beginning of the execution and
tk = tk−1 + πmax + ρ̂πmin (recall that ρ̂ = dρe − 1 < ρ). At every tk time instant there are ρ̂ tasks of processing
time πmin injected along with one πmax-task. What is more, the crash and restarts of the system’s machine are set at
times tk + πmax and then after every πmin time until tk+1 is reached.

By the arrival and error patterns described, every epoch; time interval [tk, tk+1], results in the same behavior.
Algorithm SPT is able to complete only the ρ̂ tasks of processing time πmin, while X is able to complete all tasks
that have been injected at the beginning of the epoch. From the nature of SPT, it schedules first the smallest tasks, and
therefore the πmax ones never have the time to be executed; a πmax-task is scheduled at the last phase of each epoch
which is of size πmin (recall s < ρ ⇒ s < ρ̂). Hence, at time tk, Ctk(SPT, A,E) = kρ̂πmin and Ctk(X,A,E) =

kρ̂πmin + kπmax.
Looking at the pending time at such points, we can easily see that SPT’s is constantly increasing, while X is able

to have pending time zero; Ptk(SPT, A,E) = kπmax but Ptk(X,A,E) = 0.
As a result, we have a maximum completed-time competitive ratio C(SPT) ≤ kρ̂πmin

kρ̂πmin+kπmax
= ρ̂

ρ̂+ρ and a
pending time P(SPT) =∞.

Theorem 6. If tasks can have any processing time in the range [πmin, πmax], and there is no speedup (s = 1),
Algorithm SPT is NOT competitive with respect to completed time, i.e., C(SPT) = 0.

10

Proof: Assuming s = 1, we consider the following scenario as a result of adversarial arrival and error patterns A
and E respectively. Let us fix some ε ∈ (0, 1) and use the notation ∆(k) = (πmax − πmin)εk. Then, let wk be a
task with processing time π(wk) = πmin + ∆(k), for all k = 0, 1, 2, 3, Observe that ∀k, π(wk) ∈ (πmin, πmax]

and π(wk+1) < π(wk). Let us also define time points tk, such that t0 = 0 (the beginning of the execution) and
tk+1 = tk + πmin + 1+ε

2 ∆(k). Let us also define time points t′k = tk−1 + 1−ε
2 ∆(k). The arrival pattern A is such

that task w0 = πmax is injected in the system at time instant t0. Then, for k = 1, 2, . . . task wk is injected at time t′k.
The error pattern E is such that at every time instant tk there is a crash and restart.

We compare SPT with an algorithm X of our choice. In the execution of SPT, task w0 is scheduled as soon as it
arrives, at time t0. On the other hand, X waits until time t′1 for the arrival of w1 and schedules it immediately. When
the processors crashes at time t1 the task w0 executed by SPT is interrupted, since t1 − t0 = πmin + 1+ε

2 ∆(0) <

π(w0) = πmin + ∆(0). However, X is able to complete task w1 because t′1 + π(w1) = 1−ε
2 ∆(1) + πmin + ∆(1) =

πmin + 1+ε
2 ∆(0) = t1. After the restart at t1 SPT schedules task w1, while X waits until t′2 to schedule w2.

The general process is as follows. At time instant tk, SPT schedules task wk while X waits until task wk+1 is
injected at time t′k+1 and schedules it. When the processors crashes at time tk+1 the task wk of SPT is interrupted,
since tk+1 − tk = πmin + 1+ε

2 ∆(k) < π(wk) = πmin + ∆(k). However, X is able to complete task wk+1 because
t′k+1 + π(wk+1) = 1−ε

2 ∆(k + 1) + πmin + ∆(k + 1) = πmin + 1+ε
2 ∆(k) = tk+1.

Letting this adversarial behavior run to infinity we see that at any point in time t, Ct(SPT) = 0, while X will keep
completing the injected tasks. This, results to a completed-time competitive ratio C(SPT) = 0.

4.2. Speedup s ≥ ρ
First, recall that in Theorem 1 we have shown that any work conserving algorithm running with speedup s ≥ ρ has

pending-time competitive ratio at most ρ and completed-time competitive ratio at least 1/ρ. So do the four algorithms
LIS, LPT, SIS and SPT. A natural question that rises is whether we can improve these ratios. Let us start from
some negative results again, focusing at first on the two policies that schedule tasks according to their arrival time,
algorithms LIS and SIS.

Lemma 4. When algorithm LIS runs with speedup s ∈ [ρ, 1+1/ρ), it has a completed-time competitive ratio C(LIS) ≤
1
2 + 1

2ρ and a pending-time competitive ratio P(LIS) ≥ 1+ρ
2 .

Proof: Let speedup s ∈ [ρ, 1 + 1/ρ). We define a combination of arrival and error patterns A and E, and algorithm
X . Patterns A and E behave as follows: Initially, there is a πmin-task injected, followed by a πmax-task. After every
period of πmax time the same injection sequence is repeated, when also the machine is crashed and restarted.

This behavior results to the following execution. There are only active phases of size πmax, during which
an algorithm X can successfully execute the πmax task injected, while LIS is forced to schedule the tasks in the
order they arrive. Observe that, since s < 1 + 1/ρ = (πmin + πmax)/πmax, LIS is able to complete only one
task in each phase. Observe also, that after k phases, where k is an multiple of 2, there will be exactly k tasks of
size πmin pending in the queue of X , while LIS will have pending half of the tasks injected, half of which are of
processing time πmin and the other half πmax. Hence, the pending-time competitive ratio of the algorithm becomes
P(LIS) = πmin+πmax

2πmin
= 1+ρ

2 and the completed-time competitive ratio C(LIS) = πmin+πmax

2πmax
= 1

2 + 1
2ρ , which

completes the proof.

Lemma 5. When algorithm LIS runs with speedup s ∈ [1+1/ρ, 2), it has a completed-time competitive ratio C(LIS) ≤
1
2 + πmin

2π and a pending-time competitive ratio P(LIS) ≥ 1
2 + π

2πmin
for any processing time π ∈ (πmin, πmax) such

that π < πmin

s−1 .

11

Proof: Let speedup s ∈ [1 + 1/ρ, 2). We define a combination of arrival and error patterns A and E, and algorithm
X to behave as follows: We define time instants tk, where k = 0, 1, 2, . . . and t0 = 0 being the beginning of the
execution and tk = tk−1 + π, where π ∈ (πmin, πmax) and is such that πmin+π

s > π ⇒ π < πmin

s−1 . At each tk time
instant there is a machine crash and restart followed by an injection of a πmin-task and then a task of processing time
π.

This behavior results to the following execution. All phases are of size π, during which algorithm X completes
successfully the π-task injected at the beginning of the phase, while LIS is able to complete either a πmin-task
or a π-task. Algorithm LIS follows the order of task arrivals to schedule the tasks. However, by the definition of
processing time π, in a period of length π LIS cannot complete both a πmin and a π-task. Observe that at every
time instant tk where k is a multiple of 2, LIS will be able to complete k/2 tasks of processing time πmin and k/2
tasks of processing time π while X will complete k tasks of processing time π. Respectively, at such time instants
Ptk(LIS) = k(πmin+π)

2 while Ptk(X) = kπmin. This leads to a completed-time competitive ratio C(LIS) = 1
2 + πmin

2π

while time goes to infinity, and a pending-time competitive ratio P(LIS) = 1
2 + π

2πmin
as claimed.

Lemma 6. When algorithm LIS runs with speedup s ∈ [2, 1+ρ), it has a completed-time competitive ratio C(LIS) ≥ 1
and a pending-time competitive ratio P(LIS) ≤ 1.

Proof: Let speedup s ∈ [2, 1 + ρ) and let us analyze first the completed time metric. Let t∗ be the first time in an
execution, at which by means of contradiction, Ct∗(LIS) < Ct∗(X) − 3πmax

2 holds. Also, let time t′ < t∗ be the
latest time instance such that for every t ∈ [t′, t∗], Ct(LIS) < Ct(X) holds. Note that this implies that the queue of
pending tasks of LIS is never empty within the interval [t′, t∗]. What is more, both instants t′ and t∗ are times at which
algorithm X completes a task. By definition of t′, it also holds that Ct′(LIS) ≥ Ct′(X)− πmax.

We then break the interval [t′, t∗] into consecutive periods [t′, t1] and (ti−1, ti] for i = 2, 3 . . . , k, called periods
i. Time instance tk = t∗, and the rest of ti’s are the processor crashing points within the interval. Let us denote by
Ci(X) and Ci(LIS) the processing time completed in period i by X and LIS respectively. We discard the periods
in which Ci(LIS) = 0 since Ci(X) = 0 will hold as well. After discarding these periods we renumber the rest in
sequence from 1 to k′.

In order to prove the theorem, we need to show that the total completed time by X within the interval [t′, t∗] is
larger than the total completed time by LIS within the same interval by at least an additive term of 3πmax

2 − πmax.
If in a period j ≤ k′, algorithm LIS completes more task processing time than X , it must be the case that∑j−1
i=1 Ci(X)−

∑j−1
i=1 Ci(LIS) > Cj(LIS)− Cj(X), otherwise time t′ is not well defined. Else if in a period j < k′

algorithm X completes more than LIS, i.e.,
Cj(X) > Cj(LIS), (1)

then the following holds,

Cj(LIS) + π(τj+1)

s
> Cj(X)⇒ s · Cj(X)− π(τj+1) < Cj(LIS), (2)

where τj+1 is the last task intended for execution by LIS in period j but is not completed, it ends at the head of the
queue of LIS at the end of period j. Hence it will be the first one to be completed in the next period. Therefore
∀j ∈ [2, k′],

Cj(LIS) ≥ π(τj). (3)

From equations 1 and 2, we have that Cj(X) > Cj(LIS) > s · Cj(X)− π(τj+1). Since s ≥ 2, it implies

(s− 1) · Cj(X) < π(τj+1) ⇒ Cj(X) < π(τj+1).

12

What is more, from equations 1 and 3 we have that Cj(X) > π(τj) and hence the following order of relationships
holds

π(τj) ≤ Cj(LIS) < Cj(X) < π(τj+1) ≤ Cj+1(LIS).

Combining this with equation 2:

s · Cj(X)− Cj(LIS) < π(τj+1)

s

k′∑
i=1

Ci(X)−
k′∑
i=1

Ci(LIS) <

k′∑
i=1

π(τi+1) =

k′+1∑
i=2

π(τi)

s

k′∑
i=1

Ci(X)−
k′∑
i=1

Ci(LIS) <

k′∑
i=2

Ci(LIS) + π(τk′+1)

s

k′∑
i=1

Ci(X) < 2

k′∑
i=1

Ci(LIS)− C1(LIS) + π(τk′+1)

k′∑
i=1

Ci(X) <
2

s

k′∑
i=1

Ci(LIS) +
π(τk′+1)− C1(LIS)

s

k′∑
i=1

Ci(X) <

k′∑
i=1

Ci(LIS) +
πmax
s

.

Combining this with the fact that Ct′(LIS) ≥ Ct′(X)− πmax, we have that

Ct∗(X) = Ct′(X) +

k′∑
i=1

Ci(X)

< Ct′(LIS) + πmax +

k′∑
i=1

Ci(LIS) +
πmax
s

= Ct∗(LIS) + πmax +
πmax
s
≤ Ct∗(LIS) +

3πmax
2

,

which contradicts the initial claim and the definition of time t′. Note that again, the last inequality follows from the
fact that speedup s ≥ 2. Hence, even if algorithm X manages to complete more task processing time in some periods,
LIS will eventually surpass its performance.

Since the pending time is complementary to the completed time we can claim the following:

Ct(LIS) ≥ Ct(X)− 3πmax
2

It − Ct(LIS) ≤ It − Ct(X) +
3πmax

2

Pt(LIS) ≤ Pt(X) +
3πmax

2
.

which completes the proof for both completed-time and pending-time competitive ratios being optimal for algorithm
LIS when speedup s ∈ [2, 1 + ρ).

Combining Lemmas 4, 5, 6 and Theorem 2 we have the following theorem.

13

Theorem 7. Algorithm LIS has a completed-time competitive ratio

C(LIS) ≤

{
1
2 + 1

2ρ s ∈ [ρ, 1 + 1/ρ)
1
2 + πmin

2π s ∈ [1 + 1/ρ, 2)
, and C(LIS) ≥ 1 when s ≥ max{ρ, 2}.

It also has a pending-time competitive ratio

P(LIS) ≥

{
1+ρ
2 s ∈ [ρ, 1 + 1/ρ)

1
2 + π

2πmin
s ∈ [1 + 1/ρ, 2)

, and P(LIS) ≤ 1 when s ≥ max{ρ, 2}.

Processing time π ∈ (πmin, πmax) is such that π < πmin

s−1 .

Also, combining Lemma 6 and Theorem 2, yields a completed-time competitive ratio C(LIS) ≤ 1 and a pending-
time competitive ratio P(LIS) ≥ 1, when speedup s ≥ max{ρ, 2}. Recall that ρ ≥ 1 which means that 1 + ρ ≥ 2.

Theorem 8. When algorithm SIS runs with speedup s ∈ [ρ, 1+ρ), it has a completed-time competitive ratio C(SIS) ≤
πmin

π and a pending-time competitive ratio P(SIS) ≥ π+πmax

πmin+πmax
, where π < πmin+πmax

s and π ∈ (πmin, πmax).

Proof: Let speedup s ∈ [ρ, 1 + ρ). We define a combination of arrival and error patterns A and E, algorithm X and
consider tasks of processing time πmax, πmin and π, where π ∈ (πmin, πmax), such that π < πmin+πmax

s . Note that,
such a value π always exists since s < 1 + ρ.

Patterns A and E behave as follows: We define time instants tk, where k is an increasing positive integer (k =

0, 1, 2, . . .), with t = 0 being the beginning of the execution and tk = tk−1 +π. At time tk there is exactly one π-task
injected, followed by one πmax-task, followed by one πmin-task. Crashes and restarts are also set at times tk, causing
active intervals of π duration.

This behavior results to executions where an algorithm X is able to complete the last π-task injected, while SIS is
forced to schedule the latest πmin-task followed by the latest πmax-task, being able to complete only the πmin-task.
Therefore, at the end of each alive interval, Ctk(SIS) = kπmin, Ctk(X) = kπ, Ptk(SIS) = k(π + πmax) and
Ptk(X) = k(πmin + πmax). Hence, the completed-time competitive ratio of algorithm SIS becomes C(SIS) = πmin

π

and its pending-time competitive ratio P(SIS) = π+πmax

πmin+πmax
.

The nature of algorithms LPT and SPT however (scheduling according to the processing time of tasks rather than
their arrival time), gives better results for both the completed and pending time measures.

Lemma 7. When algorithm LPT runs under speedup s ≥ ρ, it has a completed-time competitive ratio C(LPT) ≥ 1.

Proof: As proven in Lemma 1, the number of completed tasks of any work conserving algorithm under any combina-
tion of arrival and error patterns A and E, and speedup s ≥ ρ, is never smaller than the number of completed tasks of
X . The same holds for algorithm LPT, |Nt(LPT)| ≥ |Nt(X)|.

Since the policy of LPT is to schedule first the tasks with the biggest processing time, the ones completed will be of
the maximum size available at all times, which trivially results to a total completed processing time at least as much as
the one ofX ,Ct(LPT) ≥ Ct(X) at any time t. This gives a completed-time competitive ratio of at least 1 as claimed.

Theorem 9. When algorithm LPT runs with speedup s ≥ ρ, it has a completed-time competitive ratio C(LPT) ≥ 1
and a pending-time competitive ratio P(LPT) ≤ 1.

Proof: The completed-time competitiveness of algorithm LPT follows from Lemma 7 above. Here we show its
pending-time complexity; the proof is much more challenging.

We consider a time t and define the ordered set of pending tasks at the scheduler as Qt(LPT) = 〈v1, v2, . . . , vz〉
in an execution of algorithm LPT, and as Qt(X) = 〈u1, u2, . . . , uz′〉 in an execution of an algorithm X . We sort the

14

tasks in both sets in descending lexicographic order according to their processing time and IDs, so v1 ≥ v2 ≥ · · · ≥ vz
and u1 ≥ u2 ≥ · · · ≥ uz′ . By Lemma 1, we know that |Qt(LPT)| ≤ |Qt(X)| at any time t, which means that z ≤ z′

and also |Nt(LPT)| ≥ |Nt(X)|.
We consider any execution and focus on the time instances where algorithm LPT has to make a scheduling decision,

denoting them as tk where k = 0, 1, 2, We then define the following property:

(*) At time t, for any 1 < i ≤ z and j = |Nt(LPT)| − |Nt(X)|, the processing time of the ith task in the
set Qt(LPT) is not bigger than the processing time of (i+ j − 1)st task in the set Qt(X); in other words
vi ≤ ui+j−1.

We now make three claims regarding property (*). First, Claim 1 argues that the property holds at all time instants
tk. In Claim 2 we consider the property at times of injections and show that it is still true. Finally, Claim 3 argues that
the property holds at all times between time instants tk. Combining the results of the three claims yields that property
(*) holds at all times in any execution. Hence, the total pending processing time of algorithm LPT is never bigger than
that ofX plus πmax−πmin which might be the difference in their sets of pending tasks. This results to a pending-time
competitive ratio P(LPT) = 1, as claimed. So the proof of the theorem concludes by stating and proving the three
claims.

Claim 1: For all times tk where k = 0, 1, 2, . . . property (*) holds.

We now prove Claim 1. Taking the beginning of any execution, t0, it is clear that the property (*) holds, as none
of the two algorithms has computed any task yet and the pending sets are exactly the same, ∀i, vi = ui. To be more
precise, since |N0(LPT)| = |N0(X)| = 0, j = 0 and for any i where 1 < i ≤ z, vi ≤ ui−1 also holds.

Now consider by contradiction time tk, the smallest time in an execution, where (*) does not hold. It is clear that it
must be a point at which the machine completes a task in the execution of LPT. We know that right before such points
|Nt−k (LPT)| ≥ |Nt−k (X)|. So there are two cases:
(1) If the two algorithms had the same amount of completed tasks before tk (and hence j− = 0), then for 1 < i− ≤
z, vi− ≤ ui−+j−−1 = ui−−1, where i− and j− are the corresponding parameters right before time tk. At time tk, the
first task in Qtk(LPT), v1, has been completed and hence removed from the set, causing the rest of the tasks to move
up in the ordered set by one position. Then index i = i− − 1 and thus vi = vi−−1 ≤ ui−−1 still holds. Also, since
|Ntk(LPT)| = |Ntk(X)|+ 1, index j = j−+ 1 = 1 and ui+j−1 = ui−−1+j−+1−1 = ui−−1. Therefore, vi ≤ ui+j−1
and the property (*) still holds.
(2) If |Nt−k (LPT)| > |Nt−k (X)|, then vi− ≤ ui−+j−−1 right before tk. At time tk all the tasks in the set of LPT will
move up the list by one position; i = i−−1 and thus vi = vi−−1. Also, the difference between the completed tasks of
LPT and X increases by 1; j = j− + 1 and thus ui−+j−−1 = ui+j− = ui+j−1 (the tasks remain at the same position
for the set of X). Since vi− ≤ ui−+j−−1 = ui+j−1 ⇒ vi = vi−−1 ≤ ui+j−1 holds and so does the property (*).
In both cases we have come to contradiction, so at time tk the property (*) still holds. This completes the proof of
Claim 1.

Claim 2: When a task τ is injected, property (*) still holds.

We now prove Claim 2. Assume a time t when a task τ arrives in the system, so it is added to both Qt(LPT)

and Qt(X). For the purpose of analysis we will look at times tk where k = 0, 1, 2, . . . , since during a time interval
(tk−1, tk) LPT completes exactly one task and even if X has also executed a task and scheduled the next one (even
one that has just been injected), it won’t be able to compute it successfully within the interval. Thus, since it was not
in any of the sets at time tk−1 but is in both of them at time tk, we consider the time tk to show that an injection of a
task does not affect the property (*).

15

Hence, consider by contradiction a time tk, such that it is the smallest time in an execution where there is an
injection of task τ and the property (*) does not hold. We know that |Nt−k (LPT)| ≥ |Nt−k (X)|, so before time tk,
vi− ≤ ui−+j−−1. After the injection, j = j− (remains the same), as τ is added in both sets of pending tasks. Assume
that in Qtk(LPT) task τ is placed between vi− and vi−+1. This means that vi− ≥ τ ≥ vi−+1. By property (*) it
is trivial that vi− ≤ ui−+j−−1, thus τ ≤ ui−+j−−1 as well. So, we know that τ will be placed after ui−+j−−1 in
Qtk(X). It is also clear that vi− and ui−+j−−1 do not change position in the sets and thus at time tk we can say that
vi− becomes vi, still having processing time less than or equal to ui−+j−−1 that becomes ui+j−1.

From property (*) we also know that vi−+1 ≤ ui−+j− . If τ ≥ ui−+j− , then it will also be placed right between
ui−+j−−1 and ui−+j− in the ordered set of X , Qtk(X). They will be renamed to ui+j−1 and ui+j respectively and
ui+j−1 ≥ τ ≥ ui+j will hold as well as the property (*), since the mapping between tasks did not change and the
new task in Qtk(LPT) is mapped to itself in Qtk(X), τ ≤ τ . If τ ≤ ui−+j− , then it will be added somewhere after
ui−+j− in the set Qtk(X). Task ui−+j− does not change position in the set and thus at time tk we can say it becomes
ui+j and is mapped with task τ from the set of LPT, τ ≤ ui+j . Now let us assume that τ is placed after task ui+j+m
in Qtk(X). So for all the tasks vi+c in Qtk(LPT) and all the tasks ui+j+c in Qtk(X) where 1 ≤ c ≤ m, it is true that,
since τ ≥ vi+c and τ ≤ ui+j+c, vi+c ≤ ui+j+c. For the next task in the set of LPT, vi+m+1 we can say for sure that
vi+m+1 ≤ τ since τ is inserted in a higher place in Qtk(LPT). For the rest of tasks in both ordered sets we can safely
say that, since τ has been added to both in higher positions, they have the mapping they had before the injection of τ .
As a result, property (*) still holds after a task injection. This completes the proof of Claim 2.

Claim 3: For every time t in the interval (ti−1, ti), property (*) still holds.

Finally, we prove Claim 3. From Claim 1 we have that at time ti−1, property (*) holds, so for any 1 < m ≤ z and
j = |Nti(LPT)| − |Nti(X)|, it holds vm ≤ um+j−1. We want to prove that this is true for all times t in the interval
(ti−1, ti). Assume by contradiction, that there is a time t∗ in that interval, the first instance where the property does
not hold. Note that for this to occur, X must complete a task at time t∗. We know by definition, that during the
interval (ti−1, ti) LPT can not fully execute any task, as the points where tasks are completed are times tk where
k = 1, 2, 3, There are therefore, two cases to consider:
(1) During the interval neither X completes any task. This means that there is no change in the sets of
pending tasks of the two algorithms and thus at any point in the interval (ti−1, ti), for all 1 < m ≤ z and
j = |Nti(LPT)| − |Nti(X)|, vm ≤ um+j−1.
(2) During the interval, X successfully completes a task. Note that it can complete only one task (since s ≥ ρ), and
that it finishes at time t∗. Also note that before time t∗, |Nt∗−(LPT)| − |Nt∗−(X)| = j′ > 0 must hold because if
the amount of completed tasks were equal, after the removal of the just fully computed task of X , LPT would have
more pending tasks than X , which by Lemma 1 is not possible. So, we know that the set Qt∗(LPT) remains the
same, whereas in the Qt∗(X) the task that was just completed is removed. Recall that, before t∗, vi− ≤ ui−+j−−1.
Using similar arguments as in case (2) of the proof of Claim 1, we may conclude the proof: By X successfully
completing a task, say the kth task uk, where 1 < k ≤ |Nt∗(X)|, all the tasks with i > k will move up in the
list of X by one position, to form the new sequence 〈u1, u2, . . .〉. Hence |Nt∗(LPT)| ≥ |Nt∗(X)| remains true
and |Nt∗(LPT)| − |Nt∗(X)| = j = j− − 1. We want to prove that vi ≤ ui+j−1. For all the tasks vi such that
i + j − 1 < k, the task ui−+j−−1 did not change its position in Q(X). Hence, vi ≤ ui−+j−−1 = ui+j ≤ ui+j−1

(i = i−). However, for all the tasks vi such that i + j − 1 ≥ k, the task ui−+j−−1 has moved up one position in
Q(X). Hence, vi ≤ ui−+j−−1 = u−i+j−2 = ui+j−1 (i =). This completes the proof of Claim 3 and of the theorem.

Theorem 10. When algorithm SPT runs with speedup s ≥ ρ, it has a completed-time competitive ratio C(SPT) ≥ 1

16

and a pending-time competitive ratio P(SPT) ≤ 1.

Proof: Let us consider any execution of algorithm SPT running speedup s ≥ ρ under any arrival and error patterns
A and E respectively. We will prove that at all times in the execution, the completed processing time of SPT is more
than that of an algorithm X; C(SPT) ≥ C(X).

By way of contradiction, we assume a point in time t such that, it is the first time in the execution whereCt(SPT) <

Ct(X). It must be the case that X has just completed a task, since at all earlier times, up to t−, Ct−(SPT) ≥ Ct−(X).
Now let us consider that X has completed a πmin-task. This means that during the interval (t − πmin, t) no

machine failure has occurred and hence algorithm SPT was also able to complete some tasks. Let t∗ be the last time
in (t−πmin, t) that SPT completes a task. It holds that Ct∗(SPT) = Ct−πmin

(SPT) + bs ·πminc ≥ Ct−πmin
(SPT) +

s · πmin + 1, while Ct∗(X) = Ct−πmin(X). At time t, algorithm SPT has the same completed processing time as at
time t∗, whereas X’s increases by πmin. Hence

Ct(SPT) = Ct∗(SPT) ≥ Ct−πmin
(SPT) + s · πmin + 1 ≥ Ct(X) + (s− 1)πmin + 1,

which contradicts the initial assumption. We have therefore shown that C(SPT) ≥ C(X) at all times, which results to
a completed-time competitive ratio C(SPT) ≥ 1.

Complementary to the completed time shown above, observe that for the pending time it will be the case that
Pt(SPT) ≤ Pt(X)− (s− 1)πmin − 1 which gives a pending-time competitive ratio P(SPT) ≤ 1.

5. Latency Competitiveness

In the case of latency, things are clearer between the competitiveness ratio and the speedup bounds for the four
scheduling policies.

Theorem 11. NONE of the algorithms LPT, SIS nor SPT can be competitive with respect to the latency for any
speedup s ≥ 1. That is, L(LPT) = L(SIS) = L(SPT) =∞.

Proof: We consider one of the three algorithms ALG ∈ {LPT,SIS,SPT}, and assume ALG is competitive with
respect to the latency metric, say there is a bound L(ALG) ≤ B on its latency competitive ratio. Then, we define a
combination of arrival and error patterns, A and E, under which this bound is violated. More precisely, we show a
latency bound larger than B, which contradicts the initial assumption and proves the claim.

Let R be a large enough integer that satisfies R > B + 2 and x be an integer larger than sρ (recall that s ≥ 1 and
ρ > 1, so x ≥ 2). Let also π = πmin if ALG = SPT and π = πmax otherwise. We now define time instants tk for
k = 0, 1, 2, . . . , R as follows: time t0 = 0 (the beginning of the execution), t1 = π(xR−1 +xR)−π(w) (observe that
x ≥ 2 and we set R large so t1 is not negative), and tk = tk−1 + π(xR−1 + xR)− πxk−1, for k = 2, . . . , R. Finally,
let us define the time instants t′k for k = 0, 1, 2, . . . , R as follows: time t′0 = t0, t′1 = t1 +π(w), and t′k = tk+πxk−1,
for k > 1.

We define arrival pattern A as follows. At time t0 there is a task w injected by A, where π(w) = πmax if
ALG = SPT and π(w) = πmin otherwise and at every time instant tk, for k ≥ 1, there are xk tasks of processing
time π injected. Observe that π-tasks are such, that ALG always gives priority to them over task w. The error pattern
E is as follows. The machine runs continuously without crashes in every interval [tk, t

′
k], where k = 0, 1, . . . , R. It

then crashes at t′k and does not recover until tk+1.
We now define the behavior of a given algorithm X that runs without speedup. In the first alive interval, [t1, t

′
1],

algorithm X completes task w. In general, in each interval [tk, t
′
k] for every k = 2, . . . , R, it completes the xk−1 tasks

of processing time π injected at time tk−1.

17

On its hand, ALG always gives priority to the x π-tasks over w. Hence, in the interval [t1, t
′
1] it will start executing

the π-tasks injected at time t1. The length of the interval is π(w). Since x > sρ, then x > (s − 1)π(w)/π and
hence πx+π(w)

s > π(w). This implies that ALG is not able to complete w in the interval [t1, t
′
1]. Regarding any other

interval [tk, t
′
k], whose length is πxk−1, the xk π-tasks injected at time tk have priority over w. Observe then, that

since x > sρ, then πxk + π(w) > sπxk−1 and hence πxk+π(w)
s > πxk−1. Then, ALG again will not be able to

complete w in the interval.
As a result, the latency of X at time t′R is Lt′R(X) = π(xR−1 + xR). This follows since, on the one hand, w

is completed at time t′1 = π(xR−1 + xR). On the other hand, for k = 2, . . . , R, the tasks injected at time tk−1
are completed by time t′k, and t′k − tk−1 = tk + πxk−1 − tk−1 = tk−1 + π(xR−1 + xR) − πxk−1 + πxk−1 −
tk−1 = π(xR−1 + xR). At the same time t′R, the latency of ALG is determined by w since it is still not completed,
Lt′R(ALG) = t′R. Then,

Lt′R(ALG) = tR + πxR−1 = tR−1+π(xR−1+xR)−πxR−1+πxR−1

= tR−2+2π(xR−1+xR)−πxR−2 = tR−3+3π(xR−1+xR)−πxR−2−πxR−3

= · · · = t1+(R− 1)π(xR−1+xR)−π
R−2∑
i=1

xi

= Rπ(xR−1+xR)−π(w)−πx
R−1−x
x− 1

.

Hence, the latency competitive ratio of ALG is no smaller than

Lt′R(ALG)

Lt′R(X)
=

Rπ(xR−1 + xR)− π(w)− π x
R−1−x
x−1

π(xR−1 + xR)

= R− π(w)

π(xR−1 + xR)
− xR−1 − x

(x− 1)(xR−1 + xR)

= R− π(w)

π(xR−1 + xR)
− 1

x2 − 1
+

1

xR − xR−2
≥ R− 2 > B.

The three fractions in the third line are no larger than 1 since x ≥ 2, and R is large enough so that t1 ≥ 0 and hence
π(xR−1 + xR) ≥ π(w).

For algorithm LIS one the other hand, we show that even though latency competitiveness cannot be achieved for
s < ρ, as soon as s ≥ ρ LIS becomes competitive. The negative result verifies the intuition that since the algorithm is
not competitive in terms of pending time for s < ρ, neither should it be in terms of latency. Nonetheless, the positive
result verifies the intuition for competitiveness, since for s ≥ ρ algorithm LIS is pending-time competitive and it gives
priority to the tasks that have been waiting the longest in the system.

Lemma 8. For speedup s < ρ, algorithm LIS is not competitive in terms of latency, i.e., L(LIS) =∞.

Proof: Let us consider a combination of arrival and error patterns A and E, and algorithm X . Pattern A is an infinite
arrival pattern that injects a πmin-task at the beginning of the execution, followed by a πmax-task (after infinitesimally
small time ε). After that, it injects only πmin-tasks, one every πmin time. PatternE sets the first crash/restart instant at
πmax + ε time from the beginning and then every πmin period of time, creating a phase (time period between a restart
and the next crash) of length πmax followed by infinite phases of length πmin. These patterns allow an algorithm
X to execute successfully the πmax-task injected at the beginning on the first phase, while algorithm LIS’s policy to
schedule the one that was injected earlier in the system forces it to schedule the πmin-task. Even though it will also

18

be executed, the πmax-task scheduled next will never be completed in any of the following phases since they are all of
size πmin and πmax

s > πmin. This means that algorithm’s LIS latency will increase to infinity with time, while X’s
latency will remain bounded (each task is completed at most πmax + πmin time after its injection).

Hence, completing the theorem, for speedup s < ρ algorithm LIS is not competitive in terms of latency,
L(LIS) =∞, as claimed.

Lemma 9. For speedup s ≥ ρ, algorithm LIS has a latency competitive ratio L(LIS) ≤ 1.

Proof: Consider an execution of algorithm LIS running with speedup s ≥ ρ under any arrival and error patterns
A ∈ A and E ∈ E . Assume interval T = [t0, t1) where time t0 is the instant at which a task w arrived and t1 the time
at which it was completed in the execution of algorithm LIS. Also, assume by contradiction, that task w is such that
Lt1(LIS, w) > max{Lt1(X, τ)}, where τ is some task that arrived before time t1. We will show that this cannot be
the case, which proves latency competitiveness with ratio L(LIS) ≤ 1.

Consider any time t ∈ T , such that task w is being executed in the execution of LIS. Since its policy is to schedule
tasks in the order of their arrival, it means that it has already completed successfully all task that were pending in the
central scheduler at time t0 before scheduling task w. Hence, at time t, algorithm LIS’s queue of pending tasks has
all the tasks injected after time t0 (say x), plus task w, which is still not completed. By Lemma 1, we know that the
there are never more pending tasks in the queue of LIS than that of X and hence |Qt(LIS)| = x + 1 ≤ |Qt(X)|.
This means that there is at least one task pending for X which was injected up to time t0. This contradicts our initial
assumption of the latency of task w being bigger than the latency of any task pending in the execution of X at time
t1. Therefore LIS’s latency competitive ratio when speedup s ≥ ρ, is L(LIS) ≤ 1, as claimed.

The next theorem follows by combining Lemmas 8 and 9.

Theorem 12. Algorithm LIS has latency competitive ratio L(LIS) = ∞ when speedup s < ρ, and L(LIS) ≤ 1
otherwise.

6. Conclusions

In this paper we performed a thorough study on the competitiveness of four popular online scheduling algorithms
(LIS, SIS, LPT and SPT) under dynamic task arrivals and machine failures. More precisely, we looked at worst-case
(adversarial) task arrivals and machine crashes and restarts and compared the behavior of the algorithms under various
speedup intervals. Even though our study focused on the simple setting of one machine, interesting conclusions have
been derived with respect to the efficiency of these algorithms under the three different metrics – completed time,
pending time and latency – and under different speedup values. An interesting open question is whether one can
obtain efficiency bounds as functions of speedup s, upper bounds for the completed-time and lower bounds for the
pending-time and latency competitive ratios. Another natural next step is to extend our investigation to the setting with
multiple machines.

References

[1] S. Anand, Naveen Garg, and Nicole Megow. Meeting deadlines: How much speed suffices? In Luca Aceto,
Monika Henzinger, and Ji Sgall, editors, Automata, Languages and Programming, volume 6755 of Lecture Notes
in Computer Science, pages 232–243. Springer Berlin Heidelberg, 2011.

[2] Matthew Andrews and Lisa Zhang. Scheduling over a time-varying user-dependent channel with applications to
high-speed wireless data. J. ACM, 52(5):809–834, September 2005.

19

[3] Antonio Fernández Anta, Chryssis Georgiou, Dariusz R. Kowalski, Joerg Widmer, and Elli Zavou. Measuring
the impact of adversarial errors on packet scheduling strategies. In SIROCCO, pages 261–273, 2013.

[4] Antonio Fernández Anta, Chryssis Georgiou, Dariusz R. Kowalski, and Elli Zavou. Online parallel scheduling
of non-uniform tasks: Trading failures for energy. In FCT, pages 145–158, 2013.

[5] Joan Boyar and Faith Ellen. Bounds for scheduling jobs on grid processors. In Andrej Brodnik, Alejandro Lpez-
Ortiz, Venkatesh Raman, and Alfredo Viola, editors, Space-Efficient Data Structures, Streams, and Algorithms,
volume 8066 of Lecture Notes in Computer Science, pages 12–26. Springer Berlin Heidelberg, 2013.

[6] Leah Epstein and Rob van Stee. Online bin packing with resource augmentation. Discrete Optimization,
4(34):322 – 333, 2007.

[7] Anis Gharbi and Mohamed Haouari. Optimal parallel machines scheduling with availability constraints. Discrete
Applied Mathematics, 148(1):63 – 87, 2005.

[8] D. Johnson, A. Demers, J. Ullman, M. Garey, and R. Graham. Worst-case performance bounds for simple
one-dimensional packing algorithms. SIAM Journal on Computing, 3(4):299–325, 1974.

[9] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance [scheduling problems]. In Foundations
of Computer Science, 1995. Proceedings., 36th Annual Symposium on, pages 214–221, Oct 1995.

[10] Kirk Pruhs, Jiri Sgall, and Eric Torng. Online scheduling. Handbook of scheduling: algorithms, models, and
performance analysis, pages 15–1, 2004.

[11] Eric Sanlaville and Gnter Schmidt. Machine scheduling with availability constraints. Acta Informatica,
35(9):795–811, 1998.

[12] K. Schwan and H. Zhou. Dynamic scheduling of hard real-time tasks and real-time threads. Software Engineer-
ing, IEEE Transactions on, 18(8):736–748, Aug 1992.

[13] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules. Commun. ACM,
28(2):202–208, February 1985.

[14] F. Yao, A Demers, and S. Shenker. A scheduling model for reduced cpu energy. In Foundations of Computer
Science, 1995. Proceedings., 36th Annual Symposium on, pages 374–382, Oct 1995.

[15] Rob van Stee. Online Scheduling and Bin Packing. PhD Thesis, Leiden University and Centre for Mathematics
and Computer Science, Amsterdam, The Netherlands, 2002.

20

