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Abstract In this paper we explore the problem of achiev-
ing efficient packet transmission over unreliable links with
worst case occurrence of errors. In such a setup, even an om-
niscient offline scheduling strategy cannot achieve stability
of the packet queue, nor is it able to use up all the avail-
able bandwidth. Hence, an important first step is to identify
an appropriate metric to measure the efficiency of schedul-
ing strategies in such a setting. To this end, we propose an
asymptotic throughput metric which corresponds to the long
term competitive ratio of the algorithm with respect to the
optimal. We then explore the impact of the error detection
mechanism and feedback delay on our measure. We com-
pare instantaneous with deferred error feedback, which re-
quires a faulty packet to be fully received in order to detect
the error. We propose algorithms for worst-case adversarial
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and stochastic packet arrival models, and formally analyze
their performance. The asymptotic throughput achieved by
these algorithms is shown to be close to optimal by deriv-
ing lower bounds on the metric and almost matching upper
bounds for any algorithm in the considered settings. Our col-
lection of results demonstrate the potential of using instan-
taneous feedback to improve the performance of communi-
cation systems in adverse environments.

Keywords Packet Scheduling · Adversarial Errors ·
Unreliable Link · Asymptotic Throughput · Competitive
Analysis · Error Feedback Mechanisms
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1 Introduction

Motivation. Packet scheduling (Meiners and Torng, 2007)
is one of the fundamental problems in computer networks.
As packets arrive, the sender (or scheduler) needs to con-
tinuously make scheduling decisions, without knowledge
of future packet arrivals, and typically the objective is to
maximize the throughput of the link or to achieve stabil-
ity. Therefore, this problem is many times treated as an on-
line scheduling problem (Awerbuch et al., 1992; Pruhs et al.,
2007) and competitive analysis (Ajtai et al., 1994; Sleator
and Tarjan, 1985) is used to evaluate the performance of
proposed solutions: the worst-case performance of an on-
line algorithm is compared with the performance of an of-
fline optimal algorithm that has a priori knowledge of the
problem’s input.

In this work we focus on online packet scheduling over
unreliable links, where packets transmitted over the link
might be corrupted by bit errors. Such errors may, for ex-
ample, be caused by an increased noise level or transient in-
terference on the link, that in the worst case could be caused
by a malicious entity or an attacker. In the case of an er-
ror the affected packets must be retransmitted. To investi-
gate the impact of such errors on the scheduling problem
under study and provide provable guarantees, considering
the worst case occurrence of errors; errors are caused by an
omniscient and adaptive adversary (Richa et al., 2012). The
adversary has full knowledge of the protocol and its history,
and it uses this knowledge to decide whether it will cause
errors on the packets transmitted in the link at a certain time
or not. Within this general framework, the packet arrival is
continuous and can either be controlled by the adversary or
be stochastic.

Specifically, we consider a single link between two sta-
tions, sender and receiver, with the sender scheduling the
packets that arrive dynamically to be transmitted over the
link. Packets may have lengths ` ∈ [`min, `max], where
`min and `max are the smallest and largest lengths respec-
tively. We denote by γ = `max/`min, γ = bγc and γ̂ =

dγe−1. What is more, the arrival times are either controlled
by the adversary, or are stochastic, following a Poisson dis-
tribution with parameter λ > 0. In this case, the packets
have probability p > 0 of being of length `min and proba-
bility q > 0 of being of length `max, where p+q = 1. How-
ever, the link is unreliable, that is, transmitted packets might
be corrupted by bit errors. We consider an adversary con-
trolling them, characterizing the worst-case scenarios, and
look at instantaneous and deferred feedback mechanisms
for the notification of the sender. For the performance evalu-
ation, we pursue long-term competitive analysis. We denote
by TAlg = infA∈A,E∈E limt→∞ TAlg(A,E, t) the asymp-
totic throughput of online algorithm Alg, where A is the set
of packet arrival patterns and E the set of link error patterns.

TAlg(A,E, t) is the throughput ratio of Alg under arrival
and error patterns A and E up to time t.

Contributions. Packet scheduling performance is often
evaluated using throughput, measured in absolute terms
(e.g., in bits per second) or normalized with respect to the
bandwidth (maximum transmission capacity) of the link.
This throughput metric makes sense for a link without er-
rors or with random errors, where the full capacity of the link
can be achieved under certain conditions. However, if adver-
sarial bit errors can occur during the transmission of pack-
ets, the full capacity is usually not achievable by any pro-
tocol, unless restrictions are imposed on the adversary (An-
drews and Zhang, 2005; Richa et al., 2012). Moreover, since
a bit error renders a whole packet unusable (unless costly
techniques like PPR (Jamieson and Balakrishnan, 2007) are
used), a throughput equal to the capacity minus the bits with
errors is not achievable either. As a consequence, in a link
with adversarial bit errors, a fair comparison should com-
pare the throughput of a specific algorithm to the maximum
achievable amount of traffic that any protocol could send
across the link. This introduces the challenge of identifying
an appropriate metric to measure the throughput of a proto-
col over a link with adversarial errors.

– Asymptotic throughput: Our first contribution is the pro-
posal of an asymptotic throughput metric for packet
scheduling algorithms under unreliable links (Section 2).
This metric is a variation of the competitive ratio typ-
ically considered in online scheduling and bin packing
problems (see the works of Van Stee (2002) and Borodin
and El-Yaniv (1998)). Instead of considering the ratio of
the performance of a given algorithm over that of the op-
timal offline algorithm, we consider the limit of this ra-
tio as time goes to infinity. This corresponds to the long
term competitive ratio of the algorithm with respect to
the optimal.

– Problem outline: We consider a sender that transmits
packets to a receiver over an unreliable link, where the
errors are controlled by an adversary. Regarding packet
arrivals (at the sender), we consider two models: (a) the
arrival times and their sizes are also controlled by an ad-
versary, and (b) the arrival times and their sizes follow a
stochastic distribution. We introduce this second model
in order to decrease the power and control of the adver-
sary over the system and compare with (a). In partic-
ular, we consider a Poisson distribution of arrivals (for
details see Section 2), which is a classical distribution
characterizing average cases. Note that it is an optimistic
distribution for the realistic characterization of network
traffic Becchi (2008). Nonetheless, we believe it of im-
portance to analyze it before looking into other distribu-
tions, and as will be shown later, the analysis is not triv-
ial. Note that the arrival model (a) gives results for the
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Arrivals Feedback Upper Bound Lower Bound
Deferred 0 0

Adversarial Instantaneous TAlg ≤ γ/(γ + γ) TSL−Pr ≥ γ/(γ + γ)

TLL = 0, TSL ≤ 1/(γ + 1)

Deferred 0 0

Stochastic Instantaneous TAlg ≤ γ/γ TCSL−Pr ≥ γ/(γ + γ), if λp`min ≤ γ/(2γ)
TAlg ≤ max {λp`min, γ/(γ + γ)}, if p < q TCSL−Pr ≥ min {λp`min, γ/γ}, otherwise

TLL = 0, TSL ≤ 1/(γ + 1)

Table 1: Summary of results presented. The results for deferred feedback are for one packet length, while the results for
instantaneous feedback are for 2 packet lengths `min and `max. Note that γ = `max/`min, γ = bγc, λp is the arrival rate of
`min packets, and p and q = 1− p are the proportions of `min and `max packets, respectively.

worst-case, while arrival model (b) gives results for the
average-case. The general offline version of our schedul-
ing problem, in which the scheduling algorithm knows a
priori when errors will occur, is NP-hard (see Section 3).
This further motivates the need for devising simple and
efficient online algorithms for the problem we consider.

– Feedback mechanisms: Then, moving to the online prob-
lem requires detecting the packets received with errors,
in order to retransmit them. The usual mechanism (Lin
and Costello, 2004), which we call deferred feedback,
detects and notifies the sender that a packet has suffered
an error after the whole packet has been received by the
receiver. We show that, even when the packet arrivals
are stochastic and packets have the same length, no on-
line scheduling algorithm with deferred feedback can
be competitive with respect to the offline one. Hence,
we turn our attention on a second mechanism, which
we call instantaneous feedback. It detects and notifies
the sender of an error the moment this error occurs.
This mechanism can be thought of as an abstraction of
the emerging Continuous Error Detection (CED) frame-
work (Raghavan et al., 2001) that uses arithmetic cod-
ing to provide continuous error detection. The difference
between deferred and instantaneous feedback is dras-
tic, since for the instantaneous feedback mechanism, and
for packets of the same length, it is easy to obtain opti-
mal asymptotic throughput of 1, even in the case of ad-
versarial arrivals. However, the problem becomes sub-
stantially more challenging in the case of non-uniform
packet lengths. Hence, we analyze the problem for the
case of packets with two different lengths, `min and
`max, where `min < `max.

– Bounds for adversarial arrivals: We show (Section 4),
that any online algorithm with instantaneous feedback
can achieve at most almost half the asymptotic through-
put with respect to the offline one. (See Fig. 1 for the
graphical representation of the upper bound.) We also

Fig. 1: Upper bound on the asymptotic throughput under ad-
versarial packet arrivals and instantaneous feedback. (a) For
any algorithm Alg, TAlg ≤ γ/(γ + γ). (b) For algorithm
SL, TSL ≤ 1/(γ + 1). Observe that SL has a significantly
lower bound as γ increases.

show that two basic scheduling policies, giving prior-
ity either to short (SL – Shortest Length) or long (LL
– Longest Length) packets, are not efficient under ad-
versarial errors. Therefore, we devise a new algorithm,
called SL-Preamble, and show that it achieves the opti-
mal online asymptotic throughput. Our algorithm, trans-
mits a “sufficiently” large number of short packets while
making sure that long packets are transmitted from
time to time.

– Bounds for stochastic arrivals: In the case of stochas-
tic packet arrivals (Section 5), as one might expect,
we obtain better asymptotic throughput in some cases.
The results are summarized in Table 1 and a graphi-
cal representation can be seen better in Fig. 2. We pro-
pose and analyze an algorithm, called CSL-Preamble,
that achieves optimal asymptotic throughput. It sched-
ules packets according to SL-Preamble, giving prefer-
ence to short packets depending on the parameters of
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the stochastic distribution of packet arrivals1. We show
that the performance of algorithm CSL-Preamble is op-
timal for a wide range of parameters of stochastic dis-
tributions of packets arrivals, by proving the matching
upper bound2of the asymptotic throughput for any algo-
rithm in this setting.

– A note on randomization: All the proposed algorithms
are deterministic. Using Yao’s principle, Yao (1977), it
follows that considering randomized algorithms does not
improve the results; the upper bounds on the asymptotic
throughput already discussed hold also in the random-
ized case, for oblivious adversaries (see Section 6).

To the best of our knowledge, this is the first work that
investigates in depth the impact of adversarial worst-case
link errors on the throughput of the packet scheduling prob-
lem. Collectively, our results (see Table 1) show that in-
stantaneous feedback can achieve a significant asymptotic
throughput under worst-case adversarial errors (almost half
the asymptotic throughput that the offline optimal algorithm
can achieve). Furthermore, we observe that in some cases,
stochastic arrivals allow for better performance.

Related work. A vast amount of work exists for online
scheduling. Here we focus only on the work that is most
related to ours, but for more information we advice the
reader to consult the works of Pinedo (2012) and Pruhs et al.
(2007). The work of Kesselheim (2012) considers the packet
scheduling problem in wireless networks. Like our work, it
looks at both stochastic and adversarial arrivals. Unlike our
work though, it considers only reliable links. Its main ob-
jective is to achieve maximal throughput guaranteeing sta-
bility, meaning bounded time from injection to delivery. The
work of Andrews and Zhang (2005) considers online packet
scheduling over a wireless channel, where both the channel
conditions and the data arrivals are governed by an adver-
sary. Its main objective is to design scheduling algorithms
for the base-station to achieve stability in terms of the size
of queues of each mobile user. Our work does not focus on
stability, as we assume errors controlled by an unbounded
adversary that can always prevent it. The work of Richa et al.
(2012) considers the problem of devising local access con-
trol protocols for wireless networks with a single channel,
that are provably robust against adaptive adversarial jam-
ming. At certain time steps, the adversary can jam the com-
munication in the channel in such a way that the wireless
nodes do not receive messages (unlike our work, where the
receiver might receive a message, but it might contain bit
errors). Although the model and the objectives of this line

1 If the distribution is not known, then obviously one needs to use
the algorithm developed for the case of adversarial arrivals that needs
no knowledge a priori.

2 Analyzing algorithms yields lower bounds on the asymptotic
throughput, while analyzing adversarial strategies yields upper bounds.

of work is different from ours, it shares the same concept
of studying the impact of adversarial behavior on network
communication. Another related work is the one of Anan-
tharamu et al. (2011), in which the authors explore the effect
of adversarial jamming on broadcasting in multiple-access
channels under dynamic packet arrivals. They constrain both
the arrival and jamming processes and give upper bounds on
worst-case latency of widely used protocols. Last but not
least, the work of Li (2011), tries to maximize the weighted
throughput over a fading wireless channel considering pack-
ets with deadlines. They look at both the offline and online
version of the problem and consider preemptive and non-
preemptive scheduling. One difference with our work is that
they consider uniform packet lengths with different weights,
and their transmission time depends on the channel’s qual-
ity (which changes with time). Moreover, instead of consid-
ering the transmission time for the metric, as we do, they
consider the packets’ weights.

We can also relate our work with the online version of
the bin packing problem (Van Stee, 2002), where the ob-
jects to be assigned to bins are the packets arriving to the
sending station and the bins are the time intervals between
two consecutive link failures. Some of the wide research that
has taken place over the years around this problem, we con-
sider to be related to ours. For example, Epstein and van
Stee (2007) as well as Van Stee (2002) considered online bin
packing with resource augmentation in the size of the bins,
and used the so called asymptotic performance ratio for the
evaluation of the competitiveness of the algorithm they pro-
pose. This metric corresponds to our asymptotic throughput,
since they both follow the idea of long-term competitive-
ness. Observe that the essential difference of the online bin
packing problem with the one that we are considering, is
that in our system the bins and their sizes (intervals between
failures) are unknown.

Another problem related to our work is the one of buffer
management, see for example the survey of Goldwasser
(2010), and the works of Li and Zhang (2009), Kogan et al.
(2012) and Kogan et al. (2013). The theoretical community
began applying the competitive analysis in this domain of
work in 2000, with the works of Aiello et al. (2000), Man-
sour et al. (2000) and Kesselman et al. (2004). Focusing on
the work of Li and Zhang (2009) in particular, it concen-
trates on a variant of the FIFO buffering model. Packets ar-
rive dynamically and they are either sent or dropped due to
the limited capacity of the buffer, say B. This can be seen as
the corresponding jamming in our mode, but with a constant
rate B.

Finally, the work of Jurdzinski et al. (2014) was moti-
vated by the conference version of the present paper, and
proposed an algorithm for scheduling packets of an arbitrary
number of lengths, say k.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2: In the left column we give 3D representations of the upper bounds on the asymptotic throughput under stochastic
packet arrivals for a range of `min and `max values. In the right column we give 2D representations of the same graph, with
additional information on the lower bound on the asymptotic throughput, under arbitrarily fixed `max. In both columns we
assume `min-packet arrival probabilities as follows: (a) and (b) p = 0.01, (c) and (d) p = 0.1 and (e) and (f) p = 0.3.
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2 Model

Network setting. We consider a sending station transmit-
ting packets over a link. Packets arrive at the sending sta-
tion continuously and may have different lengths; each of
them associated with its arrival time (based on the sta-
tion’s local clock) and its length. We denote `min and `max
to be the smallest and largest lengths respectively, that a
packet may have. We also use the notation γ = `max/`min,
γ = bγc and γ̂ = dγe − 1. We assume that all packets
are transmitted at the same bit rate through the link, hence
the transmission time is proportional to the packet’s length.
However, the link is unreliable, that is, transmitted packets
might be corrupted by bit errors.

Arrival models.

– Adversarial: The packets’ arrival time and length are
governed by an adversary. We define an adversarial ar-
rival pattern as a collection of packet arrivals caused by
the adversary.

– Stochastic: We consider a probabilistic distribution Da,
under which packets arrive at the sending station and a
probabilistic distribution Ds, for the length of the pack-
ets. In particular, we assume packets arriving according
to a Poisson process with parameter λ > 0. When con-
sidering two packet lengths, `min and `max, each packet
that arrives is assigned one of the two lengths indepen-
dently, with probabilities p > 0 and q > 0 respectively,
where p+ q = 1.

Packet bit errors. We consider an adversary that controls
the bit errors of the packets transmitted over the link. An
adversarial error pattern is defined as a collection of error
events on the link caused by the adversary. More precisely,
an error event at time t specifies that an instantaneous er-
ror occurs on the link at time t, so the packet that happens
to be on the link at that time is corrupted with bit errors.
A corrupted packet transmission is considered to be unsuc-
cessful, therefore the packet needs to be retransmitted in full.
Even though we focus mainly on the instantaneous feedback
mechanism for the notification of the sender about the error
(the sending station is notified about the bit error as soon as
it happens), in the case of deferred feedback the sending sta-
tion is only notified about the error when the packet is fully
received by the receiving end of the link.

The power of the adversary. Adversarial models are typi-
cally used to argue about the algorithm’s behavior in worst-
case scenarios. In this work we assume an adaptive adver-
sary that knows the algorithm and the history of the execu-
tion up to the current point in time. In the case of stochastic
arrivals, this includes all stochastic packet arrivals up to this

point, and the length of the packets that have arrived. How-
ever it only knows the distribution but neither the exact tim-
ing nor the length of the packets arriving beyond the current
time.

Note that, in the model of adversarial arrivals the ad-
versary has full knowledge of the computation, as it con-
trols both packet arrivals and errors, and can simulate the
behavior of the algorithm in the future (there are no random
bits involved in the computation). This is not the case in the
model with stochastic arrivals, where the adversary does not
control the timing of future packet arrivals, but knows only
about the packet arrival and length distributions.

Efficiency metric: Asymptotic throughput. Due to dy-
namic packet arrivals and adversarial errors, the real link
capacity may vary throughout the execution. Therefore, we
view the problem of packet scheduling in this setting as
an online problem and we pursue long-term competitive
analysis. Specifically, let A be an arrival pattern and E an
error pattern. For a given deterministic algorithm Alg, let
LAlg(A,E, t) be the total length of all the successfully
transmitted (i.e., non-corrupted) packets by time t under pat-
terns A and E. Let OPT be the offline optimal algorithm
that knows the exact arrival and error patterns before the
start of the execution. We assume that OPT devises an opti-
mal schedule that maximizes at each time t the successfully
transferred packetsLOPT(A,E, t). Observe that, in the case
of stochastic arrivals, the worst-case adversarial error pattern
may depend on stochastic injections. Therefore, we view E

as a function of an arrival pattern A and time t.
In particular, for an arrival patternA we consider a func-

tion E = E(A, t) that defines errors up to time t based on
the behavior of a given algorithm Alg under the arrival pat-
tern A up to time t and the values of function E(A, t′) for
t′ < t.

Let A denote a considered arrival model, i.e., a set of
arrival patterns in case of adversarial, or a distribution of
packet injection patterns in case of stochastic, and let E de-
note the corresponding adversarial error model, i.e., a set
of error patterns derived by the adversary, or a set of func-
tions defining the error event times in response to the arrivals
that already took place in case of stochastic arrivals. We re-
quire that any pair of arrival and error patterns A ∈ A and
E ∈ E must allow non-trivial communication, that is, the to-
tal length of transmitted packets is unbounded with t going
to infinity; limt→∞ LX(A,E, t) =∞, for any algorithmX .

For arrival pattern A, adversarial error pattern E and
time t, we define the asymptotic throughput TAlg(A,E, t)
of a deterministic algorithm Alg by time t as:

TAlg(A,E, t) =
LAlg(A,E, t)

LOPT(A,E, t)
.
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For completeness, TAlg(A,E, t) equals 1 if
LAlg(A,E, t) = LOPT(A,E, t) = 0. Then, we de-
fine the asymptotic throughput of algorithm Alg in the
adversarial arrival model as:

TAlg = lim
t→∞

inf
A∈A,E∈E

TAlg(A,E, t) ,

while in the stochastic arrival model it needs to take into
account the random distribution of arrival patterns inA, and
is defined as follows:

TAlg = lim
t→∞

inf
E∈E

EA∈A[TAlg(A,E, t)] .

Note that the asymptotic throughput is different from
the classical competitiveness ratio. In the classical compet-
itive analysis, an algorithm Alg would be x-competitive if
LAlg(A,E, t) ≤ x · LOPT(A,E, t) + ∆, for any t, OPT
and patterns A and E, from which ∆ is independent. The
difference with the efficiency measure we described above,
basically lies in the additive term ∆ of the competitiveness
formula which in our case may depend on time, and the fact
that the final ratio is taken as the limit of the instantaneous
ratio as time goes to infinity.

To prove lower bounds on the asymptotic throughput, we
compare the performance of a given algorithm with that of
OPT. When deriving upper bounds, we compare the perfor-
mance of some carefully chosen offline algorithm OFF with
the performance of any online algorithm Alg. As we demon-
strate later, this approach leads to accurate upper bound re-
sults.

Finally, we consider work conserving online scheduling
algorithms, in the sense that, as long as there are pending
packets, the sender does not cease to schedule them. Note
that it does not make any difference whether one assumes
that offline algorithms are work-conserving or not, since
their throughput is the same in both cases (a work conserv-
ing offline algorithm always transmits, but stops the ongoing
transmission as soon as an error occurs and then continues
with the next packet). Hence for simplicity we do not as-
sume offline algorithms to be work conserving.

3 NP-hardness

We now prove the NP-hardness of the offline version of the
scheduling problem we are studying in this work, defined
for a single link as follows:

INSTANCE (Throughput Problem): Set X of packets,
for each packet x ∈ X a length l(x) ∈ N+, an arrival time
a(x) ∈ Z0, a sequence of time instants 0 = T0 < T1 <

T2 < · · · < Tk, Ti ∈ N0, so that the link suffers an in-
stantaneous error at each time Ti, i ∈ [1, k] (in other words,
at each time Ti, any packet transmitted over the link is cor-
rupted).

QUESTION: is there a schedule of X so that error-free
packets of total length Tk are transmitted by time Tk over
the link?

Theorem 1 The Throughput Problem is NP-hard.

Proof We use the 3-Partition problem which is known to be
an NP-hard problem.

INSTANCE: Set A of 3m elements, a bound B ∈ N+

and, for each a ∈ A, a size s(a) ∈ N+ such that B/4 <

s(a) < B/2 and
∑
a∈A s(a) = mB.

QUESTION: can A be partitioned into m disjoint sets
{A1, A2, . . . , Am} such that, for each 1 ≤ i ≤ m,∑
a∈Ai s(a) = B?
We reduce the 3-Partition problem to the Throughput

Problem, defined for a single link. The reduction is by set-
ting X = A, l() = s(), a() = 0, k = m, and Ti = iB

for i ∈ [1, k]. If the answer to 3-Partition is affirmative, then
for the Throughput Problem there is a way to schedule (and
transmit) the packets in X in subsets {X1, X2, . . . , Xm} =
{A1, A2, . . . , Am}, so that all the packets inAi can be trans-
mitted over the link in the interval [Ti−1, Ti]. Furthermore,
since

∑
a∈Ai s(a) =

∑
x∈Xi l(x) = B, and Ti−Ti−1 = B,

the total length of packets transmitted by time Tk is Tk.
The reverse argument is similar. If there is a way to

schedule packets so that the total packet length transmitted
by time Tk is Tk, in each interval between two error events
on the link there must be exactly B bytes of packets trans-
mitted. Then, the packets can be partitioned into subsets of
total length B each. This implies the partition of A. ut

4 Adversarial Arrivals

This section focuses on adversarial packet arrivals. We first
study the asymptotic throughput of any algorithm under the
deferred feedback mechanism, to show the necessity of im-
mediate feedback. Recall that with the deferred feedback the
sending station is notified about a corrupted packet only af-
ter its full transmission.

Theorem 2 No packet scheduling algorithm Alg can
achieve an asymptotic throughput larger than 0 under ad-
versarial arrivals in the deferred feedback model, even with
one packet length.

Proof Consider the case at which packets arrive frequently
enough so that there are always some packets ready at the
sender station, when it is about to make a decision. The
algorithm will then greedily send a train of packets, while
the adversary injects bit errors at a distance of exactly ` so
that each error hits a different packet. Hence, the Alg can-
not successfully complete any transmission (that is, it can-
not transmit non-corrupted packets). At the same time, an
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offline algorithm OFF is able to send packets in each inter-
val of length `without errors, which results to an asymptotic
throughput equal to 0 as claimed. ut

We therefore focus on immediate feedback, for the rest
of the section. Observe that it is relatively easy and efficient
to handle packets of only one length.

Proposition 1 Any work conserving online scheduling al-
gorithm with instantaneous feedback has optimal asymp-
totic throughput of 1 when all packets have the same length.

Proof Consider an algorithm Alg. Since it is work conserv-
ing, as long as there are pending packets, it schedules them.
If an error is reported by the feedback mechanism, the algo-
rithm simply retransmits another (or the same) packet. Since
the notification is instantaneous, it is not difficult to see that
the a priori knowledge that the offline optimal algorithm has,
does not help in transmitting more non-corrupted packets
than Alg. ut

4.1 Upper Bound

Let Alg be any deterministic algorithm for the considered
packet scheduling problem. In order to prove upper bounds,
Alg will be competing with an offline algorithm OFF. The
scenario is as follows. We consider an infinite supply of
packets of length `max and initially assume that there are
no packets of length `min. We define as a link error event,
the point in time when the adversary corrupts (causes an er-
ror to) any packet that happens to be in the link at that spe-
cific time. We divide the execution in phases, defined as the
periods between two consecutive link error events. We dis-
tinguish 2 types of phases as described below and give a
description for the behavior of the adversarial modelsA and
E . The adversary controls the arrivals of packets at the send-
ing station and error events of the link, as well as the actions
of algorithm OFF. The two types of phases are as follows:

1. A phase in which Alg starts by transmitting an `max
packet (the first phase of the execution belongs to this
class). Immediately after Alg starts transmitting the
`max packet, a set of γ̂ `min-packets arrive, that are
scheduled and transmitted by OFF. After OFF completes
the transmission of these packets, a link error occurs,
so Alg cannot complete the transmission of the `max
packet (more precisely, the packet undergoes a bit error,
so it needs to be retransmitted). Here we use the fact that
γ̂ < γ.

2. A phase in which Alg starts by transmitting an `min
packet. In this case, OFF transmits an `max packet. Im-
mediately after this transmission is completed, a link er-
ror occurs. Observe that in this phase Alg has transmitted
successfully several `min packets (up to γ of them).

Let A and E be the specific adversarial arrival and error
patterns in an execution of Alg. Let us consider any time t (at
the end of a phase for simplicity) in the execution. Let p1 be
the number of phases of type 1 executed by time t. Similarly,
let p2(j) be the number of phases of type 2 executed by time
t in which Alg transmits j `min packets, for j ∈ [1, γ]. Then,
the asymptotic throughput can be computed as follows.

TAlg(A,E, t) =
`min

∑γ
j=1 jp2(j)

`max
∑γ
j=1 p2(j) + `minγ̂p1

. (1)

From the arrival pattern A, the number of `min pack-
ets injected by time t is exactly γ̂p1. Hence,

∑γ
j=1 jp2(j) ≤

γ̂p1. It can be easily observed from Eq. 1 that the asymptotic
throughput increases with the average number of `min pack-
ets transmitted in the phases of type 2. Hence, the through-
put would be maximal if all the `min packets are used in
phases of type 2 with γ packets. With the above we obtain
the following theorem.

Theorem 3 The asymptotic throughput of Alg under adver-
sarial patternsA andE and up to time t is at most γ

γ+γ ≤
1
2

(the equality holds iff γ is an integer).

Proof Applying the bound
∑γ
j=1 p2(j) ≥

∑γ
j=1

jp2(j)
γ in

Eq (1), we get

TAlg(A,E, t) ≤
`min

∑γ
j=1 jp2(j)

`max
γ

∑γ
j=1 jp2(j) + `minγ̂p1

,

which is a function that increases with
∑γ
j=1 jp2(j). Since∑γ

j=1 jp2(j) ≤ γ̂p1, the asymptotic throughput can be
bounded by

TAlg(A,E, t) ≤
`minγγ̂p1/γ

`max
γ̂p1
γ + `minγ̂p1

=
`minγ

`max + `minγ

=
γ

γ + γ
.

ut

Two natural scheduling policies one could consider for
this problem are the Shortest Length (SL) and Longest
Length (LL) algorithms; the first gives priority to `min pack-
ets, whereas the second gives priority to the `max packets.
However, these two policies are not efficient in the con-
sidered setting. We prove that algorithm SL cannot have
asymptotic throughput larger than 1

γ+1 under adversarial ar-
rivals. Algorithm LL is even worse; its asymptotic through-
put cannot be more than 0 even under stochastic arrivals.

Theorem 4 Algorithm SL cannot achieve asymptotic
throughput larger than 1

γ+1 under adversarial arrivals, even
if there is a schedule that transmits all the packets.
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Proof The scenario works as follows. At time 0 two packets
arrive, one of length `max and one of length `min. SL sched-
ules first the packet of length `min, and when it is transmit-
ted, it schedules the packet of length `max. Meanwhile, an
offline algorithm OFF schedules first the packet of length
`max. When it is transmitted, the adversary causes an error
on the link, so SL does not transmit successfully the packet
of length `max. Now, SL only has one packet of length `max
in its queue (when this scenario is repeated will have sev-
eral, but no packets of length `min). Hence, SL schedules
this packet, while OFF schedules the packet of length `min
that has in its queue. When OFF completes the transmis-
sion of the `min packet, the adversary causes an error on
the link. This scenario can be repeated forever. In each in-
stance, OFF transmits one packet of length `max and one of
length `min, while SL only transmits one packet of length
`min. Hence, the throughput achieved in this execution is

`min
`max+`min

= 1
γ+1 . Observe that at the end of each instance

of the scenario the queue of OFF is empty. ut

Theorem 5 Algorithm LL cannot achieve asymptotic
throughput larger than 0, even under stochastic arrivals.

Proof The scenario is as follows. The adversary blocks
all successful transmissions (by placing errors at distance
smaller than `min) until at least two packets have arrived,
one of length `max and one of length `min. Algorithm LL
schedules a packet of length `max, while an offline algo-
rithm OFF schedules a packet of length `min. Once OFF
completes the transmission of this packet, the adversary
causes an error on the link, and hence LL does not com-
plete the transmission of the `max packet. Then, again the
adversary blocks successful transmissions until OFF has at
least one `min packet pending. The scenario is repeated for-
ever; while OFF will be transmitting successfully all `min
packets, LL will be stuck on the unsuccessful transmissions
of `max packets. Hence, the throughput will be 0. ut

4.2 Lower Bound and Algorithm SL-Preamble

We therefore propose algorithm SL-Preamble, that tries to
combine in a graceful and efficient manner these two poli-
cies, SL and LL. It is a bit surprising, that their combination
provides an optimal asymptotic throughput, while none of
them is sufficiently good when considered on its own.

Algorithm description: At the beginning of the execution
and whenever the sender is (immediately) notified by the in-
stantaneous feedback mechanism that a link error occurred,
it checks the queue of pending packets to see whether there
are at least γ packets of length `min available for transmis-
sion. If there are, then it schedules γ of them — this is called
a preamble — and then the algorithm continues to sched-
ule packets using the LL policy. Otherwise, if there are not

enough `min packets available, it simply schedules packets
following the LL policy.

Algorithm analysis: We show that algorithm SL-Preamble
achieves an asymptotic throughput that matches the upper
bound shown in the previous subsection, and hence, it is op-
timal. Let us define two types of time periods for the link in
the executions of algorithm SL-Preamble: the active and the
inactive periods. An active period is one during which the
link experiences no errors and the sender’s queue of pend-
ing packets (in SL-Preamble) does not become empty. An
inactive period is a non-active one. In other words, a time
interval T = [ti, ti+1) is an active period if it starts with
time instant ti such that (a) it is the time of some task injec-
tion after an interval where the queue of SL-Preamble has
been empty, or (b) it is the time right after an error in the
link. Active period T ends with time instant ti+1 such that
(i) it is the time at which an error occurs in the link, or (ii) it
is the time at which the queue of pending packets becomes
empty for SL-Preamble.

Note that in case (a) the corresponding inactive period
had started when the queue of SL-Preamble became empty
before time ti, say at time instant t′, and hence covers inter-
val [t′, ti). On the other hand, in case (b) and (i) hold, the
corresponding inactive period will only be the time instant
right before ti, and hence neither SL-Preamble nor OPT can
make any progress in transmitting a packet. Finally, in case
(b) and (ii) hold, the corresponding inactive period will start
at time ti+1 until new packets arrive at the sender, say at time
instant t′′. Observe that during the inactive periods it must
be the case that the pending queue of OPT is also empty,
otherwise it would contradict the optimality of OPT. (Recall
that we consider offline algorithms being work conserving.
OPT is also an offline algorithm, since it knows both arrival
and error patterns from the beginning). Hence, we look at
the active periods, which we refer to as phases, and accord-
ing to the above algorithm we observe that there are four
types of phases that may occur.

1. Phase starting with `min packet and has length
L < γ`min.

2. Phase starting with `min packet and length L ≥ γ`min.
3. Phase starting with `max packet and has length
L < `max.

4. Phase starting with `max packet and length L ≥ `max.

We now introduce some notation that will be used through-
out the analysis. For the execution of SL-Preamble and
within the ith phase, let ai be the number of successfully
transmitted `min packets not in the preambles, bi the number
of successfully transmitted `max packets, and ci the number
of successfully transmitted `min packets in preambles. For
the execution of OPT and within the ith phase, let a∗i be the
total number of successfully transmitted `min packets and
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b∗i the total number of successfully transmitted `max pack-
ets. Let CjA(i) and CjO(i) denote the total amount success-
fully transmitted within a phase i of type j by SL-Preamble
and OPT, respectively.

Analyzing the different types of phases we make some
observations. First, for phases of type 1, SL-Preamble is
not able to transmit successfully the γ `min packets of the
preamble, but OPT is only able to complete at most as
much work, so C1

O ≤ C1
A. For phases of type 2, we ob-

serve that the amount of work completed by OPT minus
the work completed by SL-Preamble is at most `max (i.e.,
C2
O − C2

A < `max). Therefore, C2
A ≥

`minγ
`max+`minγ

C2
O.

(Observe that `minγ
`max+`minγ

≤ 1/2.) The same holds for
phases of type 4 (C4

O − C4
A < `max) and hence in this case

C4
O ≤ 2C4

A. In the case of phases of type 3, SL-Preamble
is not able to transmit successfully any packet, and therefore
C3
A = 0, whereas OPT might transmit up to γ̂`min packets.

There are two cases of executions to be considered sepa-
rately.

Case 1: The number of phases of type 3 is finite.
In such a case, there is a phase i∗ such that ∀i > i∗ phase i
is not of type 3. Then

R1 =

∑
j≤i∗

CA(j) +
∑
j>i∗

CA(j)∑
j≤i∗

CO(j) +
∑
j>i∗

CO(j)
. (2)

It is clear that the total progress completed by the end
of phase i∗ by both algorithms is bounded. So we define∑
j≤i∗

CA(j) = A and
∑
j≤i∗

CO(j) = O and thus,

R1 =

A+
∑
j>i∗

CA(j)

O +
∑
j>i∗

CO(j)
≥
A+ `minγ

`max+`minγ

∑
j>i∗

CO(j)

O +
∑
j>i∗

CO(j)
.

Hence, the asymptotic throughput of SL-Preamble at the end
of each phase, can be computed as T = limt→∞R1, i.e.,

T = lim
j→∞

A+ `minγ
`max+`minγ

∑
j>i∗

CO(j)

O +
∑
j>i∗

CO(j)

= lim
j→∞

(`max + `minγ)A+ (`minγ)
∑
j>i∗

CO(j)

(`max + `minγ)(O +
∑
j>i∗

CO(j))

= lim
j→∞

( `minγ

`max + `minγ
+

+
(`max + `minγ)A− (`minγ)O

(`max + `minγ)(O +
∑
j>i∗

CO(j))

)

=
`minγ

`max + `minγ

=
γ

γ + γ
.

Here it is important to note that the assumption
limt→∞ CO(t) = ∞ is used, which corresponds to the ex-
pression limj→∞

∑
j>i∗

CO(j) in the above equality.

So far, we have basically seen what is the asymptotic
throughput of SL-Preamble at the end of each phase. It is
also important to guarantee the lower bound at all times
within the phases. Consider any time-point t of phase i > i∗.
Then Ri(t) =

∑
j∈(i∗,i−1] CA(j)+Xt∑
j∈(i∗,i−1] CO(j)+Yt

, where Xt and Yt is the
work completed by SL-Preamble and OPT within phase i
up to time t. Using our proof above and the fact that for
phases of type 1, 2 and 4 CA ≥ `minγ

`max+`minγ
CO, we know

that Xt ≥ `minγ
`max+`minγ

Yt as well. Therefore,

Ri(t) ≥
`minγ

`max+`minγ

∑
j∈(i∗,i−1] CO(j) +

`minγ
`max+`minγ

Yt∑
j∈(i∗,i−1] CO(j) + Yt

=
`minγ

`max + `minγ
=

γ

γ + γ
.

This completes the lower bound of asymptotic throughput
for Case 1.

Case 2: The number of phases of type 3 is infinite.
In this case we must see how the number of `min and `max
packets are bounded for both SL-Preamble and OPT.

Lemma 1 Consider the time point t at the beginning of a
phase j of type 3. Then the number of `min packets success-
fully sent by time t by OPT is no more than the amount of
`min packets transmitted by SL-Preamble plus γ − 1, i.e.,∑
i<j a

∗
i ≤

∑
i<j(ai + ci) + (γ − 1).

Proof Consider the beginning of phase j of type 3. At that
point, we know that SL-Preamble has at most (γ − 1) pack-
ets of length `min in its queue by definition of phase type
3. Therefore, the amount of `min packets transmitted by
OPT by the beginning of phase j is no more than the ones
transmitted by SL-Preamble (including the `min packets in
preambles) plus γ − 1. ut

Lemma 2 Considering all kinds of phases and the number
of `max packets,

∑
i≤j

b∗i ≤
∑
i≤j

bi +
∑
i≤j

ci
γ + 2, for every j.

Proof We prove this claim by induction on phase j. For the
Base Case: j = 0 the claim is trivial. We consider the In-
duction Hypothesis stating that∑

i≤j−1

b∗i ≤
∑
i≤j−1

bi +
∑
i≤j−1

ci
γ

+ 2 .

For the Induction Step we need to prove it up to the end of
phase j. We first consider the case where during the phase
j there is a time when SL-Preamble has no `max packets
pending. Let t be the latest such time in the phase. Let us
define b∗(t) and b(t) being the number of `max packets suc-
cessfully transmitted up to time t by OPT and SL-Preamble
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respectively. We know that b∗(t) ≤ b(t). Let also x∗j (t)

and xj(t) be the number of `max packets sent by OPT and
SL-Preamble, respectively, after time point t until the end of
the phase j. We claim that x∗j (t) ≤ xj(t)+2. From our defi-
nitions, at time t SL-Preamble is transmitting a `min packet.
Since t is the last time that SL-Preamble has no `max packet
in its queue, the worst case is being at the beginning of the
preamble (by inspection of the 4 types of phases). Then, if
the phase ends at time t′, we define period I = [t, t′] such
that:

|I| < γ`min + (xj(t) + 1)`max ≤ (xj(t) + 2)`max .

The +1 `max packet is because of the link failure before
transmitting completely the last `max scheduled packet of
the phase. Observe that OPT could be transmitting a `max
packet at time t, received by the receiver at some point in
[t, t+ `max] and accounted for in x∗j (t). Therefore,∑
i≤j

b∗i = b∗(t) + x∗j (t) ≤ b(t) + xj(t) + 2 =
∑
i≤j

bi + 2 .

Now consider the case where at all times of a phase j
there are `max packets in the queue of SL-Preamble. By in-
spection of the 4 types of phases, the worst case is when
j is of type 2. Since there is always some `max packet
pending in SL-Preamble, after sending the γ`min packets,
it will keep scheduling `max packets, until a link failure cor-
rupts the last one scheduled, or the queue becomes empty.
On the same time OPT is able to successfully transmit at
most b Lj

`max
c ≤ bj + 1 packets of length `max, where Lj

is the length of the phase. Therefore, in all types of phases,
b∗j ≤

cj
γ + bj . And hence by induction the claim follows;∑

i≤j
b∗i ≤

∑
i≤j

ci
γ +

∑
i≤j

bi + 2. ut

Combining the two lemmas above, Lemma 1 and 2:

R2 =

∑
i≤j

CA(i)∑
i≤j

CO(j)
=

∑
i≤j

[(ai + ci)`min + bi`max]∑
i≤j

[a∗i `min + b∗i `max]

≥

∑
i≤j

[(ai + ci)`min + bi`max]∑
i≤j

(ai+ci)`min+(γ−1)`min+
∑
i≤j

(bi+
ci
γ )`max+2`max

≥

∑
i≤j

[(ai + ci)`min + bi`max]∑
i≤j

[(ai + 2ci)`min + bi`max] + 3`max

≥

∑
i≤j

[(ai + ci)`min + bi`max] +
3
2`max −

3
2`max

2
∑
i≤j

[(ai + ci)`min + bi`max] + 3`max

≥ 1

2
−

3
2`max

2
∑
i≤j

[(ai + ci)`min + bi`max] + 3`max
.

Note that, due to parameters ai, bi and ci the second ratio
tends to zero (the denominator tends to infinity while the
nominator is constant). Therefore,

T = lim
j→∞

R2 ≥
1

2
. (3)

Theorem 6 The asymptotic throughput of Algorithm
SL-Preamble is at least γ

γ+γ .

Proof From the analyses of Cases 1 and 2 and the fact that
γ

γ+γ ≤
1
2 it is easy to conclude that the asymptotic through-

put of Algorithm SL-Preamble is at least γ
γ+γ as claimed.

ut

5 Stochastic Arrivals

We now turn our attention to stochastic packet arrivals. We
first consider the deferred feedback mechanism and show
that also in this case the upper bound on the asymptotic
throughput is 0.

Theorem 7 No packet scheduling algorithm Alg can
achieve an asymptotic throughput larger than 0 under
stochastic arrivals in the deferred feedback model, even with
one packet length.

Proof As described in Section 2, we assume that packets ar-
rive at a rate λ. Here we assume that all packets have the
same length `. Observe that if λ` < 1 there are many times
when there is no packet ready to be sent and the link will
be idle. In any case, the adversary can inject errors follow-
ing the next rule: inject an error in the middle point of each
packet sent by Alg. Applying this rule, no packet sent by
Alg is received without errors. However, between two errors
there is at least ` space (even if packets are contiguous) and
the offline algorithm OFF can send a packet. The conclusion
is that OFF is able to successfully send at least one packet
between two attempts of Alg, while Alg cannot complete
successfully any transmission. This completes the proof.

ut

The rest of the section is therefore focused on analyzing
of the immediate feedback mechanism.

5.1 Upper Bounds

In order to find the upper bound of the asymptotic through-
put, we consider again an arbitrary work conserving algo-
rithm Alg. Recall that we assume that λp > 0 and λq > 0,
which implies that there are in fact injections of packets of
both lengths `min and `max (recall the definitions of λ, p
and q from Section 2). We define the following adversarial
error model E .
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1. When Alg starts a phase by transmitting an `max packet
then,
(a) If OFF has `min packets pending, then the adver-

sary extends the phase so that OFF can transmit
successfully as many `min packets as possible, up
to γ̂. Then, it ends the phase so that Alg does not
complete the transmission of the `max packet (since
γ̂`min < `max).

(b) If OFF does not have any `min packets pending, then
the adversary inserts a link error immediately (say
after infinitesimally small time ε).

2. When Alg starts a phase by transmitting an `min packet
then,
(a) IF OFF has a packet of length `max pending, then

the adversary extends the phase so OFF can transmit
an `max packet. By the time this packet is success-
fully transmitted, the adversary inserts an error and
finishes the phase. Observe that in this case Alg was
able to successfully transmit up to γ packets `min.

(b) If OFF has no `max packets pending, then the adver-
sary inserts an error immediately and ends the phase.

Observe that in phases of type 1b and 2b, neither OFF
nor Alg are able to transmit any packet. These phases are
just used by the adversary to wait for the conditions required
by phases of type 1a and 2a to hold. In these latter types
some packets are successfully transmitted (at least by OFF).
Hence we call them productive phases. Analyzing a possible
execution, in addition to the concept of phase that we have
already used, we define rounds. There is a round associated
with each productive phase. The round ends when its cor-
responding productive phase ends, and starts at the end of
the prior round (or at the start of the execution if no prior
round exists). Depending on the type of productive phase
they contain, rounds can be classified as type 1a or 2a.

Let us fix some (large) time t. We denote by r
(j)
1a the

number of rounds of type 1a in which j ≤ γ̂ packets of
length `min are sent by OFF completed by time t. The value
r
(j)
2a with j ≤ γ packets of length `min sent by Alg, is de-

fined similarly for rounds of type 2a. (Here rounding ef-
fects do not have any significant impact, since they will
be compensated by the assumption that t is large.) We as-
sume that t is a time when a round finishes. Let us denote
by r the total number or rounds completed by time t, i.e.,∑γ
j=1 r

(j)
2a +

∑γ̂
j=1 r

(j)
1a = r.

The asymptotic throughput by time t can be computed
as

TAlg(A,E, t) =
`min

∑γ
j=1 j · r

(j)
2a

`max
∑γ
j=1 r

(j)
2a + `min

∑γ̂
j=1 j · r

(j)
1a

.

(4)

From this expression, we can show the following result.

Theorem 8 No algorithm Alg has asymptotic throughput
larger than γ

γ .

Proof It can be observed in Eq. 4 that, for a fixed r, the
lower the value of r(j)1a the higher the asymptotic throughput.
Regarding the values r(j)2a , the throughput increases when
there are more rounds in the larger values of j. E.g., un-
der the same conditions, a configuration with r(j)2a = k1 and
r
(j+1)
2a = k2, has lower throughput than one with r(j)2a =

k1 − 1 and r(j+1)
2a = k2 + 1. Then, the throughput is maxi-

mized when r(γ)2a = r and the rest of values r(j)1a and r(j)2a are
0, which yields the bound. ut

To provide tighter bounds for some special cases, we
prove the following lemma.

Lemma 3 Consider any two constants η, η′ such that 0 <
η < λ < η′. Then:
(a) there is a constant c > 0, dependent only on λ, p, η,

such that for any time t ≥ `min, the number of packets
of length `min (resp., `max) injected by time t is at least
tηp (resp., tηq) with probability at least 1− e−ct;

(b) there is a constant c′ > 0, dependent only on λ, p, η′,
such that for any time t ≥ `min, the number of packets
of length `min (resp., `max) injected by time t is at most
tη′p (resp., tη′q) with probability at least 1− e−c′t.

Proof We first prove the statement 1(a). The Poisson pro-
cess governing arrival times of packets of length `min has
parameter λp. By the definition of a Poisson process, the
distribution of packets of length `min arriving to the system
in the period [0, t] is the Poisson distribution with parameter
λpt. Consequently, by Chernoff bound for Poisson random
variables (with parameter λpt), cf., (Mitzenmacher and Up-
fal, 2005), the probability that at least ηpt packets arrive to
the system in the period [0, t] is at least

1− e−λpt (eλpt)
ηpt

(ηpt)ηpt
= 1− e−tp(λ−η ln(eλ/η)) ≥ 1− e−ct ,

for some constant c > 0 dependent on λ, η, p. In the above,
the argument behind the last inequality is as follows. It is a
well-known fact that x > 1 + lnx holds for any x > 1; in
particular, for x = λ/η > 1. This implies that x− ln(ex) is
a positive constant for x = λ/η > 1, and after multiplying
it by η > 0 we obtain another positive constant equal to
λ − η ln(eλ/η) that depends only on λ and η. Finally, we
multiply this constant by p > 0 to obtain the final constant
c > 0 dependent only on λ, η, p.

The same result for packets of length `max can be proved
by replacing p by q = 1− p in the above analysis.

Statement 1(b) is proved analogously to the first one,
by replacing η by η′. This is possible because the Cher-
noff bound for Poisson process has the same form regardless
whether the upper or the lower bound on the Poisson value
is considered, cf., (Mitzenmacher and Upfal, 2005). ut
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Now we can show the following result.

Theorem 9 Let p < q. Then, the asymptotic
throughput of any algorithm Alg is at most
min

{
max

{
λp`min,

γ
γ+γ

}
, γγ

}
.

Proof The claim has two cases. In the first case, λp`min ≥
γ
γ . In this case, the upper bound of γ

γ is provided by Theo-
rem 8. In the second case λp`min < γ

γ . For this case, define
two constants η, η′ such that 0 < η < λ < η′ and η′p < ηq.
Observe that such constants always exist. Then, we prove
that the asymptotic throughput of any algorithm Alg in this
case is at most max

{
η′p`min,

γ
γ+γ

}
.

Let us introduce some notation. We use amin
t and amax

t to
denote the number of `min and `max packets, respectively,
injected up to time t. Let roff

t and soff
t be the number of

`max and `min packets respectively, successfully transmit-
ted by OFF by time t. Similarly, let salg

t be the number of
`min packets transmitted by algorithm Alg by time t. Ob-

serve that salg
t ≥ roff

t ≥ b s
alg
t

γ c.
Let us consider a given execution and the time instants

at which the queue of OFF is empty of `min packets in the
execution. We consider two cases.
Case 1: For each time t, there is a time t′ > t at which
OFF has the queue empty of `min packets. Let us fix a value
δ > 0 and define time instants t0, t1, . . . as follows. t0 is the
first time instant not smaller than `min at which OFF has no
`min packet and such that amin

t0 > `max. Then, for i > 0, ti
is the first time instant no smaller than ti−1+δ at which OFF
has no `min packets. The asymptotic throughput at time ti
can be bounded as

TAlg(A,E, ti) ≤
salg
ti `min

roff
ti `max + amin

ti `min

≤
salg
ti `min

b s
alg
ti

γ c`max + amin
ti `min

≤
salg
ti `min

(
salg
ti

γ − 1)`max + amin
ti `min

.

This bound grows with salg
ti when amin

ti > `max, which leads
to a bound on the asymptotic throughput as follows.

TAlg(A,E, ti) ≤
amin
ti `min

amin
ti ( `maxγ + `min)− `max

=
amin
ti γ

amin
ti (γ + γ)− γγ

.

Which as i goes to infinity yields a bound of γ
γ+γ .

Case 2: There is a time t∗ after which OFF never has the
queue empty of `min packets. Recall that for any t ≥ `min,
from Lemma 3, we have that the number of `min packets

injected by time t satisfy amin
t > η′pt with probability at

most e−c
′t and the injected max packets satisfy amax

t <

ηqt with probability at most e−ct. By the assumption of the
theorem and the definition of η and η′, η′p < ηq. Let us
define t∗ = 1/(ηq − η′p). Then, for all t ≥ t∗ it holds that
amax
t ≥ amin

t +1, with probability at least 1−e−c′t−e−ct. If
this holds, it implies that OFF will always have `max packets
in the queue.

Let us fix a value δ > 0 and define t0 = max(t∗, t
∗), and

the sequence of instants ti = t0 + iδ, for i = 0, 1, 2, . . .. By
the definition of t0, at all times t > t0 OFF is successfully
transmitting packets. Using Lemma 3, we can also claim that
in the interval (t0, ti] the probability that more than η′piδ
packets `min are injected is no more than e−c

′′iδ .
With the above, the asymptotic throughput at any time ti

for i ≥ 0 can be bounded as

TAlg(A,E, ti) ≤
(amin
t0 + η′p · iδ)`min

roff
t0 `max + soff

t0 `min + iδ
,

with probability at least 1 − e−cti − e−c
′ti − e−c

′′ti . Ob-
serve that as i goes to infinity the above bound converges to
η′p`min, while the probability converges exponentially fast
to 1. ut

We now prove that algorithm SL cannot have asymptotic
throughput larger than 1

γ+1 under stochastic arrivals with
specific arrival rates. This motivates the need for devising
a new online algorithm for packet scheduling in these cases.

Theorem 10 ∀ε > 0, ∃λ, p, q such that algorithm SL
cannot achieve an asymptotic throughput larger than

1
(1−ε)γ+1 + ε.

Proof Consider an execution of the SL algorithm. We define
intervals I1, I2, . . . , Ii as follows. The first such interval, I1,
starts with the arrival of the first `min packet. Then, Ii starts
as soon as an `min packet is in the queue of SL after the
end of interval Ii−1. The length of each interval depends on
whether OFF has an `max packet in its queue at the start of
the interval or not. If it has an `max packet, the length of the
interval is |Ii| = `min + `max, and we say that we have a
long interval. If it does not, the length is |Ii| = `min and the
interval is called short.

Between intervals the adversary injects frequent errors,
so SL cannot transmit any packet. In every interval Ii, SL
starts by scheduling an `min packet. In a short interval, OFF
sends an `min packet, followed by an error injected by the
adversary. Hence, in a short interval both SL and OFF suc-
cessfully transmit one `min packet. In a long interval, OFF
sends an `max packet, after which the adversary injects an
error. (Up to that point SL has been able to complete the
transmission of one or more `min packets, but no `max
packet.) After the error, OFF sends an `min packet (which is
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available since beginning of the interval) after which contin-
uous errors will be injected by the adversary until the next
interval. Hence, in a long interval OFF successfully trans-
mits one `min packet and one `max packet, while SL trans-
mits only `min packets. This implies that in both types of in-
tervals OFF is transmitting useful packets during the whole
interval.

Let us denote by sk the total length of the intervals
I1, I2, . . . , Ik, i.e., sk =

∑k
i=1 |Ii|. Observe that the total

number of `min packets that arrive up to the end of interval
Ik is bounded by k (that accounts for the `min packet in the
queue of SL at the start of each interval) plus the packets that
arrive in the intervals. From Lemma 3, we know that there
is a constant η′ > λ and a constant c′ > 0 which depends
only on η′, λ and p, such that the number of `min packets
that arrive in the intervals is at most η′psk with probability
at least 1− e−c′sk .

Let Tk be the throughput of SL at the end of interval Ik.
From the above, we have that Tk is bounded as

Tk ≤
`min(k + η′psk)

sk
=
`mink

sk
+ `minη

′p ,

with probability at least π1(k) = 1 − e−c′sk . Observe that
in the above expression it is assumed that all `min packets
that arrive by the end of Ik are successfully transmitted by
SL. We provide now the following claim.

Claim: Let us consider the first x + 1 intervals Ii,
for x > 1. The number of long intervals is at least
(1 − δ)(1 − e−λq`min)x with probability at least 1 −
e−δ

2(1−e−λq`min )x/2, for any δ ∈ (0, 1).
Proof of claim: Observe that if an `max packet arrives during
interval Ii then the next interval Ii+1 is long. We consider
now the first x intervals. Since each of these intervals has
length at least `min, some `max packet arrives in the interval
with probability at least 1−e−λq`min (independently of what
happens in other intervals). Hence, using a Chernoff bound,
the probability of having less than (1 − δ)(1 − e−λq`min)x
intervals among the x first intervals in which `max packets
arrive is at most e−δ

2(1−e−λq`min )x/2. This completes the
proof of the claim. ut

From the claim, it follows that there are at least (1 −
δ)(1 − e−λq`min)(k − 1) long intervals among the first k
intervals, with high probability. Hence, the value of sk is
bounded as

sk ≥ (1− δ)(1− e−λq`min)(k − 1)(`max + `min)

+(k − (1− δ)(1− e−λq`min)(k − 1))`min

= (1− δ)(1− e−λq`min)(k − 1)`max + k`min

with probability at least π2(k) = 1 −
e−δ

2(1−e−λq`min )(k−1)/2. Note that TK cannot be larger

than 1. Hence, the expected value of Tk can be bounded as
follows.

E[Tk] ≤ (1− π1(k)π2(k)) + π1(k)π2(k) ·

·
(

`mink

(1−δ)(1−e−λq`min)(k−1)`max+k`min
+`minη

′p

)
.

Since π1(k) and π2(k) tend to one as k tends to infinity, we
have that

lim
k→∞

E[Tk] ≤
`min

(1− δ)(1− e−λq`min)`max + `min
+ `minη

′p

=
1

(1− δ)(1− e−λq`min)γ + 1
+ `minη

′p .

Hence, choosing η′, p, q, and δ appropriately, the claim
of the theorem follows. (E.g., they must satisfy `minη′p ≤ ε
and (1− δ)(1− e−λq`min) ≥ (1− ε).) ut

5.2 Lower Bound and Algorithm CSL-Preamble

In this section we propose algorithm CSL-Preamble (stands
for Conditional SL-Preamble), which builds on algorithm
SL-Preamble presented in Section 4.2, in order to solve
packet scheduling in the setting of stochastic packet ar-
rivals. The algorithm, depending on the arrival distribution,
either follows the SL policy (giving priority to `min pack-
ets) or algorithm SL-Preamble. More precisely, algorithm
CSL-Preamble acts as follows:

If λp`min > γ
2γ then algorithm SL is run,

otherwise algorithm SL-Preamble is executed.

Then we show the following:

Theorem 11 The asymptotic throughput of algorithm
CSL-Preamble is not smaller than γ

γ+γ for λp`min ≤ γ
2γ ,

and not smaller than min
{
λp`min,

γ
γ

}
otherwise.

Proof We consider three complementary cases.
Case λp`min ≤ γ

2γ . In this case algorithm
CSL-Preamble runs algorithm SL-Preamble, achieving, per
Theorem 6, asymptotic throughput of at least γ

γ+γ under any
error pattern.

Case γ
2γ < λp`min ≤ 1. Our goal is to

prove that the asymptotic throughput is not smaller than
min

{
ηp`min,

γ
γ

}
, for any η = δλ, with δ < 1. Consid-

ering such an η, we can make use of Lemma 3 with respect
to λ, η, p. The asymptotic throughput compares the behav-
ior of algorithm CSL-Preamble, which is simply SL in this
case, with OPT for each execution. Hence, for the purpose
of the analysis we introduce the following modification in
every execution: we remove all periods in which OPT is not
transmitting any packet. By “removing” we understand that
we count time after removing the OPT-unproductive periods
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and “gluing” the remaining periods so that they form one
time line. Observe that any time instant t in the modified
time line, say t = tm, cannot be larger than the correspond-
ing time t in the global time line, say tg (i.e., tm ≤ tg). In
the remainder of the analysis of this case we consider these
modified executions with modified time lines and whenever
we need to refer to the “original” time line we use the no-
tion of global time. For any positive integer i, we define time
points ti = i ·`max. Consider events Si, for positive integers
i, defined as follows: the number of packets arrived by time
ti (on the modified time line of the considered execution) is
at least tiηp. By Lemma 3 and the fact that tm ≤ tg , there
is a constant c dependent only on λ, η, p such that for any i:
the event Si holds with probability at least 1− e−cti .

Consider an integer j > 1 being a square of another
integer. We prove that by time tj , the asymptotic throughput
is at least

min

{
ηp`min −

γ`min
tj

, (1− 1/
√
j) · γ

γ

}
,

with probability at least 1 − c′e−ct
√
j , for some constant

c′ > 1 dependent only on λ, η, p. To show this, consider
two complementary scenarios that may happen at time tj :
there are at least γ pending packets of length `min, or other-
wise. It is sufficient to show the sought property separately
in each of these two scenarios.

Consider the first scenario, when there are at least γ
pending packets of length `min at time tj . With proba-
bility at least 1 − c′e−ct

√
j , for every

√
j ≤ i ≤ j at

least tiηp packets arrive by time ti. This is because of the
union bound of the corresponding events Si and the fact that∑
i≥
√
j e
−cti ≤ c′ · e−ct√j for some constant c′ > 1 depen-

dent on λ, η, p (note here that although c′ seems to depend
also on c, c′ is still dependent only on λ, η, p because c is a
function of these three parameters as well). Consider execu-
tions in

⋃j
i=
√
j
Si; executions at which all Si events happen,

for
√
j ≤ i ≤ j. Using induction on i, we prove the follow-

ing claim:
Claim: At least tiηp − γ packets of length `min have been
successfully transmitted by time ti, or at least γ packets
of length `min are successfully transmitted in the interval
[ti, ti+1].
Proof of Claim: First, recall that algorithm CSL-Preamble
runs the SL policy, since λp`min > γ

2γ . Hence, as long as
there are `min packets pending, it will schedule them for
transmission. Recall also, that times ti represent time in-
stants such that ti = i · `max in the modified time line.

Base Case: By time t√j and with probability at least
1−ect√j , there will be at least ηpt√j packets of length `min
arriving. Now since t√j+1 = t√j + `max, if there are at
least γ pending packets of length `min at time t√j , they will
be successfully transmitted during the interval [t√j , t√j+1],
which guarantees the invariant. Otherwise, there are at least

ηpt√j − γ pending packets of length `min at time t√j
(as many as the ones that arrived minus the completed
ones since the beginning of the execution, in a duration of√
j · `max time).

Induction Hypothesis: For
√
j < k < j, the invariant

holds.
Induction Step: We will show that the invariant holds

for k + 1. Since we consider only executions in the union⋃j
i=
√
j
Si, we know that by time tk+1 = (k + 1) · `max,

there are at least ηptk+1 packets of length `min arriving,
with probability at least 1 − c′e−ct

√
j . Now, since tk+2 =

tk+1 + `max, if there are at least γ pending packets of
length `min at time tk+1, they will be successfully trans-
mitted during the interval [tk+1, tk+2]. Otherwise, there are
at least ηptk+1 − γ pending packets of length `min at time
tk+1 (as many as the ones that arrived minus the completed
ones since the beginning of the execution, in a duration of
(k+1) ·`max time). This guarantees the invariant and hence
completes the proof of the claim.

The inductive proof of this invariant follows directly
from the specification of algorithm CSL-Preamble (recall
that it simply runs algorithm SL in the currently considered
case) and from the definition of the modified execution and
time line. Let i∗ denote the largest i ∈ [

√
j, j] satisfying the

following condition: there are less than γ packets of length
`min pending in time ti; if such an i does not exist, we set
i∗ = −1. Consider two sub-cases:

Sub-case i∗ = −1 (i∗ does not exist) . Note that, by def-
inition of i∗, at every time ti ∈ [

√
j, j], there are at least γ

pending packets of length `min pending. Consequently, by
the specification of the algorithm CSL-Preamble, in each in-
terval [ti, ti+1], for

√
j ≤ i < j, at least γ packets of length

`min finish their transmission successfully. Therefore, by
time tj the total length of `min-packets successfully trans-
mitted by algorithm CSL-Preamble is at least

tj − t√j
`max

· γ`min ,

while the total length of successfully transmitted packets by
OPT is at most tj (by the definition of the modified execu-
tion and time line). Hence, the asymptotic throughput is at
least

tj−t√j
`max

· γ`min
tj

= (1− 1/
√
j) · γ

γ
,

which converges to γ
γ with j going to infinity.

Sub-case i∗ ∈ [
√
j, j] . It follows from the invariant

and the definition of i∗ that by time ti∗ there are at least
ti∗ηp − γ successfully transmitted packets of length `min,
and in each interval [ti, ti+1], for i∗ ≤ i < j, at least γ
packets of length `min finish their transmission successfully.
Therefore, by time tj the total length of `min-packets suc-
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cessfully transmitted by algorithm CSL-Preamble is at least

(ti∗ηp− γ)`min +
tj − ti∗
`max

· γ`min ,

while the total length of successfully transmitted packets by
OPT is at most tj (by the definition of the modified execu-
tion and time line). Therefore the asymptotic throughput is
at least

(ti∗ηp− γ)`min +
tj−ti∗
`max

· γ`min
tj

≥ min

{
(tjηp− γ)`min

tj
,

tj−t√j
`max

· γ`min
tj

}
(*)

= min

{
ηp`min −

γ`min
tj

, (1− 1/
√
j) · γ

γ

}
,

which converges to min
{
ηp`min,

γ
γ

}
with j going to infin-

ity. For the proof of inequality (*) in the above expression
see the Lemmas 4 and 5 in the Appendix.

Finally, it is important to notice that the final converge of
the ratio, with j going to infinity, in both sub-cases gives a
valid bound on the asymptotic throughput, since the subse-
quent ratios hold with probabilities approaching 1 exponen-
tially fast (in j), i.e., with probabilities at least 1− c′e−ct√j ,
where c and c′ are positive constants dependent only on
λ, η, p. The minimum of the two asymptotic throughputs,
coming from the sub-cases, is min

{
ηp`min,

γ
γ

}
, as de-

sired and therefore the asymptotic throughput is at least
min

{
δλp`min,

γ
γ

}
in this case.

Case λp`min > 1. In this case we simply observe that
we get at least the same asymptotic throughput as in case
λp`min = 1, because we are dealing with executions sat-
urated with packets of length `min with probability con-
verging to 1 exponentially fast. (Recall that we use the
same algorithm SL in the specification of CSL-Preamble,
both for λp`min = 1 and for λp`min > 1.) Conse-
quently, the asymptotic throughput in this case is at least
min

{
ηp`min,

γ
γ

}
, for any λ/2 < η < λ, and therefore it is

at least min
{
λp`min,

γ
γ

}
≥ min

{
1, γγ

}
= γ

γ . ut

Observe that if we compare the upper bounds on asymp-
totic throughput shown in the previous subsection with the
lower bounds of the above theorem, then we may con-
clude that in the case where γ is an integer, algorithm
CSL-Preamble is optimal (wrt asymptotic throughput). In
the case where γ is not an integer, there is a small gap be-
tween the upper and lower bound results.

6 Randomized Algorithms

So far we have considered deterministic solutions. In many
problems considered in computer science, randomized so-
lutions can obtain better performance. Using Yao’s princi-
ple, Yao (1977), we show that this is not the case for the
problem considered in this work.

For arrival patternA, adversarial error-functionE, string
of random bits R and time t, we define the asymptotic
throughput TAlg(A,E,R, t) of a randomized algorithm Alg
by time t as follows:

TAlg(A,E,R, t) =
LAlg(A,E,R, t)

LOPT(A,E,R, t)
.

TAlg(A,E,R, t) is defined as 1 if LAlg(A,E,R, t) =

LOPT(A,E,R, t) = 0. And we define the asymptotic
throughput of algorithm Alg in the adversarial arrival model
as follows:

TAlg = lim
t→∞

inf
A∈A,E∈E

ER∈R[TAlg(A,E,R, t)] ,

where R is a distribution of all possible strings of random
bits used by the algorithm. In the stochastic arrival model the
asymptotic throughput needs to take into account the ran-
dom distribution of arrival patterns in A and it is defined as
follows:

TAlg = lim
t→∞

inf
E∈E

EA∈A,R∈R[TAlg(A,E,R, t)] .

Based on the above definitions, we apply now Yao’s
principle, Yao (1977), to obtain the following result.

Observation 1 All upper bounds found for deterministic al-
gorithms in Sections 4 and 5 with instantaneous feedback,
hold also for randomized algorithms, even for oblivious ad-
versaries.

Yao’s principle states the following: Given an online
problem, let cR be the smallest competitive ratio of random-
ized online algorithmR against any oblivious adversary. Let
also P be a probability distribution for the input sequence,
such that cPA is the smallest competitive ratio of deterministic
online algorithm A under P . Then, the competitive ratio of
the best randomized algorithm against any oblivious adver-
sary, is equal to the competitive ratio of the best determin-
istic online algorithm under a worst-case input distribution,
i.e., inf

R
cR = sup

P
inf
A
cPA.

7 Conclusions

This work was motivated by the following observation re-
garding the system of dynamic packet arrivals with errors:
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Scheduling packets of same length is relatively easy and ef-
ficient in case of instantaneous feedback, but extremely in-
efficient in case of deferred feedback. We studied scenarios
with two different packet lengths, developed efficient algo-
rithms, and proved upper and lower bounds for asymptotic
throughput in the average-case (i.e., stochastic) and worst-
case (i.e., adversarial) online packet arrivals. These results
demonstrate that exploring instantaneous feedback mecha-
nisms (and developing more effective implementations of it)
has the potential to significantly increase the performance of
communication systems.

Several future research directions emanate from this
work. Some of them concern the exploration of variants
of the considered model, for example, considering more
elaborated/realistic distributions for the packet arrival, as-
suming that packets that suffer errors are not retransmitted
(which applies when Forward Error Correction (Raghavan
et al., 2001) is used), considering packets of more than two
lengths, or assuming bounded buffers. Other lines of work
deal with adding QoS requirements to the problem, such as
requiring fairness in the transmission of packets from dif-
ferent flows or imposing deadlines to the packets. In the
considered adversarial setting, it is easy to see that even an
omniscient offline solution cannot achieve stability: for ex-
ample, the adversary could prevent any packet from being
transmitted correctly. Therefore, an interesting extension of
our work would be to study conditions (e.g., restrictions on
the adversary) under which an online algorithm could main-
tain stability, and still be efficient with respect to asymptotic
throughput. Finally, we believe that the definition of asymp-
totic throughput as proposed here can be adapted, possibly
in a different context, to other metrics and problems.
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APPENDIX

Lemma 4 When ηp`min ≤ γ
γ

it holds that

(ti∗ηp−γ)`min+
tj−ti∗
`max

γ`min

tj
≥ (tjηp−γ)`min

tj
.

Andrew Chi-Chin Yao. Probabilistic computations: Toward
a unified measure of complexity. In Proceedings of the
18th Annual Symposium on Foundations of Computer Sci-
ence, SFCS ’77, pages 222–227, Washington, DC, USA,
1977. IEEE Computer Society. doi: 10.1109/SFCS.1977.
24. URL http://dx.doi.org/10.1109/SFCS.
1977.24.

Proof Let us assume first the case of i∗ < j. This means that:

ηp`min ≤
γ

γ
=

(j − i∗)γ
(j − i∗)γ

=
(j − i∗)γ`min
(j − i∗)`max

⇒ ηp`min(i
∗ − j)`max + (j − i∗)γ`min ≥ 0

⇒ i∗`maxηp`min + (j − i∗)γ`min ≥ j`maxηp`min

⇒ ti∗ηp`min +
tj − ti∗
`max

γ`min ≥ tjηp`min

⇒ (ti∗ηp− γ)`min +
tj − ti∗
`max

γ`min ≥ (tjηp− γ)`min .

What is more, for the case when i∗ = j, we have that:

(ti∗ηp− γ)`min = (tjηp− γ)`min

⇒ (ti∗ηp− γ)`min +
tj − ti∗
`max

γ`min ≥ (tjηp− γ)`min .

Both cases conclude to the same, which proves the lemma. ut

Lemma 5 When ηp`min > γ
γ

it holds that

(ti∗ηp−γ)`min+
tj−ti∗
`max

γ`min

tj
≥

(tj−t√j )
`max

γ`min

tj
.

Proof When ηp`min > γ
γ

, the following is also true:

ηp`min ≥
γ

γ
+

(1−
√
j)γ

i∗γ
.

This means that:

ηp`min ≥
(1 + i∗ −

√
j)γ`min

i∗`max

⇒ ηp`mini
∗`max + γ`min(j − i∗ − 1− j +

√
j) ≥ 0

⇒ i∗`maxηp`min − γ`min + (j − i∗)γ`min ≥ (j −
√
j)γ`min

⇒ (ti∗ηp− γ)`min +
tj − ti∗
`max

γ`min ≥
(tj − t√j)
`max

γ`min .


