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Abstract

In this letter, we aim to measure the relative contribution of coincidence detection and

temporal integration to the firing of spikes of a simple neuron model. To this end, we

develop a method to infer the degree of synchrony in an ensemble of neurons whose

firing drives a single, post-synaptic cell. This is accomplished by studying the effects of

synchronous inputs on the membrane potential slope of the neuron and estimating the

degree of response-relevant input synchrony, which determines the neuron’s operational

mode. The measure is calculated using the normalised slope of the membrane potential



prior to the spikes fired by a neuron and we demonstrate that it is able to distinguish be-

tween the two operational modes. By applying this measure to the membrane potential

time course of a leaky integrate-and-fire neuron with the partial somatic reset mecha-

nism, which has been shown to be the most likely candidate to reflect the mechanism

used in the brain for reproducing the highly irregular firing at high rates, we show that

the partial reset model operates as a temporal integrator of incoming excitatory post-

synaptic potentials and that coincidence detection is not necessary for producing such

high irregular firing.

1 Introduction

The firing patterns of neurons are traditionally considered to be random (Perkel, Ger-

stein & Moore, 1967a,b; Stein, 1967; Softky & Koch, 1992, 1993; Shadlen & Newsome,

1994, 1995, 1998; Stein, Gossen & Jones, 2005; Kostal, Lánský & Rospars, 2007), an

assumption which suggests that the relative timing of individual spikes is of no con-

sequence. However, there are studies which show that the activity of neurons is often

correlated and synchronised (Usrey & Reid, 1999; Salinas & Sejnowski, 2001; Buzsáki

& Draguhn, 2004) and there has been a growing number of recent publications focusing

on ways to detect and measure correlations and synchronous events in neural spiking

(Faes et al., 2008; Schrader et al., 2008; Stark & Abeles, 2009; Staude, Rotter & Grün,

2010; Grün, Diesmann & Aertsen, 2010; Kreuz et al., 2011). The role and significance

of correlated activity and synchrony has been a matter of theoretical study for the last

few decades (von der Malsburg, 1981; Abeles, 1982; Crick & Koch, 1990; König, Engel

& Singer, 1996; Singer, 1999).

An important aspect of synchronous activity in a neural ensemble, one that is of-

ten overlooked, is the effect it can have on the behaviour of a single, common post-

synaptic neuron. The degree of pre-synaptic synchrony has been linked to the contin-

uum between the two operational modes considered to be employed by cortical neurons,

namely temporal integration and coincidence detection (König, Engel & Singer, 1996;

Aertsen, Diesmann & Gewaltig, 1996; Kisley & Gerstein, 1999; Rudolph & Destexhe,

2003). More specifically, Aertsen, Diesmann & Gewaltig (1996) showed that higher

synchronisation at the input leads to shorter response latency and a higher probability
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of response (i.e., response reliability), which are two of the main characteristics of coin-

cidence detection. This was later reinforced by Rudolph & Destexhe (2003), who used a

conductance-based compartmental neuron model and showed that the neuron is able to

operate as both a temporal integrator or a coincidence detector, depending on the degree

of input synchrony. These authors also emphasised that the two operational modes lie

at the two extremes of a continuum with no discrete boundary between the two modes

(Rudolph & Destexhe, 2003). Additionally, coincidence detection has been proposed

as a candidate mechanism for the highly irregular, high rate firing observed in cortical

cells; in particular, Softky & Koch (1992, 1993), in an attempt to reproduce such exper-

imental recordings from cortical cells in the primary visual (V1) and middle temporal

visual (MT) areas, concluded that temporal integration was an unlikely mechanism for

cortical neurons exhibiting this behaviour, as integrators have very regular firing pat-

terns at such high rates. They suggested that coincidence detection is a more likely

operational mode. Bugmann, Christodoulou & Taylor (1997) and Christodoulou &

Bugmann (2001) demonstrated that incomplete post-spike re-polarisation of the mem-

brane was the most likely candidate for producing highly irregular firing at high rates,

with independent exponentially distributed intervals. However, they were unable to

provide a conclusive answer as to whether the model operates predominantly as a co-

incidence detector or temporal integrator, when exhibiting highly irregular, high rate

firing behaviour.

Discovering if cortical neurons are driven by synchronous volleys of spikes and

if so, measuring the degree of synchrony, would provide an important step towards

a solution to the problem of understanding the neural code. If the firing of the pre-

synaptic ensemble of a neuron is highly synchronised, the post-synaptic neuron operates

as a coincidence detector. This implies a high temporal precision for the neural code,

which in turn implies that a temporal code is most likely being employed, rather than

a rate code. Therefore, a potential method of measuring the degree of firing-relevant

synchrony at the input of a neuron would be a valuable tool for solving the problem of

the neural code.

While multi-neuron recordings are becoming increasingly easier and more common

to perform (Schrader et al., 2008; Staude, Rotter & Grün, 2010; Berger et al., 2010),

identifying the thousands of neurons that act as inputs to a single cell and recording their
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activity is not a trivial task. It is therefore preferable and simpler to develop a method

of inferring the degree of synchrony between the inputs of a neuron by observing the

fluctuations of the neuron’s membrane potential. Kisley & Gerstein (1999) for example,

demonstrated that the slope of the membrane potential directly preceding a spike is

indicative of the level of synchrony in a neuron’s pre-synaptic ensemble. Additionally,

DeWeese & Zador (2006) studied intracellular recordings of cells in the auditory cortex

of the rat and discovered that rapid fluctuations in the membrane potential most likely

indicate brief, synchronous volleys of spikes. Very recently, Kobayashi, Shinomoto &

Lánský (2011) studied the membrane potential fluctuations of a simple neuron model

in order to infer the pre-synaptic input rates. Goedeke & Diesmann (2008) showed

that the response of a simple neuron model to synchronised inputs is dependent on

the membrane potential and its derivative. They emphasised that in addition to the

membrane potential, the derivative should also be considered when studying neural

synchronisation in feed-forward networks (Goedeke & Diesmann, 2008).

These studies show that the firing properties of the pre-synaptic ensemble, especially

properties relating to synchrony, are reflected in the time course of the intracellular

membrane potential of the post-synaptic neuron. It should therefore be possible to

establish an invertible relationship between the input and the membrane potential in

order to infer the pre-synaptic firing properties from the membrane potential data.

Pre-synaptic synchrony has been known to also affect the post-synaptic neuron’s

firing patterns. In particular, it has been shown that correlated inputs affect the firing

rate (Kuhn, Rotter & Aertsen, 2002) as well as the firing irregularity (Salinas & Se-

jnowski, 2002) of the post-synaptic neuron. While these effects can be seen in the firing

inter-spike interval (ISI) distribution, the same properties (rate and irregularity) are also

affected by the rest of the input features. Furthermore, the effects of higher correlations

on the firing statistics differ depending on other properties of the neuron or its inputs. It

is unlikely that any inferences can be made regarding the input synchrony from obser-

vations of the neuron’s firing statistics alone. The trajectory of the membrane potential

of the post-synaptic neuron provides much more information regarding the activity of

the pre-synaptic population.

In order to determine where the operational mode of a given neuron lies on the

continuum between temporal integration and coincidence detection, we studied the cor-
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relation between the slope of the membrane potential, within a short period of time

prior to firing, with the degree of pre-synaptic synchrony. In this regard, it is analogous

to the spike-triggered average stimulus (also known as the reverse correlation between

the spike train and stimulus; Mainen & Sejnowski, 1995; Bugmann, Christodoulou &

Taylor, 1997). As such, analytical treatments of the spike-triggered average could be

adapted to study and calculate the expected shape of the pre-spike membrane potential,

in place of the stimulus (Kanev, Wenning & Obermayer, 2004).

In the rest of this letter, we initially describe the models used, their parameters and

how our measure is calculated. We then describe how our simulations were set up and

run, in order to establish the reliability of our measure and subsequently, to measure

the operational mode of a neuron firing highly irregular spike trains at high rates. We

continue with presenting our results and conclude with a detailed discussion including

comparison of our study and results with related work.

2 Methodology

2.1 Models

In this study we used the leaky integrate-and-fire (LIF) neuron model, also known as

the Lapicque model (Lapicque, 1907; Tuckwell, 1988), as well as a variant of the LIF

model which uses a partial reset mechanism (LIFwPR) (Bugmann, Christodoulou &

Taylor, 1997).

Leaky Integrate-and-Fire (LIF) neuron model

The LIF model describes the time course of the membrane potential for sub-threshold

voltages:
dV

dt
=

−(V (t)− Vrest) +RI(t)

τm
(1)

where V (t) is the membrane potential at time t, Vrest is the resting potential, i.e., the

membrane potential at the initial time t0 such that V (t0) = Vrest. Furthermore, R is

the resistance of the membrane and τm is the membrane leak time constant. I(t) is

the time-dependent input, which is modelled as a time varying function or as a random

spike generator process (e.g., a Poisson generator; Stein, 1965).
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The firing mechanism of the model is triggered explicitly when the membrane po-

tential reaches a fixed threshold Vth, after which the membrane potential is reset back

to Vrest. A refractory period is modelled by disabling the firing mechanism for a short

period, tr, after a spike is fired. The values of the model parameters used for the simu-

lations in this paper are listed in Table 1.

Partial reset LIF variant (LIFwPR) neuron model

The LIFwPR variant of the LIF model sets the membrane potential following the firing

of a spike, at a level higher than the resting potential, i.e., Vreset > Vrest (Lánský &

Smith, 1989; Lánský & Musila, 1991; Bugmann, Christodoulou & Taylor, 1997). This

models the incomplete electrical decoupling between the neuron’s soma and dendrites

(Rospars & Lánský, 1993; Lánský & Rodriguez, 1999). In Bugmann, Christodoulou

& Taylor (1997), it was shown that the LIFwPR is equivalent to a LIF with a time-

dependent threshold (Wilbur & Rinzel, 1983; Tuckwell, 1988). The level of reset is

controlled by the reset parameter β, which relates Vreset to the threshold and resting

potential:

Vreset = β (Vth − Vrest) + Vrest (2)

The LIFwPR model was chosen for its ability to produce highly variable firing at

high rates, consistent with experimental recordings (Softky & Koch, 1993), particu-

larly when β = 0.91, as proved by Bugmann, Christodoulou & Taylor (1997), which

results in a reset potential of Vreset = 13.65 mV. Setting β = 0, the model becomes a

LIF (Vreset = Vrest).

Description of the inputs

Synaptic inputs were modelled in all cases as realisations of a Poisson process (i.e.,

intervals were exponentially distributed). The input population was characterised by

five parameters, two of which relate to synchrony. The non-synchrony parameters are

the number of input spike trains (Nin), the average rate of the inputs (fin) and the level

of depolarisation caused by each spike on the membrane potential (∆Vs). In addition,

the two parameters which defined the level of synchrony are (i) Sin, which denotes the

proportion of spike trains which are synchronous and (ii) σin, which is the standard
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deviation of a normally distributed random variable that is used to apply Gaussian jitter

to each individual spike in the identical spike trains. The parameter ranges were chosen

such that our measure is investigated in the entire dynamic range of the LIF model.

More specifically, spike trains are generated by performing the following steps:

1. Generate one Poisson spike train, with rate fin for the length of the simulation T .

2. Copy the generated spike train (SinNin − 1) times, giving a total of SinNin iden-

tical spike trains.

3. For each spike in all spike trains generated so far, shift its time by a random

variate drawn from a normal distribution X ∼ N (0, σ2
in).

4. Generate (1−Sin)Nin Poisson spike trains, giving a total of Nin input spike trains.

The product SinNin is always rounded to the nearest integer. Fig. 1 shows three

sample input cases. The raster plots show the effect of the two variables Sin and σin

on the overall synchrony of the spike trains. Each input spike causes an instantaneous

jump of ∆Vs in the post-synaptic neuron’s membrane potential.

The maximum value for σin of 4 ms (see Table 1 for ranges and values for all

parameters) was chosen such that it is high enough to reduce synchrony significantly,

to the point where no synchronous activity beyond what is expected by random chance

remains, even for cases where Sin = 1.

Note that, while various input parameter ranges were investigated for the LIF model,

the parameters of the LIFwPR model are constant (Table 1). These values were taken

from Bugmann, Christodoulou & Taylor (1997) who investigated the LIFwPR model

and determined the parameter values which cause highly irregular high rate firing.

Therefore, an investigation of the parameters of the LIFwPR model is outside the scope

of our work, as we employ the specific model solely to investigate its sub-threshold

membrane potential trajectories in the highly irregular high firing rate regime.

Our study focused exclusively on excitatory inputs. This simplifying assumption

allowed us to define more clearly the effects of synchronous activity on the mem-

brane potential trajectory in a more predictable fashion. Even though we previously

demonstrated (Christodoulou et al., , 2000) that increasing inhibition leads to greater

membrane potential fluctuations apart from reducing the mean membrane potential, the
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effects of inhibition on the slope of the membrane potential, in the presence of syn-

chronous activity, is a subject of ongoing work.

Parameter LIF value or range LIFwPR value or range

Vth 15 mV 15 mV

Vrest 0 mV 0 mV

Vreset 0 mV 13.65 mV

R 10 kΩ 10 kΩ

τm 10 ms 10 ms

tr 2 ms 2 ms

∆Vs 0.1 mV – 2.0 mV 0.16 mV

Nin 30 – 200 50

fin 20 Hz – 700 Hz 150 Hz – 300 Hz

Sin 0 – 1 0 – 1

σin 0 ms – 4 ms 0 ms – 4 ms

Table 1: Parameter values for the models used in this study. Many of the parameters

share a common value; we list them explicitly for completeness. The ranges of the input

rates were chosen accordingly to study the entire obtainable firing frequency range.

2.2 Methods

The two models, the LIF and LIFwPR variant, were used to study the relationship

between the slope of the membrane potential prior to the firing of a spike and the amount

of synchrony which exists in the input spike trains that caused the firing. Determining a

relationship between the two will allow us to develop a method that can reliably measure

the response-relevant input synchrony and by extension, the neuron’s operational mode.
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Pre-spike membrane potential slope

Since the time course of the membrane potential is discontinuous due to input spikes

causing instantaneous jumps in the membrane potential, we define a temporal window

of length w, which we call the coincidence window. This allows us to calculate the

membrane potential’s average rate of change between ti and ti −w, where ti is the mo-

ment when the ith spike was fired. In other words, we calculate the slope of the secant

line that intersects the membrane potential trace at the start and end of the window w

(fig. 2a), as shown in eqn. (3),

mi =
V (ti)− V (ti − w)

w
, (3)

where V (t) denotes the membrane potential at time t. Note that V (ti) is the membrane

potential during the firing of a spike and therefore V (ti) = Vth.

Normalisation bounds

In order to associate the pre-spike slope of the membrane potential with the level of

pre-synaptic synchrony and the operational mode continuum, we define the values of

the slope mi for the two limiting cases, i.e., completely synchronous (Sin = 1) and

completely random (Sin = 0) inputs. No jitter is assumed in either case (σin = 0 ms).

Each limiting case corresponds to a bound in the operational mode continuum.

For Sin = 0, inputs are completely random and coincidences between spikes occur

due to random chance alone. The post-synaptic neuron integrates the random inputs

and fires spikes in response to an almost constant arrival of spikes, with very small fluc-

tuations. The membrane potential of the neuron in this case, rises almost steadily from

Vrest to Vth during each inter-spike interval (ISI). The value of the lower normalisation

bound is therefore defined as:

Li =

Vth −

(

Vrest + I

(

1− exp

(

−
∆ti − w

τm

)))

w
(4)

where ∆ti is the length of the ISI preceding the ith spike and I is the constant input

required to fire at the end of the ISI, starting from Vrest:

I =
Vth − Vreset

1− exp

(

−
∆ti
τm

) (5)
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The lower bound therefore varies for each spike in a spike train.

Eqn. (4) assumes a membrane potential generated by a classical LIF. In the case of

the LIFwPR however, a constant arrival of spikes would cause the pre-spike membrane

potential slope to be lower, since the potential of the membrane at the start of each ISI

is not Vrest but Vreset (fig. 2b). We therefore redefine the lower bound to account for the

LIFwPR as:

L∗

i =

Vth −

(

Vreset + I

(

1− exp

(

−
∆ti − w

τm

)))

w
(6)

For Sin = 1, the neuron receives Nin spikes simultaneously at random (exponen-

tially distributed) intervals. If Nin∆Vs ≥ (Vth − Vrest), each volley of spikes causes the

neuron to fire. Assuming a classical LIF model, the membrane potential prior to firing

remains at Vrest up to the moment of firing ti, when it instantaneously jumps to Vth.

Since we cannot define the slope of the instantaneous jump, we use the same temporal

window w as described for eqn. (3) and the value of the upper normalisation bound is

defined as:

Ui =
Vth − Vrest

w
. (7)

In the case of the LIFwPR, eqn. (7) must also account for the higher potential of the

membrane at the start of the ISI. More specifically, to determine the upper normalisation

bound, we must calculate the membrane potential at the start of the coincidence window,

after it has decayed from Vreset (fig. 2b). The underlying assumption is that in the case

of complete synchrony (Sin = 1), no inputs arrive between volleys and the potential is

affected only by the leak term. The redefined upper normalisation bound is therefore:

U∗

i =

Vth −

(

Vrest + (Vreset − Vrest) exp

(

−
∆ti − w

τm

))

w
. (8)

The term

(

Vrest + (Vreset − Vrest) exp

(

−
∆ti − w

τm

))

defines the membrane potential

after it has decayed from Vreset for a period (∆ti − w). In other words, it is the mem-

brane potential at the start of the coincidence window, for the limiting case of complete

synchrony.

When analysing data generated from a LIF neuron, the two variations on the lower

and upper bounds (eqns. (6) & (8)) behave identically to the standard forms (eqns. (4)

& (7)), due to the fact that for the LIF Vrest = Vreset.
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The bounds are used to linearly normalise the pre-spike membrane potential slope

mi for each spike to fall within the range [0-1]:

Mi =
mi − Li

Ui − Li

. (9)

For the LIFwPR model, the bounds U∗

i and L∗

i are used accordingly.

The role of the coincidence window

The coincidence window w defines a period in which all input spikes within it are

regarded as coincident (synchronous). Coincidence to arbitrary precision is unlikely,

although much more probable when binning data due to a simulation time step. The

length of w defines the precision of coincidences explicitly.

The role of w becomes clear when one considers how it affects the calculation of

the slope in the limiting case of high synchrony. For a LIF neuron, if the membrane

potential at the start of the window is at the resting potential, i.e., V (ti − w) = Vrest,

then this means that enough spikes arrived within a period w to cause the neuron to

fire from rest. The slope, as calculated by eqn. (3) will not be affected, irrespective

of whether these input spikes were completely synchronised or not. In other words, all

spikes responsible for the firing that arrived between (ti − w) and ti and the resulting

slope will become equal to the upper normalisation bound Ui.

More generally, we may consider an arbitrary initial potential, V (ti − w) = u. The

temporal dispersion of the spikes arriving within the coincidence window has no effect

on eqn. (3), the result of which would always be
Vth − u

w
. The value of w is therefore

a measure of the assumed temporal precision of the neural code and its length allows

one to change the temporal resolution of the slope calculation, to match the theoretical

limits of a neural temporal code.

For our simulations, we set the parameter w = 2 ms, since it has been noted that

for neurons with membrane time constants within the range of 10–20 ms, a temporal

code with accuracy between 1–3 ms is theoretically possible (Gerstner et al., 1996).

By setting the width of the coincidence window to 2 ms, we effectively attempt to

measure the level of synchrony of the input spikes that caused each response, under the

assumption that the temporal precision of coincidence detection is 2 ms.
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2.3 Simulation details

Simulations of the models described in section 2.1 were implemented using the Runge-

Kutta (RK4) approximation of the derivative with a simulation time-step of 0.1 ms

(Wilson, 1999). Other methods could have been used for iteratively solving the differ-

ential equations which describe the models, such as the ‘Exact Integration’ method by

Rotter & Diesmann (1999). Each simulation ran for T = 10 s of simulated time.

Simulations were run in configuration sets where ∆Vs and Nin were kept constant

for all simulations in the set. Additionally, a target firing rate fout was defined for the

configuration set. Each simulation in a set was assigned a unique combination of Sin

and σin values. For each synchrony parameter pair, the input rate fin was calibrated ac-

cordingly to obtain the desired target firing rate fout. The appropriate input rate was de-

termined by iteratively increasing or decreasing fin until the desired fout was obtained.

This calibration was necessary because the synchrony parameters affect the neuron’s

firing rate and since our measure relies on the firing ISIs, simulations which share the

same firing rate are more comparable. Additionally, one of the objectives of the current

work is to study the highly irregular, high firing rate regime, using the LIFwPR neuron.

It is therefore more appropriate to group simulations and results based on the neuron’s

firing rate, to allow us to separate simulations and results which belong to a low or high

firing rate regime.

The simulations of the LIF neuron aimed at establishing the relationship between

the synchrony parameters and the mean value of Mi for the entire simulation. The

LIFwPR simulations on the other hand were subsequently used to determine the opera-

tional mode of the model when firing highly irregular spike trains at high rates.

3 Results

3.1 Results with the LIF neuron model

The six contour plots in fig. 3 show results of simulations of the LIF neuron for various

parameter combinations (see figure caption for details). The parameters were chosen to

demonstrate how the measure behaves under various input regimes (described in section

4). The plots show the mean normalised pre-spike slope of the membrane potential (M )
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for all combinations of Sin and σin within the value ranges specified in Table 1. Each

M value represents the mean M for all spikes fired during T = 10 s of simulated time.

The value of M reaches the maximal value of 1 in the lower right hand corner,

which corresponds to completely synchronised input spike trains (Sin = 1) with no

jitter (σin = 0 ms). As expected, increasing the amount of jitter (higher σin values, i.e.,

moving up on the contour plot), decreases the value of M . The correlation coefficient

between σin and M , when Sin = 1, is ρσ,M = −0.95 indicating a very high, negative

linear relationship. Similarly, less synchronised spike trains (lower Sin values, i.e.,

moving left on the plot) also decrease the value of M . The correlation between Sin

and M , when σin = 0 ms, shows a near perfect positive linear relationship, with a

correlation coefficient of ρS,M = 0.99 (clearly shown in fig. 4). These values correspond

to a desired fout = 70 Hz (corresponding to fig. 3d).

The results shown in fig. (3) and the strong correlation between the input parameters

and M (fig. 4) discussed above indicate that our method can reliably detect and mea-

sure input synchrony which was relevant to the firing of response spikes. The method

maintained a high reliability for a wide range of the input parameter values, i.e., the

number of spike trains (Nin), the desired firing rate (fout) and the membrane potential

rise per spike (∆Vs). However, the robustness of this correlation depends on the input

regime, i.e., the strength of the input volleys with respect to the firing threshold. In

particular, this correlation between input synchrony and measured M is robust as long

as the synchronous volleys are super-threshold (see section 4 for details).

Of particular interest is the case where the LIF neuron is driven by high rate inputs

causing it to fire at extremely high rates. Fig. 3f shows the measured synchrony of a

LIF neuron with fout = 400 Hz. Comparing this plot to the others of fig. 3, it is evident

that the value of M is higher than expected when there are very low degrees of input

synchrony. This can be seen in the lower part of the synchrony parameter range, i.e.,

the upper left half of the plot, which has a darker shade than in the cases with lower

firing rates (fig. 3a – 3e). Additionally, the value of M is lower than expected at higher

ranges of the synchrony spectrum, as can be seen by the darker areas in fig. 3f being

considerably smaller than the dark, high synchrony areas of the other plots.

These unexpected results (fig. 3f) are due to the mean firing ISI approaching in

length to the coincidence window. More specifically, if an ISI is equal to the coincidence
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window ∆ti = w, then the values of the two bounds (eqns. (6) & (8)) become equal.

This occurs because in such circumstances, the firing of a spike due to integration of

inputs within a period equal to the ISI is equivalent to firing solely from input spikes

arriving within a period w. We can investigate the divergent behaviour between the two

modes as a function of the ISI (∆ti) and coincidence window length (w). To accomplish

this, we define the level of divergence (or relative difference) between the perfect, non-

leaky Integrate-and-Fire model (PIF), which represents perfect integration and the LIF

model. The relative difference indicates the degree by which the PIF model differs from

the LIF. It is calculated as the difference between the values of the membrane potential

of the two models (LIF and PIF), divided by the membrane potential of the original

model, i.e., the LIF, at the start of the coincidence window, in order to estimate how

well the PIF model approximates the pre-spike slope values of the LIF (see Appendix

A for details). The lower the relative difference, which occurs at higher firing rates, the

more similar the two modes become. This leads to less accurate results as the distance

between the two models and by extension, the two bounds becomes smaller. Fig. 5

shows the relative difference (d) as a function of the firing ISI, for a fixed window

length w = 2 ms (see eqn. (13) in Appendix A). This analysis supports that the two

operational modes, as defined in this work, display a convergent behaviour as firing

rates increase (i.e., the relative difference d, also known as the level of divergence,

becomes smaller). The very low relative difference between the two models at firing

rates of 400 Hz (d2.5 ms = 0.025) is the reason why the metric produces unexpected

results for analysing data for this particular extremely high rate firing. In such a case,

the two modes of operation are too similar to be reliably distinguished.

3.2 Results with the LIF neuron model with partial reset (LIFwPR)

We also measured the normalised pre-spike membrane potential slope of a model neu-

ron exhibiting highly irregular firing at high rates. We used the LIFwPR, with neuron

and input parameter values identical to the model by Bugmann, Christodoulou & Taylor

(1997). The inputs to the neuron consisted of 50 Poisson spike trains and each input

spike caused a depolarisation of the neuron’s membrane potential by ∆Vs = 0.16 mV.

We used a reset parameter value of β = 0.91 as it has been shown to be the only value
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that can produce purely temporally irregular firing (with no bursting activity that can in-

crease the firing variability) (Bugmann, Christodoulou & Taylor, 1997; Christodoulou

& Bugmann, 2001). This is compatible with the high firing irregularity at high rates

observed in cortical neurons (Softky & Koch, 1992, 1993).

The results (fig. 6) show the value of M being always below 0.1, for the entire range

of firing rates. Each firing rate was achieved by varying input rates within physiological

ranges. These results suggest that neurons firing highly irregularly at high rates operate

mainly as temporal integrators.

In Bugmann, Christodoulou & Taylor (1997), it was suggested that temporal in-

tegration and fluctuation detection (i.e., coincidence detection) can coexist and cause

irregular firing, which was indicated by the ISI of a LIFwPR neuron driven by a fluc-

tuating input current being significantly shorter than the ISI of the same neuron driven

by a constant input current (of the same average value). The current results however in-

dicate that there is a strong dominance of temporal integration and the relatively small

contribution of coincidence detection in the firing of spikes is not sufficiently high to be

distinguishable from the effects of the temporal integration process. This indicates that

coincidence detection is not necessary for producing highly irregular firing at high rates

(which was suggested by Softky & Koch, 1992, 1993) and that temporal integration

on its own is sufficient for such a purpose, provided the neuron does not completely

repolarise.

It has to be pointed out however, that our results are not incompatible with the

analysis by Softky & Koch (1993). In their analysis, these authors express the threshold

in number of input pulses, Nth, necessary to raise the neuron’s membrane potential from

rest to discharge. With the partial reset mechanism, the LIFwPR neuron’s membrane

potential stays very close to the spike threshold during most of the time in a trial’s

duration, assuming the neuron is spiking at high enough rates. More importantly, the

membrane potential is almost always above the reset potential Vreset after the first spike

is fired. With this in mind, we have shown (see Appendix B) that when the LIFwPR

neuron is driven by sufficiently frequent arriving inputs, it operates equivalently to a

neuron with an effective resting potential V ′

rest equal to the reset potential Vreset; this

results in (i) a reduction of the effective number of inputs required to fire a spike and

(ii) a very short (sub-millisecond) effective membrane leak time constant. As it can be
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seen from Appendix B, for our simulations N ′

th is approximately 9 and τ ′m is a function

of the membrane potential V (t) and takes values less than 1 ms (≤ 0.9 ms).

Our results are thus in accord with the analysis by Softky & Koch (1993) who

showed that for low Nth values and sub-millisecond membrane time constant τm, a LIF

neuron operating as a temporal integrator can fire highly irregularly at high rates (see

fig. 8 in Softky & Koch, 1993). From the above analysis, we can therefore conclude

that the LIFwPR model, which models the incomplete post-spike re-polarisation of a

neuron, can be used for (i) reducing the effective number of input spikes N ′

th required

to cause a spike and (ii) decreasing the effective membrane leak time constant τ ′m such

that a neuron can fire highly irregularly at high rates, in accordance with experimental

recordings. Moreover, it has to be noted that the LIFwPR model, apart from modelling

more accurately different firing regimes, it has also been shown (i) to be able to re-

produce experimental firing statistics (as shown by Bugmann, Christodoulou & Taylor,

1997, on the data analysed by Softky & Koch, 1992, 1993) and (ii) that it enhances

learning (Christodoulou & Cleanthous, 2011; Cleanthous & Christodoulou, 2012).

4 Discussion

Our study establishes the correlation between input synchrony Sin and the slope of the

membrane potential prior to firing m. This depends on normalising the slope between

two bounds. Our results suggest a strong correlation between pre-spike membrane po-

tential slope and pre-synaptic synchrony levels, that allow us to infer the degree of

response-relevant input synchrony under certain assumptions, namely the existence of

excitation only and of super-threshold volleys. The measure is robust against the value

of the average stimulus, i.e., whether it is super- or sub-threshold. In the very rare case

where firing results from the integration of a burst of multiple coincident sub-threshold

volleys, the measure will underestimate the synchrony. In a theoretical study, Stein

(1967) showed that the slope of the membrane potential is inversely proportional to the

variance of the firing ISIs, for a neuron driven by Poisson inputs. Goedeke & Dies-

mann (2008) showed that the membrane potential, as well as its derivative, define the

response of a LIF model to synchronised inputs. They analytically studied the dynamics

of the behaviour of a LIF neuron, both in isolation and in homogeneous networks and
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concluded that the synchronisation between neurons depends both on the membrane

potential and its derivative. While these studies prove the existence of a correlation be-

tween membrane potential and firing statistics of both individual neurons and networks,

our own work establishes a specific correlation measure between membrane potential

and input statistics. As such, the two results may be considered complimentary.

However, a potential correlation between firing and input statistics is most likely

not as straightforward to investigate, since both the membrane potential fluctuations

and the firing ISI distribution are affected by multiple parameters of the stimulus. As

already mentioned, synchrony in the pre-synaptic activity of a neuron can affect its fir-

ing rate (Kuhn, Rotter & Aertsen, 2002) and irregularity (Salinas & Sejnowski, 2002).

However, these effects are not consistent and depend heavily on the state of the neuron.

More precisely, the output firing rate is a non-monotonic function of the correlation

among excitatory inputs (Kuhn, Rotter & Aertsen, 2002). Additionally, the firing vari-

ability depends heavily on other factors besides the degree of input correlations (Salinas

& Sejnowski, 2002). Our measure relies on the assumption that changes in input pa-

rameters are reflected in the trajectory of the membrane potential, while similar changes

may not affect the distribution of firing ISIs in a consistent manner.

Our work is more closely related to Kisley & Gerstein (1999) and more recently

to DeWeese & Zador (2006) and Kobayashi, Shinomoto & Lánský (2011), in that we

establish a relationship between membrane potential properties and properties of the

input spike trains, in order to infer the latter from measurements of the former. DeWeese

& Zador (2006) analysed membrane potential dynamics to infer properties of the input

population. Similarly, Kobayashi, Shinomoto & Lánský (2011) developed an algorithm

to estimate the time-varying input rates of the pre-synaptic population by studying the

membrane potential of the neuron. The correlation between membrane potential slope

and input synchrony was studied by Kisley & Gerstein (1999). The work presented

in this article relies on this correlation to provide a measure of the response-relevant

input synchrony, which relates to the operational mode of the neuron. In particular,

the normalised pre-spike membrane potential slope provides a measure of the relative

contribution of temporal integration and coincidence detection to the firing of a spike,

or the operation of a neuron in general.

The choice of the length of the coincidence window, i.e., the value of w, is an
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important aspect of our metric calculation. It has to be noted that the effect of this

variable on the temporal precision of firing has also been the subject of a rigorous

theoretical study (Reed, Blum & Mitchell, 2002; Mitchell, 2005). As mentioned in

section 2.2, the value of this parameter should reflect the time that is regarded as the

maximum temporal distance between two events that are considered to be coincident

(2 ms in our case). The only limit for the length of the coincidence window is the time

step of the simulation (here 0.1 ms) or more generally, the temporal resolution of the

data being analysed. However, the smaller the value of w, the stricter the definition of

coincident activity becomes, which in turn produces lower M values, unless the input

spike trains are completely synchronised. This provides a degree of flexibility for the

metric calculation that allows it to be adapted to various levels of temporal resolution.

The meaning of the value for the length of the coincidence window can be intu-

itively understood in terms of the cost parameter found in spike train distance metrics

(see Victor & Purpura, 1996; Victor, 2005; Kreuz et al., 2011), which controls the sen-

sitivity of the metric to spike count and spike timing, i.e., the assumed resolution of the

temporal code. Spike train distance metrics measure the distance between two spike

trains by calculating the minimum cost of transforming one spike train into the other

by adding, removing or shifting spikes. By manipulating the cost parameter, one can

control the measured distance between two given spike trains. For instance, with a

small cost parameter value, two very different spike trains will be measured as having

a small distance, i.e, they are considered similar by the metric due to the low cost of

shifting spikes. Conversely, with a high cost parameter value, two similar spike trains

will be measured as having a large distance, i.e., they are considered dissimilar by the

metric, due to the high cost of shifting spikes. While the measure presented in our work

measures the response-relevant synchrony of the input spike trains of a neuron and by

extension, the operational mode of that neuron, the spike train distance metrics measure

the distance, or similarity between a pair or group of spike trains directly. However,

both types of metrics can be used in different circumstances to measure the temporal

precision of the neural code.

While similar work exists on measuring spike train correlations and synchrony, ei-

ther by directly observing the spikes fired from a population of neurons (Grün, 2009;

Staude, Rotter & Grün, 2010), or by identifying synchronous activity in local field po-
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tentials (Denker et al., 2011), our proposed measure differs in that it only responds to

such correlations between spike trains converging into a single neuron, when they are

responsible for the triggering of response spikes. In particular, our measure explicitly

calculates the degree of input synchrony directly preceding a response spike and implic-

itly considers any previous activity by taking into account the potential at the start of

the coincidence window w in the calculation. The higher the potential of the neuron’s

membrane at the start of the coincidence window is, the lower the relative contribu-

tion of the synchronous spike trains within the coincidence window would be to the

response. Consequently, the slope of the membrane potential within the coincidence

window is low, denoting a higher contribution of temporal integration. In this way, our

measure is only concerned with the input statistics that affect the neuron’s own spiking,

in other words, it is sensitive to the response-relevant statistics of the input. It is this

particular feature which links our measure’s estimation of response-relevant input syn-

chrony to the underlying operational mode. The operational mode of a neuron is not

defined solely by the synchrony of the spike trains it receives, but also by whether or

not that synchronous activity causes firing.

Our study focused solely on excitatory inputs which caused the neuron to fire a re-

sponse, in order to infer the degree of response-relevant synchrony specifically. This

simplifying choice was made to establish the viability of the slope of the membrane po-

tential in inferring pre-synaptic synchrony. The potential inclusion of inhibitory inputs

in our models would require our methods, namely the slope bound calculations, to ac-

count for the effects of inhibition on the range of potentials the membrane can acquire.

More specifically, inhibition can drive the membrane potential below Vrest, which can

cause pre-spike membrane potential slopes with higher values than the ones the upper

bound we have defined for this study (see eqns. (7) & (8)) could capture.

It should be noted that the intent of the work presented here is not to measure abso-

lute input synchrony in itself. The value of M is considerably less than 1 in cases where

there is very high input synchrony (Sin ≈ 1, σin ≈ 0), but the depolarisation caused by

a single synchronous volley is not enough to cause a response. This occurs when the

total number of input spike trains, combined with the level of depolarisation per spike,

is insufficient to reach the firing threshold from rest, i.e., Nin∆Vs < (Vth − Vrest) (i.e.,

volleys are sub-threshold). In such a case, a series of two or more synchronous volleys
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of spikes is required to cross the threshold, depending on the delay between each vol-

ley. The measure we have presented is therefore a measure of the synchrony between

all input spikes that were responsible for any given response spike.

Generally, a neuron can operate in a sub- or super-threshold input regime. The

different input regimes are defined in terms of the asymptotic time-averaged membrane

potential 〈V 〉 in the absence of a threshold. If 〈V 〉 < Vth, the neuron is operating in a

sub-threshold regime and spikes are caused by fluctuations which can briefly drive the

membrane potential above threshold. Conversely, if 〈V 〉 > Vth, the neuron is operating

in a super-threshold regime and spikes are fired quite regularly and inevitably by the

integration of inputs (Gerstner & Kistler, 2002).

The mean membrane potential, again in the absence of a threshold, for our neuron

is equal to 〈V 〉 = ∆VsNinfinτm. However, we can also define the total contribution

of a volley as ∆Vv = Nin∆Vs. In our case however, by using synchronous volleys of

input spikes, we can define four conditions, in terms of the aforementioned sub- and

super-threshold regimes:

1. Case where ∆Vv < Vth and 〈V 〉 < Vth.

This is analogous to a true sub-threshold regime where spikes are fired only in cases

where two or more volleys arrive close enough for their combined contribution to reach

the threshold. In other words, output spikes are caused by fluctuations in the arrival

times of sub-threshold volleys. When these relations hold, our measure will not produce

a value of M = 1 when Sin = 1 due to the contribution of each individual volley being

sub-threshold. Spikes in such cases are caused with very low probability and depend

on the timing of individual volleys and spikes, i.e., the fluctuations in the input. Fig. 3a

corresponds to this case.

2. Case where ∆Vv > Vth and 〈V 〉 < Vth.

If this is the case, then our measure will be able to achieve a value of 1 (if Sin = 1).,

regardless or whether 〈V 〉 > Vth or not. Although this may correspond to a sub-

threshold regime, the presence of super-threshold volleys makes firing of spikes a cer-

tainty and we can therefore refer to it as a super-threshold volley regime. Figs. 3c and

3e correspond to this case.

3. Case where ∆Vv < Vth and 〈V 〉 > Vth.

In this interesting case, spikes are fired almost surely due to the neuron being in a
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super-threshold regime, in the general sense, but our measure will never achieve M = 1,

due to the contribution of each individual volley being sub-threshold. Therefore, al-

though the neuron is operating in a super-threshold regime, in terms of the contribution

of single volleys it is operating in a sub-threshold volley regime. While the spikes

within a single volley may coincide (highly synchronous volley, i.e., Sin ≈ 1), the total

dispersion between all the spikes that caused the neuron to fire is high. The value of

M reflects the total dispersion between all the contributing spikes, not the dispersion

between spikes within a single volley. This emphasises the difference between input

synchrony in the traditional sense and the response-relevant input synchrony, which we

measure. The operational mode of a neuron is determined by the temporal dispersion

of all the spikes that were responsible for the neuron’s firing (Kisley & Gerstein, 1999;

Rudolph & Destexhe, 2003). Fig. 3b corresponds to this case.

4. Case where ∆Vv > Vth and 〈V 〉 > V th.

In this case, the mean drive is very high as well as the depolarisation caused by

individual volleys. The behaviour of the measure is the same as for case (2), as the

mean drive has little effect on our measure as long as ∆Vv is high enough to consistently

cause a response. The measure however will behave unpredictably when the mean drive

is strong enough to cause very high firing rates, as has been already discussed. Figs. 3d

and 3f correspond to this case.

In summary, the correlation between input synchrony and M is more dependent on

the relationship between ∆Vv and Vth, and is only slightly affected by the mean drive

〈V 〉. When volleys have a total contribution which is sub-threshold (cases 1 and 2) then

M < 1 even when Sin = 1 and σin = 0 ms. This reflects the fact that the response was

caused by a number of volleys, each of which consisted of completely synchronised

spikes, but whose total, summed inter-synchrony is much lower.

Our measure could be applied to membrane potential data generated by other, more

complex, neuron models and it would be particularly interesting, after further refine-

ment, to use this measure to provide insight into the operational mode and by exten-

sion, coding mechanisms employed by a real cortical neuron, using knowledge of the

neuron’s physiology and intracellular membrane potential data alone. Additionally it

would be interesting to study the measure itself further and how it can be extended

to provide more information on the inner workings of a neuron. It would most likely
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be more informative and it could help make stronger inferences concerning the input

statistics, if the distribution of M values is studied instead of the average value alone.

Appendix A

Upper and lower bound convergence at high firing rates

In this Appendix we demonstrate that the indicative membrane potential slopes (Ui

and Li) associated with the two operational modes, temporal integration and coinci-

dence detection, converge onto each other at high firing rates. The level of convergence

is dependent on the length of the coincidence window (w), which reflects the assumed

temporal precision of the neural code. From this convergence it follows that, at very

high firing rates, the two operational modes become indistinguishable. The purpose of

this Appendix is to formally describe this convergent behaviour.

In order to grasp the intuition behind this phenomenon, let us first consider the case

where a firing ISI is equal to the coincidence window, i.e., ∆ti = w . In this case, it is

clear from eqns. (6) and (8) that Ui = Li, i.e., the two operational modes are described

by the exact same slope value and are therefore identical and indistinguishable.

More generally, at very high firing rates the ISIs are much shorter than the mem-

brane leak time constant (∆ti ≪ τm). When this holds, the solution of eqn. (1) for

constant input given below

V (t) = Vrest + IR

(

1− exp

(

−
t− t0
τm

))

, (10)

can have its leak term replaced by an approximation of the term’s Taylor series expan-

sion as shown in eqn. (11).

exp

(

−
t− t0
τm

)

≈ 1−
t− t0
τm

(11)

Therefore, from eqns. (10) and (11), the membrane potential equation of the LIF model

is simplified and approximated by eqn. (12).

V ′(t) = Vrest +
I(t− t0)

C
(12)

where the prime here signifies the membrane potential of the approximating model and

C is the capacitance of the membrane.
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This approximating model is the perfect (i.e., non-leaky) Integrate-and-Fire neuron

model (PIF), which simply integrates post-synaptic inputs, without losing any of its

charge over time. We then use the two equations (10) & (12) to calculate the relative

difference between the two models as a function of the ISI (∆ti). The relative differ-

ence is measured at the beginning of the pre-spike coincidence window, because the

membrane potential at this time determines the slope of the secant line associated with

that specific spike (see eqn. (3) and fig. 2a). Therefore, the relative difference for any

given ISI is calculated as the difference between the two models at the beginning of the

coincidence window, i.e., ti − w (eqn. (13)).

dti,w =
|V (ti − w)− V ′(ti − w)|

V (ti − w)
(13)

where V (t) and V ′(t) are given by eqns. (10) and (12) respectively. The relative differ-

ence is used as a measure of dissimilarity between the two models and by extension, it

measures the distinguishability between the two operational modes. The higher the rel-

ative difference, the more distinguishable the two operational modes are and vice versa.

Therefore, the relative difference d represents the level of divergence between the LIF

and PIF.

Fig. 5 shows the relative difference d (eqn. (13)), as a function of the ISI (∆ti) at

high firing rates, for a coincidence window length w = 2 ms. Note that changing the

length of the coincidence window w shifts d along the horizontal axis, i.e., increasing

the window length moves the curve to the right and decreasing the window length moves

the curve to the left. By decreasing the coincidence window length, we could effectively

increase the relative difference for the same values of ∆ti, thus improving the distin-

guishability of operational modes at higher rates. A coincidence window of the order

of microseconds, indicating a very high temporal precision of firing, is experimentally

observed and used in models of coincidence detectors in the auditory system (Gerstner

et al., 1996; Oertel et al., 2000; Marsalek & Lánský, 2005). However, for neurons with

membrane time constants between 10–20 ms (as in our study, where τm = 10 ms), the

temporal precision is considered to be between 1–3 ms (Gerstner et al., 1996).
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Appendix B

Analysis of the behaviour of the LIF neuron with partial reset at high firing rates.

In this Appendix we demonstrate how the partial reset mechanism of the LIFwPR

model effectively reduces the number of input spikes N ′

th required to cause a LIF neuron

to fire and results in a very short effective membrane time constant τ ′m. These effects are

relevant whenever the membrane potential of the neuron V (t) is above the partial reset

potential Vreset. While this may not hold true for the entirety of a simulation, for the high

firing rate regime explored using this model, the membrane potential remains above

the reset value for most of the time and for extended continuous periods of increased

activity.

We use the definition of Nth in the same way as Softky & Koch (1993), who de-

scribed their models in terms of the difference in potential between threshold and rest,

divided by the depolarisation per spike, as in eqn. (14):

Nth =
Vth − Vrest

∆Vs

(14)

This is done in order to make our results comparable with their analysis, which showed

how the coefficient of variation (CV) varied as a function of the time constant τm and

Nth (see fig. 8 in Softky & Koch, 1993).

Assuming that Vreset ≥ Vrest (which holds for any model with a reset parameter

β ≥ 0), for any given time where V (t) ≥ Vreset, the model neuron can be expressed in

terms of an equivalent model with effective resting potential V ′

rest = Vreset and effective

time constant τ ′m (the prime signifies a parameter or variable of the equivalent model).

From this, it follows that N ′

th ≤ Nth, since V ′

rest ≥ Vrest as it can be seen from eqn.

(15)

N ′

th =
Vth − V ′

rest

∆Vs

= Nth(1− β) (15)

Substituting for the parameter values used for our simulations, i.e., Vth = 15 mV,

Vrest = 0 mV and ∆Vs = 0.16 mV, the original value of Nth is approximately 94.

For V ′

rest = 13.65 mV however, which is the reset value of the LIFwPR model where

β = 0.91, the effective number of input spikes required to fire a spike N ′

th is reduced to

just 9 (approximately).

The effective time constant’s value τ ′m should be such that (assuming the inputs are

the same for both models) the change in membrane potential within a fixed period of
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time in the equivalent model should be equal to that of the original model,
dV

dt
=

dV ′

dt
.

Since the two models share the same input, we can calculate τ ′m by ignoring the input

terms of the two models and equating the leak term of eqn. (1) with the leak term of the

equivalent model (eqn. (16)):

dV ′

dt
= −

V (t)− V ′

rest

τ ′m
(16)

Equating eqns. (1) and (16), replacing the effective resting value V ′

rest with the

original reset value Vreset and solving for τ ′m gives eqn. (17):

τ ′m = τm
V (t)− Vreset

V (t)− Vrest

(17)

Therefore the value of the effective time constant τ ′m constantly changes as a function of

the membrane potential V (t). For our simulations, we can calculate the range of values

that τ ′m takes, first by substituting the parameter values we used, i.e., τm = 10 ms,

Vrest = 0 mV and Vreset = 13.65 mV and then by calculating τ ′m for the known range

of V (t) using eqn. (17). Thus, for our simulations τ ′m = 10(V (t)− 13.65)/V (t).

Since the effects discussed here are relevant for membrane potential levels above the

reset potential, for our simulations we calculate the range of τ ′m for membrane potential

values between V (t) ∈ [Vreset, Vth] = [13.65 mV, 15 mV] giving respective τ ′m ∈

[0 ms, 0.9 ms].
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Figure 1: Three sample input cases showing the effects of the two synchrony parameters

Sin & σin (see text for details) on the overall temporal structure of the input spike

trains. For all three cases, Nin = 50 and T = 1000 ms. The first raster plot (a)

shows a mostly random set of spike trains, with only 20 % of the spike trains being

completely synchronised (Sin = 0.2). The second plot (b) shows a much higher degree

of synchrony with 80 % of the spike trains being identical (Sin = 0.8). The third plot

(c) shows the effects of high jitter (σin = 3 ms) on spike trains with 80 % synchrony

(Sin = 0.8). Comparing (c) to (b), while it is apparent by the vertical columns of aligned

spikes that there is a high amount of synchrony in both, the existence of Gaussian jitter

in (c) makes the overall spike trains more noisy and the columns are less pronounced.
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Figure 2: Two example membrane potential traces V (t) for the LIFwPR model.

(a) Pre-spike windows (w) and related secant lines (dotted lines) are shown. The first

secant line which corresponds to the first spike (Si) starts at V (ti − w) and ends at

V (ti). The second secant line which corresponds to the second spike (Si+1) starts at

V (ti+1 − w) and ends at V (ti+1). The dashed horizontal line denotes the membrane

potential firing threshold Vth (15 mV).

(b) The two bounds are shown between each pair of consecutive spikes. The lower

bound (low slope) corresponds to a dotted line starting at the post-spike reset potential

(in this case, Vreset = 13.65 mV) and ending at the point where the potential crossed

the threshold (Vth = 15 mV). The upper bound (high slope) corresponds to a dotted

curve which decays from the post-spike reset potential for the duration of the ISI. The

two bounds correspond to the theoretical trajectory of the membrane in the presence of

constant input for the lower bound and completely synchronised inputs, with no back-

ground activity, for the upper bound.

In principle, input spikes cause instantaneous jumps and V (t) should appear discontin-

uous on the plots. However, since V (t) was simulated numerically, instantaneous jumps

become one time-step wide and are plotted as continuous lines for simplicity, on both

sub-figures.
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Figure 3: The normalised pre-spike membrane potential slope (M ) for a LIF neuron

model with total reset. For each plot, the firing rate of the LIF neuron is kept constant by

calibrating the rate of the input spike trains at each data point. All the input spike trains

were calibrated simultaneously and always shared the same mean rate. The parame-

ters for the plots were as follows: (a) Nin = 100,∆Vs = 0.1 mV, fout = 5 Hz(fin =

16–138 Hz), (b) Nin = 50,∆Vs = 0.2 mV, fout = 100 Hz(fin = 218–465 Hz), (c)

Nin = 60,∆Vs = 0.3 mV, fout = 10 Hz(fin = 10–78 Hz), (d) Nin = 60,∆Vs =

0.5 mV, fout = 70 Hz(fin = 65–113 Hz), (e) Nin = 200,∆Vs = 0.1 mV, fout =

10 Hz(fin = 10–74 Hz), (f) Nin = 60,∆Vs = 0.5 mV, fout = 400 Hz(fin =

250–755 Hz). The horizontal axis shows the proportion of synchronised spike trains

(Sin ∈ [0, 1]), while the vertical axis shows the amount of jitter applied to the syn-

chronous spikes (σin ∈ [0, 4] ms). The grey-scale indicates the value of M for the

simulation, with lighter regions having lower values denoting temporal integration and

darker regions having higher values denoting coincidence detection, as shown by the

grey-scale bar on the right side of each plot.
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Figure 4: Normalised pre-spike membrane potential slope (M ) for σin = 0, plotted

against the full range of Sin values. The circles represent measured data points for the

LIF neuron firing at 70 Hz (corresponding to fig. 3d), while the line represents perfect

linear correlation for comparison.
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Figure 5: Relative difference (d) between the LIF and the perfect integrator models as

a function of firing ISI (∆ti), for window length w = 2 ms (solid line). For details

on the derivation of the relative difference (d) see Appendix A and more specifically

eqn. (13). The three points marked in the graph correspond to the firing rates of the

simulations which produced figs. 3b, (100 Hz), 3d (70 Hz) and 3f (400 Hz). As we

are interested in the relative difference at high firing rates, the graph does not show

the points corresponding to the firing rates of the simulations which produced figs. 3a

(i.e., 5 Hz corresponding to ∆ti of 200 ms) and 3c and 3e (i.e., 10 Hz corresponding to

∆ti of 100 ms). Note that changing the length of the coincidence window w shifts the

relative difference d along the horizontal axis, i.e., increasing the window length moves

the curve to to the right and decreasing the window length moves the curve to the left.
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Figure 6: The normalised pre-spike membrane potential slope (M ) for the LIFwPR

model firing highly irregularly at rates up to ∼470 Hz (mean ISI ≈ 2.1 ms). Each

point on the plot shows the value of M (vertical axis) for the LIFwPR with parameters

as described in the text (see Table 1) for a given firing ISI (1/fout). The firing rates

were achieved by varying the input rates fin within physiological ranges to achieve the

various output firing rates, fout. The results show that M is always below 0.1 (M ≈ 0.06

on average), for the entire range of firing rates. This suggests that the model neuron,

when firing highly irregularly at high rates, operates mainly as a temporal integrator.
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