
Performing Dynamically Injected Tasks
on Processes Prone to Crashes and Restarts

Chryssis Georgiou∗

Department of Computer Science,
University of Cyprus

chryssis@cs.ucy.ac.cy

Dariusz R. Kowalski†

Department of Computer Science,
University of Liverpool

D.Kowalski@liverpool.ac.uk

September 1, 2011

Abstract

To identify the tradeoffs between efficiency and fault-tolerance in dynamic cooperative computing, we initiate
the study of a task performing problem under dynamic processes’ crashes/restarts and task injections. The system
consists of n message-passing processes which, subject to dynamic crashes and restarts, cooperate in performing in-
dependent tasks that are continuously and dynamically injected to the system. The task specifications are not known
a priori to the processes. This problem abstracts todays Internet-based computations, such as Grid computing and
cloud services, where tasks are generated dynamically and different tasks may be known to different processes. We
measure performance in terms of the number of pending tasks, and as such it can be directly compared with the opti-
mum number obtained under the same crash-restart-injection pattern by the best off-line algorithm. Hence, we view
the problem as an online problem and we pursue competitive analysis. We propose several deterministic algorithmic
solutions to the considered problem under different information models and correctness criteria, and we argue that
their performance is close to the best possible offline solutions. We also prove negative results that open interesting
research directions.

Keywords: Performing tasks; Dynamic task injection; Crashes and restarts; Competitive analysis; Distributed Algo-
rithms.

Full version of DISC 2011 paper.

∗The work of this author is supported in part from research funds of the University of Cyprus.
†The work of this author is supported by the Engineering and Physical Sciences Research Council [grant numbers EP/G023018/1,

EP/H018816/1].

1 Introduction

Motivation. One of the fundamental problems in distributed computing is to have a collection of processes to collab-
orate in performing large sets of tasks. For such distributed collaboration to be effective it must be designed to cope
with dynamic perturbations that occur in the computation medium (e.g., processes or communication failures). For this
purpose, a vast amount of research has been dedicated over the last two decades in developing fault-tolerant algorith-
mic solutions and frameworks for various versions of such cooperation problems (e.g., [11, 15, 20, 21, 26, 28]) and in
deploying distributed collaborative systems and applications (e.g., [3, 14, 23, 25]).

In order to identify the tradeoffs between efficiency and fault-tolerance in distributed cooperative computing, much
research was devoted in studying the abstract problem of using n processes to cooperatively perform m independent
tasks in the presence of failures (see for example [13, 20, 22]). In this problem, known as Do-All, the number of
tasks m is assumed to be fixed and known a priori to all processes. Although there are several applications in which
the knowledge of tasks can be known a priori, in todays typical Internet-based computations, such as Grid computing
(e.g., [14]), Cloud services (e.g., [3]), and master-worker computing (e.g., [23, 25]), tasks are generated dynamically
and different tasks may be known to different processes. As such computations are becoming the norm (and not the
exception) there is a corresponding need to develop efficient and fault-tolerant algorithmic solutions that would also be
able to cope with dynamic tasks injections.

Our Contributions. In this work, in an attempt to identify the tradeoffs between efficiency and fault-tolerance in dy-
namic cooperative computing, we initiate the study of a task performing problem in which nmessage-passing processes,
subject to dynamic crashes and restarts, cooperate in performing independent tasks that are continuously and dynam-
ically injected to the system. The computation is broken into synchronous rounds, in which each process is injected
tasks, receives messages sent to it in the prior round, performs local computations (including performing at most one
task), and sends messages (if any). Unless otherwise stated, we assume that tasks are of unit-length, that is, it takes one
round for a process to perform a task. An execution of an algorithm is specified under a crash-restart-injection pattern.
Then, the efficiency of an algorithm is measured in terms of the maximum number of pending tasks at the beginning
of a round of an execution, taken over all rounds and all executions. This enables us to view the problem as an online
problem and pursue competitive analysis [29], that is, compare the efficiency of a given algorithm with the efficiency of
the best offline algorithm that knows a priori the crash-restart-injection patterns.
Task performance guarantees: We consider two versions of the problem with respect to the task performance guarantees
required by algorithmic solutions. The first one, which constitutes the basic correctness property, requires that no task
is lost, that is, a task is either performed or the information of the task remains in the system. The second and stronger
property, which we call fairness, requires that all tasks injected in the system are eventually performed. As we mention
below, we draw a line on the conditions under which these two properties can be satisfied and with what cost.
Our approach: We deploy an incremental approach in studying the problem. We first assume that there is a central-
ized authority, called central scheduler, that at the beginning of each round informs the processes (that are currently
operational) about the tasks that are still pending to be performed, including any new tasks injected in this round.
The reason to begin with this assumption is two-fold: (a) The fact that processes have consistent information on the
number of pending tasks enables us to focus on identifying the inherent limitations of the problem under processes fail-
ures/restarts and dynamic injection of tasks without having to implement information sharing amongst processes. The
algorithmic solutions developed under this information model are used as building blocks in versions of the problem
that deploy weaker information models. Furthermore, lower bound results developed in this information model are also
valid for weaker information models. (b) Studying the problem under this assumption has its own independent interest,
as the central scheduler can be viewed as an abstraction of a monitor used for monitoring the computation progress and
providing feedback to the computing elements. For example it could be viewed as a master server in Master-Worker
Internet-based computations such as SETI [23] or Pregel [25], or as a resource broker/scheduler in Computational Grids
such as EGEE [14].

We then limit the information provided to the processes. We consider a weaker centralized authority, called central
injector, which informs processes, at the beginning of each round, only about the tasks injected in this round and
information about which tasks have been performed only in the previous round. We show how to transform solutions
for the task performing problem under the model of central scheduler into solutions for the problem under the model

1

of central injector with the expense of sending a quadratic number of messages in every round. It also occurs that
a quadratic number of messages must be sent in some rounds by any correct distributed solution for the considered
problem in the model of central injector.

With the gained knowledge and understanding, we then show how processes can obtain common knowledge on the
set of pending tasks without the use of a centralized authority. We now assume the existence of a local injector that
injects tasks to processes without giving them any global information (for example, each process may be injected tasks
that no other process in the system has been injected, or only a subset of processes may be injected the same task).
The injector can be viewed, for example, as a local daemon of a distributed application that provides local information
to the process that is running on. We show that solutions to this more general setting come with minimal cost to the
competitiveness, provided that reliable multicast [8] is available.
Our results: We now summarize our results. (All results concern deterministic solutions.)
(a) Solutions guaranteeing correctness: For the model of central scheduler, we show a lower bound of OPT+n/3 on the
pending-tasks competitiveness of any deterministic algorithm, even for algorithms that make use of messages and are
designed for restricted forms of crash-restarts patterns. We claim that this lower bound result is valid in all other settings
we consider. We then develop the near-optimal deterministic algorithm AlgCS that does not make any use of message
exchange amongst processes and achieves OPT + 2n pending-tasks competitiveness. Using a generic transformation
we obtain algorithm AlgCI for the model with central injector with the same competitiveness as algorithm AlgCS.
Algorithm AlgCI has processes sending messages to each other in every round. Finally, we develop algorithm AlgLI
for the model with local injector and we show that it achieves OPT + 3n pending-tasks competitiveness, under the
assumption of reliable multicast. These results are presented in Sect. 3.
(b) Solutions guaranteeing fairness: The issue of fairness is far more complex than correctness; we show that it is nec-
essary and sufficient to assume that when a process restarts it does not fail again in the next at least two consecutive
rounds; under this restriction, called 2-survivability, we develop fair algorithms AlgCSF, AlgCIF, and AlgLIF in the
three considered information models and show that they “suffer” an additional additive surplus of n to their competitive-
ness, comparing to the algorithms that guarantee only correctness. An interesting observation is that fairness can only be
guaranteed in infinite executions, otherwise competitive solutions are not possible. These results are detailed in Sect. 4.
(c) Bounding communication: We show that in the model of central injector and local injector, if processes do not
send messages to all other processes, then correctness (and thus also fairness) cannot be guaranteed, unless stronger
restrictions are imposed on the crash-restart patterns. This result is detailed in Sect. 5.1.
(d) Non-unit-length tasks: For the above results we assumed that tasks are of unit-length, that is, they require one
round to be performed by some process. The situation is even more complex when tasks may not be of unit-length.
For the model of central scheduler, we show that if tasks have uniform length d ≥ 1, that is, each task requires d
consecutive rounds to be performed by a process, then a variation of algorithm AlgCS achieves OPT + 3n pending-
tasks competitiveness, under the correctness requirement. We conjecture that similar techniques can be applied to obtain
competitive algorithms in the other information models and under the fairness requirement. Then we show that bounded
competitiveness is not possible if tasks have different lengths, even under slightly restricted adversarial patterns. These
results are given in Sect. 5.2.

The negative results of (c) and (d) give rise to interesting research questions and yield interesting future research
directions. These are discussed in Sect. 6.

Related Work. The Do-All problem has been studied in several models of computation, including message-passing
(e.g., [13, 20]), shared-memory (e.g., [1, 22, 24]), partitionable networks (e.g., [19]), in the absence of communication
(e.g., [27]) and under various assumptions on synchrony/asynchrony and failures. As already mentioned, the underlying
assumption is that the number of tasks m is fixed, bounded and known a priori (as well as the task specifications) by all
processes. The Do-All problem is considered solved when all tasks are performed, provided that at least one process
remains operational in the entire computation (this can be viewed as a simplified version of our fairness property). The
efficiency of Do-All algorithms is measured either as the total number of tasks performed – work complexity [13] or as
the total number of available processes steps [22]. Georgiou et al. [18] considered an iterated version of the problem,
where waves of m tasks must be performed, one after the other. All task waves are assumed to be known a priori by
the processes. Clearly the problem we consider in this work is more general (and harder), as tasks do not come in
waves, are not known a priori, and their number might not be bounded. Furthermore, we consider processes crashes

2

and restarts, as opposed to the work in [18] that considers only processes crashes. Chlebus et al. in [8] considered
the Do-All problem in the synchronous message-passing model with processes crashes and restarts. In order to obtain
a solution for the problem in this setting, they made two modeling assumptions: (a) Reliable multicast: if a process
fails while mutlicasting a message, then either all (non-faulty) targeted processes receive the message, or none does,
and (b) There is at least one process alive for k > 1 consecutive rounds of the computation. In the present paper, as
already mentioned, we also require reliable multicast in the model with local injector, and as we discuss in later sections,
to guarantee fairness we require a similar restriction on the process living period. Finally, in [19], an online version
of the Do-All problem is considered where the network topology changes dynamically and processes form disjoint
communication groups. In this setting the efficiency (work complexity) of a randomized Do-All algorithm is compared
with the efficiency of an offline algorithm that is aware a priori of the changes in the network topology. Again, the
number of tasks is fixed, bounded and known a priori to all processes.

The notion of competitiveness was introduced by Sleator and Tarjan [29] and it was extended for distributed al-
gorithms in a sequence of papers by Bartal et al. [7], Awerbuch et al. [6], and Ajtai et al. [2]. Several distributed
computing problems have been modeled as online problems and their competitiveness was studied. Examples include
distributed data management (e.g., [7]), distributed job scheduling (e.g., [6]), distributed collect (e.g., [9]), and set-
packing (e.g., [15]).

In a sequence of papers [10, 11, 26] a scheduling theory is being developed for scheduling computations having
intertask dependencies for Internet-based computing. The objective of the schedules is to render tasks eligible for
execution at the maximum possible rate and avoid gridlock (although there are available computing elements, there
are no eligible tasks to be performed). The task dependencies are represented as directed acyclic tasks and the theory
has been extending the families of DAGs that optimal schedules can be developed. This line of work mainly focuses
on exploiting the properties of DAGs in order to develop schedules. Our work, although it considers independent
tasks, focuses instead, on the development of distributed fault-tolerant task performing algorithms and exploring the
limitations of online distributed collaboration.

2 Model

Distributed setting. We consider a distributed system consisting of n synchronous, fault-prone, message-passing
processes, with unique ids from the set [n] = {1, 2, . . . , n}. We assume that processes have access to a global clock.
We further assume a fully connected underlying communication medium (that is, each process can directly communicate
with every other process) where messages are not lost or corrupted in transit.

Rounds. For a simplicity of algorithm design and analysis, we assume that a single round is split into four consecutive
steps: (a) Receiving step, in which a process receives messages sent to it in the previous round; (b) Task injection step,
in which new tasks are injected to processes, if any; (c) Local computation step, in which a process performs local
computation, including execution of at most one task; and (d) Sending step, in which a process sends messages to other
processes as scheduled in the local computation part.

Tasks. Each task specification τ is a tuple (id, ρ, code), where τ.id is a positive integer that uniquely identifies the
task in the system, τ.ρ corresponds to the round number that the task was first injected to the system to some process
(or set of processes), and τ.code corresponds to the computation that needs to occur so that the task is considered
completed (that is, the computational part of the task specification that is actually performed). Unless otherwise stated,
c.f., Sections 5.2 and 6, we assume that it takes one round for each task to be performed, and it can be performed by any
process which is alive and knows the task specification.

Tasks are assumed to be similar, independent and idempotent. By similarity we mean that the task computations on
any process consume equal or comparable local resources. By independence we mean that the completion of any task
does not affect any other task, and any task can be performed concurrently with any other task. By idempotence we
mean that each task can be performed one or more times to produce the same final result. Several applications involving
tasks with such properties are discussed in [20]. Finally, we assume that task specifications are of polynomial size in n.

3

Adversary. We assume an adaptive and omniscient adversary that can cause crashes, restarts and task injections.
We define an adversarial pattern A as a collection of crash, restart and injection events caused by the adversary. A
crash(r, i) event specifies that process i is crashed in round r. A restart(r, i) event specifies that process i is restarted
in round r; it is understood that no restart(r, i) event can take place if there is no preceding crash(r′, i) event such
that r′ < r.1 Finally an inject(r, i, τ) event specifies that process i is injected the task specification τ in round r.

We say that a process i is alive in a round r if the process is operational at the beginning of the round and does not
fail by the end of the round (a process that restarts at a beginning of a round and does not fail by the end of the round is
also considered alive in that round). We assume that when the adversary injects tasks in a given round, it injects a finite
number of tasks.
Restarts of processes: We assume that a restarted process has knowledge of only the algorithm being executed and the
ids of the other system processes (but no information on which processes are currently alive). Algorithmically speaking,
once a process restarts, it waits to receive messages or to be injected tasks. Then it knows that a new round has begun
and hence it can smoothly start actively participating in the algorithm. For the ease of analysis and better clarity of
result exposition we simply assume that processes are restarted at the beginning of a round – but processes could fail at
any point during a round. We also assume that a process that restarts in the beginning of round r receives the messages
sent to it (if any) at the end of round r − 1.
Admissibility: We say that an adversarial pattern is admissible, if

(a) in every round there is at least one alive process; in case of finite executions, all processes alive in the last round
are crashed right after this round (in other words, a finite execution of an algorithm ends when all processes are
crashed); and

(b) a task τ that is injected in a given round is injected to at least one alive process in that round; that is, the adversary
gives some window of opportunity for task τ to either be performed in that round or other processes to be informed
about this task.

Condition (a) is required to guarantee some progress in the computation. To motivate condition (b), consider the
situation where a process in a given round is injected a task τ (and this is the only process being injected task τ) and
then the process immediately crashes. No matter of the scheduling policy or communication strategy used, task τ cannot
be performed by any algorithm; with condition (b) we exclude the consideration of such uninteresting cases; these tasks
are not taken into consideration, neither for correctness, nor for performance issues. From this point onwards we only
consider admissible adversarial patterns.

Restricted classes of adversaries. As we show later, some desired properties of task performing algorithms, such as
fairness, may not be possible to achieve in general executions under any admissible adversarial pattern. In such cases,
we also consider a natural property that restricts the power of adversary, called t-survivability: Every awaken2 process
must stay alive for at least t consecutive rounds, where t ≥ 1 is an integer.

Information models. In regards to the distribution of injected tasks, as discussed in Section 1, we study three settings:

(i) central scheduler: in the beginning of each round it provides all operational processes with the current set of
unperformed tasks’ specifications;

(ii) central injector: in the beginning of each round it provides all operational processes with specifications of all
newly injected tasks, and also confirmation of tasks being performed in the previous round, i.e., for round r, it
informs all operational processes of the tasks injected in this round and the tasks that have been successfully
performed in round r − 1;

(iii) local injector: in the beginning of each round it provides each operational process with specifications of tasks
injected into this process; a task specification may be injected to many processes in the same round.

1With the exception of a process first entering the computation; not all processes may be awake at the beginning of the computation.
2This includes restarted processes and processes first entering the computation.

4

Correctness and fairness. We consider two important properties of an algorithm: correctness and fairness.

Correctness of an algorithm: An algorithm is correct if for any execution of the algorithm under an admissible adver-
sarial pattern, for any injected task and any round following the injection time, there is a process alive in this round that
stores the task specification, unless the task has been already performed. Observe that this property does not guarantee
eventual performance of a task.

Fairness of an algorithm: We call an infinite execution of an algorithm under an adversarial pattern fair execution if
each task injected during the execution is eventually performed. We say that an algorithm is a fair algorithm if every
infinite execution of this algorithm is fair.3 In other words, this property requires correctness, plus the guarantee that
each task is eventually performed in any infinite execution of an algorithm. Observe that the greedy offline algorithm
described above is fair.

Efficiency measures. Per round pending-tasks complexity: Let Pr denote the total number of pending tasks at the
beginning of round r, where by pending task we understand a task which has been already injected to some process (or
a set of processes) but not yet performed by any process4. Then the per round pending-tasks complexity is defined as
the maximum Pr over all rounds (supremum in case of infinite computations).

In case of competitive analysis, we say that the competitive pending-tasks complexity is f(OPT, n), for some
function f , if and only if for every adversarial pattern A and round r the number of pending task in round r of the
execution of the algorithm against adversarial pattern A is at most f(OPT(A, r), n), where OPT(A, r) is the minimum
number of pending tasks achieved by an off-line algorithm, knowingA, in round r of its execution under the adversarial
patternA. In the classical competitiveness methodology function f needs to be linear with respect to the first coordinate,
however as we will show, sometimes more accurate functions can be produced for the problem of distributed task
performance.

Observe that the above definition allows for the optimum complexity of two different rounds to be met by two
different optimum algorithms. However a simple greedy algorithm scheduling different pending tasks (with largest
possible pending time) to different alive processes at each round is optimal from the perspective of any admissible
adversarial pattern A and any round r (recall that to specify the optimum algorithm we can use the knowledge of A).

For the sake of more sensitive bounds on competitiveness of algorithms, we consider subclasses of adversarial
paterns achieving the same worst-case performance in terms of the optimum solution. These classes are especially
useful for establishing sensitive lower bounds. We say that an adversarial pattern A is (k, r)-dense if OPT(A, r) = k.
A pattern A which is (k, r)-dense for some round r is called k-dense.

In Section 5.1 we also study the message complexity of solutions to the task performing problem. Specifically we
consider per-round message complexity, defined as the maximum number of point-to-point messages sent in a single
round of an execution of a given algorithm, over all executions and rounds.

3 Solutions Guaranteeing Correctness

In this section we study the problem focusing on developing solutions that guarantee correctness, but not necessarily
fairness (this property is studied in Section 4). We consider unit-length tasks (non-unit-length tasks are discussed in
Section 5.2). We impose no restriction on the number of messages that can be sent in a given round; for example
processes could send a message to every other processes, in every round (the issue of restricted communication is
studied in Section 5.1). The results of this section are obtained in the most general of considered settings: the upper
bounds hold against any admissible adversary, while the lower bounds hold even in the presence of a restricted adversary
satisfying t-survivability, for any t.

3It is not difficult to see that the adversary can form finite executions in which not all tasks can be performed, not even by the offline algorithm.
4If a task was performed by some process, but the adversary did not provide the possibility to this process to inform another process or a central

authority (scheduler or injector) — e.g., the process is crashed as soon as it performs the task — then this task is not considered performed.

5

3.1 Central Scheduler

We first show that all algorithms require a linear additive factor in their competitive pending-tasks complexity. This
bound holds for all settings considered in this work, as the central scheduler is the most restrictive one.

Theorem 3.1. Every algorithm has competitive pending-tasks complexity of at least k + n/3 against some k-dense
adversarial pattern satisfying t-survivability, for every non-negative integers k, t.

Proof: Consider an algorithm Alg. Fix a round r such that all processes are alive at the beginning of the round and have
been alive for more than t rounds (hence t-survivability is satisfied) and there are no pending tasks, neither for Alg nor
for the optimum offline solution (for example, the adversary, up to round r > t failed no processes and was injecting
in every round as many tasks as Alg would be able to perform all of them by the end of the round). Now consider the
following adversarial pattern A for round r: 2n/3 tasks are injected and n/3 processes are crashed at the beginning of
the round.

Since the optimum offline solution knows a priori the processes that will be crashed, it allocates the tasks to the
processes that will not fail. Hence OPT(A, r + 1) = 0. Now, it is not difficult to see that the best allocation that Alg
can obtain is to have a different task to be allocated to 2n/3 processes and each of the remaining n/3 processes being
allocated a task that has already been allocated to another process. It follows that there exist at least n/3 tasks that are
uniquely allocated to a process (that is, at most one process has been allocated such task). The adversary crashes these
processes and hence Alg(A, r + 1) ≥ n/3.

In round r + 1 the adversary injects 2n/3 + k new tasks, for some k ∈ Z+. The adversary fails no process. It
follows that both the optimum offline solution and Alg may perform 2n/3 different tasks (each alive process performs
a different task) and hence OPT(A, r + 2) = k and Alg(A, r + 2) ≥ k + n/3. Observe that A is k-dense for round
r + 2.

Finally observe that even if processes in algorithm Alg exchange some information (e.g., regarding their state or
knowledge) amongst them in every round, the described adversarial pattern results in the same competitiveness, as the
arguments above work under the assumption that processes know the whole execution in the previous rounds.

Next, we show that the following simple algorithm, specified for a process i and a round r, is near-optimal. Observe
that the algorithm does not require sending messages between processes.

Algorithm AlgCS(i, r)

• Get set of pending task specifications from the scheduler.

• Rank the task specifications in incremental order, based on the task id (τ.id for a task specification τ).

• Perform task with rank i mod n.

Theorem 3.2. Algorithm AlgCS achieves competitive pending-tasks complexity of at most OPT + 2n against any ad-
missible adversary.

Proof: Suppose, to the contrary, that algorithm AlgCS has more than OPT(A, r) + 2n pending tasks at the end of some
round r of some execution of the algorithm under some adversarial patternA in which the optimum number of pending
tasks is OPT(A, r). W.l.o.g. assume that r is the first such round in the execution under adversarial pattern A. Let r∗

be the largest round number before r at the end of which there are smaller than OPT(A, r∗) + n pending tasks in the
algorithm (it is possible that r∗ is the first round of the execution). Hence, in the time interval [r∗ + 2, r] the scheduler
informs processes about a set of at least n tasks, the same set for all processes (note that r∗+ 2 ≤ r, since it would take
at least two rounds for the competitiveness to grow by n). Therefore, algorithm AlgCS assures that all alive processes
in a round in this period perform pairwise different tasks, which means that the number of newly performed tasks is
the same as by any optimum algorithm against A in this round. Observe also that the difference of performed tasks in
round r∗ + 1 by the optimum algorithm and algorithm AlgCS is at most n− 1; since there is at least one alive process
(admissibility property) then the optimum performs at most n different tasks while AlgCS performs at least one task.
These two facts imply that the number of tasks remaining at the end of round r of the execution of the algorithm is
smaller than

(OPT(A, r∗) + n) + (OPT(A, r)− OPT(A, r∗ + 1))

6

≤ (OPT(A, r∗) + n) + (OPT(A, r)− ((OPT(A, r∗)− (n− 1)))

= OPT(A, r) + 2n− 1 .

This is a contradiction, which concludes the proof of the theorem.

Remark 3.3. Since the lower bound of Theorem 3.1 holds even for algorithms that have the processes exchange mes-
sages in every round, it follows that one cannot hope to achieve much better competitiveness if algorithm AlgCS (or
some other algorithm) uses the full communication paradigm. As we will also stress later, this lower bound automat-
ically holds for the models with central/local injector, as the feedback given to the algorithm in these two models is a
subset of the feedback that needs to be provided by central scheduler.

3.2 Central Injector

We now relax the information given to the processes in the beginning of every round by considering the weaker infor-
mation model of central injector. We first show how to transform an algorithm specified for the setting with central
scheduler, call it source algorithm, into an algorithm specified for the setting with central injector, call it target algo-
rithm. The transformation maintains all local variables used by the source algorithm and sends the same messages, but
now additional local variables are used and messages may contain additional information, required by the processes in
the target algorithm in order to obtain the same set of pending tasks (under the same adversarial pattern) as the one that
the central scheduler provides by default to the processes in the source algorithm.

The main structure of a generic algorithm, call it GenCS, specified for the setting with central scheduler is as follows
(for a process i and round r):

Source Algorithm GenCS(i, r)

• Get set P of pending task specifications from the scheduler.
Receive messages by each process j that sent a message in the previous round containing information xj .

• Based on P and each received information xj deploy the scheduling policy S to perform a task.

• Send a message with information xi to all other processes.

We now present the target algorithm, call it GenCI, which is obtained when we deploy our transformation, call it
tranCStoCI , to the source algorithm GenCS. The text in bold annotates the elements added from tranCStoCI (these
elements essentially specify the transformation).

Target Algorithm GenCI(i, r)

• Get set N of specifications of newly injected tasks and set D of tasks confirmed as done in round r − 1, from the
central injector.
Receive messages by each process j that sent a message in the previous round containing information xj , and Pj . Let
R = {j : received a message from j in this round}.

• Update local set Pi of pending tasks as follows: Pi =
⋃

j∈R∪{i} Pj ∪N \ D.

• Based on Pi and each received information xj deploy the scheduling policy S to perform a task.

• Send a message with information xi and Pi to all other processes.

It is evident that algorithm GenCI continues to maintain the variables of GenCS and sends the same messages as
algorithm GenCS (but with more information). What remains to show is that the set of pending tasks used in the
scheduling policy S in a given round is the same for both algorithms.

Lemma 3.4. For any given round r, the set of pending tasks used in the scheduling policy S is the same in the executions
of algorithms GenCS and GenCI formed by the same adversarial pattern.

7

Proof: Consider two parallel executions of the algorithms under the same adversarial pattern. The proof proceeds by
induction on rounds. Consider the base case (round 1). In algorithm GenCS the central scheduler provides to all alive
processes the set of pending tasks, which is essentially the number of newly injected tasks. This information is also
provided by the central injector in algorithm GenCI (P = N and D = ∅). Since no messages are received, the claim of
the lemma holds.

Assume that the claim of the lemma holds for r−1, we show that it also holds for round r. (Note that this claim also
implies that the local sets of pending tasks of the processes in algorithm GenCI are the same, since they are the same
with the ones in GenCS, which by definition are the same.) By inductive hypothesis, the task chosen to be performed by
each process that is alive in the task performance step of round r − 1 is the same in both algorithms, as the scheduling
policy is applied on the same information. Since the same adversarial pattern is applied, a process that does not perform
its chosen task in round r−1 of algorithm GenCS will also not perform it in round r−1 of algorithm GenCI. Therefore,
the set of tasks performed in round r − 1 is the same for both algorithms. Furthermore, the processes that manage to
send a message at the end of round r − 1 in the one algorithm are the same as in the other algorithm. The processes in
algorithm GenCI send, additionally to the information x, their set of pending tasks P . By inductive hypothesis, this set
is the same to all processes at the sending phase of round r − 1 (since it was the same in the task performing phase and
it does not change after that). Due to the admissibility assumption, there must be at least one process that manages to
send a message to all other processes in round r − 1.

In the beginning of round r, in algorithm GenCS, the central scheduler provides to all alive processes the set of
pending tasks. This set includes the older tasks that remain pending by the end of round r − 1 and the newly injected
tasks. The pending tasks are the tasks that were pending at the scheduling step of round r− 1 minus the tasks that were
performed during the task performing step of that round. The set of newly injected tasks (N) and the set of tasks that
were performed in round r−1 (D) are provided by the central injector to the processes that are alive at the beginning of
round r in algorithm GenCI. The set of pending tasks of round r − 1 is included in the message sent in round r − 1 by
a alive process (per admissibility there is at least one). By induction this set is the same as the one in algorithm GenCS
and hence it follows that in the update step of algorithm GenCI in round r, the processes will obtain the same set of
pending tasks as the processes in algorithm GenCS.

Consider algorithm AlgCS of Section 3.1. This algorithm is a specialization of algorithm GenCS where the xi’s
are null and the scheduling policy S is simply ranking the tasks in P in incremental order (based on their ids) and
having process i perform task with rank i mod n. Let Algorithm AlgCI be the algorithm resulting by applying the
transformation TranCStoCI to algorithm AlgCS. Then, from Lemma 3.4 and Theorem 3.2 we get:

Theorem 3.5. Algorithm AlgCI achieves competitive pending-tasks complexity of at most OPT + 2n against any ad-
missible adversary.

Remark 3.6. The lower bound stated in Theorem 3.1 (Section 3.1) obtained for central scheduler trivially holds also
for central injector, as the feedback given to the algorithm in the latter setting is a subset of the feedback from the former
setting, and, for any adversarial pattern, the optimum solution is the same in both settings (it is for example the greedy
offline algorithm described in Section 2). Therefore, we may conclude that algorithm AlgCI is near-optimal.

3.3 Local Injector

In this section we consider the local injector model. Consider algorithm AlgLI, specified below for a process i and a
round r. In each round r, each process i maintains two sets, new and old. Set new contains all new tasks injected to
this process in this round. Set old contains older tasks that the process knows they have been injected in the system (not
necessarily to this process) but have not been confirmed as done.

The following lemma states that the information on injected tasks is not lost, but it is propagated in the system with
a round of delay.

Lemma 3.7. In any execution of algorithm AlgLI, the tasks injected to the processes in round r are learned by all
processes that are alive at the beginning of round r + 1, under any adversary.

8

Algorithm AlgLI(i, r)

• Get specifications of newly injected tasks from local scheduler and store them in set new (remove any older information
from this set).
Receive messages sent (if any) by other processes in round r − 1.

• Update set old based on received messages: the new set old is the union of all the received sets old and new minus the tasks
that have been reported in the current round as done in the previous round.

• Perform a task based on the following scheduling policy: if set old 6= ∅ then rank tasks in old incrementally based on their
ids and perform task with rank i mod |old|. Otherwise, and if new is not empty, then rank the tasks in new incrementally
based on their ids and perform task with the smallest rank.

• Send to all other processes sets new, old and the task id of the performed task.

Proof: Fix a round r. Let Lr denote the set of processes that are alive for the whole of round r; from the definition of
admissibility (clause (b)), from the tasks injected in round r, we only focus on the tasks injected to the processes in this
set. We denote by Ir,i the set of tasks injected to process i in round r, i ∈ Lr. Then Ir =

⋃
i∈Lr Ir,i is the set of tasks

injected in the system in round r.
Per algorithm AlgLI each process i ∈ Lr sends to all other processes set Ir,i (along with some other information).

Since these processes are alive in the whole round and there is at least one live process in round r + 1 (admissibility
restriction), at least one process learns the whole set Ir at the beginning of round r + 1. Hence, the information on
injected tasks is not lost and it is propagated in the system with a round of delay. This completes the proof.

The following lemma shows that at the beginning of each round processes have consistent information on the set of
pending tasks. Here reliable multicast is assumed [8]: if a process crashes while multicasting a message, then either all
targeted processes (that are alive) receive the message or none does.

Lemma 3.8. In any execution of algorithm AlgLI assuming reliable multicast, the processes that are alive at the begin-
ning of each round r (before the injection step) have the same information on the set of pending tasks.

Proof: We proceed by induction on rounds. The base case holds trivially. Assuming that the claim holds for round
r − 1, we show that it also holds for round r.

By induction hypothesis, all processes that are alive at the beginning of round r − 1 have the same information on
pending tasks. In particular they have the same set old. From these processes, the ones that are alive for the whole
round may also be injected new tasks. We denote the set containing these processes by Lr−1. Also let Ir−1,i be the set
of tasks injected to process i ∈ Lr−1 in round r− 1 (Ir−1,i can be empty). Per algorithm AlgLI, the processes in round
r− 1, perform a task (using the specified scheduling policy) and send their sets new, old, and the task id of the task they
performed in this round (note that for each process i ∈ Lr−1, new = Ir−1,i).

First we consider the processes in Lr−1. Since these processes are alive in the whole round, their messages are
received by all processes that are alive at the beginning of round r: let set LiveBegNextRound denote these processes.
Per Lemma 3.7 all processes in LiveBegNextRound learn all the new tasks injected in the previous round (and hence,
have consistent information with respect to these tasks). Furthermore, the processes in LiveBegNextRound receive the
sets old from the processes in Lr−1 (they have the same set old) and the tasks performed by them in round r − 1. Now,
consider the processes that were alive at the beginning of round r − 1 but failed during the round (by admissibility, we
do not care about the tasks injected to these processes in round r− 1, unless these tasks were also injected to processes
in Lr−1). These processes could have performed a task before failing. If such a process fails before sending a message,
then no harm is done. But even if such a process fails while sending a message, then the reliable multicast assumption
guarantees that the processes in LiveBegNextRound either all receive this message (and hence the information that a
task has been performed) or none does. It straightforwardly follows that when the processes in LiveBegNextRound take
the union of the received sets old and new and remove the tasks reported to be performed in the previous round they all
form the same updated set old. This completes the proof.

To show the correctness of algorithm AlgLI it remains to show that no task is “lost”.

9

Lemma 3.9. In any execution of algorithm AlgLI, assuming reliable mutlicast, if a task specification is no longer in the
system, then it is the case that the task has been performed by some process.

Proof: Per Lemma 3.7 we have that no new task is lost until at least the next round that it was injected. So it remains to
show that during the update phase of a round r, if a process removes a task τ for its local set old, this is because it has
been reported by a process that this task has been performed in round r − 1. We proceed by induction on rounds.

The base case (round 1) holds trivially, as all processes have empty sets old. Assume that the claim holds up to
round r− 1 and prove for round r. Fix a process i that is alive at the beginning of round r and will remain alive through
the round (there is at least one such process due to the admissibility restriction). Per Lemma 3.8 it is immaterial whether
i was alive or not in round r − 1 (all processes have the same information on pending tasks). Consider a task τ . We
consider two cases:
(a) Task τ was injected to some process(es) in round r − 1. Hence, τ was included in the set new of the process(es) it
was injected at, and since at least one of these processes were alive, τ is included in process’ i set old at the beginning
of round r. However, if i also receives a report that τ was performed then it removes it from τ . Observe that only the
process(es) that τ was injected at, could perform it in round r − 1 (as only these processes are aware of τ) and given
that processes do not lie, τ was indeed performed. If i does not receive such report, then τ is included in process’ i set
old in round r, and the existence of τ is propagated (by at least process i) to the next round.
(b) Task τ is a task injected in a round prior to r− 1. From Lemmas 3.7 and 3.8 it follows that τ was included in the set
old of at least one process and by inductive hypothesis τ was not performed until the beginning of round r − 1. Hence
τ will be included in all sets old received by process i at the beginning of round r. And following the same reasoning
as in case (a), it follows that i will remove τ only if it has learned that τ was performed by some process in round r− 1.
This completes the proof.

We now show the competitiveness OPT + 3n of algorithm AlgLI, as stated in the theorem that follows:

Theorem 3.10. Algorithm AlgLI, assuming reliable multicast, is correct and near-optimal; more precisely, it achieves
competitive pending-tasks complexity of at most OPT + 3n against any adversary.

Proof: Correctness follows directly from Lemma 3.9. The proof of competitiveness is similar to the proof of Theo-
rem 3.2. The key difference lies in the fact that under the central scheduler processes are informed about the newly
injected tasks in the same round as opposed to the local injector that it takes an additional round (per Lemma 3.7). Note
that the optimum offline solution does not suffer from this delay, as it knows the injection pattern a priori. As it turns
out, this round delay does not affect the competitiveness of the algorithm by more than an additive factor of n. We begin
with the following claim.
Claim 1: If there are at least n pending old tasks in the beginning of a round r, then in round r all alive processes
perform pairwise different tasks.
We now prove Claim 1. From Lemma 3.8 we have that all processes that are alive in round r have the same set old and
per the thesis of the claim, |old| ≥ n. Regardless of whether new tasks are injected in round r, due to the scheduling
policy and common knowledge of old, all alive processes perform different tasks. This completes the proof of the claim.

We now make another claim.
Claim 2: In any round r, the number of pending old tasks under any adversarial patternA is at most OPT(A, r− 1)+2n,
while OPT(A, r) contains at least all new tasks pending except at most n and the algorithm has all new tasks pending.

From Claim 2 it follows that the algorithm has at most OPT(A, r) + 3n total pending tasks (both old and new
together) and this competitiveness cannot grow any further: in round r + 1 there are more than n pending tasks, so by
Claim 1 the algorithm performs as many task as the optimum offline solution (so the competitiveness does not increase
regardless of the number of injected tasks); if the number of old pending tasks drops below OPT(A, r + 1) + 2n, then
we go back to the statement of Claim 2 for round r + 1. Therefore it remains to prove Claim 2.

Assume, to arrive at a contradiction, that there is a round r∗ of an execution of the algorithm under some adversarial
patternA in which the number of pending old tasks by the end of the round is bigger than OPT(A, r∗) + 2n. Moreover,
let r∗ denote the first such round. Let r be the oldest round before r∗ such that the number of pending old tasks by the
end of the round is at most OPT(A, r)+n (it is possible that r is the first round of the execution). It follows that in round
r+ 1 the number of pending old tasks is bigger than OPT(A, r+ 1) +n ≥ n and smaller than OPT(A, r+ 1) + 2n−1,

10

by the fact that the algorithm performs at least one task (admissibility restriction). It follows that r + 1 < r∗. Then, in
the time interval [r + 2, r∗], containing at least one round, the number of pending old tasks at the end of each round is
bigger than n, and therefore by Claim 1 it follows that the number of tasks performed by the algorithm is the same as
the number of tasks performed by the optimum offline solution. Thus, at the end of round r∗ the number of pending old
tasks is upper bounded by

(OPT(A, r + 1) + 2n− 1) + (OPT(A, r∗)− OPT(A, r + 1)) = OPT(A, r∗) + 2n− 1 ,

which contradicts the assumption that this number is bigger than OPT(A, r∗) + 2n. This completes the proof of Claim
2 and the proof of the theorem.

Remark 3.11. The lower bound stated in Theorem 3.1 (Section 3.1) obtained for central scheduler trivially holds also
for local injector, as the feedback given to the algorithm in the latter setting is a subset of the feedback from the former
setting, and, for any adversarial pattern, the optimum solution is the same in both settings (it is for example the greedy
offline algorithm described in Section 2). Therefore, we may conclude that algorithm AlgLI is near-optimal.

4 Solutions Guaranteeing Fairness

We now turn our attention to the much challenging problem of guaranteeing fairness. Recall from Section 2 that for
fairness we consider only infinite executions and for such executions there is always a fair (offline) algorithm.

4.1 Central Scheduler

We first demonstrate that the issue of fairness is much more involved than correctness. Consider the following simple
fair algorithm LIS: each process performs the Longest-In-System task, and in case of a tie it chooses the one with the
smallest task id.

Fact 4.1. Algorithm LIS has unbounded pending-tasks competitiveness under any adversary, even for the restricted one
satisfying t-survivability, for any t ≥ 1.

Proof: Consider the following adversarial pattern: all processes are initially alive and the adversary injects n tasks
in every round and crashes no processes. The optimum offline solution is aware of this pattern and hence it performs
all tasks in every round. However, algorithm LIS performs exactly one task in every round, and hence the number of
pending tasks increases by n − 1 in each round, yielding unbounded competitiveness. Note that since the described
adversarial pattern involves no process crashes (or restarts) the claimed competitiveness holds against any admissible
adversary, even the one satisfying t-survivability, for any t.

The above shows that a fair algorithm not only needs to have some provision in eventually performing a specific task
but it also needs to guarantee progress when a large number of tasks is pending. Furthermore, we show that admissibility
alone is not enough to guarantee both fairness and bounded competitiveness.

Theorem 4.2. For any fair algorithm and any integer y > 0, there is a round r and an admissible, adversarial pattern
A such that the algorithm has more than y · (OPT(A, r) + 1) pending tasks at the end of round r.

Proof: Fix a fair algorithm Alg. The strategy of the adversary repeats cyclically the following parts: Let x be the
number of tasks that are pending in the execution of the optimum offline algorithm on the already defined parts of the
adversarial pattern. In the beginning of each round, the adversary chooses some max{n − x, 0} non-injected tasks
and injects them into the system. In the first round of the constructed part of the pattern, the adversary “simulates”
the algorithm to check which of the pending tasks (including the newly injected ones) would be performed by each
process if it was alive in this round (under the assumption that it also knows its own history of the previous parts of
the execution and receives messages potentially sent in the preceding round, as well as the feedback from the central
scheduler). There are two cases.

11

Case 1: If all processes would do the same task, the adversary awakes/restarts all processes that were not alive in the
previous round, and finishes the construction of the current part of its pattern.
Case 2: If at least two different tasks would be scheduled, the adversary chooses the task among these tasks for which
the smallest number of processes could perform it in the current round; we call it a critical task. The critical task is
fixed for the whole constructed part of the adversarial pattern. Then the adversary crashes all processes which were
alive in the previous round and would like to perform the critical task in the current round, while assuring that all other
processes (i.e., processes that do not want to perform the critical task) are alive (if they are alive it keeps them alive,
if they are crashed, it restarts them). In the next round, the adversary repeats injecting new tasks according to the rule
specified in the beginning of the construction, and also simulates the algorithm for each process to check which task
would be scheduled to, assuming the process is alive. Then if all processes declare to perform the critical task, the
adversary applies the same rule as in Case 1 (i.e., assures that all processes are alive and finishes the construction of the
current part of its pattern). Otherwise, it assures that all processes that do not want to perform the critical task are alive
(restarts them if they are not), while crashing all that were alive in the previous round and would like to perform the
critical task. This concludes the construction of a single part of the adversarial pattern.

First, we argue that there is an infinite number of consecutive parts. Indeed, observe that each part must have
bounded length, since otherwise the critical task of this part would not be performed during the execution of the algo-
rithm, contradicting the fact that the algorithm is fair. Second, we prove that after executing the algorithm by the end
of part j of the constructed adversarial pattern, the competitiveness is at least OPT + j. To see this, note that OPT is
always at most n, and in each round there is at least as many pending tasks as the number of alive processes in this
round in the execution of the optimum algorithm, by the rule of injecting tasks. It follows that in each round of the
execution of the optimum algorithm alive processes perform pairwise different tasks, i.e., no process step is wasted for
idling or performing the same task twice or more. On the other hand, in each part of the execution of algorithm Alg
corresponding to some part of the adversarial pattern, there is a round in which at least two processes perform the same
task. These observations imply that the additive overhead above OPT grows by at least one after each part.

Since for each j we have a round in which the number of pending tasks is at least OPT + j, and moreover because
OPT ≤ n, we get that for each integer y > 0 there is a round in the execution of algorithm Alg under the constructed
adversarial pattern such that the number of pending tasks is at least y · (OPT + 1).

Note that Theorem 4.2 implies that the algorithms presented in Section 3 are not fair. Therefore, in order to achieve
both fairness and competitiveness, one needs to consider some restrictions to the adversary. It can be easily verified
that the impossibility statement in Theorem 4.2 holds even if 1-survivability is assumed. As it turns out, it is enough to
assume 2-survivability to be able to obtain fair and competitive algorithms.

Consider algorithm AlgCSF specified below for process i and round r. Each process i maintains a variable age
that counts the number of rounds that i has been alive since it last restarted. A restarted process has age = 0, and it
increments it by one at the end of each local computation part. For simplicity, we say that in round r process is in age x
if it was alive for the whole x rounds, i.e., its age is x in the beginning of the round. Processes exchange these variables,
so, for reference reasons, we will be denoting by ager(j) the age that process i knows that j has in round r (in other
words, this is the age j reports to i at the end of round r).

We begin to show that algorithm AlgCSF is fair, under the assumption of 2-survivability.

Lemma 4.3. If in a given round r, τold is the oldest pending task in the system (has rank 1) and there is at least one
process with ager = 1, then τold is performed by the end of round r.

Proof: If in round r there are more than 2n pending tasks for algorithm AlgCSF, then one of the processes in the set
ASure (there is at least one such process by assumption) will perform τold. Note that processes construct the same
set ASure since these processes were alive in the previous round (otherwise their age would not be equal to 1 in the
beginning of local computation in round r) and hence their messages is received by all processes alive at the beginning
of round r (this includes the processes in ASure). If there are at most 2n pending tasks, then all alive processes (there
is at least one – the one with ager = 1) will perform τold.

Observe that if in round r there is no process with age 1 but there is at least one with age 0, then even if τold is not
performed in round r, by Lemma 4.3 it will be performed in round r + 1. Hence it remains to show the following.

12

Algorithm AlgCSF(i,r)

• Get pending tasks from central scheduler and messages sent (if any) in round r − 1.
• Rank pending tasks lexicographically: first based on their pending period (older tasks have smaller rank) and then based on

their task ids (incremental order).
• Based on received messages, construct setASure by including all processes j with ager(j) = 1. If age = 1, then i includes

itself in the set. /* Processes do not send messages to themselves, but they of course know the value of their local variable age. */

• If the number of pending tasks is larger than 2n then

– If ASure 6= ∅ then

∗ If age 6= 1 then perform task with rank n+ i.
∗ Else rank processes in ASure based on their ids and perform task with rank rank(i)ASure (i.e., ith task in set
ASure).

– Else [ASure = ∅]
∗ If age 6= 0 then construct set Recved by including all processes from whom a message was received at the

beginning of the round. Process i includes itself in this set. Then rank processes in set Recved lexicographically,
first based on their age and then based on id (increasing order). If rank(i)Recved = 1 then perform task with
rank 1, otherwise perform task with rank i+ 1.

∗ Else perform task with rank i+ 1.

Else perform task with rank 1.
• Set age = age+ 1.
• Send age to all other processes as the value of variable ager+1(i).

Lemma 4.4. If in round r all alive processes are of age > 1 (ASure = ∅) and τold is the oldest task in the system, then
τold will be performed by round r + 2n at the latest.

Proof: If in round r there are at most 2n pending tasks then all alive processes (there must be at least one per
admissibility restriction) are allocated to perform τold, so it is performed in round r.

So, the adversary must maintain the number of pending tasks above 2n to prevent the performance of τold. Recall
that tasks are ranked lexicographically, first based on their seniority, so τold has rank 1. We argue that the adversary
cannot delay the performance of τold by more than 2(n − 1) + 1 consecutive rounds in which there are more than 2n
pending tasks and all alive processes are of age > 1. For contradiction, assume that it can. Note that in this period
no process is restarted (otherwise in the next round of the process’ restart it performs τold and the adversary, due to 2-
survivability, it cannot crash this process), and at most n− 1 processes may crash. By the pigeonhole principle (applied
on number of rounds and number of crashes) there are two consecutive rounds r′, r′+ 1 in which no process is crashed.
It follows that in round r′ + 1 all alive processes have the same list Recved. All processes in this list are alive in round
r′ + 1, hence the first in this list performs the oldest task. This is a contradiction.

Lemmas 4.3 and 4.4 yield fairness of algorithm AlgCSF:

Theorem 4.5. Algorithm AlgCSF is a fair algorithm under any 2-survivability adversarial pattern.

It remains to show the competitiveness of algorithm AlgCSF, and this we show against any admissible adversarial
pattern (unlike fairness, which is guaranteed if the pattern satisfies 2-survivability).

Theorem 4.6. Algorithm AlgCSF achieves competitive pending-tasks complexity of at most OPT + 3n against any
admissible adversary.

Proof: Note that if there are at most 2n pending tasks in the beginning of a round r then, by admissibility and
algorithm specification, exactly one task is performed by all alive processes. We now investigate the situation when
there are more than 2n tasks.

13

Claim: If there are are more than 2n pending tasks in the beginning of a round r then in round r all alive processes
perform pairwise different tasks.

We proceed to prove the claim. We first consider the case where set ASure 6= ∅. The processes with age = 1 form
a consistent set ASure (since they were all alive in the previous round) and perform different tasks with ranks in the
range [1, n]. The processes that are alive at the beginning of round r but have age 6= 1 are aware that ASure 6= ∅
(they receive the messages from the processes in Asure). Hence they perform different tasks with ranks in the range
[n+ 1, 2n].
We now consider the case where set ASure = ∅. Note that all processes that are alive at the beginning of round r
are aware that there is no process with age = 1 in round r. This follows easily from the fact that if there were such a
process, call it p, then p would have been alive in round r− 1 and all processes alive at the beginning of round r would
receive the message from p informing them of his age. Now, the processes that have restarted in round r (age = 0)
perform pairwise different tasks with ranks in the range [2, n + 1]. It remains to consider the processes that are alive
in round r and have age > 1. Since these processes were also alive in round r − 1, they know each others’ ages in
round r. So, although they might form inconsistent sets Recved (due to failures of processes while broadcasting in the
previous rounds) they will have a consistent ranking among them. So no two processes that are alive in the beginning
of round r and have age > 1 will consider, each one, itself as the process with the smallest rank. Their inconsistency
might only be on processes that have failed. As a result, the task with the smallest rank might not be performed, but
in any case, the live processes will perform different tasks in the range [1, n + 1] (and different from the ones with
age = 0). This completes the proof of the claim.

Now assume, to arrive at a contradiction, that there is a round r∗ in which the number of pending tasks is bigger
than OPT(A, r∗) + 3n; moreover, let r∗ denote the first such round. (Here the number of task is measured at the end
of each round.) Let r be the oldest round before r∗ such that the number of pending tasks is at most OPT(A, r) + 2n.
It follows that in round r + 1 the number of pending tasks is bigger than OPT(A, r + 1) + 2n ≥ 2n and smaller than
OPT(A, r + 1) + 3n − 1, by the fact that the algorithm performs at least one task (due to admissibility and algorithm
specification) while the optimum offline solution performs at most n tasks in round r + 1. It follows that r + 1 < r∗.
In the time interval [r + 2, r∗], containing at least one round, the number of pending tasks at the end of each round is
bigger than 2n, and therefore by the Claim it follows that the number of tasks performed by the algorithm is the same
as the number of tasks performed by the optimum offline solution. Thus, at the end of round r∗ the number of pending
tasks is upper bounded by

(OPT(A, r + 1) + 3n− 1) + (OPT(A, r∗)− OPT(A, r + 1)) = OPT(A, r∗) + 3n− 1 ,

which contradicts the assumption that this number is bigger than OPT(A, r∗) + 3n.

Remark 4.7. We now argue that the lower bound stated in Theorem 3.1 is also valid for fair algorithms run against any
admissible adversary, even the one restricted by t-survivability. Recall from Section 2 that a greedy offline algorithm,
which in every round schedules different alive processes to different pending tasks with the largest pending time, is not
only a fair algorithm (since it assures that each task is performed in a finite number of rounds) but it is also optimal
with respect to the number of pending tasks. This algorithm is an example of an optimum offline solution on which
the competitive results obtained in Section 3 hold. Then it follows that since the version of the problem considered in
this section is harder than the one considered in the previous section (fairness requires correctness), but the optimum
offline solution is the same, the lower bound stated in Theorem 3.1 for any adversary holds here as well. Hence, one
may conclude that algorithm AlgCSF, as well as fair algorithms AlgCIF and AlgLIF of competitiveness OPT + O(n)
developed in the subsequent Sections 4.2 and 4.3 for central and local injectors, respectively, are near-optimal.

4.2 Central Injector

Recall transformation TranCStoCI from Section 3.2. It is easy to see that algorithm AlgCSF is a specialization of
the generic algorithm GenCS: information xi is the age of process i. The remaining specification of algorithm AlgCSF
(along with the required data structures) is essentially the specification of the scheduling policy S in the setting with

14

central scheduler. Now, let Algorithm AlgCIF be the algorithm resulting by applying the transformation TranCStoCI
to algorithm AlgCSF (it is essentially algorithm GenCI appended with the scheduling policy of algorithm AlgCSF).
Then, from Lemma 3.4, Theorem 4.5, and Theorem 4.6 we get:

Theorem 4.8. Algorithm AlgCIF is a fair algorithm that achieves competitive pending-tasks complexity of at most
OPT + 3n under any 2-survivability adversary.

Remark 4.9. From the observations made in Remarks 3.6 and 4.7 we conclude that algorithm AlgCIF is near-optimal.

4.3 Local Injector

We now consider algorithm AlgLIF. This algorithm combines the mechanism deployed by algorithm AlgLI for propa-
gating newly injected tasks with a round of delay and the scheduling policy of algorithm AlgCSF to guarantee fairness.
Reliable multicast is again assumed for assuring that processes maintain consistent sets of pending tasks. See bellow
a full description of algorithm AlgLIF (it is essentially a combination of the descriptions of the two above-mentioned
algorithms).

Algorithm AlgLIF(i,r)

• Get specifications of newly injected tasks from local scheduler and store them in set new (remove any older information
from this set).
Receive messages sent (if any) in round r − 1. (From each process j process i gets the sets oldj , newj , task id tj , and
ager(j).)

• Based on received messages, construct setASure by including all processes j with ager(j) = 1. If age = 1, then i includes
itself in the set.

• Update set old based on received messages: the new set old is the union of all the received sets old and new minus the tasks
that have been reported in the current round as done in the previous round.

• Rank the tasks in set old lexicographically: first based on their pending period (older tasks have smaller rank) and then
based on their task ids (incremental order).

• If the number of tasks in old is larger than 2n then

– If ASure 6= ∅ then

∗ If age 6= 1 then perform task in old with rank n+ i.
∗ Else rank processes in ASure based on their ids and perform task in old with rank rank(i)ASure.

– Else [ASure = ∅]
∗ If age 6= 0 then construct set Recved by including all processes from whom a message was received at the

beginning of the round. Process i includes itself in this set. Then rank processes in set Recved lexicographically,
first based on their age and then based on id (increasing order). If rank(i)Recved = 1 then perform task in old
with rank 1, otherwise perform task in old with rank i+ 1.

∗ Else perform task in old with rank i+ 1.

• Else [old has fewer than 2n tasks]

– if old = ∅ and if new 6= ∅ then rank the tasks in new incrementally based on their ids and perform task in new with
the smallest rank.

– Else perform task in old with rank 1.

• Set age = age+ 1.
• Send sets new and old, the task id of the performed task, and value of age to all other processes.

Its competitiveness is the same as the competitiveness of AlgCSF plus an additive factor n coming from the one-
round delay of the propagation of newly injected tasks. Specifically we have that:

Theorem 4.10. Algorithm AlgLIF, assuming reliable multicast, is a fair algorithm that achieves competitive pending-
tasks complexity of at most OPT + 4n against any 2-survivability adversary.

Using similar reasoning as in the previous sections it follows that algorithm AlgLIF is near-optimal.
15

5 Extensions and Limitations

In this section we consider the impact of restricted communication and non-unit-length tasks on the competitiveness of
the problem of performing tasks under dynamic crashes-restarts-injections patterns.

5.1 Solutions Under Restricted Communication

In view of Theorems 3.1 and 3.2, we argue that exchanging messages between processes does not help much in the
setting with central scheduler, in the sense that in the best case it could slightly increase only the constant in front of
the additive linear part of the formula on the number of pending tasks. In this section we study the problem of how
exchanging messages may influence the correctness of solutions in more restricted settings of injectors. In particular,
we show that Ω(n2) per-round message complexity is inevitable in order to achieve correctness even in the presence of
central injector. On the other hand, recall that O(n2) per-round message complexity is enough to achieve near-optimal
solution in the presence of central injector: algorithm AlgCI from Section 3.2 achieves near-optimal competitiveness of
at most OPT + 2n in this setting, c.f., Theorem 3.5.

Theorem 5.1. For any algorithm and any t ≥ 1, there is an adversarial pattern satisfying t-survivability such that the
execution of the algorithm under this pattern results in Ω(n2) per-round message complexity, even in the model with
central injector.

Proof: Fix parameter t ≥ 1 and algorithm Alg. Consider an execution in which the adversary awakes n/2 processes
in the beginning of round 1 (the other processes are not operational yet). One of these processes, arbitrarily selected,
crashes at the end of round t, while each of the remaining awaken processes stays alive by the end of round t+ 1 (hence
t-survivability is not violated). These processes carry the knowledge of pending tasks, and assume that the adversary
injects n/2 + 1 new tasks in every round. Hence at the beginning of round t + 2 there are at least 2 pending tasks.
We claim that in round t + 2 all the n/2 − 1 alive processes must send a message to each of the remaining n/2 + 1
processes.

Assume otherwise. Say that only one of these processes, call it i, does not send a message to each of the remaining
n/2 + 1 processes. Then the adversary fails all processes but i before the sending part of round t+ 2. Admissibility is
not violated since process i is alive. At the beginning of round t+ 3 the adversary crashes process i and wakes up those
processes among the n/2 + 1 processes that were non-operational so far, to which process i did not send a message in
round t+2 (these processes will be alive for the next t rounds, including round t+3, so neither admissibility is violated
in round t+3, nor t-survivability). Since restarted processes are history-oblivious, the only information they get is from
the central injector: new tasks injected and tasks that have been performed in the previous round. Now, since i was the
only operational process and could perform at most one task in each round, there are at least three tasks that were not
performed (even if crashed processes informed the central injector about the performance of their task before crashing,
still at least three tasks would not be allocated to any process and hence stay unperformed), and since i did not forward
the history it carried to the newly awaken processes, the information of these tasks is lost, violating correctness.

5.2 Non-unit-length Tasks

We now turn our attention to tasks that are not necessarily of unit-length, that is, they might take longer than a round
to complete. We consider a persistent setting, in which once a process commits in performing a certain task of length
x, it will do so for x consecutive rounds, until the task is performed. If the process is crashed before the completion of
all x rounds, then the task is not completed. We assume that processes cannot share information of partially completed
tasks; the task performance is an atomic operation. In view of these assumptions, the number of pending tasks remains
a sensible performance metric.

First, we consider tasks of the same length d ≥ 1, i.e., each task takes d rounds to be performed. Consider a
variation of algorithm AlgCS of Section 3.1 that uses the same scheduling policy, but once a process chooses a task to
perform, it spends d consecutive rounds in doing so; call this AlgCSd. We show the following:

Theorem 5.2. Algorithm AlgCSd, for uniform tasks of length d, achieves competitive pending-task complexity of at
most OPT + 3n under any admissible adversarial pattern, in the setting with central scheduler.

16

Proof: Assume, to arrive at a contradiction, that there is a round r∗ of an execution of the algorithm under some
adversarial pattern A in which the number of pending tasks by the end of the round is bigger than OPT(A, r∗) + 3n.
Moreover, let r∗ denote the first such round. Let r be the oldest round before r∗ such that the number of pending tasks
by the end of this round is at most OPT(A, r) + n.

Consider the time interval (r∗, r]. Since the number of pending tasks is at least n in this interval, when a process
selects a task to perform, it will always be a task that has neither been performed nor is being performed by some other
process (here we use the property that the central scheduler returns all tasks that have not been confirmed as performed
yet). Moreover, as all tasks are of the same length d, if a process performs i tasks in the considered period of the
execution of AlgCSd, it performs at most i + 1 tasks in any other execution obtained under the same crash-restart-
injection pattern. The additional summand 1 comes from the fact that if a process has been alive in round r∗ + 1, it
may finish its first task in this period at most d− 1 rounds later in the execution of AlgCSd, comparing to the optimum
solution; this may result in at most one more task being performed by the process in the optimum solution until the first
crash in this period, but starting from the next restart, the timing of task completions are the same in both executions,
though the actually performed tasks may be different.

Note also that each first task completed by a process in the considered period may not be unique (i.e., not attempted
to be done by any other process in parallel, that is, during performance time), as it might have been selected before the
interval started, and thus the number of pending tasks could have been smaller than n (i.e., not guarantying no repetition
property). Hence, if the total number of tasks performed by AlgCSd in the considered period is x, it is at most x + 2n
for the optimum algorithm. The first n comes from the fact that in the execution of AlgCSd the first tasks completed by
processes in the interval (r∗, r] may not be distinct; the second n comes from the fact that the optimum solution may
perform one more task per each process.

Therefore, the number of pending tasks OPT(A, r) at the end of round r in the execution of the optimum algorithm
is at least OPT(A, r∗) + (y − (x+ 2n)), where y is the total number of tasks injected in the interval (r∗, r]. On the
other hand, the number of pending tasks at the end of round r in the execution of AlgCSd is at most

(OPT(A, r∗) + n) + (y − x) ≤ OPT(A, r) + 3n ,

which is a contradiction.

Remark 5.3. Observe that the lower bound stated in Theorem 3.1 can be made to hold also for uniform, non-unit
tasks. To see this, consider the adversarial pattern as described in the proof of Theorem 3.1, and have each round be
“emulated” by d rounds. Hence, AlgCSd is near-optimal.

We conjecture that similar techniques would allow to obtain near-optimal analysis for the other algorithms devel-
oped in this paper, in the context of the remaining two models of central and local injectors, and under the fairness
requirement.

We now consider the case where tasks could be of different lengths. It follows that bounded competitiveness is not
possible, even under restricted adversarial patterns, and even in the model with central scheduler.

Theorem 5.4. For any algorithm, any number n ≥ 2 of processes, any t ≥ 1 and any upper bound d ≥ 3 on the
lengths of tasks, there is an adversarial pattern satisfying t-survivability such that the execution of the algorithm under
this pattern results in unbounded competitiveness with respect to the pending task complexity, even in the model with
central scheduler.

Proof: Assume we are given an algorithm Alg. Consider any integers n ≥ 2, t ≥ 1 and d ≥ 3. The adversary keeps
the first process continuously alive, to guarantee admissibility, and restarts and crashes the second process in a dynamic
way, to be defined later. The remaining n− 2 processes are kept asleep throughout the whole execution. The adversary
injects only tasks of length 2 and 3 (this is enough to show the negative result).

We specify the crash/restart pattern for the second process, depending on the behavior of algorithm Alg (more
precisely, the adversary emulates Alg round after round and decides when the next crash takes place in course of the
simulation). In the beginning, the second process is alive. The adversary crashes the second process in the beginning of
one of the three rounds: (2j − 1) · 6t + 4 or (2j − 1) · 6t + 5 or (2j − 1) · 6t + 6, and restarts it in the beginning of

17

round 2j · 6t+ 1, for any positive integer j. A decision in which round to crash — (2j − 1) · 6t+ 4 or (2j − 1) · 6t+ 5
or (2j − 1) · 6t + 6 — is made based on the task performed by the second process in round (2j − 1) · 6t + 4. If this
task is going to be finished in round x, where x is one of (2j − 1) · 6t+ 4, (2j − 1) · 6t+ 5, (2j − 1) · 6t+ 6, then the
process is crashed in the beginning of round x. The rounds of a crash are well-defined for every j, since all tasks are of
length 2 or 3.

Based on the above pattern, we define a phase to be the time between any two consecutive restarts of the second
process. Observe that phases partition the patterns, and also the resulting executions of the algorithm, into consecutive
time intervals of length 12t each.

The injection pattern is constructed based on the decisions of Alg and on the crashe-restart pattern defined above.
There are three general rules governing task injections:

(i) Every time a process starts performing its task of length y ∈ {2, 3}, a new task of length y is injected into the
system.

(ii) In the beginning of phase 2j , for any integer j ≥ 0, an additional 2j tasks of length 2 and 2j tasks of length 3 are
injected.

The above crash/restart and injection pattern, call it A, defines a unique execution of algorithm Alg. Define an
offline algorithm OFF, not necessarily optimal, under the above crash/restart and injection pattern as follows. In each
round and for each of processes one and two, it schedules a task of the same length as done in the execution of Alg,
except of the two last tasks started by the second process before its crash, for each such crash. If the last task was of
length 3, then algorithm OFF assigns a task of length 2 instead, while keeping the same length for the second last task.
Otherwise (i.e., the length of the last task was 2), there are two sub-cases. If the second last task was of length 2, then
OFF assigns a task of length 3 instead; note that OFF does not have a chance to assign any other task before the crash,
as it occurs just after the assigned task of length 3. In the second sub-case, if the second last task was of length 3, then
OFF assigns a task of length 2, and after that another task of length 2.

Observe that OFF does not waste any round in its execution, i.e., there is no idle round or round spent on a task
that is not successfully finished; thus it is optimal for the considered pattern of crash/restarts and injections. Note
also that it has always at least 1 pending task. To the contrary, Alg wastes at least one unit of work per every 2 · 6t
rounds of its execution. This means that the number of pending tasks in the considered execution of Alg is at least
OFF (A, 12jt) + bj/3c after round 12jt, as it wasted at least j work units (rounds) while each task is of length at most
3; here OFF (A, 12jt) stands for the number of pending tasks in the execution of OFF under the considered adversarial
patternA in round 12jt. Hence, from the definition of OPT it follows that the number of pending tasks of Alg is at least
OPT + bj/3c. Therefore, with the growth of j, the competitiveness of Alg becomes unbounded.

It remains to be shown that OFF is well-defined, in the sense that there are pending tasks of specific lengths that
can be used by OFF to alter the original assignment of Alg. This is guaranteed by the specified injection pattern. More
precisely, the execution of Alg guarantees that at the end of phase j, the number of pending tasks of length 2 is at least
j, and the same holds for the number of pending packets of length 3. Note that OFF, in its execution may finish at
most one more task in each phase than Alg, though the length of at most one scheduled task may differ. This means
that a task corresponding to one length is injected (as injections are defined based on the choices of Alg) while a task
of different length is performed by OFF. However, for each phase we have two additional tasks injected (rule (ii)), of
different lengths, and one of them can be used by OFF if necessary.

6 Future Directions

Several research directions emanate from this work. An intriguing question is whether the assumption of reliable
multicast, made in the setting with local injector, can be removed or replaced by a weaker but still natural constraint.
We conjecture that t-survivability, for a suitable constant t, could be a good candidate for such replacement. In view
of Theorem 5.1, it is challenging to find a natural restriction on the adversary such that both efficient performance
and subquadratic communication would be achieved in the settings with injectors. For this purpose a version of the
continuous gossip protocol developed in [16] could be possibly used. In view of Theorem 5.4, it would be worth

18

checking if randomization would help (i.e., analyzing randomized algorithms under oblivious adversaries), or whether
a smoothed or average-case analysis might result in bounded competitiveness for tasks of different lengths.

Another interesting challenge is to generalize the considered task specifications to dependent tasks. Other challeng-
ing modeling extensions could involve replacing the fairness property by a more “sensitive” task latency measure, and
considering energy consumption issues.

References

[1] R.J. Anderson and H. Woll. Algorithms for the certified Write-All problem. SIAM Journal of Computing,
26(5):1277–1283, 1997.

[2] M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts. A theory of competitive analysis for distributed algorithms. In
Proceedings of the 35th Symposium on Foundations of Computer Science (FOCS 1994), pages 401–411, 1994.

[3] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2

[4] H. Attiya and A. Fouren. Polynominal and adaptive long-lived (2k − 1)-renaming. In Proceedings of the 14th
International Conference on Distributed Computing (DISC 2000), pages 149–163, 2000.

[5] H. Attiya, A. Fouren, and E. Gafni. An adaptive collect algorithm with applications. Distributed Computing,
15(2):87–96, 2002.

[6] B. Awerbuch, S. Kutten, and D. Peleg. Competitive distributed job scheduling. In Proceedings of the 24th ACM
Symposium on Theory of Computing (STOC 1992), pages 571–580, 1992.

[7] Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed data management. In Proceedings of the
24th ACM Symposium on Theory of Computing (STOC), 1992.

[8] B. Chlebus, R. De-Prisco, and A.A. Shvartsman. Performing tasks on restartable message-passing processors.
Distributed Computing, 14(1):49–64, 2001.

[9] B.S. Chlebus, D.R. Kowalski, and A.A. Shvartsman. Collective asynchronous reading with polylogarithmic worst-
case overhead. In Proceedings of the 36th ACM Symposium on Theory of Computing (STOC 2004), pages 321–330,
2004.

[10] G. Cordasco, G. Malewicz, and A. Rosenberg. Advances in IC-Scheduling theory: Scheduling expansive
and reductive dags and scheduling dags via duality. IEEE Transactions on Parallel and Distributed Systems,
18(11):1607–1617, 2007.

[11] G. Cordasco, G. Malewicz, and A. Rosenberg. Extending IC-Scheduling via the sweep algorithm. Journal of
Parallel and Distributed Computing, 70(3):201–211, 2010.

[12] J. Dias, E. Ogasawara, D. de Oliveira, E. Pacitti, and M. Mattoso. A Lightweight Execution Framework for
Massive Independent Tasks. In Proceedings of the 3st IEEE Workshop on Many-Task Computing on Grids and
Supercomputers, 2010.

[13] C. Dwork, J. Halpern, and O. Waarts. Performing work efficiently in the presence of faults. SIAM Journal on
Computing, 27(5):1457–1491, 1998.

[14] Enabling Grids for E-sciencE (EGEE), http://www.eu-egee.org

[15] Y. Emek, M. M. Halldorsson, Y. Mansour, B. Patt-Shamir, J. Radhakrishnan, and D. Rawitz. Online set packing
and competitive scheduling of multi-part tasks. In Proceedings of the 29th ACM Symposium on Principles of
Distributed Computing (PODC 2010), pages 440–449.

19

[16] Ch. Georgiou, S. Gilbert, and D.R. Kowalski. Meeting the deadline: on the complexity of fault-tolerant continuous
gossip. In Proceedings of the 29th ACM Symposium on Principles of Distributed Computing (PODC 2010), pages
247–256.

[17] Ch. Georgiou, D.R. Kowalski, and A.A. Shvartsman. Efficient gossip and robust distributed computation. Theo-
retical Computer Science, 347(1):130–166, 2005.

[18] Ch. Georgiou, A. Russell, and A.A. Shvartsman. The complexity of synchronous iterative Do-All with crashes.
Distributed Computing, 17:47–63, 2004.

[19] Ch. Georgiou, A. Russell, and A.A. Shvartsman. Work-competitive scheduling for cooperative computing with
dynamic groups. SIAM Journal on Computing, 34(4):848–862, 2005.

[20] Ch. Georgiou and A.A. Shvartsman. Do-All Computing in Distributed Systems: Cooperation in the Presence of
Adversity. Springer, 2008.

[21] L. Hui, Y. Huashan, and L. Xiaoming. A Lightweight Execution Framework for Massive Independent Tasks. In
Proceedings of the 1st Workshop on Many-Task Computing on Grids and Supercomputers, 2008.

[22] P.C. Kanellakis and A.A. Shvartsman. Fault-Tolerant Parallel Computation. Kluwer Academic Publishers, 1997.

[23] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky. SETI@home: Massively distributed comput-
ing for SETI. Computing in Science and Engineering, 3(1):78–83, 2001.

[24] G. Malewicz. A Work-Optimal Deterministic Algorithm for the Certified Write-All Problem with a Nontrivial
Number of Asynchronous Processors. SIAM Journal on Computing, 34(4):993–1024, 2005

[25] G. Malewicz, M.H. Austern, A.J.C. Bik, J.C. Dehnert, I. Horn, N. Leiser and G. Czajkowski. Pregel: A system
for large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD conference, pages 135–145.

[26] G. Malewicz, A. L. Rosenberg, and M. Yurkewych. Toward a theory for scheduling dags in Internet-based com-
puting. IEEE Transactions on Computers, 55(6):757–768, 2006.

[27] G. Malewicz, A. Russell, A. A. Shvartsman. Distributed scheduling for disconnected cooperation. Distributed
Computing, 18(6):409–420, 2006.

[28] W. Shi and B. Hong. Resource allocation with a budget constraint for computing independent tasks in the Cloud.
In Proceedings of the 2nd IEEE International Conference on Cloud Computing Technology and Science, 2010

[29] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules. Communications of the ACM,
28(2):202–208, 1985.

20

