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Abstract

In this paper, we demonstrate that the high firing irregularity produced by the leaky

integrate-and-fire neuron with the partial somatic reset mechanism, which has been

shown to be the most likely candidate to reflect the mechanism used in the brain for re-

producing the highly irregular cortical neuron firing at high rates (Bugmann, Christodoulou

& Taylor, 1997; Christodoulou & Bugmann, 2001), enhances learning. More specifi-

cally, it enhances reward-modulated Spike Timing-Dependent Plasticity with eligibility

trace when used in spiking neural networks, as shown by the results when tested in the

simple benchmark problem of XOR as well as in a complex multiagent setting task.



1 Introduction

After analysing spike train recordings from cortical neurons, Softky and Koch (1992,

1993) demonstrated that these cells in vivo fire irregularly at high rates. They also

showed that the Leaky Integrate-and-Fire (LIF) neuron model, which temporally in-

tegrates excitatory postsynaptic potentials generated by independent stochastic input

spike trains, failed in reproducing this observed high firing irregularity. While many

methods were proposed to reproduce Softky and Koch’s findings (for a brief review,

see Christodoulou & Bugmann, 2000, 2001), we have shown that a LIF neuron model

with partial somatic reset is a very good candidate for reproducing the observed highly

irregular firing at high rates by cortical neurons (Bugmann, Christodoulou & Taylor,

1997; Christodoulou & Bugmann, 2001). In this paper, we are investigating whether the

high firing irregularity produced by LIF neurons with the partial somatic reset mecha-

nism, when used in spiking neural networks in the benchmark problem of XOR and

in a general-sum game, enhances reward-modulated Spike Timing-Dependent Plas-

ticity (STDP) with eligibility trace (Florian, 2007). More specifically, in the case of

the general-sum game, we have a multiagent Reinforcement Learning (RL) task with

spiking neural networks as agents in the iterated version of Prisoner’s Dilemma (PD)

(Rappoport & Chammah, 1965) and we are examining whether its cooperative out-

come could be enhanced if the LIF neurons of the networks comprising the agents are

equipped with partial reset.

2 Methodology

The XOR problem performs the following mapping between two binary inputs and one

binary output: {0, 0} → 0; {0, 1} → 1; {1, 0} → 1; {1, 1} → 0. The setup used

for testing the XOR computation was the same as the rate-coded input one of Florian

(2007) (see Section 4.2 of that paper), although different input frequency rates were

used for the two types of networks (having LIF neurons with or without partial somatic

reset) in order to ensure that the output firing rate prior to learning was the same for

both. We trained both networks with reward-modulated STDP with eligibility trace

(Florian, 2007), where the modulation of standard antisymmetric STDP with a reward
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Cooperate (C) Defect (D)

Cooperate (C) R(=4), R(=4) S(=-3), T(=5)

Defect (D) T(=5), S(=-3) P(=-2), P(=-2)

Table 1: Payoff matrix of the Prisoner’s Dilemma game with the values used in our

experiments. Payoff for the Row player is shown first. R is the “reward” for mutual

cooperation. P is the “punishment” for mutual defection. T is the “temptation” for

unilateral defection and S is the “sucker’s” payoff for unilateral cooperation. The only

condition imposed to the payoffs is that they should be ordered such that T>R>P>S.

signal leads to RL. As in Florian (2007), we considered that the networks are able to

solve the XOR problem, if at the end of an experiment, the output firing rate for the

input pattern {1, 1} was lower than the output firing rates for the patterns {0, 1} or {1,

0}. The output firing rate for the input pattern {0, 0} was always 0, which resulted from

the rate coding of the input patterns (as in Florian, 2007).

In the iterated PD (IPD) the payoffs’ structure is such that the agents are required to

exploit each other in a way that benefits all agents. This game constitutes a challenging

problem, given its contradictory nature and lies in the dynamic environment created

by the presence of another learner. In its standard one-shot version, the PD is a game

summarised by the payoff matrix of Table 1. There are two players, Row and Column.

Each player has the choice of either to “Cooperate”(C) or “Defect” (D). For each pair of

choices, the payoffs are displayed in the respective cell of the payoff matrix of Table 1.

The “dilemma” faced by the players in any valid payoff structure is that, whatever

the other one does, each one of them is better off by defecting than cooperating. The

outcome obtained when both defect however is worse for each one of them than the

outcome they would have obtained if both had cooperated. In the IPD, an extra rule

(2R>T+S) guarantees that the players are not collectively better off by having each

player alternate between C and D, thus keeping the CC outcome Pareto optimal (Pareto,

1906). It has to be noted that although the cooperative outcome of the IPD we aim for

is a valid Nash equilibrium (Nash, 1950) of the game (contrary to the one shot version),

in this task we do not explore how to attain equilibria or best responses to any given

strategy, but we focus on achieving mutual cooperation.
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For the system we implement two spiking neural networks in a multilayer-type ar-

chitecture as two players competing in the IPD. An input layer of 60 input neurons

receiving a common input of 60 Poisson spike trains grouped in four neural populations

is shared by each network. These inputs are fully connected to 60 LIF hidden neurons

and two LIF output neurons, randomly chosen to either be excitatory or inhibitory. The

equations and values of the parameters used are the same as in Florian (2007). The net-

works learn simultaneously but separately during each round where each network seeks

to maximise its own accumulated reward. The architecture of the system is the same

as the one we designed and used in Christodoulou, Banfield and Cleanthous (2010),

with the difference being that learning is not based on stochastic synaptic transmission

(Seung, 2003), but implemented through modulation of STDP with eligibility trace

(Florian, 2007). As in Christodoulou, Banfield and Cleanthous (2010), the input to the

system is presented for 500ms (which defines the duration of a learning round during

which reinforcement is applied) and encodes the decisions just taken, by the firing rate

of four groups of Poisson spike trains. In other words, after round k the outcome of the

game (at round k) is fed into the system and the synapses are changed according to it

(through reinforcement). Decisions for each network are taken according to the relative

activation of its output neurons. In the current study of the IPD, the output firing rate of

both systems, with or without the partial somatic reset mechanism in their LIF neurons,

was kept the same. This was done by providing greater input frequency to the system

comprising of LIF neurons with total reset, in order to compensate for the increased

output firing rate in the other system due to the partial reset in its LIF neurons. In ad-

dition, a high output firing rate of approximately 100Hz was targeted and achieved for

both systems, which is within the high rate bound in which cortical cells in vivo fire

irregularly as identified by Softky and Koch (1992, 1993). This high rate output firing

was necessary, as our aim was to investigate whether the firing irregularity at such high

rates, which could be reproduced by the LIF neuron model equipped with the partial

somatic reset mechanism (Bugmann, Christodoulou & Taylor, 1997; Christodoulou &

Bugmann, 2001), strengthens the IPD’s cooperative outcome through learning enhance-

ment. It has to be noted that these necessary output firing arrangements had been made

before learning took place, as learning would have modified the output firing rates. The

rest of the details regarding the decision encoding of the two networks as well as the
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reinforcement administration are exactly the same as in Christodoulou, Banfield and

Cleanthous (2010) (see Section 2.4 of that paper). A point to note is that the networks

are rewarded according to the game’s payoff matrix (see Table 1), which is necessary

to contain both positive and negative values (like the chosen ones), since the learning

algorithm works with positive and negative reinforcements that are directly applied to

the synapses.

The partial somatic reset mechanism works as follows: when the membrane po-

tential ui(t) surpasses the firing threshold θ, then instead of being reset to the resting

potential, it is reset to a level ui(t) = β × θ, where β is the reset parameter, with a value

between 0 and 1.

3 Results and Discussion

During each of the rounds of the IPD multiagent RL task, the two networks of the sys-

tem configuration described in Section 2 seek to maximise their accumulated payoff by

cooperating or defecting at every round of the game. Our general aim is to investigate

the capability of each network to learn to cooperate in the IPD and more specifically,

whether this capability is enhanced by increasing the firing irregularity of each neuron

in the network. Similarly, in the XOR computation we are investigating whether such

an increased firing irregularity enhances the ability of the system to solve the problem

more efficiently, by increasing the suppression level of the output firing rate for input

pattern {1, 1}, in relation to the firing rates of input patterns {0, 1} and {1, 0}. In par-

ticular, for each of the two problems investigated, two simulations were performed, one

with the spiking neural networks having LIF neurons with total reset (β = 0) and one

with partial reset with β = 0.91; this value of the reset parameter was chosen as it was

found to produce the observed high firing irregularity at high rates by cortical neurons

(Bugmann, Christodoulou & Taylor, 1997; Christodoulou & Bugmann, 2001). More

specifically, in Christodoulou & Bugmann (2001), we showed that with the somatic

reset value set at β = 0.91, the firing interspike intervals (ISIs) at high rates are: (i) ex-

ponentially distributed and (ii) independent; in addition, in Bugmann, Christodoulou &

Taylor (1997), we demonstrated that the coefficient of variation (CV) vs mean firing ISI

curve with β = 0.91 shows a close similarity, firstly with the experimental one (Softky
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and Koch, 1992, 1993) and secondly with the theoretical curve for a random spike train

with discrete time steps and a refractory time. Therefore, with the choice of the reset

parameter β set to 0.91, the firing ISIs are purely temporally irregular (and there are

no bursts, that could increase the firing variability), which fulfills our aim to investigate

whether high firing irregularity enhances learning. Thus β = 0.91 is the optimal reset

value parameter for our purpose and there is no need to see the performance for other

reset value parameters, apart of course for β = 0, i.e., total reset (for comparison), for

which the firing ISIs at high rates have very low variability and are close to regularity

(Softky and Koch, 1992, 1993; Bugmann, Christodoulou & Taylor, 1997; Christodoulou

& Bugmann, 2001).

As it can be seen by the results for the XOR problem (Figure 1a), even though both

types of network learned the XOR function, the network with the partial somatic reset

mechanism in its LIF neurons performed much better in the task, than the one compris-

ing of LIF neurons with total reset. In particular, the former type of network displayed

more qualitative results than the latter, as it managed to consistently suppress more the

output firing rate for input pattern {1, 1}, leading to a bigger difference between the

output firing rates for input pattern {1, 1} and input patterns {0, 1} or {1, 0}. More

specifically, in the network consisting of LIF neurons equipped with partial reset, the

suppression of the output firing rate for input pattern {1, 1} reached 63% of the average

output firing rates for input patterns {0, 1} and {1, 0}, while the respective suppression

percentage of the network having LIF neurons with total reset reached only 10%.

The results of both simulations in the IPD multiagent RL task are shown in Fig-

ure 1b. The difference in the system’s performance is evident. Certainly with both

configurations the system learns to cooperate, but when each of the competing net-

works of the system comprises of LIF neurons equipped with the partial somatic reset

mechanism, the accumulated payoff is much higher than when there is total reset after

each firing spike; this results from the difference in the cooperative outcome. With the

partial reset the two networks learned quickly to reach very strong cooperation in order

to maximise their long-term reward and achieved the CC outcome 61% of the time on

average. On the contrary, with total reset, learning is not as strong, which is evident by

the fact that the system exhibited much less cooperation (39% of the time on average).

It has to be noted, that even though there is great variability in performance between
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learning episodes with sometimes opposing outcomes, most of the times the system

learns how to solve the problem, as reflected in the gradient of the average performance

of the results (Figure 1b).

These findings from both investigated tasks suggest that the increased firing irreg-

ularity at high rates, which results from the introduction of the partial somatic reset

mechanism at every LIF neuron of the XOR network and of the networks of the mul-

tiagent system, enhances the learning capability of both systems. This is due to the

increased suppression of the output firing rate for input pattern {1, 1} in relation to the

output firing rates for input patterns {0, 1} or {1, 0} in the XOR problem and the result-

ing accumulation of higher cooperative reward in the IPD task. More specifically, this

high firing irregularity at high rates enhances reward-modulated STDP with eligibility

trace. We believe that this is due to more accurate correlations between pre-synaptic

and postsynaptic spike timings and reinforcement signals. If firing is regular, then it is

possible for two identical spike pairs to be associated with opposite in sign reinforce-

ment signals, confusing thus the direction of the plasticity for a given synapse. High

firing irregularity prevents this unnecessary competition by weakening this possibility

and thus preventing a possible corruption of the learning algorithm. In addition, as we

described in Section 2, for each of the two problems investigated, the output firing rate

was kept the same for both systems, with and without partial somatic reset in every LIF

neuron. As expected, the output firing rate was influenced by learning in the duration

of the experiments, but not to a great extent and in the same manner for the two systems

throughout the simulations. For this reason, we can claim that for both problems inves-

tigated, the increased efficiency of the system when every LIF neuron is equipped with

the partial somatic reset mechanism, is not due to the increased firing rate, but to the

enhanced firing irregularity which caused learning enhancement. From our experiments

in both studied tasks, we have also observed that the increased levels of temporal irregu-

larity only have ‘positive’ effects, because they either increase the speed in a successful

learning episode, or reverse a failed learning episode in such a way that it becomes suc-

cessful. It has to be noted that other variant implementations of RL on spiking neural

networks by modulating STDP with a reward signal (apart from Florian, 2007), like for

example Izhikevich (2007), Faries and Fairhall (2007) and Legenstein, Pecevski and

Maass (2008), could equally well be used for obtaining the results presented in this pa-
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per. In general, the use of LIF neurons with the partial somatic reset mechanism is very

important, as apart from its precise modelling of the high firing irregularity of cortical

neurons at high firing rates (Bugmann, Christodoulou & Taylor, 1997; Christodoulou &

Bugmann, 2001), it enhances learning as well. It would be interesting to see whether

high firing irregularity enhances learning in Seung’s reinforcement of stochastic synap-

tic transmission (Seung, 2003), as well as in policy gradient-based methods as applied

to spiking neurons and networks and result in spike-based formulation of reward-based

learning (Xie & Seung, 2004; Pfister, Toyoizumi, Barber & Gerstner, 2006; Baras &

Meir, 2007; Vasilaki, Frémaux, Urbanczik, Senn & Gerstner, 2009).
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Figure 1: Effect of increased firing irregularity on: (a) learning the XOR computation

and (b) learning to cooperate in the IPD. In both problems the networks learn with

reward-modulated STDP with eligibility trace (Florian, 2007), whose time constant, τz

is set to 25ms for all networks and the learning rate γ to 0.00007 for (a) and to 0.0007

for (b) (both found empirically); all other parameter values are as in Florian (2007). (a)

Average firing rate of the output neuron after learning, for the four different XOR input

patterns with the LIF neurons of the network having either total somatic reset (i), or

partial reset at 91% of θ (ii). The recorded results are the averages over 5 experiments.

(b) Average Accumulated Reward with the LIF neurons of both networks having either

partial somatic reset at 91% of θ (solid line) or total reset (dotted line). The results

recorded are the averages over 10 times of playing the IPD of 500 rounds each.
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