
Bulletin of the EATCS no 90, pp. 109–126, October 2006
©c European Association for Theoretical Computer Science

T D C C



M M

Department of Computer Science, University of Cyprus
75 Kallipoleos St., CY-1678 Nicosia, Cyprus

mavronic@cs.ucy.ac.cy

EIGHT OPEN PROBLEMS IN

DISTRIBUTED COMPUTING

James Aspnes
Dept. of Computer Science

Yale University

New Haven, CT 06520-8285

aspnes@cs.yale.edu

Costas Busch
Dept. of Computer Science

Rensselaer Polytechnic Institute

Troy, NY 12180

buschc@cs.rpi.edu

Shlomi Dolev
Dept. of Computer Science

Ben-Gurion University of the Negev

Beer-Sheva, Israel 84105

dolev@cs.bgu.ac.il

Panagiota Fatourou
Dept. of Computer Science

University of Ioannina

45110 Ioannina, Greece

faturu@cs.uoi.gr

Chryssis Georgiou
Dept. of Computer Science

University of Cyprus

CY-1678 Nicosia, Cyprus

chryssis@cs.ucy.ac.cy

Alex Shvartsman
Dept. of Computer Science and Engineering

University of Connecticut

Storrs, CT 06269

aas@cse.uconn.edu



BEATCS no 90 THE EATCS COLUMNS

110

Paul Spirakis
RACTI

265 00 Rio, Patras

spirakis@cti.gr

Roger Wattenhofer
Computer Engineering and Networks Lab.

ETH Zurich

8092 Zurich, Switzerland

wattenhofer@tik.ee.ethz.ch

Abstract

Distributed Computing Theory continues to be one of the most active
research fields in Theoretical Computer Science today. Besides its foun-
dational topics (such as consensus and synchronization), it is currently be-
ing enriched with many new topics inspired from modern technological ad-
vances (e.g., the Internet). In this note, we present eight open problems in
Distributed Computing Theory that span a wide range of topics – both clas-
sical and modern.

1 Wait-Free Consensus

A consensus protocolis a distributed algorithm wheren processes collectively ar-
rive at a common decision value starting from individual process inputs. It must
satisfyagreement(all processes decide on the same value),validity (the decision
value is an input to some process), andtermination(all processes eventually de-
cide). A protocol in an asynchronous shared-memory system iswait-freeif each
process terminates in a finite number of its own steps regardless of scheduling.
From the FLP impossibility result [31, 54], wait-free consensus is impossible.
However, it becomes possible using randomization with the termination condition
relaxed to hold with probability 1.

Theopen questionthat then arises is the complexity of solving consensus, mea-
sured by the expected number of register operations carried out by all processes
(total work) or by any one process (per-process work).

This complexity depends strongly on assumptions about the power of the ad-
versary scheduler. For anadaptive adversarythat chooses the next process to
run based on total knowledge of the current state of the system, the best known
protocol using only atomic read-write registers takesO(n2 logn) expected total
work [14]. If counters supporting increment, decrement, and read operations are
available, this drops toO(n2) expected total work [4]. No faster protocol is known
using any objects that can be built from atomic registers, and there is a lower
bound ofΩ(n2/ log2 n) that holds even given powerful tools like unit-cost snap-
shots [6].



The Bulletin of the EATCS

111

Closing the gap between the upper and lower bounds is interesting because
all known polynomial-time wait-free consensus protocols are based on collecting
enough random votes that one standard deviation in the total is larger than then−1
votes that can be “hidden” by the adversary by selectively stopping processes, and
it is not hard to show that simple variants on voting cannot yield subquadratic
protocols. A faster protocol would thus require a significantly new approach.
Conversely, anΩ(n2) lower bound would show that voting is optimal.

With a weaker adversary that cannot observe coin flips that have not yet been
made public, consensus can be solved inO(logn) work per process using multi-
writer registers [11]. There is no corresponding non-trivial lower bound. It would
be interesting to see if anΩ(logn) lower bound could be proved for multi-writer
registers or even with strong objects like unit-cost snapshots. Closing the gap in
both models would show whether the cost of weak-adversary consensus arises
from fundamental limitations of grouping local coin-flips together or merely from
the weakness of atomic registers.

2 Oblivious Routing

A typical distributed computing environment consists of several processing units
which communicate through some underlying multi-hop network. The network
is usually modeled after a graph, possibly weighted, where nodes represent the
processing units and the edges the communication links. The nodes communicate
by exchanging messages in the form of packets.Routingis the task of selecting
the paths that the packets will follow in the network. Ideally the selected paths
should have smallcongestion, that is, the maximum number of paths crossing any
edge should be small, and the paths should have smallstretch, that is, the ratio
between the selected path and the respective shortest path should be as small as
possible.

Obliviousrouting is a type of distributed routing suitable for dynamic packet
arrivals. In oblivious routing, the path for a newly injected packet is selected
in a way that it is not affected by the path choices of the other packets in the
network. Räcke [66] gives an existential result that shows that for any network
there exists an oblivious routing algorithm with congestion within factor log3 n
from that of the optimal off-line centralized algorithm, wheren is the number
of nodes. This oblivious algorithm constructs a path by choosing a logarithmic
number of random intermediate nodes in the network. Azaret al. [13] showed
that the probabilities for the random intermediate nodes can be computed a priori
in polynomial time.

Even though congestion is a fundamental metric for the performance of rout-
ing algorithms, stretch is important too, since it represents the extra delay of the



BEATCS no 90 THE EATCS COLUMNS

112

packets when there is no congestion. Ideally, stretch should be a constant. So far,
the main research on oblivious routing algorithms has focused on optimizing the
congestion while ignoring the stretch. For example, a packet may have destination
to a neighbor node of the source and still the path chosen by an oblivious algo-
rithm may be as long as the number of nodes in the network.

An interestingopen problem is to examine the circumstances in which conges-
tion and stretch can be optimized simultaneously.

There is a simple counter-example network that shows that in general the two
metrics are orthogonal to each other: take an adjacent pair of nodesu, v andΘ(

√
n)

disjoint paths of lengthΘ(
√

n) betweenu andv. For packets travelling fromu to v,
any routing algorithm that minimizes congestion has to use all the paths, however,
in this way some packets follow long paths, giving high stretch. Nevertheless,
there are special cases of interesting networks where congestion and dilation can
be minimized simultaneously. For example, in grids [15], and in networks of
uniformly distributed nodes in convex-like areas [16], the congestion is within a
poly-logarithmic factor from optimal and stretch is constant.

A second interestingopen problem is to find other classes of networks where
the congestion and stretch are minimized simultaneously.

Possible candidates for such networks could be for example bounded-growth
networks, or networks whose nodes are uniformly distributed in closed polygons,
which describe interesting cases of wireless networks. Another interesting open
problem is to find classes of networks in which oblivious routing givesC + D
close to the off-line optimal, whereC is the congestion andD is the maximum
path length. Such a result will have immediate consequences in packet scheduling
algorithms since it is known from [52] that it is feasible to deliver the packets in
time proportional toC + D.

3 Stability of Continuous Consensus

Consensus is a fundamental task in distributed computing, it allows to reduce a
distributed task to a centralized task by agreeing on the system state, the inputs
and (hence) the common transition. One shot consensus cannot be self-stabilizing
[22] since it can terminate with disagreeing outputs. On the other hand, on-going
consensus may stabilize to eventually ensure that when a new consensus instance
is invoked the safety property for the output of this instance is correct [23].

In the scope of on-going (self-stabilizing) consensus task one may consider
the sequence of inputs and outputs of instances [20, 24] and require stability of



The Bulletin of the EATCS

113

outputs as long as the inputs allow such a stability. For example, when one con-
sensus instance output has been 1, and the next instance has 1 as a possible output
value, then 1 should be preferred. Namely, we would like to minimize the number
of times the output is changed.

Theopen problem is, to determine the most stable (consensus) function to use,
given flexibility in deciding on the output of the system.

Namely, given a particular sequences of input changes, choose the function
that changes output as least as possible, assuming that the function from the inputs
to the common output is only restricted to ensure that the output has a value equal
to at leastt + 1 inputs. For example, if the system can remember (in memory) the
last output, the system may stick to the output as long as it can: say the system
includes five processors, at most two of which maybe faulty, i.e.,t = 2. In case the
inputs are 1, 1, 1, 1, 1 the system must output 1, then if the inputs are repeatedly
changed to 1, 1, 1, 1, 0 and then to, say, 1, 1, 0, 1, 0 the system may stay with a
stable output 1, but once the inputs are changed to, say, 1, 0, 0, 1, 0 the system
output must be changed to 0.

The case of a geodesic path of input changes, where each input can be changed
at most once is considered in [20, 24]. The upper bound for the memoryless binary
input case in [20] is 2t + 1 (where the majority of the first 2t + 1 inputs defines
the output). Multi-valued consensus extends the case of binary-valued consensus,
allowing the inputs (and the output) to be a non-necessarily binary value.

An upper bound for the number of output changes for a memoryless symmet-
ric system (where the function has the same output regardless of the position of
inputs in the input vector) is presented in [20]. The upper bound is a factor of
approximately 2 away from a corresponding lower bound shown using concepts
from Algebraic Topology.

Closing this gap, as well as considering non geodesic input path changes that
are useful to separate the performance and to evaluate consensus functions are
open questions.

Also in the case of multi-valued consensus one may only require an output
value that is within the range of values of the correct values, further exploring
functions is also open, and we believe that it is fruitful field of research with appli-
cation to several domains, including sensor activated devices, stable aggregation
of distributed information and alike.



BEATCS no 90 THE EATCS COLUMNS

114

4 Complexity of Implementing Atomic Snapshots

A snapshotobject consists ofm components (shared variables), each storing a
value. Processes can performUPDATE operations to change the value of each in-
dividual component, andSCANS, each of which returns a consistent view of the
contents of all the components. These operations can be performed simultane-
ously by different processes. Snapshots have been widely used to facilitate the
design and verification of numerous distributed algorithms because they provide
an immediate solution to the fundamental problem of calculating consistent views
of shared variables; this happens while these variables may be concurrently up-
dated by other processes.

A snapshotimplementationfrom registers uses shared registers to simulate the
snapshot components and provides algorithms forSCAN andUPDATE. Assuming
that processes may fail by crashing, an implementation iswait-free if each non-
faulty process terminates executing aSCAN/UPDATE within a finite number of its
own steps. An implementation islinearizableif (roughly speaking) the execution
of aSCAN or anUPDATE operation in any execution of the implementation appears
to take effect instantaneously.

Since snapshots have several applications, the design of efficient snapshot im-
plementations is crucial. Thetime complexityof SCAN (UPDATE) of an implemen-
tation is the maximum number of steps executed by a process to perform aSCAN

(UPDATE, respectively) in any execution of the implementation. Thetime complex-
ity of the implementation is the maximum of the time complexities of itsSCAN and
UPDATE. Despite the numerous work that has been performed on designing effi-
cient snapshot implementations (see [30] for a survey), their time complexity is
not yet fully understood. Some implementations use a small number of registers
but they have large time complexity while others employ more registers to achieve
better time complexity.

It is known [27] that at leastm registers are required to implement anm-
component snapshot. An implementation that uses onlym registers is provided
in [1, 28]. Its time complexity isO(mn) for bothSCAN andUPDATE, wheren is the
number of processes in the system. A lower bound ofΩ(mn) on the time complex-
ity of SCAN for space-optimal implementations (that use onlym registers), proved
in [28], shows that this implementation is optimal. An implementation that uses
n registers and has time complexityO(n) for SCAN andO(n logn) for UPDATE (or
vice versa) is provided by combining results in [2, 10, 42]. The fastest known
implementation [8] has time complexityO(n) for bothSCAN andUPDATE and uses
O(n2) registers. Another implementation with time complexityO(n) which, how-
ever, uses an unbounded number of registers can be obtained by combining results
in [2, 41]. Lower bounds on the space-time tradeoff are provided in [29], where
it is proved that the time complexity ofSCAN in any implementation that uses a



The Bulletin of the EATCS

115

fixed number of registers grows without bound asn increases.

Bridging the gap between the lower bounds provided in [29] and the best known
upper bounds (discussed above) is a challengingopen problem.

Even less is known for the time complexity ofUPDATE. A lower bound of
Ω(m) on the time complexity ofUPDATE is proved in [7]. This lower bound ex-
tends a similar result presented in [5] for the weaker version of asingle-writer
snapshot (where each component can be updated by only one process associated
to the component). Since the best known snapshot implementation [8] has time
complexityO(n) for UPDATE, it is unknown if this lower bound is optimal.

Proving better lower bounds for the time complexity ofUPDATE or designing
more efficient algorithms (in terms of theUPDATE time complexity) is an in-
triguingopen problem.

The identification of tradeoffs between the number of registers used in an im-
plementation, the time complexity ofSCAN, and the time complexity ofUPDATE
is another interestingopen problem.

The lower bounds proved in [28, 29] hold for deterministic algorithms and they
can be possibly beaten by employing randomization. Some randomized im-
plementations for the weaker version of single-writer snapshot objects are pre-
sented in [9]. Finding efficient randomized implementations for multi-writer
snapshot objects remains a challengingopen problem.

5 Pure Nash Equilibria in Selfish Routing

In modern non-cooperative networks, such as the Internet, participants, acting
selfishly, wish to efficiently route their traffic from some source to some destina-
tion with the least possible delay. In such environments,Nash Equilibria[62, 63]
represent steady states of the system where no user may profit by unilaterally
changing its strategy.

Koutsoupias and Padadimitriou [47], formulated the study of selfish routing
in non-cooperative networks by casting the problem as a non-cooperative game,
known in the literature as the KP-model;n selfish users wish to route their un-
splitable traffic ontom parallel links from a source to a destination. Each link
has a certain capacity representing the rate at which the link processes traffic,
and users have complete knowledge of the system’s parameters such as the link
capacities and the traffic of other users. Also, users choose how to route their



BEATCS no 90 THE EATCS COLUMNS

116

traffic based on a common payoff function, which essentially captures the de-
lay to be experienced on each link. However, modern non-cooperative systems
present incomplete information on various aspects of their behavior. For example,
it is often the case, that network users have incomplete information regarding the
link capacities. Such uncertainty may be caused if the network links are complex
paths created by routers which are constructed differently on separate occasions
according to the presence of congestion or link failures.

Gairing et al. [32] were the first to consider an extension of the KP-model
with incomplete information. Their model considers a game of parallel links with
incomplete information on the traffics of the users. The payoff functions employed
by the users take into account probabilistic information on the user traffics. The
authors show (along with other interesting results) that their model always admits
a Pure Nash Equilibrium and propose a polynomial-time algorithm for computing
such equilibria for some special cases.

In [38] an extension of the KP-model was introduced, where the network links
may present a number of different capacities and each user’s uncertainty about
the capacity of the links, calledbelief, is modeled via a probability distribution
over all the possibilities. It is assumed that the users may have different sources
of information regarding the network and, therefore, take their probability dis-
tributions to be distinct from one another. This gives rise to a model with user-
specific payoff functions, where each user uses its distinct probability distribu-
tion to take decisions as to how to route its traffic. In particular, the model is
an instance of weighted congestion games with user-specific functions studied by
Milchtaich [59].

The authors of [38], among other problems, studied the existence of Pure Nash
Equilibria in this new model; they proposed Polynomial-time algorithms for com-
puting pure Nash equilibria for some special cases and they showed that the neg-
ative results of [59], for the non-existence of pure Nash equilibria in the case of
three users, do not apply to their model.

The problem of existence of pure Nash Equilibria for this new model in the
general case is a non-trivial problem; as of this writing, it remainsopen.

Given the non-existence result for weighted congestion games with user specific
payoff-functions [59], a natural step is to disprove the existence of pure Nash
Equilibria for the new model described in [38].

It is conjectured that the model introduced in [38] always admits a Pure Nash
equilibrium in general. Proving or disproving this conjecture is an interesting
open challenge.



The Bulletin of the EATCS

117

Work for answering this question has been carried out in various directions.
In [33] it was shown that the game introduced in [38] is not anordinal potential
game, since it has been shown that the state space of an instance of the game con-
tains a cycle. Therefore, potential functions [60], a powerful method for proving
existence of Nash Equilibria, cannot be used for this model. Further attempts by
the authors of [38], including applying graph-theoretic methods and inductive ar-
guments have not been successful. The arguments end up failing mainly due to the
arbitrary relation between the different user beliefs on the capacity of the network
links.

Typically, simple counter-examples to the existence of pure Nash Equilibria
considering a small number of resource (links) and users are used for such pur-
poses (for example, in [59], the counter-example involves 3 users and 3 resources).
This appears not to be the case for the new model: in [38] was shown that for the
case of three users (and arbitrary number of links) pure Nash Equilibria always ex-
ist; also simulations ran on numerous instances of the model (dealing with small
number of users and links) suggest the existence of pure NE.

6 Adverse Cooperative Computing

The problem of cooperatively performing a collection of tasks in a decentralized
setting where the computing medium is subject to adversarial perturbations is one
of the fundamental problems in distributed computing. Such perturbations can
be caused by processor failures, unpredictable delays, and communication break-
downs. To develop efficient solutions for computation problems ranging from
distributed search such asSETI@home to parallel simulation andGRID comput-
ing, it is important to understand efficiency trade-offs characterizing the ability
of p processors to cooperate ont independent tasks in the presence of adversity.
This basic problem of cooperation has been studied in a variety of models, includ-
ing shared-memory [3, 40, 43, 45, 58], message-passing [18, 19, 21, 26, 34, 48],
in partitionable networks [25, 37, 39], and also in the settings with limited com-
munication, e.g., [36, 57, 65]. Developing efficient algorithms solving such task-
performing problems in adversarial settings has proven to be difficult.

Here we tackle the problem of distributed cooperation in deterministic shared-
memory settings where the processors are subject to arbitrary failures and de-
lays. Kanellakis and Shvartsman [43] introduced and studied an abstraction of
this problem, calledWrite-All, formulated in terms ofp processors writing tot
distinct memory locations in the presence of an adaptive adversary that introduces
dynamic failures or delays. Here writing to a memory location models an inde-
pendent task that can be performed by a single processor in constant time. The ef-
ficiency of algorithms in such settings is measured in terms ofwork that accounts



BEATCS no 90 THE EATCS COLUMNS

118

for all steps taken by the processors in solving the problem. The upper bound
for Write-All with synchronous crash-prone processors was shown to beO(t +
p log2 t/ log logt), wherep ≤ t, and at least one processor is non-faulty. The algo-
rithm exhibiting this bound has optimal work ofO(t) whenp ≤ t log logt/ log2 t.
However, Kedem, Palem, Raghunathan, and Spirakis [45] showed that whenp =
t, the work lower bound forWrite-All is Ω(t log t), thus no optimal algorithm for
Write-All exists for the full range of processors (p = t). Although a small gap of
log t/ log logt remains between the upper and lower bounds, the problem can be
considered substantially solved for synchronous processors.

Solutions for theWrite-All problem become significantly more challenging
when asynchrony is introduced. The most efficient deterministic asynchronous
algorithm known forWrite-All is the elegant algorithm of Anderson and Woll [3]
that has workO(t · pε) for p ≤ t and anyε > 0. The strongest corresponding lower
bound, due to Buss, Kanellakis, Ragde, and Shvartsman [17], isΩ(t + p log p),
and it holds even if no processor crashes. Note that in complexity-theoretic terms,
the relative gap between these bounds on work is very large (i.e., polynomial in
p, being pε for p = t), since the lower bound is only a logarithm away from
linear work. Given that this gap is now 15 years old, and that this problem con-
tinues to be of interest, it appears that narrowing this gap is extremely challenging.

Thus we formulate our first, two-pronged,open problemas follows: (a) can a
stronger thanΩ(t log t) lower bound on work be shown for asynchronusWrite-
All problem, and/or (b) is there an algorithm for asynchronous processors that
solves the problem with work asymptotically less thanO(t1+ε) for p = t?

Next observe that an optimal algorithm forWrite-All must have workΘ(t),
however the lower bounds on work ofΩ(t + p log p) make optimality out of reach
when p = Ω(t). Also note that the algorithm [3] has work complexityω(t) for
all but a trivial numberp of processors. The quest then is to obtain work-optimal
solutions for this problem using the largest possible, and non-trivial compared to
t, number of processorsp in order to maximize the parallelism of the solution.
Recently Malewicz [56] presented the first qualitative advancement in the search
for optimal work complexity by exhibiting an algorithm that has workΘ(t) us-
ing a non-trivial numberg of processors, whereg = 4

√

t/ log t. Using different
techniques, Kowalski and Shvartsman [49] exhibited an algorithm that has work
complexity ofO(t + p2+ε), achieving optimality for a larger range of processors,
specifically forp = O(t1/(2+ε)).

Our second and finalopen problem is as follows: Is it possible to solve the
asynchronousWrite-All problem with optimal workO(t) using the number of
processorsp = tδ for δ > 1/2?



The Bulletin of the EATCS

119

Summing up, we presented theWrite-All problem that abstracts the distributed
cooperation problem in the presence of adversity. Despite substantial research,
there is a dearth of efficient deterministic shared-memory algorithms forWrite-All
with asynchronous crash-prone processors.

The most challengingopen problems in this area deal with closing the gap
between the lower and upper bounds on work, and with the development of
work-optimal algorithms that use the largest possible number of processors in
order to achieve high speedup in solving the problem of distributed cooperation.

7 Distributed Approximations

Initiated by Papadimitriou and Yannakakis [64], the distributed approximation of
linear programs has attracted the interests of researchers for some time. Most of
the past efforts considered the special class of packing and its dual (covering) lin-
ear programs. Note that many hard problems (e.g. dominating set, coloring etc.)
can be cast in the form of Integer Linear Programs (ILPs) and their distributed
complexity of a good approximation is, up to now, a major open issue.

It is fair to assume a setting of a network with classical message passing capa-
bility, in which a node can send a message of sizeO(logn) bits to each neighbor
in the net, in each communication step. Heren is the network size. We can also
assume that each network node has a distinct id of sizeO(logn) bits. This is a syn-
chronous communication model where the computation is assumed to advance in
(global) rounds. Imagine then a general ILP setting, where, for example, there are
n “producing” nodes andm “accepting” nodes. In generalm is less thann. Each
producer, call heri, has to derive an integerxi (this can be negative. In that case
the producer demandsxi units). For each “accepting” nodej, when anxi arrives
to it, it has an associated cost (or benefit)aj

i ∗ xi. For each accepting nodej, the
sum of allaj

i ∗ xi, (i = 1 . . . n), must be at most an integer quantitybj. Hereai
j, bj

are integers. Thexi ’s produced have each a cost (or benefit)ci ∗ xi whereci is an
integer. Now, the whole system must minimize the sum of allci ∗ xi, (i = 1 . . . n).
Or, at least approximate this minimum. The reader can recognize that this is the
general case of an ILP.

The distributed complexity (i.e. number of rounds to achieve a good approxi-
mation) of the general integer-linear programs is a majoropen problem.

Note that the “accepting” nodes can elect a leader and then she can get all
the coefficients needed to solve the problem locally. But, the restriction in the
message size, leads to an awful number of rounds, e.g. aroundn. We want here
a small number of rounds (constant number would be fine). Note that we do not



BEATCS no 90 THE EATCS COLUMNS

120

assume that theai
j form a metric. They can also be arbitrarily large.

Facility location is an example of a non-positive linear integer program that
is not a covering or packing one. Only very recently, the works [61, 35] made
some progress in the distributed approximation of the facility location problem.
In the facility location problem, the network is a (usually complete but this does
not help much) bipartite graph, where two node sets,C andF share edges between
them. HereC is the set of clients andF is the set of facilities. Each facilityi has
a non-negative opening costfi. The connection cost between facilityi and client
j is an integercj

i . Let yi, x j
i be zero/one variables whereyi = 1 indicates that

facility i is open andx j
i = 1 indicates that clientj is connected to facilityi. The

system has to minimize the sum of all opening and connection costs. Note that
any good solution that works with the relaxed linear problem first, must round the
non-integer solutions. Even this (e.g. randomized rounding ) has to be well done
in a distributed way.

An interesting variation of such problems is a selfish distributed optimization
situation. Let me motivate this by a Stackelberg game: Here each nodei wants
to send flowxi to a destination nodej. The total flow sums to (say) a valuer.
Some of the nodes (belonging to a subsetL) are not selfish but they agree to work
together (e.g. under an elected leader). The rest route their flows selfishly to avoid
big delays. But the nodes inL can put their flows in such a way so that the Nash
Equilibrium reached by the other nodes is very close to an optimal flow routing
(e.g. of min total latency).

Finding distributed solutions to the selfish optimization problem described
above, remains anopen problem

For centralized solutions, one can see [44]. In fact, [44] shows that the leader
(i.e., the centralized equivalent toL) can put its flow in such a way so that the Nash
equilibrium reached by the other selfish flows is indeed the optimal, provided that
the leader controls a sizeable portion of the overall flow. For recent developments
on distributed approximations to problems related to linear and integer program-
ming, we refer the reader to [51].

8 Sensor Networks: Locality for Geometric Graphs

Wireless sensor networks currently exhibit an incredible research momentum.
Computer scientists and engineers from all flavors are embracing the area. Sen-
sor networks are explored by researchers from hardware technology to operating
systems, from antenna design to middleware, from graph theory to computational
geometry. The distributed algorithms community should join this big interdisci-



The Bulletin of the EATCS

121

plinary party.
In the last twenty years, so-calledlocal algorithms have been a thriving theo-

retical research subject. In ak-local algorithm, for some parameterk, each node
can communicate at mostk times with its neighbors. Hence, even in synchronous
operation nodes can at most gather information about theirk-neighborhood. Early
work for this model includes some of the most wonderful results in distributed
computing, such as Luby’s randomized independent set algorithm [55], sparse
partitions by Awerbuch and Peleg [12], or Linial’sΩ

(

logn
)

lower bound [53].

There have been recent advances on both upper [51] and lower [50] bounds;
however, many basic questions (e.g. a deterministic local construction of a max-
imal independent set) are stillopen(see also Section 7).

Until recently this theory was a bitl’art pour l’art . Sensor networks may be a
first real-world application domain for local algorithms. Due to their wireless na-
ture, the links of a sensor network are often unstable, in other words, the network
is dynamic. In such an environment it is often impossible to run a centralized
algorithm, as the network topology which serves as an input for an algorithm is
usually different from the topology after running the algorithm. Local algorithms
on the other hand are able to compromise approximation quality (efficacy) for
communication time (efficiency) in order to keep up with the network dynamics.

Unfortunately, local algorithms are not exactly tailored for sensor networks.
Apart from various other modeling issues [67], local algorithms are often devel-
oped for general graphs; in sensor networks, however, geometry comes into play
as the distribution of nodes in space and the propagation range of wireless links
usually adhere to geometric constraints. Several models inspired by both graph
theory and geometry are possible; in a recent survey [67], a few such models are
presented.

So far, very little is known about local algorithms for geometric graphs. To give
a specific example, even for a simple model known asunit disk graph, the local
complexity of typical coordination tasks (e.g., computing a dominating set) is
an open problem. In fact, to the best of our knowledge, the currently best
algorithm for this problem on unit disk graphs remains an algorithm for general
graphs [51].

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt and N. Shavit, “Atomic Snapshots
of Shared Memory”,Journal of the ACM, Vol 40, No 4, pp. 873–890, September
1993.



BEATCS no 90 THE EATCS COLUMNS

122

[2] J. H. Anderson, “Multi-Writer Composite Registers”,Distributed Computing, Vol.
7, No 4, pp. 175–195, April 1994.

[3] R. J. Anderson and H. Woll, “Algorithms for the Certified Write-All Problem”,SIAM
Journal on Computing, Vol. 26, No. 5, pp. 1277–1283, October 1997.

[4] J. Aspnes, “Time- and Space-Efficient Randomized Consensus”,Journal of Algo-
rithms, Vol. 14, No. 2, pp. 414-431, May 1993.

[5] A. Israeli and A. Shirazi, “The Time Complexity of Updating Snapshot Memories”,
Information Processing Letters, Vol. 65, No. 1, pp. 33–40, January 1998.

[6] J. Aspnes, “Lower Bounds for Distributed Coin-Flipping and Randomized Consen-
sus”,Journal of the ACM, Vol. 45, No. 3, pp. 415-450, May 1998.

[7] H. Attiya, F. Ellen and P. Fatourou, “The Complexity of Updating Multi-Writer
Snapshot Objects”,Proceedings of the 8th International Conference on Distributed
Computing and Networking, to appear, December 2006.

[8] H. Attiya and A. Fouren, “Adaptive and Efficient Algorithms for Lattice Agreement
and Renaming”,SIAM Journal on Computing, Vol. 31, No. 2, pp. 642–664, October
2001.

[9] H. Attiya, M. Herlihy and O. Rachman, “Atomic Snapshots Using Lattice Agree-
ment”,Distributed Computing, Vol. 8, No. 3, pp. 121–132, March 1995.

[10] H. Attiya and O. Rachman, “Atomic Snapshots inO(n logn) Operations”,SIAM
Journal on Computing, Vol. 27, No. 2, pp. 319–340, April 1998.

[11] Y. Aumann, “Efficient Asynchronous Consensus with the Weak Adversary Sched-
uler”, Proceedings of the 16th Annual ACM Symposium on Principles of Distributed
Computing, pp. 209-218, August 1997.

[12] B. Awerbuch and D. Peleg, “Sparse Partitions”,Proceedings of the 31st Annual
IEEE Symposium on Foundations of Computer Science, Vol. 2, pp. 503–513, Octo-
ber 1990.

[13] Y. Azar, E. Cohen, A. Fiat, H. Kaplan and H. Racke, “Optimal Oblivious Routing in
Polynomial Time”,Proceedings of the 35th Annual ACM Symposium on Theory of
Computing, pp. 383–388, June 2003.

[14] G. Bracha and O. Rachman, “Randomized Consensus in ExpectedO(n2 logn) Oper-
ations”,Proceedings of the 5th International Workshop on Distributed Algorithms,
pp. 143-150, October 1991.

[15] C. Busch, M. Ismail and J. Xi, “Optimal Oblivious Path Selection on the Mesh”,
Proceedings of the 19th IEEE International Parallel and Distributed Processing
Symposium, pp. 82–91, April 2005.

[16] C. Busch, M. Ismail and J. Xi, “Oblivious Routing on Geometric Networks”,Pro-
ceedings of the 17th Annual ACM Symposium on Parallelism in Algorithms and
Architectures, pp. 316–324, July 2005.



The Bulletin of the EATCS

123

[17] J. Buss, P. Kanellakis, P. Ragde and A. Shvartsman, “Parallel Algorithms with Pro-
cessor Failures and Delays”,Journal of Algorithms, Vol. 20, No. 1, pp. 45–86, Jan-
uary 1996.

[18] B. Chlebus, R. De Prisco and A. Shvartsman, “Performing Tasks on Restartable
Message-Passing Processors”,Distributed Computing, Vol. 14, No. 1, pp. 49–64,
January 2001.

[19] B. Chlebus, L. Ga̧sieniec, D. Kowalski and A. Shvartsman, “Bounding Workand
Communication in Robust Cooperative Computation”,Proceedings of the 16th In-
ternational Symposium on Distributed Computing, pp. 295–310, October 2002.

[20] L. Davidovitch, S. Dolev and S. Rajsbaum, “Consensus Continue? Stability of
Multi-Valued Continuous Consensus!”,Proceedings of the 6th Workshop on Geo-
metric and Topological Methods in Concurrency and Distributed Computing, pp.
21-24, October 2004.

[21] R. De Prisco, A. Mayer and M. Yung, “Time-Optimal Message-Efficient Work Per-
formance in the Presence of Faults”,Proceedings of the 13th Annual ACM Sympo-
sium on Principles of Distributed Computing, pp. 161–172, August 1994.

[22] S. Dolev,Self-Stabilization, MIT Press, 2000.

[23] S. Dolev, R. Kat and E. Schiller, “When Consensus Meets Self-Stabilization, Self-
Stabilizing Failure Detector, Consensus and Replicated State-Machine”, Technical
Report, Department of Computer Science, Ben-Gurion University of the Negev,
2006.

[24] S. Dolev and S. Rajsbaum, “Stability of Long-Lived Consensus”,Journal of Com-
puter and System Sciences, Vol. 67, No. 1, pp. 26-45, August 2003.

[25] S. Dolev, R. Segala and A. Shvartsman, “Dynamic Load Balancing with Group
Communication”,Proceedings of the 6th International Colloquium on Structural
Information and Communication Complexity, pp. 111–125, July 1999.

[26] C. Dwork, J. Halpern and O. Waarts, “Performing Work Efficiently in the Presence
of Faults”, SIAM Journal on Computing, Vol. 27, No. 5, pp. 1457–1491, October
1998.

[27] P. Fatourou, F. Fich and E. Ruppert, “Space-Optimal Multi-Writer Snapshot Ob-
jects are Slow”,Proceedings of the 21st Annual ACM Symposium on Principles of
Distributed Computing, pp. 13–20, July 2002.

[28] P. Fatourou, F. Fich and E. Ruppert, “A Tight Time Lower Bound for Space-Optimal
Implementations of Multi-Writer Snapshots”,Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, pp. 259–268, June 2003.

[29] P. Fatourou, F. Fich and E. Ruppert, “Time-Space Tradeoffs for Implementations of
Snapshots”,Proceedings of the 38th Annual ACM Symposium on Theory of Com-
puting, pp. 169-178, May 2006.



BEATCS no 90 THE EATCS COLUMNS

124

[30] F. Fich, “How Hard is it To Take a Snapshot?”,Proceedings of the 31st Annual
Conference on Current Trends in Theory and Practice of Informatics, Vol. 3381, pp.
27–35, January 2005.

[31] M. J. Fischer, N. A. Lynch and M. S. Paterson, “Impossibility of Distributed Con-
sensus with One Faulty Process”,Journal of the ACM, Vol. 32, No. 3, pp. 374-382,
April 1985.

[32] M. Gairing, B. Monien and K. Tiemann, “Selfish Routing with Incomplete Informa-
tion”, Proceedings of the 17th Annual ACM Symposium on Parallelism in Algorithms
and Architectures, pp. 203–212, July 2005.

[33] M. Gairing, B. Monien and K. Tiemann, “Routing (Un-)Splittable Flow in Games
with Player-Specific Linear Latency Functions”,Proceedings of the 33rd Interna-
tional Colloquium on Automata, Languages and Programming, Vol. 4051, pp. 501-
512, July 2006.

[34] Z. Galil, A. Mayer and M. Yung, “Resolving Message Complexity of Byzantine
Agreement and Beyond”,Proceedings of the 36th IEEE Symposium on Foundations
of Computer Science, pp. 724–733, October 1995.

[35] J. Gehweiler, C. Lammersen and C. Sohler, “A DistributedO(1)-Approximation Al-
gorithm for the Uniform Facility Location Problem”,Proceedings of the 18th Annual
ACM Symposium on Parallelism in Algorithms and Architectures, pp. 237-243, July
2006.

[36] S. Georgiades, M. Mavronicolas and P. Spirakis, “Optimal, Distributed Decision-
Making: The Case of no Communication”,Proceedings of the 12th International
Symposium on Fundamentals of Computation Theory, Vol. 1684, pp. 293–303, Au-
gust/September 1999.

[37] C. Georgiou, A. Russell and A. Shvartsman, “Work-Competitive Scheduling for
Cooperative Computing with Dynamic Groups”,SIAM Journal on Computing, Vol.
34, No. 4, pp. 848–862, 2005.

[38] C. Georgiou, T. Pavlides and A. Philippou, “Network Uncertainty in Selfish Rout-
ing”, CD-ROM Proceedings of the 20th IEEE International Parallel and Distributed
Processing Symposium, April 2006.

[39] C. Georgiou and A. Shvartsman, “Cooperative Computing with Fragmentable and
Mergeable Groups”,Journal of Discrete Algorithms, Vol. 1, No. 2, pp. 211–235,
April 2003.

[40] J. Groote, W. Hesselink, S. Mauw and R. Vermeulen, “An Algorithm for the Asyn-
chronous Write-All Problem Based on Process Collision”,Distributed Computing,
Vol. 14, No. 2, pp. 75–81, April 2001.

[41] M. Inoue, W. Chen, T. Masuzawa and N. Tokura, “Linear Time Snapshots Using
Multi-Writer Multi-Reader Registers”,Proceedings of the 8th International Work-
shop on Distributed Algorithms, Vol. 857, pp. 130–140, September/October 1994.



The Bulletin of the EATCS

125

[42] A. Israeli, A. Shaham, A. Shirazi and T. Masuzawa, “Linear-Time Snapshot Imple-
mentations in Unbalanced Systems”,Mathematical Systems Theory, Vol. 28, No. 5,
pp. 469–486, September/October 1995.

[43] P. Kanellakis and A Shvartsman,Fault-Tolerant Parallel Computation, Kluwer Aca-
demic Publishers, 1997.

[44] A. Kaporis and P. Spirakis, “The Price of Optimum in Stackelberg Games on Arbi-
trary Single Commodity Networks and Latency Functions”,Proceedings of the 18th
Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 19-28,
July 2006.

[45] Z. Kedem, K. Palem, A. Raghunathan and P. Spirakis, “Combining Tentative and
Definite Executions for Dependable Parallel Computing”,Proceedings of the 23rd
Annual ACM Symposium on Theory of Computing, pp. 381–390, May 1991.

[46] Z. Kedem, K. Palem and P. Spirakis, “Efficient Robust Parallel Computations”,Pro-
ceedings of the 22nd Annual ACM Symposium on Theory of Computing, pp. 138–
148, May 1990.

[47] E. Koutsoupias and C. H. Papadimitriou, “Worst-Case Equilibria”,Proccedings of
the 16th International Symposium on Theoretical Aspects of Computer Science, Vol.
1563, pp. 404–413, March 1999.

[48] D. Kowalski and A. Shvartsman, “Performing Work with Asynchronous Processors:
Message-Delay-Sensitive Bounds”,Information and Computation, Vol. 203, No. 2,
pp. 181–210, December 2005.

[49] D. Kowalski and A. Shvartsman, “Writing-All Deterministically and Optimally Us-
ing a Non-Trivial Number of Asynchronous Processors”,Procedings of the 16th
Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 311–
320, June 2004.

[50] F. Kuhn, T. Moscibroda and R. Wattenhofer, “What Cannot be Computed Locally”,
Proceedings of the 23rd Annual ACM Symposium on the Principles of Distributed
Computing, pp. 300–309, July 2004.

[51] F. Kuhn, T. Moscibroda and R. Wattenhofer, “The Price of Being Near-Sighted”,
Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
980-989, January 2006.

[52] F. Leighton, B. Maggs and S. Rao, “Packet Routing and Job-Shop Scheduling in
O(Congestion+Dilation) Steps”,Combinatorica, Vol. 14, No. 2, pp. 167–186, June
1994.

[53] N. Linial, “Locality in Distributed Graph Algorithms”,SIAM Journal on Computing,
Vol. 21, No. 1, pp. 193–201, February 1992.

[54] M. Loui and H. Abu-Amara, “Memory Requirements for Agreement among Un-
reliable Asynchronous Processes”,Advances in Computing Research, Vol. 4, pp.
163-183, 1987.



BEATCS no 90 THE EATCS COLUMNS

126

[55] M. Luby, “A Simple Parallel Algorithm for the Maximal Independent Set Problem”,
SIAM Journal on Computing, Vol. 15, No. 4, pp. 1036-1053, November 1986.

[56] G. Malewicz, “A Work-Optimal Deterministic Algorithm for the Certified Write-All
Problem with a Nontrivial Number of Asynchronous Processors”,SIAM Journal on
Computing, Vol. 34, No. 4, pp. 993–1024, April/May 2005.

[57] G. Malewicz, A. Russell and A. Shvartsman, “Distributed Scheduling for Discon-
nected Cooperation”,Distributed Computing, Vol. 18, No. 6, pp. 409–420, June
2006.

[58] C. Martel, A. Park and R. Subramonian, “Work-Optimal Asynchronous Algorithms
for Shared Memory Parallel Computers”,SIAM Journal on Computing, Vol. 21, No.
6, pp. 1070–1099, December 1992.

[59] I. Milchtaich, “Congestion Games with Player-Specific Payoff Functions”,Games
and Economic Behavior, Vol. 13, No. 1, pp. 111–124, April 1996.

[60] D. Monderer and L. S. Shapley, “Potential Games”,Games and Economic Behavior,
Vol. 14, No. 1, pp. 124–143, May 1996.

[61] T. Moscibroda and R. Wattenhofer, “Facility Location: Distributed Approximation”,
Proceedings of the 24th Annual ACM Symposium on the Principles of Distributed
Computing, pp. 108-117, July 2005.

[62] J. F. Nash, “Equilibrium Points inn-Person Games”,Proceedings of the National
Acanemy of Sciences of the United States of America, Vol. 36, pp. 48–49, 1950.

[63] J. F. Nash, “Non-Cooperative Games”,Annals of Mathematics, Vol. 54, No. 2, pp.
286–295, 1951.

[64] C. Papadimitriou and M. Yannakakis, “Linear Programming Without the Matrix”,
Proceedings of the 25th Annual ACM Sumposium on Theory of Computing, pp. 121-
129, May 1993.

[65] C. Papadimitriou and M. Yannakakis, “On the Value of Information in Distributed
Decision-Making”,Proceedings of the 10th Annual ACM Symposium on Principles
of Distributed Computing, pp. 61–64, August 1991.

[66] H. Racke, “Minimizing Congestion in General Networks”,Proceedings of the 43rd
Annual Symposium on the Foundations of Computer Science, pp. 43–52, November
2002.

[67] S. Schmid and R. Wattenhofer, “Algorithmic Models for Sensor Networks”,Pro-
ceedings of the 14th International Workshop on Parallel and Distributed Real-Time
Systems, April 2006.


