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Abstract. In this paper we extend PALPS, a process calculus proposed for the
spatially-explicit, individual-based modeling of ecological systems, with a syn-
chronous parallel operator. The semantics of the resulting calculus, S-PALPS, is
defined at the level of populations as opposed to the level of individuals as was the
case with PALPS, thus, allowing a considerable reduction in a system’s state space.
Furthermore, we provide a translation of the calculus into the model checker
PRISM for simulation and analysis. We apply our framework to model and study
the population dynamics of the Eleonora’s falcon in the Mediterranean sea.

1 Introduction

Population ecology is a sub-field of ecology that studies changes in the size and age
composition of populations, and the biological and environmental processes influenc-
ing those changes. Its main aim is to gain a better understanding of population dynam-
ics and make predictions about how populations will evolve and how they will respond
to specific management schemes. To achieve this goal, scientists have been construct-
ing models of ecosystems. These models are abstract representations of the systems in
question which are subsequently studied to gain understanding of the real systems.

Recently, we have witnessed an increasing trend towards the use of formal frame-
works for reasoning about biological and ecological systems [19,14,6]. In our work, we
are interested in the application of process algebras for studying the population dynam-
ics of ecological systems. Process algebras provide a number of features that make them
suitable for capturing these systems. In particular, they are especially suited towards the
so-called individual-based approach of modeling populations, as they enable one to de-
scribe the evolution of each individual of the population as a process and, subsequently,
to compose a set of individuals (as well as their environment) into a complete ecologi-
cal system. Features such as time, probability and stochastic behavior, which have been
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extensively studied within the context of process algebras, can be exploited to provide
more accurate models. One key question following a model construction is what one
can do with a model other than just simulate trajectories. A possible answer is to use
model-checking tools for automatically analyzing properties of the model.

In our previous work we presented PALPS, a process algebra developed for mod-
eling and reasoning about spatially-explicit individual-based systems [13]. In PALPS,
individuals are modeled as processes consisting of a species and a location that may
change dynamically. Individuals may engage in any of the basic processes of reproduc-
tion, dispersal, predation and death and they may communicate with other individuals
residing at the same location. We have also associated PALPS with a translation to the
probabilistic model checker PRISM with the prospect of making more advanced analysis
of ecological models as opposed to just simulations. Our initial experiments of [13,12]
using our methodology for reasoning about the population dynamics of systems deliv-
ered promising results via the use of statistical model checking provided by PRISM.
However, it also revealed limitations of our approach relating to two problems.

The first problem regards reproduction and the dynamic nature of the size of a pop-
ulation. In particular, given a system consisting of a set of individuals, our PRISM trans-
lation of the PALPS model associated one PRISM module to each individual. Given this,
when an individual produces an offspring, one would require that a new module would
be created dynamically. However, PRISM does not support the dynamic creation of new
modules. Thus, in our translation we resorted to placing a limit max on the maximum
number of individuals that could be active at any point in time and defining max mod-
ules which oscillated between the active and the inactive state as individuals experience
birth and mortality, respectively. As a result, a state of our PRISM translation, at any
point in time, involved a total of max individuals irrespectively of the number of exist-
ing individuals.

The second source of inefficiency in the PALPS translation of [13] relates to the high
degree of nondeterminism arising in the PALPS semantics. For instance, consider indi-
viduals Pi, 1 ≤ i ≤ 5, of species s at some location ℓ, each executing an action ai and
then becomingQi. In PALPS we would write this system as S def

= P1:⟨s, ℓ⟩| . . . |P5:⟨s, ℓ⟩,
where Pi

def
= ai.Qi. Then, according to the operational semantics of PALPS, S may exe-

cute the 5 actions a1, . . . , a5 in any order. As a result, there exist 5! possible executions
of these actions eventually leading to state S′ def

= Q1:⟨s, ℓ⟩| . . . |Q5:⟨s, ℓ⟩. This phe-
nomenon leads to a very quick explosion of the state space. To alleviate this problem,
in [12], we proposed the use of policies within the PALPS framework. Policies were
defined as an entity that may place a priority on the order of execution between actions.
On the one hand, they enable the modeling of process ordering often used in ecological
models, while, on the other hand they reduce the state space. In the example above, if
we consider a policy that assigns increasing priorities to actions a1 to a5, then, there is
only one possible execution to reach state S′. Note, however, that this method will give
reduced or no benefits in the case where some or all of the ai’s coincide.

In this work, our goal has been to address the above-mentioned issues by proposing
a new semantics of PALPS and an associated PRISM translation that disassociates the
number of modules from the maximum number of individuals and, if possible, removes
the restriction on the maximum number of individuals altogether, while removing as
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much unnecessary nondeterminism as possible. Our proposal, consists of a synchronous
extension S-PALPS which features the following two key design decisions.

1. We provide a synchronous semantics of PALPS which implements the concept of
maximum parallelism: at any given time all individuals that may execute an action
will do so simultaneously. For example, system S considered above, will evolve
to state S′ in just one step, during which the actions a1, . . . , a5 will be executed
simultaneously. As a result, the new parallel composition construct achieves a re-
duction in the state space while continuing to capture coherently the behavior of
population systems which are generally considered to evolve in stages (e.g. birth,
dispersal, reproduction, etc) in which all of the individuals are involved.

2. We structure our calculus at the level of local populations, grouping together identi-
cal individuals located at the same location. This is achieved by the introduction of
the new construct P :⟨s, ℓ, q⟩ which refers to q individuals of species s at location ℓ.

We provide S-PALPS with an encoding to the PRISM language and we prove its
correctness. In this translation, it is natural to define one module for each component
of the form P :⟨s, ℓ, q⟩. For instance, a system where individuals can be in one of states
P1, . . . , Pm and located in one of locations ℓ1, . . . , ℓn would be translated in a system
composed of m × n modules. As a result, the number of modules of which the model
is comprised is independent of the number of existing individuals.

As an example, we study the Eleonora’s Falcon (falco eleonorae) [20] in S-PALPS.
Eleonora’s falcon is a migrant species that breeds on Mediterranean islands and winters
on islands of the Indian Ocean and along the eastern African coast. A large part of
the world population concentrates on a small number of islands in the Aegean Sea. In
Europe, the species is considered as rare and hence of local conservation importance
because, although it is not globally threatened, its world population is below 10,000
breeding pairs and its survival in Europe is highly dependent on the breeding conditions
on the islands on which it concentrates. We employ our methodology to investigate the
population dynamics of the species by statistical model checking in PRISM.

Various formal frameworks have been proposed in the literature for modeling ecosys-
tems. One strand is based, like PALPS, on process calculi such as WSCCS [19]. WSCCS
is a probabilistic extension of CCS [10] with synchronous communication that has been
employed in various ecological studies by the author and others [18,8]. Like PALPS,
it follows the discrete-time approach to modeling but does not include the notion of
space. A different approach is that of P systems [14], conceived as a class of distributed
and parallel computing inspired by the compartmental structure and the functioning of
living cells. P-systems fall in the category of rewriting systems, where a structure may
evolve by the application of rewriting rules. The semantics of P-systems are closely
related to S-PALPS: rules are usually applied with maximal parallelism while several
proposals have been considered on resolving the nondeterminism that may arise when
more than one combination of rules is possible, e.g. [11,5]. Probabilistic P systems have
been applied to model the population dynamics of various ecosystems [4,3,5] as well
as to study evolution problems [2]. Finally, we mention that Stochastic P systems have
been translated into PRISM in [17]. However, as far as we know, there has been no work
on the use of model checking for probabilistic P-Systems.
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The structure of the remainder of the paper is as follows. In Section 2 we present
the syntax and the semantics of S-PALPS. In Section 3 we present a translation of S-
PALPS into the Markov-decision-process component of the PRISM language and we
prove its correctness. We then apply our techniques to study the population dynamics
of the Eleonora’s falcon in Sections 4 and 5. Section 6 concludes the paper.

2 Synchronous PALPS

In this section we introduce Synchronous PALPS, S-PALPS. S-PALPS extends PALPS
in two ways. Firstly, S-PALPS differs to PALPS in the treatment of the parallel com-
position: in the semantics of S-PALPS this is treated synchronously, in the sense that
in any composition P |Q the actions of P and Q are taken simultaneously. Secondly,
S-PALPS offers a new construct for modeling multiplicity of individuals. Specifically,
we write P :⟨s, ℓ, q⟩ for q copies of individual P of species s and location ℓ. This con-
struct results in a more succinct representation of systems and in conjunction with the
synchronous parallel composition allows for more compact transition systems. Other
changes implemented to S-PALPS in comparison to PALPS is the removal of the nonde-
terministic choice at the individual level, which is replaced by a conditional choice, and
the inclusion of the parallel composition at the individual level which allows an explicit
modeling of reproduction.

2.1 Syntax

Similarly to PALPS, in S-PALPS we consider a system as a set of individuals operating
in space, each belonging to a certain species and inhabiting a location. This location
may be associated with attributes which describe characteristics of the location and can
be used to define location-dependent behavior of individuals. Furthermore, individuals
who reside at the same location may communicate with each other upon channels, e.g.
for preying, or they may migrate to a new location. S-PALPS models probabilistic events
with the aid of a probabilistic operator and uses a discrete treatment of time.

The syntax of S-PALPS is based on the following basic entities: (1) S is a set of
species ranged over by s, s′. (2) Loc is a set of locations ranged over by ℓ, ℓ′. The
habitat of a system is then implemented via a relation Nb, where (ℓ, ℓ′) ∈ Nb exactly
when locations ℓ and ℓ′ are neighbors. For convenience, we write Nb(ℓ) for the set of
all neighbors of ℓ. (3) Ch is a set of channels ranged over by lower-case strings. (4)
Ψ is a set of attributes, ranged over by ψ, ψ′. We write ψℓ for the value of attribute ψ
at location ℓ. Attributes may capture characteristics of a location e.g. its capacity or its
temperature.

S-PALPS employs two sets of expressions: logical expressions, ranged over by e,
and arithmetic expressions, ranged over by w. They are constructed as follows

e ::= true | ¬e | e1 ∧ e2 | w ◃▹ c

w ::= c | ψ@ℓ⋆ | s@ℓ⋆ | op1(w) | op2(w1, w2)

where c is a real number, ◃▹∈ {=,≤,≥}, ℓ⋆ ∈ Loc ∪ {myloc} and op1 and op2 are
the usual unary and binary arithmetic operations on real numbers. Expression ψ@ℓ⋆ de-
notes the value of attribute ψ at location ℓ⋆ and expression s@ℓ⋆ denotes the number of
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individuals of species s at location ℓ⋆. In the case that ℓ⋆ = myloc, then the expression
refers to the value of ℓ at the actual location of the individual in which the expression
appears and it is instantiated to this location when the condition needs to be evaluated.

The syntax of S-PALPS is given at two levels, the individual level ranged over by P
and the system level ranged over by S. Their syntax is defined via the following BNFs

P ::= 0 | η.P | •
∑
i∈I

pi:Pi | γ? (P ;Q) | cond (e� P ; else �Q) | P1|P2 | C

S ::= 0 | P :⟨s, ℓ, q⟩ | S1 ∥S2 | S\L

where L ⊆ Ch, I is an index set, pi ∈ (0, 1] with
∑

i∈I pi = 1, C ranges over a set of

process constants C, each with an associated definition of the form C
def
= P , and

η ::= a | a | go ℓ |
√

γ ::= a | a

Beginning with the individual level, P can be one of the following: Process 0 rep-
resents the inactive individual, that is, an individual who has ceased to exist. Process
η.P describes the action-prefixed process which executes action η before proceeding
as P . In turn, an activity η can be an input action on a channel a, written simply as a,
a complementary output action on a channel a, written as a, a movement action with
destination ℓ, go ℓ, or the time-passing action,

√
. Actions of the form a, and a, a ∈ Ch,

are used to model arbitrary activities performed by an individual; for instance, eating,
preying and reproduction. The tick action

√
measures a tick on a global clock and is

used to separate the rounds of an individual’s behavior.
Process •

∑
i∈Ipi:Pirepresents the probabilistic choice between processes Pi, i ∈ I .

The process randomly selects an index i ∈ I with probability pi, and then evolves to
process Pi. We write p1:P1 ⊕ p2:P2 for the binary form of this operator.

Operator γ? (P ;Q), is an operator new to S-PALPS. Its behavior depends on the
availability of a communication on a certain channel as described by γ. Specifically, if
a communication is available according to γ then the flow of control proceeds according
to P , if not, the process proceeds as Q. This operator is a deterministic operator as, in
any scenario, the process γ? (P ;Q) proceeds as either P or Q but not both, depending
on the availability of the complementary action of γ in the environment in which the
process is running. This construct has in fact replaced the nondeterministic choice of
PALPS with the intention of yielding more tractable models. We believe this construct
to be sufficient and appropriate for modeling ecosystems where choices are typically
resolved either probabilistically or based on some precedence relation.

The conditional process cond (e � P ; else � Q) represents the conditional choice
between two processes: it behaves as P , if e evaluates to true and as Q otherwise. Note
that this choice is deterministic. The parallel composition construct | models the syn-
chronous composition between processes where its precise semantics will be explained
in the next section. Finally, process constants provide a mechanism for including recur-
sion in the calculus.

Moving on to the population level, population systems are built by composing in
parallel sets of located individuals. A set of q individuals of species s located at location
ℓ is written as P :⟨s, ℓ, q⟩. In a composition S1∥S2 the components may proceed while
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synchronizing on their actions following a set of restrictions. These restrictions enforce
that probabilistic transitions take precedence over the execution of other actions and
that time proceeds synchronously in all components of a system. That is, for S1∥S2

to execute a
√

action it must be the case that both S1 and S2 are willing to execute
an

√
action. Essentially, the intention is that, in any given round of the lifetime of a

system, all individuals perform their available actions until they synchronize on their
next

√
action and proceed to their next round. Finally, S\L models the restriction of

the channels in set L within S. This construct plays an important role in defining valid
systems: We define a valid system to be any process of the form S\L where, for all of
S’s subprocesses of the form a?(P,Q) and a?(P,Q) we have that a ∈ L. Hereafter, we
consider all processes that are valid systems.

Example 1. Let us consider a species s where individuals cycle through a dispersal
phase followed by a reproduction phase. In S-PALPS, we may model s by P0, where

P0
def
= •

∑
ℓ∈Nb(myloc)

1

4
: go ℓ.

√
.P0

P1
def
= p:

√
.(P0|P0) ⊕ (1− p):

√
.(P0|P0|P0)

According to the definition, during the dispersal phase, an individual moves to a
neighboring location which is chosen probabilistically among the neighboring locations
of the current location (myloc) of the individual. Subsequently, the flow of control pro-
ceeds according to P1 which models the probabilistic production of one (case of P0|P0)
or two offspring (case of P0|P0|P0). A system that contains two individuals at a location
ℓ and one at location ℓ′ can be modeled as

System
def
= (P0:⟨s, ℓ, 2⟩|P0:⟨s, ℓ′, 1⟩).

Let us now extend the example into a two-species system. In particular, consider a
competing species which preys on s defined as:

Q0
def
= prey ?(

√
.Q1,

√
.Q2)

Q1
def
= Q0|Q0

Q2
def
= prey ?(

√
.Q1,0)

An individual of species s′ looks for a prey. This is implemented by the conditional
process prey ?(

√
.Q1,

√
.Q2). If it succeeds in communicating on channel prey, which

implies that a prey is available, the individual will produce an offspring. If it fails for
two consecutive time units it dies.

To implement the possibility of preying on the side of species s, the definition must
be extended by introducing the complementary input actions on channel prey at the
appropriate places:

P0
def
= prey? (0, •

∑
ℓ∈Nb(myloc)

1

4
: go ℓ.

√
.P1)

P1
def
= prey? (0, p:(

√
.(P0|P0)) ⊕ (1− p) :

√
.(P0|P0|P0))
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Note that in the above model we have given higher priority to preying in comparison
to other actions. If the success of preying was associated with a certain probability π,
we would have written:

P0
def
= π:prey? (0, •

∑
ℓ∈Nb(myloc)

1

4
: go ℓ.

√
.P1) + (1− π): •

∑
ℓ∈Nb(myloc)

1

4
: go ℓ.

√
.P1

P1
def
= . . .

2.2 Semantics

We may now define the semantics of S-PALPS. This is given at the level of configurations
of the form (E,S), where E is an environment and S is a population system. The
environment E is an entity of the form E ⊂ Loc × S × N, where each pair ℓ and s
is represented in E at most once and where (ℓ, s,m) ∈ E denotes the existence of
m individuals of species s at location ℓ. The environment E plays a central role in
evaluating expressions. The satisfaction relation for logical expressions |= is defined
inductively on the structure of a logical expression in the same way as in PALPS. Before
we proceed to the semantics we define some additional operations on environments that
we will use in the sequel:

Definition 1. Consider an environment E, a location ℓ, a species s and an integer q.

– E ⊕ (s, ℓ, q) increases the count of individuals of species s at location ℓ in environ-
ment E by q:

E ⊕ (s, ℓ, q) =

{
E′ ∪ {(ℓ, s,m+ q)} if E = E′ ∪ {(ℓ, s,m)} for some m
E ∪ {(ℓ, s, q)} otherwise

– E⊖ (s, ℓ, q) decreases the count of individuals of species s at location ℓ in environ-
ment E by q:

E ⊖ (s, ℓ, q) =

E′ ∪ {(ℓ, s,m− q)} if E = E′ ∪ {(ℓ, s,m)},m > q
E′ if E = E′ ∪ {(ℓ, s, q)}
⊥ otherwise

The semantics of S-PALPS is defined in terms of a structural congruence, ≡, pre-
sented in Table 1 and a structural operational semantics presented in Tables 2 and 3.
Beginning with Table 1, of greatest interest are the following congruences: Equivalence
(S4) states that operator “:⟨. . .⟩” distributes over the parallel composition construct
and equivalence (S6) states that the parallel composition of q individuals of type P of
species s at location ℓ and r of the same individuals is equivalent to a system with q+ r
individuals.

Moving on to the structural operation semantics of S-PALPS, this is given in terms
of two transition relations: the non-deterministic relation −→n and the probabilistic re-
lation −→p. A transition of the form S

µ−→n S′ means that a system S may execute
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Table 1. Structural congruence relation

(S1) (E,S) ≡ (E,S∥0)

(S2) (E,S1∥S2) ≡ (E,S2∥S1)

(S3) (E, (S1∥S2)∥S3) ≡ (E,S1∥(S2∥S3))

(S4) (E ∪ {(s, ℓ, n)}, (P1|P2):⟨s, ℓ, q⟩) ≡ (E ∪ {(s, ℓ, n+ q)}, P1:⟨s, ℓ, q⟩ ∥ P2:⟨s, ℓ, q⟩)

(S5) (E,P :⟨s, ℓ, 0⟩) ≡ (E, 0)

(S6) (E,P :⟨s, ℓ, q⟩ ∥P :⟨s, ℓ, r⟩) ≡ (E,P :⟨s, ℓ, q + r⟩)

action µ and become S′. A transition of the form S
w−→p S

′ means that a configura-
tion S may evolve into configuration S′ with probability w. Whenever the type of the
transition is irrelevant to the context, we write S α−→ S′ to denote either S

µ−→n S
′ or

S
w−→p S

′. We write µ to range over system non-probabilistic activities, which we call
actions. Actions are built based on activities of individuals which we call events and
denote by β. Events β may have one of the following forms:

– aℓ,s and aℓ,s denote the execution of a and a respectively at location ℓ by individuals
of species s.

– a?ℓ,s and a?ℓ,s denote the conditional execution of a and a respectively at location
ℓ by individuals of species s. (This arises in processes of the form γ?(P,Q).)

– τa,ℓ,s denotes an internal action that has taken place on channel a at location ℓwhere
the output was carried out by an individual of species s. This may arise when two
complementary actions take place at the same location ℓ or when a move action
takes place at location ℓ by an individual of species s.

–
√

denotes the time passing action.

In turn µ can have one of the following forms:

– βk1
1 # . . .#βkn

n where for all 1 ≤ i ≤ n, βi ̸=
√

, ki ≥ 1 and n ≥ 1, denotes the
simultaneous execution of ki actions of type βi for 1 ≤ i ≤ n, and

–
√

denotes the time passing action.

We may now move on to the semantics of S-PALPS. We begin with the semantics of
processes of the form P :⟨s, ℓ, q⟩. We discuss these rules separately below:

– Rule (Act) states that a system composed of q individuals, where each can perform
an action η, can perform simultaneously q times the action η.
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Table 2. Transition rules for single populations

(Act) (E, (η.P ):⟨s, ℓ, q⟩)
(ηℓ,s)

q

−→n (EP,s,ℓ,q, P :⟨s, ℓ, q⟩) η ̸= go ℓ′,
√

(Tick) (E, (
√
.P ):⟨s, ℓ, q⟩)

√
−→n (EP,s,ℓ,q, P :⟨s, ℓ, q⟩)

(Go) (E, (go ℓ′.P ):⟨s, ℓ, q⟩)
(τgo,ℓ,s)

q

−→n ((E ⊕ {(s, ℓ′, q)} ⊖ {(s, ℓ, q)})P,s,ℓ′,q, P :⟨s, ℓ′, q⟩)
(ℓ, ℓ′) ∈ Nb

(Choice) (E, (γ?(P,Q)):⟨s, ℓ, q⟩)
(γ?ℓ,s)

n

−→n ((EP,s,ℓ,n)Q,s,ℓ,q−n, P :⟨s, ℓ, n⟩||Q:⟨s, ℓ, q − n⟩)
0 ≤ n ≤ q

(Cond) (E,P :⟨s, ℓ, q⟩) α−→ (E′, Q:⟨s, ℓ, q⟩), P = P1 if E |= e and P = P2, otherwise
(E, cond (e � P1; else � P2):⟨s, ℓ, q⟩) α−→ (E′, Q:⟨s, ℓ, q⟩)

(PSum) (E, ( •
∑

1≤i≤npi:Pi):⟨s, ℓ, q⟩)
w⟨p1:q1,...,pn:qn⟩−→p (E⟨Pi,qi⟩I ,s,ℓ, P1:⟨s, ℓ, q1⟩∥ . . . ∥Pn:⟨s, ℓ, qn⟩)∑

qi = q

(RConst) (E,P :⟨s, ℓ, q⟩) α−→ (E′, P ′:⟨s, ℓ, q⟩)
(E,C:⟨s, ℓ, q⟩) α−→ (E′, P ′:⟨s, ℓ, q⟩)

C
def
= P :⟨s, ℓ, q⟩

where EP,s,ℓ,q =

{
E ⊖ (s, ℓ, q) if P = 0
E otherwise

E⟨Pi,qi⟩I ,s,ℓ =

{
E ⊖ (s, ℓ,

∑
j∈J qj) if J = {j | Pj = 0}

E otherwise

– Rule (Tick) states that a system of q individuals, where each can perform action
√

,
can also perform action

√
.

– Rule (Go) states that a system of q individuals, where each individual can perform
a moving action, can perform simultaneously q times the action τgo,ℓ,s.

– Rule (Choice) states that a system of q individuals, executing the conditional choice
γ?(P,Q) may have any number n ≤ q of its components executing the action
(γ?ℓ,s)

n and proceedings to state P whereas the remaining q−n of its components
will proceed to Q. Note that the nondeterminism apparent in this rule will be re-
solved once this process is placed in a wider system context. Recall that a valid
system including this process would have the form (γ?(P,Q)∥S)\L, where the
channel of action γ belongs to L. As a result, the semantics of the hiding operator
\L will resolve the nondeterminism by selecting the value n where n is the number
of times action γ is available in S.
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– Rule (Cond) states that a system of q individuals, executing the conditional cond (e�
P, else � Q) may either proceed to P or to Q, depending on whether e evaluates
to true or false, respectively, in the current environment.

– Rule (PSum) says that a system of q individuals each consisting of the probabilis-
tic choice •

∑
1≤i≤npi:Pi, can evolve into a parallel composition of qi processes

of process Pi for each 1 ≤ i ≤ n, for all combinations of the qi ≥ 0, where∑
1≤i≤n qi = q, with probability w given as

w⟨p1:q1,...pn:qn⟩ =
∏

1≤i≤n

pqii ·
(
q −

∑
1≤j≤i−1 qj
qi

)

– Rule (RConst) expresses the semantics of process constants in the expected way.

Note that the rules also update the state of the environment: in case an individual ceases
to exists, that is, it becomes 0, then it is removed from the environment (see EP,s,ℓ,q

and E{(Pi,qi)}I ,s,ℓ) and, if an individual moves from one location to another then the
appropriate fields in the environment are updated.

We point that we have not included a rule for the process (P1|P2):⟨s, ℓ, q⟩ as its
semantics is given using structural congruence via the equivalence (P1|P2):⟨s, ℓ, q⟩ ≡
P1:⟨s, ℓ, q⟩∥P2:⟨s, ℓ, q⟩ and rule (Struct) presented below.

We may now define the semantics for general systems presented in Table 3:

– Rule (Time) specifies that if two systems may execute a timed action then their
parallel composition may also execute a timed action.

– Rule (Par1) considers the case where one of the components in a parallel compo-
sition may execute a timed action and the other a non-timed action. According to
the rule the non-timed action takes precedence over the timed action. The latter is
postponed until both processes may execute the timed action. Note that this as well
as the previous rule ensure that systems execute their timed actions in lockstep. In
this way time evolves according to a global clock.

– Rules (Par2) and (Par4) consider probabilistic actions of a parallel composition.
The first one specifies that if both components of the composition may execute
a probabilistic transition then the composition executes a probabilistic transition
with probability the product of the two probabilities. The second rule states that if
exactly one of the processes may execute a probabilistic transition then the parallel
composition may also execute the transition.

– Rule (Par3) says that if two systems can perform non-deterministic actions βk and
µ, respectively, then their parallel composition can perform the combination of the
two actions assuming that neither of them is the

√
action. The combination of these

actions is defined according to Definition 2 below.
– Rule (Res) states that a restricted process may only execute actions involving chan-

nels that do not belong to the restriction set L.
– Rule (Struct) specifies that congruent processes have the same transitions.

Note that in case that the components proceed simultaneously then the environment
of the resulting configuration should take into account the changes applied in both of
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the constituent transitions (rules (Par1), (Par3) and (Time)) as follows:

E ⊗ (E1, E2) = {(ℓ, s,m+ i1 + i2) | (ℓ, s,m) ∈ E,

(ℓ, s,m+ i1) ∈ E1, (ℓ, s,m+ i2) ∈ E2, i1, i2 ∈ Z}

Table 3. Transition rules for systems

(Time) (E,S1)
√
−→n (E1, S

′
1), (E,S2)

√
−→n (E2, S

′
2)

(E,S1∥S2)
√
−→p (E ⊗ (E1, E2), S

′
1∥S′

2)

(Par1) (E,S1)
µ−→n (E1, S

′
1), (E,S2)

√
−→n (E2, S

′
2), µ ̸=

√

(E,S1∥S2)
µ−→p (E1, S

′
1∥S2)

(Par2) (E,S1)
w1−→p (E1, S

′
1), (E,S2)

w2−→p (E2, S
′
2)

(E,S1∥S2)
w1·w2−→ p (E ⊗ (E1, E2), S

′
1∥S′

2)

(Par3) (E,S1)
βk

−→n (E1, S
′
1), (E,S2)

µ−→n (E2, S
′
2), µ ̸=

√

(E,S1∥S2)
βk⋄µ−→p (E ⊗ (E1, E2), S

′
1∥S′

2)

(Par4) (E,S1)
w−→p (E′, S′

1), (E,S2)−̸→p

(E,S1∥S2)
w−→p (E′, S′

1∥S2)

(Res) (E,S)
µ−→ (E′, S′), {a|as,ℓ, as,ℓ ∈ µ} ∩ L = ∅
(E,S\L) µ−→ (E′, S′\L)

(Struct) (E,S) ≡ (E′, S′), (E′, S′)
α−→ (E′′, S′′)

(E,S)
α−→ (E′′, S′′)

We conclude the semantics with the definition of operator ⋄. This operation com-
bines a species action βk and an action µ by grouping together all actions that are the
same and turning complementary transitions into τ actions. Formally:

Definition 2. Consider actions βk and µ ̸=
√

then

βk ⋄ µ =



(τa,ℓ,s)
k#µ′ if β = as,ℓ, µ = (as,ℓ)

k#µ′

(τa,ℓ,s)
k#(as,ℓ)

k′−k#µ′ if β = as,ℓ, µ = (as,ℓ)
k′
#µ′, k < k′

(τa,ℓ,s)
k′
#(as,ℓ)

k−k′
#µ′ if β = as,ℓ, µ = (as,ℓ)

k′
#µ′, k > k′

(as,ℓ)
k+k′

#µ′ if β = as,ℓ, µ = (as,ℓ)
k′
#µ′, k′ ≥ 0

(as,ℓ)
k+k′

#µ′ if β = as,ℓ, µ = (as,ℓ)
k′
#µ′, k′ ≥ 0

(τa,ℓ,s)
k+k′

#µ′ if β = τa,ℓ,s, µ = (τa,ℓ,s)
k′
#µ′, k′ ≥ 0

(τa,ℓ,s)
k#µ′ if β = a?s,ℓ, µ = (as,ℓ)

k′
#µ′, k′ ≥ k

(τa,ℓ,s)
k#µ′ if β = a?s,ℓ, µ = (as,ℓ)

k′
#µ′, k′ ≥ k

⊥ otherwise
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Initial configuration. Based on this machinery, the semantics of a system S is obtained
by applying the semantic rules to the initial configuration. The initial configuration,
(E,S), is such that (ℓ, s,m) ∈ E if and only if S contains exactly m non-0 individuals
of species s located at ℓ. In general, we say that E is compatible with S whenever
(ℓ, s,m) ∈ E if and only if S contains exactly m active (non-0) individuals of species
s located at ℓ. It is possible to prove that the defined semantics preserves compatibility
of configurations:

Lemma 1. Whenever (E,S) α−→ (E′, S′) and E is compatible with S, then E′ is also
compatible with S′.

Example 2. Consider P1
def
= a?(P2, P3), Q1

def
= a.Q2 and R1

def
= a.R2. Further,

suppose that S def
= (P1:⟨s1, ℓ, 3⟩∥Q1:⟨s2, ℓ, 4⟩∥R1:⟨s3, ℓ, 5⟩)\{a}. Then we have the

following transitions, where for simplicity we abbreviate (E, T ) α−→ (E, T ′) by T α−→
T ′ for E = {(s1, ℓ, 3), (s2, ℓ, 4), (s3, ℓ, 4)}.

P1:⟨s1, ℓ, 3⟩
(a?ℓ,s1 )

i

−→n P2:⟨s1, ℓ, i⟩∥P3:⟨s1, ℓ, 3− i⟩, 0 ≤ i ≤ 3

Q1:⟨s2, ℓ, 4⟩
(aℓ,s2

)4

−→n Q2:⟨s2, ℓ, 4⟩

R1:⟨s3, ℓ, 5⟩
(aℓ,s3

)5

−→n R2:⟨s3, ℓ, 5⟩

Additionally,

Q1:⟨s2, ℓ, 4⟩∥R1:⟨s3, ℓ, 5⟩
(τα,ℓ,s3

)4#(aℓ,s3
)1

−→n Q2:⟨s2, ℓ, 4⟩∥R2:⟨s3, ℓ, 5⟩

and now P1:⟨s1, ℓ, 3⟩, by the definition of ⋄, may only communicate with the system
above via its action (a?ℓ,s1)

1, thus yielding:

S
(τα,ℓ,s3

)5

−→n (P2:⟨s1, ℓ, 1⟩∥P3:⟨s1, ℓ, 2⟩∥Q2:⟨s2, ℓ, 4⟩∥R2:⟨s3, ℓ, 5⟩)\{a}

3 Translating S-PALPS into PRISM

In this section we turn to the problem of model checking S-PALPS. As is the case of
PALPS, the operational semantics of S-PALPS gives rise to transition systems that can
be easily translated to Markov decision processes (MDPs). As such, model checking
approaches that have been developed for MDPs can also be applied to S-PALPS models.
PRISM is one such tool developed for the analysis of probabilistic systems. Specifically,
it is a probabilistic model checker for Markov decision processes, discrete time Markov
chains, and continuous time Markov chains. For our study we are interested in the MDP
support of the tool which offers model checking and simulation capabilities.

In [13] we defined a translation of PALPS into the MDP subset of the PRISM lan-
guage and we explored the possibility of employing PRISM to perform analysis of the
semantic models derived from PALPS processes. In this paper, we redefine a translation
which implements the synchronous parallel operator of S-PALPS. In the remainder of
this section, we give a brief presentation of the PRISM language, present an encoding of
S-PALPS into PRISM and prove its correctness.
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3.1 The PRISM language

The PRISM language is a simple, state-based language, based on guarded commands.
A PRISM model consists of a set of modules which can interact with each other on
shared actions following the CSP-style of communication [1]. Each module possesses
a set of local variables which can be written by the module and read by all modules.
In addition, there are global variables which can be read and written by all modules.
The behavior of a module is described by a set of guarded commands. When modeling
Markov decision processes, these commands take the form:

[act] guard p1 : u1 + ... + pm :um;

where act is an optional action label, guard is a predicate over the set of variables,
pi ∈ (0, 1] and ui are updates of the form:

(x′1 = ui,1) & ... & (x′k = ui,k)

where ui,j is a function over the variables. Intuitively, such an action is enabled in
global state s if s satisfies guard. If a command is enabled then it may be executed in
which case, with probability pi, the update ui is performed by setting the value of each
variable xj to ui,j(s) (where x′j denotes the new value of variable xj). We refer the
reader to [1] for the full description and the semantics of the PRISM language.

3.2 Encoding S-PALPS into the PRISM language

Consider an S-PALPS model. This consists of a set of locations, the neighborhood
relation Nb and a process System . In turn, the process System satisfies System ≡
(P1:⟨s1, ℓ1, q1⟩∥ . . . ∥Pn:⟨sn, ℓn, qn⟩)\L, where each Pi is a process that may evolve to
a set of states, say P j

i , 1 ≤ j ≤ mi. This allows us to conclude that in any state System ′

reachable from System , we have System ′ ≡ (
∏

i∈I,j∈J,ℓ∈Loc P
j
i :⟨si, ℓ, qi,j,ℓ⟩)\L, that

is, at any point in time, there may be an arbitrary number of individuals in each location
and of each of the reachable states of the populations.

Based on this observation, our translation of System in PRISM consists of a set of
(m1 + . . .+mn) · |Loc| modules, where |Loc| is the total number of locations existing
in the system. Each module captures the behavior of the individuals in the specific state
and location. Note that the total number of modules is stable and independent of the
precise number of individuals existing in the model. This comes in contrast with our
PALPS translation of [13] where the translation of a model contained one module for
each individual a fact that resulted in restrictions in space and expressiveness.

In addition to these module definitions, a system translation in PRISM should contain
the following global information relating to the system.

– For each species si and each state j in the process description of si, the model
contains the |Loc| global variables si,j,ℓ, ℓ ∈ Loc capturing the number of individ-
uals of species si in state j for location ℓ. The variables should be appropriately
initialized based on the definition of System .

– For each channel a on which synchronization may take place we introduce a vari-
able ay which counts the number of available inputs on a at location y and a variable
ay which counts the number of available outputs on a at location y.
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– There exists a global variable pact which may take values from {0, 1} and ex-
presses if there is a probabilistic action enabled. It is used to give precedence to
probabilistic actions over nondeterministic actions. Initially, pact = 0. Further-
more, all non-probabilistic actions have pact = 0 as a precondition.

– There exists a global variable tact which may take values from {0, 1} and expresses
whether a timed action may take place. For such an action to take place it must be
that tact = 1. If any process is unable to execute the

√
action then it sets tact to 0.

As an example, consider processes P1, Q1, R1 and System of Example 2 and sup-
pose that our the system is located on a habitat consisting of 2 patches {ℓ, ℓ′}. Then the
skeleton of the PRISM translation is as follows:

global s1,1,1 : [0,max] init 3;
global s2,1,1 : [0,max] init 4;
global s3,1,1 : [0,max] init 5;
global s1,1,2, s2,1,2, s3,1,2 : [0,max] init 0;
global s1,2,1, s2,2,1, s3,2,1 : [0,max] init 0;
global s1,2,2, s2,2,2, s3,2,2 init 0;
global pact : [0, 1] init 0;
global tact : [0, 1] init 0;

module S1,1,1

. . .

We now continue to describe how a specific module is described by considering the
above example. Specifically, consider process Q1

def
= a.Q2 and an initial population

Q1:⟨s2, ℓ, 4⟩. Then, according to the semantics of S-PALPS, these 4 individuals should
synchronize on channel a and become individuals in state Q2. To model this in PRISM
these 4 individuals should flow from their current state to their next state. To achieve
this we need to make the necessary updates on the global variables s2,1,1 and s2,2,1,
specifically: s′2,1,1 = s2,1,1 − 4 and s′2,2,1 = s2,2,1 + 4. Furthermore, if state Q2 is a
probabilistic state, the module should set pact ′ = 1.

Now to implement the synchronization of the module with all other modules exe-
cuting an action we need to execute a sequence of actions as illustrated below:

module S2,1,1

st2,1,1 : [0..5] init 1;
n2,1,1 : [0..max]

[ ] (st2,1,1 = 1)&(s2,1,1 > 0) −→ (st′2,1,1 = 2)&(tact ′ = 0)&(n′
2,1,1 = s2,1,1);

[ ] (st2,1,1 = 1)&(s2,1,1 = 0) −→ (st′2,1,1 = 2)&(n′
2,1,1 = s2,1,1);

[synch] (st2,1,1 = 2) −→ (st′2,1,1 = 3);
[ ] (st2,1,1 = 3)&(pact = 0) −→ (a′

ℓ = aℓ + n2,1,1)&(st′2,1,1 = 4);
[aℓ] (st2,1,1 = 4) −→ (st′2,1,1 = 5);
[ ] (st2,1,1 = 5) −→ (a′

ℓ = 0)&updates(Q1, Q2)&(st′2,1,1 = 1);
[prob] (st2,1,1 = 3)&(pact = 1) −→ (st′2,1,1 = 1)

endmodule

14



Variable st2,1,1 in module S2,1,1 (initially set to 1) will guide the flow of execu-
tion of the required sequence of actions. It begins by testing whether there are active
individuals of this module (state 1) and then proceeds to synchronize with the other
modules. This synchronization will take place on action synch . Subsequently, if there
are 1 or more modules in a probabilistic state the module will synchronize with them
via action prob, otherwise, the module will proceed to make its necessary updates:
s′2,1,1 = s2,1,1 − n2,1,1&s

′
2,2,1 = s2,2,1 + n2,1,1. Furthermore, if Q2 =

√
.Q3 then

the update tact = 1 is included, whereas if Q2 = p1 : T1⊕ . . . pn : Tn, then the update
pact = 1 is included.

Let us now discuss some characteristics of the above translation which are also rele-
vant to the translations of process constructs other than a.P . To begin with, the module
begins by setting tact = 0, assuming that there are active individuals in this state.
Thus, it is ensured that nondeterministic actions take precedence over timed actions. In
addition, variable n2,1,1 is used to store the initial population of the module. This is nec-
essary because other processes may ‘flow’ into this module and the value of s2,1,1 may
subsequently not reflect the initial size of the population. Furthermore, we point out that
if a probabilistic action is available (pact = 1) then the process will synchronize on
this action and return to its initial state. We also note that it is not possible to collapse
e.g. states 2 and 3 of the module because PRISM does not allow to execute updates on
global variables within synchronization actions. Finally, we observe that in the case of
channel communication, the module records the number of available inputs and outputs
on a channel at a certain location (update a′ℓ = aℓ+n) and continues to synchronize on
action aℓ. This is required for translating the restriction construct where we must check
that the number of inputs and outputs performed on the channel are equal.

In a similar manner we may translate all constructs of the S-PALPS syntax by allow-
ing processes to flow from one module to the next. In the next subsection we consider
the complete translation.

3.3 Formal translation

In this section, we formalize the intuitions of the previous example into a formal transla-
tion of S-PALPS into PRISM and we prove its correctness. Specifically, we will describe
how a population of individuals may flow from one state to a next state by considering
the translation of a set of individuals of species si in state j and location ℓ. The transla-
tion depends on the definition of the S-PALPS state and it is defined inductively on its
structure.

The translation assumes the set of global variables considered in the previous sub-
section and for each process of the form Pj :⟨si, ℓ, k⟩, it employs a local variable sti,j,ℓ
which records the current state in the flow of execution of the translation and si,j,ℓ,
initially set to k which records the number of individuals of the specific species, state
and location. In what follows, we write prob(P ) and timed(P ) for the logical values
that express whether P is a probabilistic or a timed process respectively. Furthermore,
we write updates(Pi, Pj , ℓ1, ℓ2) for the set of updates necessary when Pi at location
ℓ1, evolves into state Pj at location ℓ2. If Pm = 0, we define updates(Pj ,0, ℓ, ℓ

′) =
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(tact ′ = 1)&(st′i,j,ℓ = sti,j,ℓ − ni,j,ℓ), otherwise we have

updates(Pj , Pm, ℓ, ℓ
′) = (pact ′ = prob(Pm))&(tact ′ = 1)

&(st′i,j,ℓ = sti,j,ℓ − ni,j,ℓ)&(st′i,m,ℓ′ = sti,m,ℓ′ + ni,j,ℓ)

Moving on to the translation, let us consider state Pj of species si at location ℓ. The
following cases exist:

Case 1: Pj = go ℓ′.Pm. We translate this activity as follows:

[] (sti,j,ℓ = 1)&(si,j,ℓ > 0) −→ (st′i,j,ℓ = 2)&(tact ′ = 0)&(n′
i,j,ℓ = si,j,ℓ);

[] (sti,j,ℓ = 1)&(si,j,ℓ = 0) −→ (st′i,j,ℓ = 2)&(n′
i,j,ℓ = 0);

[synch] (sti,j,ℓ = 2) −→ (s′i,j,ℓ = 3);

[] (sti,j,ℓ = 3)&(pact = 0)&((ℓ, ℓ′) ∈ Nb) −→ updates(Pj , Pm, ℓ, ℓ′)&(st′i,j,ℓ = 1);

[prob] (sti,j,ℓ = 3)&(pact = 1) −→ (st′i,j,ℓ = 1);

According to this definition, the module begins by setting tact to 0 if there exist indi-
viduals in the state, thus proclaiming its inability of performing a timed action. It also
initializes its local variable ni,j,ℓ recording the initial number of individuals in the state.
Subsequently, the module continues to synchronize on action synch with all other mod-
ules. Then, if no probabilistic action is enabled, it proceeds to make all its necessary
updates: the number of individuals of state Pi is reduced by n and the number of indi-
viduals of state Pj is increased by n. If, however, a probabilistic action is enabled then
the module will synchronize on action prob, thus giving precedence to the probabilistic
action.

Case 2: Pj = a.Pm. This state is translated as follows:

[] (sti,j,ℓ = 1)&(si,j,ℓ > 0) −→ (st′i,j,ℓ = 2)&(tact ′ = 0)&(n′
i,j,ℓ = si,j,ℓ);

[] (sti,j,ℓ = 1)&(si,j,ℓ = 0) −→ (st′i,j,ℓ = 2)&(n′
i,j,ℓ = si,j,ℓ);

[synch] (sti,j,ℓ = 2) −→ (st′i,j,ℓ = 3);

[] (sti,j,ℓ = 3)&(pact = 0) −→ (a′
ℓ = aℓ + ni,j,ℓ)&(st′i,j,ℓ = 4);

[aℓ] (sti,j,ℓ = 4) −→ (st′i,j,ℓ = 5);

[] (sti,j,ℓ = 5) −→ (a′
ℓ = 0)&updates(Pj , Pm, ℓ, ℓ)&(st′i,j,ℓ = 1);

[prob] (sti,j,ℓ = 3)&(pact = 1) −→ (st′i,j,ℓ = 1)

The translation follows along similar lines to the previous case. The module begins by
initializing variables according to the initial value of si,j,ℓ. It then proceeds to synchro-
nize with all other modules on action synch . After the synchronization, depending on
the value of pact it either proceeds to execute its transition in states 3 − 5 or it partici-
pates in the prob synchronization and postpones its own execution. In the former case,
it increases the value of aℓ signifying the availability of ni,j,ℓ additional occurrences of
a at location ℓ. All such actions then synchronize on action aℓ before setting the variable
aℓ to 0 and moving the ni,j,ℓ individuals to their next state while appropriately changing
the values of variables si,j,ℓ and si,m,ℓ. Note that the counter of input actions, that is
variable aℓ, is necessary for handling the restriction operator, and will be revisited at
the end of this section.
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Case 3: Pj = a.Pm. The translation of this state follows similarly to the previous case.

[] (sti,j,ℓ = 1)&(si,j,ℓ > 0) −→ (st′i,j,ℓ = 2)&(tact ′ = 0)&(n′
i,j,ℓ = si,j,ℓ);

[] (sti,j,ℓ = 1)&(si,j,ℓ = 0) −→ (st′i,j,ℓ = 2)&(n′
i,j,ℓ = si,j,ℓ);

[synch] (sti,j,ℓ = 2) −→ (st′i,j,ℓ = 3);

[] (sti,j,ℓ = 3)&(pact = 0) −→ (aℓ
′ = aℓ + ni,j,ℓ)&(st′i,j,ℓ = 4);

[aℓ] (sti,j,ℓ = 4) −→ (st′i,j,ℓ = 5);

[] (sti,j,ℓ = 5) −→ (aℓ
′ = 0)&updates(Pj , Pm, ℓ, ℓ)&(st′i,j,ℓ = 1);

[prob] (sti,j,ℓ = 3)&(pact = 1) −→ (st′i,j,ℓ = 1)

We point out that the module synchronizes through action aℓ with all modules exe-
cuting output as well as input actions on a at location ℓ. This is important for defining
the restriction operator as we will see below.

Case 4: Pj =
√
.Pm. We translate the process by including the commands

[synch] (sti,j,ℓ = 1) −→ (st′i,j,ℓ = 2);

[tick] (sti,j,ℓ = 2)&(tact = 1) −→ (st′i,j,ℓ = 3);

[] (sti,j,ℓ = 3) −→ updates(Pj , Pm, ℓ, ℓ)&(st′i,j,ℓ = 1);

[] (sti,j,ℓ = 2)&(tact = 0) −→ (st′i,j,ℓ = 1);

In the first step of this translation the module synchronizes with other modules on
action synch . Subsequently, if tact = 1, it synchronizes with all other modules on
action tick and then continues to perform its associated updates before returning to the
initial state. Alternatively, if a timed action is not enabled then the module returns to its
initial state.

Case 5: Pj = p1 : Pj1 + . . . + pm : Pjm . The translation consists of the following
commands.

[] (sti,j,ℓ = 1)&(si,j,ℓ > 0) −→ (st′i,j,ℓ = 2)&(tact ′ = 0)&(n′
i,j,ℓ = si,j,ℓ);

[] (sti,j,ℓ = 1)&(si,j,ℓ = 0) −→ (st′i,j,ℓ = 2)&(n′
i,j,ℓ = si,j,ℓ);

[synch] (sti,j,ℓ = 2) −→ (st′i,j,ℓ = 3);

[] (sti,j,ℓ = 3)&(ni,j,ℓ = 0) −→ (st′i,j,ℓ = 1);

[prob] (sti,j,ℓ = 3)&(ni,j,ℓ = 1) −→ S1

. . .

[prob] (sti,j,ℓ = 3)&(ni,j,ℓ = max) −→ Smax

where for n = x we define Sx by

wp1:q11 ,...,pm:q1m
: st′i,j,ℓ = stq11 ,...q1m + . . .+ wp1:qk1 ,...,pm:qkm

: st′i,j,ℓ = stqk1 ,...qkm

denoting all possible ways of choosing for each of the x components one of the pro-
cesses Pjk and where the probabilities wp1:q11 ,...,pm:q1m

are as defined in the semantics,
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and where state stqk1 ,...qkn is responsible for appropriately updating the multiplicity of
each of the Pjr components as shown below.

sti,j,ℓ = stqk1 ,...qkn −→ (s′i,j,ℓ = si,j,ℓ − ni,j,ℓ)

&(si,j1,ℓ = si,j1,ℓ + qk1 )& . . .&(si,jm,ℓ = si,jm,ℓ + qkm)

Case 6: Pj = a?(Pj1 , Pj2). The conditional choice construct translation is treated dif-
ferently in the case of an input and an output action. We begin be considering the input
action. The translation needs to take into account the fact that, given a set of outputs on
a then all available inputs on a must be satisfied before executing the a? action of the
conditional choice. If there remain some output actions, then the appropriate number
of Pj1 derivatives will be chosen whereas the remaining processes will proceed as Pj2 .
The translation follows:

[] (sti,j,ℓ = 1)&(si,j,ℓ > 0) −→ (st′i,j,ℓ = 2)&(tact ′ = 0)&(n′
i,j,ℓ = si,j,ℓ);

[] (sti,j,ℓ = 1)&(si,j,ℓ = 0) −→ (st′i,j,ℓ = 2);

[synch] (sti,j,ℓ = 2) −→ (st′i,j,ℓ = 3);

[] (sti,j,ℓ = 3)&(pact = 0) −→ (st′i,j,ℓ = 4)&(a′
ℓ = aℓ + ni,j,ℓ);

[aℓ] (sti,j,ℓ = 4) −→ (st′i,j,ℓ = 5);

[] (sti,j,ℓ = 5)&(aℓ ≥ aℓ) −→ (s′i,j1,ℓ = si,j1,ℓ + ni,j,ℓ)

&(s′i,j,ℓ = si,j,ℓ − ni,j,ℓ)&(st′i,j,ℓ = 1);

[] (sti,j,ℓ = 5)&(0 ≤ aℓ − aℓ ≤ ni,j,ℓ) −→ (a′
ℓ = aℓ)&(s′i,j1,ℓ = si,j1,ℓ + ni,j,ℓ − aℓ + aℓ)

&(s′i,j2,ℓ = si,j2,ℓ + aℓ − aℓ)&(s′i,j,ℓ = si,j,ℓ − ni,j,ℓ)&(st′i,j,ℓ = 1);

[] (sti,j,ℓ = 5)&(aℓ − aℓ > ni,j,ℓ) −→ (a′
ℓ = aℓ − ni,j,ℓ)

&(s′i,j2,ℓ = si,j2,ℓ + ni,j,ℓ)&(s′i,j,ℓ = si,j,ℓ − ni,j,ℓ)&(st′i,j,ℓ = 1);

[prob] (sti,j,ℓ = 3)&(pact = 1) −→ (st′i,j,ℓ = 1)

Case 7: Pj = a?(Pj1 , Pj2). This is symmetric to the previous case:

[] (sti,j,ℓ = 1)&(si,j,ℓ > 0) −→ (st′i,j,ℓ = 2)&(tact ′ = 0)&(n′
i,j,ℓ = si,j,ℓ);

[] (sti,j,ℓ = 1)&(si,j,ℓ = 0) −→ (st′i,j,ℓ = 2);

[synch] (sti,j,ℓ = 2) −→ (st′i,j,ℓ = 3);

[] (sti,j,ℓ = 3)&(pact = 0) −→ (st′i,j,ℓ = 4)&(aℓ
′ = aℓ + ni,j,ℓ);

[aℓ] (sti,j,ℓ = 4) −→ (st′i,j,ℓ = 5);

[] (sti,j,ℓ = 5)&(aℓ ≥ aℓ) −→ (s′i,j1,ℓ = si,j1,ℓ + ni,j,ℓ)

&(s′i,j,ℓ = si,j,ℓ − ni,j,ℓ)&(st′i,j,ℓ = 1);

[] (sti,j,ℓ = 5)&(0 ≤ aℓ − aℓ ≤ ni,j,ℓ) −→ (aℓ
′ = aℓ)&(s′i,j1,ℓ = si,j1,ℓ + ni,j,ℓ − aℓ + aℓ)

&(s′i,j2,ℓ = si,j2,ℓ + aℓ − aℓ)&(s′i,j,ℓ = si,j,ℓ − ni,j,ℓ)&(st′i,j,ℓ = 1);

[] (sti,j,ℓ = 5)&(aℓ − aℓ > ni,j,ℓ) −→ (a′
ℓ = aℓ − ni,j,ℓ)

&(s′i,j2,ℓ = si,j2,ℓ + ni,j,ℓ)&(s′i,j,ℓ = si,j,ℓ − ni,j,ℓ)&(st′i,j,ℓ = 1);

[prob] (sti,j,ℓ = 3)&(pact = 1) −→ (st′i,j,ℓ = 1)
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Case 8: Pj = cond (e � Pj1 , else � Pj2). The translation of this construct transforms
the process into the appropriate continuation depending on the value of e. Note that this
module does not synchronize with any other module since it is not actually performing
an action but instead it rewrites itself by spontaneous transformation into the appropriate
module, assuming that no probabilistic action is available. If such an action is available,
the rewriting is postponed since it is possible that execution of a probabilistic actions
will change the state and hence the evaluation of e@ℓ.

[] (sti,j,ℓ = 1)&(si,j,ℓ > 0)&[[e@ℓ]]&(pact = 0) −→ (s′i,j1,ℓ = si,j,ℓ + si,j,ℓ)&(s′i,j,ℓ = 0);

[] (sti,j,ℓ = 1)&(si,j,ℓ > 0)&![[e@ℓ]]&(pact = 0) −→ (s′i,j2,ℓ = si,j2,ℓ + si,j,ℓ)&(s′i,j,ℓ = 0);

where [[e@ℓ]] is the translation of the PALPS expression e@ℓ into the PRISM language.

Case 9: Pj = C, C def
= Pk. We translate the process by

[](si,j,ℓ > 0) −→ (s′i,k,ℓ = (si,k,ℓ + si,j,ℓ)&((s′i,j,ℓ = 0);

Case 10: Pi = 0. We include no translation for this state.

As a final note let us consider a system of the form S\L. As already discussed,
the process S can be translated into a set of modules according to the set of species
involved in S, the possible states each of these species can engage in and the set of
existing locations. To further take into account the \L construct, we simply introduce
the condition aℓ = aℓ to all actions named aℓ for all a ∈ L.

3.4 Correctness of the translation

We now turn to consider the correctness of the proposed translation. This is demon-
strated via the following two theorems. In what follows, given a PRISM model M , we
write M

α,pi−→ Mi if M contains an action [α] guard -> p1 : u1 + . . . + pm : um;
where guard is satisfied in model M and execution of ui gives rise to model Mi. Note
that if a guarded command has no action label, then we simply write M −→ M ′. Fur-
thermore, we write M α1...αn=⇒ M ′ if M

α1,1−→ M1 . . .
αm,1−→ M ′, that is, M may evolve

into M ′ after a sequence of m moves each of which is executed with probability 1.
Finally, we write M

p
=⇒M ′ if M =⇒M1

α,p−→M2 =⇒M ′ for some 0 ≤ p ≤ 1.

Theorem 1. For any configuration (E,Sys), where E is compatible with Sys, the
following hold:

1. If (E,Sys)
µ−→n (E′, Sys′) then [[(E,Sys)]]

ã
=⇒ [[(E′, Sys′)]], for some ã =

a1 . . . am.
2. If (E,Sys) w−→p (E′, Sys′) then [[(E,Sys)]]

synch
=⇒ w

=⇒ [[(E′, Sys′)]].

Theorem 2. For any configuration (E,Sys), where E is compatible with Sys, the
following hold:
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1. If [[(E,Sys)]]
ã

=⇒prob,w−→ M then ã = synch and, in addition, (E,Sys) w−→p

(E′, Sys′) and for all M =⇒ M ′ there exists M ′′ such that M =⇒ M ′′ =⇒ M ′

and M ′′ = [[(E′, Sys′)]].
2. If [[(E,Sys)]]

a1...am−1
=⇒ am−→M then a1 = synch and if there exists no synch among

the a2 . . . am and M
synch
=⇒ , then (E,Sys)

α−→ (E′, Sys′) and for all M =⇒ M ′

there exists M ′′ such that M =⇒M ′′ =⇒M ′ and M ′′ = [[(E′, Sys′)]],

Theorem 1 establishes that each transition of (E,Sys) can be mimicked by its trans-
lation module in a sequence of steps. Theorem 2 considers the other direction of the
correctness and it illustrates that any sequence of transitions of a PRISM translation cor-
responds to a sequence of transitions at the PALPS level. Given a transition of a PRISM
module there are two possibilities. On the one hand, if the transition leads to a prob
transition, then a probabilistic action with the same probability may take place at the
PALPS level and the PRISM module will inevitably lead to the translation of the resulting
PALPS state. On the other hand, if the transition of the module executes a sequence of
actions, then the first action ought to be a synch action and furthermore, if the subse-
quent transitions correspond to an execution fragment proceeding the next synch action
in the sequence, then an action may take place at the PALPS level and the PRISM module
will inevitably lead to the translation of the resulting PALPS state.

Sketch of the proof of Theorem 1: The proof considers two cases. To begin with,
we assume that Sys consists of one component and the possible transitions of the form
(E,Sys)

α−→ (E′, Sys′) are as specified in Table 2. A case analysis on the possible
forms of Sys and their translation into PRISM confirms that on the completion of the
translation state [[(E′, Sys′)]] will be reached. The second case consists of the case of
multiple populations where the transition has arisen by application of one of the rules
of Table 3. A case analysis again confirms that the step can be mimicked by the PRISM
module. In all cases, we may construct the PRISM transition is phases: first all prepara-
tory steps of the PRISM modules are taken. Consequently, the processes synchronize
on their synch actions and then they may each complete execution in a sequence that
matches the PALPS transition. 2
Sketch of the proof of Theorem 2: The proof consists of an induction proof on
the number of components of Sys. It follows along similar lines to the proof of The-
orem 1. The important point to note here is that, in all cases, the intermediate step M
captures correctly both the environment E′ as well as the state Sys′ in the transition
(E,Sys)

α−→ (E′, Sys′). Note that this intermediate state is reached exactly when all
modules execute the code relating to their participating action. 2

4 Case study: Eleonora’s falcon population dynamics

In this section we study the Eleonora’s falcon [20] using S-PALPS. Eleonora’s falcon
is a migrant species that breeds on Mediterranean islands and winters on islands of the
Indian Ocean and along the eastern African coast. A large part of the world population
concentrates on a small number of islands in the Aegean Sea [7]. In Europe, the species
is considered as rare and hence of local conservation importance because, although not
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globally threatened, its world population is below 10,000 breeding pairs and its survival
in Europe is highly dependent on the breeding conditions on the islands on which it con-
centrates. In particular, the breeding calendar of the Eleonora’s falcon overlaps with the
summer months when tourism peaks in most Mediterranean islands while the climatic
changes may also have consequences on the reproduction of the species.

The life cycle of the Eleonora’s Falcon is defined as follows. The juveniles disperse
from the island during their first year of life. It takes them approximately four years
to achieve sexual maturity and they only come back to the island when they reach this
age. When they return, they choose a nest. For the sake of model simplicity we consider
two types of nests in terms of provision of shelter to the breeding pairs and their young:
exposed nests (e.g., to predators, sun, humans and wind) and less-exposed nests. The
choice of the nest determines the survival probability of the offspring. According to
studies, first-year breeders usually do not choose less-exposed nests. This choice is
reserved for mature adults, who are not guaranteed to acquire a less-exposed nest due
to the limited number of such nests [16]. The life cycle of this species is presented in
Figure 1. In what follows we construct a model of the Eleonora’s falcon ecosystem in
S-PALPS.

Spatial domains. We consider two spatial domains which we model as two S-PALPS
locations: The island where the colony lives, ℓ1, and the territory outside the island, ℓ2.
The spatial location of the nests on the island is not crucial for our model, hence the use
of a single breeding location.

Species. To enable the modeling of the system we define two S-PALPS species in our
model: the Eleonora’s falcon (f ) and the less-exposed nests (le). We then model the
selection of less-exposed nests as a predator-prey problem.

Processes. We associate each of the above species with an S-PALPS description. To
model nests, we create a group of n less-exposed nests as LeNest :⟨le, l1, n⟩ such that

LeNest
def
= prey .LeNest ′ +

√
.LeNest

LeNest ′
def
= release.LeNest +

√
.LeNest ′

The life cycle of a falcon begins in the newborn/juvenile state (process J0 below).
In this state an individual disperses to location ℓ2 and waits for 4 years which, in our
model, consists of 4 occurrences of action

√
, before becoming a first-year breeder adult

(process A#1 below). Note that not all juveniles will mature to adults. In fact, a juvenile
may die with a mortality rate of 78% [15].

J0
def
= go ℓ2.

√
.
√
.
√
.
√
.J4

J4
def
= (0.78 : 0⊕ 0.22 : A#1 )

Moving on to the adult population, we observe that while male adults are responsible
for choosing the nest and the female, and to hunt, in our model, for the sake of sim-
plicity, we have opted to abstract away from a falcon’s gender. We believe that this
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Fig. 1. The life-cycle of Eleonora’s Falcon.
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simplification does not affect the faithfulness of the model as there is no indication that
the percentages of males and females differ significantly, nor that the probability to die
during dispersal depends on the gender, and also because adult males and females live
in pairs and are considered monogamous.

Thus we model by A the notion of an adult pair. There are two types of such adult
pairs: first-year breeders who have no experience in choosing less-exposed nests and
second-year or older adult pairs whose experience allows them to select less-exposed
nests, if such nests are available [16]. Depending on the nest that a pair chooses, there
are different probabilities to have an offspring of size 0,1,2 or 3 during the breeding
season. We adopt the reproduction rates from [20] appropriately weighted so that only
half of the offspring is produced (to account for pairs). In the model below we write
εi for the probability that an offspring of size i is produced in an exposed nest and
λi for the probability that an offspring of size i is produced in a less-exposed nest.
Furthermore, we write A1, A and M for a first-year breeder pair, a mature pair in the
phase of reproduction and a mature pair in the phase of possible mortality, respectively.
Finally, we use the superscripts #, G and  to denote a state of no nest, an exposed
nest and a less-exposed nest, respectively.

The behavior of a pair proceeds as follows. A first-year breeder pair, returns to the
island. It chooses an exposed nest and proceeds as a mature adult pair in an exposed
nest. A mature adult pair selects a less-exposed nest, if one is available (i.e. there is
an input available on channel prey) and an exposed nest, otherwise. It then produces
offspring, leaves the island and goes through a mortality phase. If it survives it executes
action

√
and returns to its initial phase. The mortality rate of an adult pair is equal to

13%. Note that, in the mortality phase, a pair in a less-exposed nest releases its nest.

A#1 def
= go ℓ1.A

 
A# def

= prey?(AG, A )

A def
= ε0 :M ⊕ ε1 : J0|M ⊕ ε2 : J0|J0|M ⊕ ε3 : J0|J0|J0|M 

AG def
= λ0 :MG ⊕ λ1 : J0|MG ⊕ λ2 : J0|J0|MG ⊕ λ3 : J0|J0|J0|MG

M def
= go ℓ2.(0.13 : 0⊕ 0.87 :

√
.A#)

MG def
= release.go ℓ2. (0.13 : 0⊕ 0.87 :

√
.A#)

Our system is defined below. It consists of n nests and m adult pairs with no nest.

System
def
= (LeNest :⟨le, l1, n⟩|A#:⟨f, l1,m⟩)\{prey}

5 Analysis in PRISM

In this section, we report on some of the results we obtained by applying our method-
ology for studying the population dynamics of the Eleonora’s falcon. To begin with we
translated our PALPS model into PRISM by following the encoding presented in Sec-
tion 3.
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For our experiments, we took advantage of the model checking capabilities of PRISM
and we checked properties by using the model-checking by simulation option, referred
to as confidence interval (CI) simulation method. The property we experimented with
is R =?[I = k]. This property is a reward-based property that computes the aver-
age state instant reward at time k. We were interested to study the expected size of the
population. For this, we associate to each state a reward representing this size.

We were interested in studying various properties of this model. One of these prop-
erties involved assessing the stability of the model for different sizes of the initial pop-
ulation. To achieve this, we considered initial populations of 20, 40 and 60 adult pairs
and we studied the growth of the population for a duration of approximately 10 years.
These results are reported in Figure 2. The composition of the population in terms of

Fig. 2. Expected number of total pairs (juveniles and adults) vs time for an initial population of
20, 40 and 60 pairs of adults.

juveniles and adults and their evolution is presented in figures Figure 3 and Figure 4 .

Fig. 3. Expected number of adult pairs vs. time for an initial population of 20, 40 and 60 pairs of
adults.
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Fig. 4. Expected number of juvenile pairs vs. time for an initial population of 20, 40 and 60 pairs
of adults.

A combination of these results for the case of 40 adults papers is summarized in
Figure 5.

Another property we were interested to study is the sensitivity of the population to
changes in the local conditions. These conditions may affect the probabilities associated
with reproduction and, in particular, the survival rate of the offspring of a falcon pair. To
study this property we analyzed the impact of changing the reproduction rates in both
exposed and less-exposed nests. Specifically, we increased (decreased) the probabilities
of 0 fledglings surviving by 3% and 6% while appropriately decreasing (increasing) the
probabilities of 1, 2 and 3 fledglings surviving. These results are presented in Figure 6.

Fig. 5. Expected number of total pairs, juveniles pairs and adult pairs vs time for an initial popu-
lation of 40 pairs of adults.

We have also conducted similar experiments varying the initial number of juvenile
pairs. For the case in which the initial population is conformed by juveniles only, we
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Fig. 6. Expected number of pairs of adults vs time with an initial population of 40 pairs of adults,
for different values of the probability p that zero fledglings survive from an offspring of a pair.

made an analysis to determine the impact on the evolution of the colony through time
for different values of the mortality rates in Figure 7.

Fig. 7. Expected total number of pairs vs. time with an initial population of 40 juveniles, for dif-
ferent values of the mortality rates. The original values of mortality are m1 = 0.78 for juveniles
and m2 = 0.13 for adults. As an example, legend m + 0.1 in the graph means that both values
m1 and m2 were incremented by 0.1.

Overall, our experiments have demonstrated a fair degree of stability in the evo-
lution of the species and a relative insensitivity to the local conditions on the island
(Figure 6).

6 Conclusions

In this paper we have presented S-PALPS, an extension of PALPS with synchronous par-
allel composition. Furthermore, we have described a translation of S-PALPS into the
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PRISM language and we have proved its correctness. This encoding can be employed
for simulating and model checking S-PALPS systems using the PRISM tool. Further-
more, we have applied our methodology for studying the population dynamics of the
Eleonora’s falcon, a species of local conversation interest in the Mediterranean sea.

We have observed that the adoption of a synchronous parallel composition in S-
PALPS enables a more succinct presentation of the state space of a system by removing
a lot of redundant nondeterminism that was present in the asynchronous framework.
Furthermore, the treatment of the multiplicity of individuals in S-PALPS was very bene-
ficial by allowing a more efficient translation of populations (as opposed to individuals)
into PRISM modules and removing restrictions that were present in our previous work.
These benefits were apparent while carrying out our case study of the Eleonora’s falcon.
Our experiments towards studying the population dynamics of this species revealed a
fair degree of stability in the evolution of the species and a relative insensitivity to small
changes in the local conditions.

As future work, we are interested in applying our methodology to other case studies
from the local habitat and, in particular, to employ model checking for studying their
behavior. Finally, an interesting future research direction would be extend the work
of [9] towards the development of mean-field analysis to represent the average behavior
of systems within a spatially-explicit framework.
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