
A Process Calculus for Dynamic Networks ∗

Dimitrios Kouzapas1 and Anna Philippou2

1 Imperial College, London, UK. dk208@doc.ic.ac.uk
2 University of Cyprus, Cyprus. annap@cs.ucy.ac.cy

Abstract

In this paper we propose a process calculus framework for dynamic networks in which
the network topology may change as computation proceeds. The proposed calculus
allows one to abstract away from neighborhood-discovery computations and it contains
features for broadcasting at multiple transmission ranges and for viewing networks at
different levels of abstraction. We develop a theory of confluence for the calculus and
we use the machinery developed towards the verification of a leader-election algorithm
for mobile ad hoc networks.

1 Introduction

Distributed and wireless systems present today one of the most challenging areas of research
in computer science. Their high complexity, dynamic nature and features such as broad-
casting communication, mobility and fault tolerance, render their construction, description
and analysis a challenging task. The development of formal frameworks for describing and
associated methodologies for reasoning about distributed systems has been an active area
of research for the last few decades. Process calculi, such as CCS [8] and the π-calculus [10],
are one such formalism. Since their inception, they have been extensively studied and they
have proved quite successful in the modeling and reasoning about systems. They have
been extended for modeling a variety of aspects of process behavior including mobility,
distribution and broadcasting.

Our goal in this paper is to propose a process calculus in which to be able to reason
about mobile ad hoc networks (MANETs) and their protocols. Our proposal, the Calculus
for Systems with Dynamic Topology, CSDT, is inspired by works which have previously
appeared in the literature [2, 5, 7, 16, 18] on issues such as broadcasting, movement and
separating between a node’s control and topology information. However, our calculus ex-
tends these works by considering two additional MANET features. The first concerns the
ability of MANETs to broadcast messages at different transmission levels. This is a stan-
dard feature of mobile ad hoc networks; a node may choose to broadcast a message at a
high transmission power in order to communicate with a wider set of nodes, as required
by a protocol or application, or it may choose to use a low transmission power in order
to conserve the node’s power. The second feature concerns that of neighbor discovery. As
computation proceeds and nodes move in and out of each other’s transmission range, each
node attempts to remain aware of its connection topology in order to successfully complete
its tasks (e.g. routing). To achieve this, neighbor discovery protocols are implemented and

∗Technical Report TR-10-01, Department of Computer Science, University of Cyprus. An extended
abstract of the article is currently under submission.

1

run which, which typically involve periodically emitting “hello” messages and acknowledg-
ing such messages received by one’s neighbors. Although it is possible that at various points
in time a node does not have the precise information regarding its neighbors, these proto-
cols aim to ensure that the updated topology is discovered and that the node adjusts its
behavior accordingly so that correct behavior is achieved. Thus, when one is called to model
and verify a MANET protocol, it is important to take into account that neighbor-discovery
is running in the background and that the neighbor-information available to a node may
not be correct at all times. To handle this one might model an actual neighbor-discovery
protocol in parallel to the algorithm under study and verify the composition of the two.
Although such a study would be beneficial towards obtaining a better understanding of the
behavior of both protocols, it would turn an already laborious task into a more laborious
one and it would impose further requirements on behalf of the modeling language (e.g. for
reasoning about timed behaviors).

CSDT allows for reasoning about both of these aspects of behavior. To begin with, it
allows nodes to broadcast information at two different transmission levels. In particular,
the transmission level of a broadcast is encoded as a parameter of broadcasted messages.
We point out that this could easily be extended to a wider range of transmission levels,
as discussed further in Section 4. Here we opt to implement two levels for the sake of
simplicity and because this is already sufficient for the case study we consider. Regarding
the issue of neighborhood discovery, the semantics of CSDT contain rules that mimic the
behavior of a neighborhood-discovery protocol. To achieve this CSDT equips nodes with
knowledge of their believed (and not necessarily actual) sets of neighbors. These sets capture
the belief of a node regarding its neighbors which is not necessarily correct and which is
continuously updated, as needed. This continuous observation of the changes in a node’s
topology is intended to capture the way a neighborhood-discovery algorithm operates and
gradually discerns changes in the connectivity of a node. Furthermore, these neighbors
sets are accessible from the control part of a node and may affect the flow of the node’s
execution. We believe that this feature is both realistic as well as convenient for modeling
and analyzing ad hoc network protocols. A final novelty of CSDT which has been introduced
for facilitating verification within the calculus, is the introduction of a hiding construct
that allows us to observe networks at different levels of abstraction. Since messages in our
network descriptions are broadcasted over the medium, the notion of channel restriction (or
name hiding) becomes irrelevant. Nonetheless, the effect of hiding behaviors remains useful
in our setting, especially for analysis purposes. To achieve this, we associate every message
with a “type” and we implement hiding by restricting the set of message types which should
be observable at the highest level of a process.

The operational semantics of our calculus is given in terms of a labelled transition sys-
tem on which we propose a notion of weak bisimulation for the language. Subsequently,
we develop a theory of confluence. The notion of confluence was first studied in the con-
text of concurrent systems by Milner in CCS [8] and subsequently in various other set-
tings [19, 3, 4, 14, 12, 15, 13]. Its essence, is that “of any two possible actions, the occurrence
of one will never preclude the other”. As shown in the mentioned papers, confluence im-
plies determinacy and semantic-invariance under internal computation, and it is preserved
by several system-building operators. These facts make it possible to reason compositionally
that a system is confluent and to exploit this fact while reasoning about its behavior. This
paper, is the first to consider the theory of confluence in a setting of broadcasting commu-
nication. We establish a variety of results including a theorem that allows for compositional
reasoning of confluent behavior. We illustrate the utility of these techniques as well as the
formalism via the specification and the verification of a leader-election algorithm.

2

Related Work. Several process calculi have recently been proposed for dynamic net-
works. In [5] the process calculus CMN is introduced as a basis for studying the observa-
tional theory of mobile ad hoc networks. Like CSDT, a node in CMN is a named, located
process which communicates via broadcasting within its transmission range. A difference
in the two approaches concerns the treatment of the notion of a location: while in CMN
locations can be viewed as values in a coordinate systems and neighborhood is computed
via distance function, in CSDT, locations and their interconnections are given in the form
of a graph. Unlike CSDT, CMN features both stationary and mobile nodes and it caters for
message loss. On the other hand, CSDT allows to describe unicast communication. In [11],
the authors propose CBS# where the recipients of a transmission are determined using a
graph representation of node localities. They use their framework as a basis for performing
security analysis of MANET communication protocols. The ω-calculus, an extension of the
π-calculus is the object of study in [18]. A key feature of the ω-calculus is the separation
of a node’s control component from the description of its transmission range. This latter is
implemented by annotating a process with a set of groups which constitute the connected
components of the network to which the node belongs. The ω-calculus enables unicast
communication and caters for message loss. In CMAN [2], each node is associated with its
location and the set of locations to which it may communicate over uni-directional links.
This explicit handling of the connection topology via individual nodes poses some difficul-
ties in defining non-contextual equivalences relations, though the obtained results appear
to be adequate for the case studies considered. Finally, [7] defines a lower-level calculus to
describe interference in wireless systems and [6] studies a timed process calculus for wireless
networks exposed to collisions.

As it has already been discussed, CSDT extends all of these frameworks by allowing
to broadcast at different transmission levels, by associating nodes with their believed, as
opposed to actual sets of neighbors which are updated by semantic rules that mimic the
behavior of a neighbor discovery protocol and via a restriction construct.

Contribution. The contribution of our work is summarized as follows:

1. We define a new process calculus for reasoning about dynamic networks. This calculus
introduces a number of new ideas which have been selected in view of facilitating the
modeling and the analysis of mobile ad hoc network protocols.

2. We develop the theory of confluence in the context of our calculus. This is the first
such theory for process calculi featuring broadcast communication.

3. We provide a correctness proof of a non-trivial leader-election protocol proposed in [20]
for mobile ad hoc networks.

The remainder of the paper is structured as follows. In Section 2 we introduce the syntax
and semantics of our calculus, and develop its theory of bisimulation and confluence. Section
3 contains an application of our methodology for establishing the correctness of a MANET
leader-election algorithm and Section 4 concludes the paper.

2 The Process Calculus

In our Calculus for Systems with Dynamic Topology, CSDT, we consider a system as a set of
nodes operating in space. Each node possesses a physical location and a unique identifier.
Movement is modeled as the change in the location of a node, with the restriction that

3

the originating and the destination locations are neighboring locations. As an example,
Figure 1(a) portrays a network comprising of four nodes with identifiers 1-4 where node
i resides at location ℓi, whereas Figure 1(b) portrays the same network where node 4 has
moved from location ℓ4 to location ℓ5.

1

l3

l1 l2

l4

4

2

3

(a)

1

l3

l1 l2

l5

4

2

3

(b)

Figure 1: Wireless network before (a) and after (b) the move of node 4

Nodes in CSDT can communicate with each other by broadcasting messages. Broad-
casting may take place at different transmission levels, thus allowing a node to adjust the
range of a transmission, as required by an underlying protocol and/or for power-saving
purposes. Specifically, in CSDT we consider two transmission levels, a normal level and a
high level. Messages sent at the high transmission level are transmitted to a wider set of
locations in comparison to those sent at the normal transmission level.

Neighbor discovery, that is, determining which nodes fall within the transmission range
of a node, is a building block of network protocols and applications. To facilitate the
reasoning about such protocols we embed in the semantics of our calculus rules that mimic
the behavior of a neighborhood discovery algorithm, which observes changes in the network’s
topology and, specifically, the departure and arrival of nodes within the normal and high
transmission ranges of a node. To capture this information, each node is associated with
two sets of nodes, N and H, which are the sets of nodes believed to be within the normal
and high transmission ranges of a node, respectively. Specifically, we write P :[[id, ℓ,N,H]],
for describing a node running code P with unique identifer id, located at physical location
ℓ, believed normal-range neighbors N , and believed high-range neighbors H.

Returning to the example of Figure 1, let us assume that messages broadcasted at the
normal transmission level at some location ℓ are received by all cells/locations at distance
1 from ℓ, and messages broadcasted at the high transmission level are received by all nodes
within distance 2 from ℓ. Then, for example, node 2 in Figure 1(a) has as its normal-range
neighbors nodes {1, 3} and as its high-range neighbors nodes {1, 2, 4}. This network can be
modeled by the following process, where process Pi represents the code running at node i:

P1:[[1, ℓ1, {2}, {2, 3}]] | P2:[[2, ℓ2, {1, 3}, {1, 3, 4}]] | P3:[[3, ℓ3, {2}, {1, 2, 4}]] | P4:[[4, ℓ4, ∅, {2, 3}]]

The network in Figure 1(b) where node N4 has moved from location 4 to location 5, and
assuming that the neighbor-discovery protocol has not yet had a chance to execute, corre-
sponds to the process:

P1:[[1, ℓ1, {2}, {2, 3}]] | P2:[[2, ℓ2, {1, 3}, {1, 3, 4}]] | P3:[[3, ℓ3, {2}, {1, 2, 4}]] | P4:[[4, ℓ5, ∅, {2, 3}]]

2.1 The Syntax

We now continue to formalize the above intuitions into the syntax of CSDT. We begin by
describing the basic entities of CSDT. We assume a set of node identifiers I ranged over

4

by id, i, j, and a set of physical locations L ranged over by ℓ, ℓ′ and we say that two
locations ℓ, ℓ′ are neighboring locations if (ℓ, ℓ′) ∈ Nb, where Nb ⊆ L × L. Furthermore,
we assume a set of transmission levels {n,h} and associated with these levels the functions
rangen : L → 2L and rangeh : L → 2L which, given a location, return the locations that fall
within its normal and high transmission levels, respectively. Note that these functions, need
not take a symmetric view on locations and may be defined so as to yield unidirectional
links. Furthermore, we assume a set of special labels T . Elements of T are mere keywords
appended to messages indicating the message type.

In addition, we assume a set of terms, ranged over by e, built over (1) a set of constants,
ranged over by u, v, (2) a set of variables ranged over by x, y, and (3) function applications
of the form f(e1, . . . en) where f is a function from a set of functions (e.g. logical connectives,
set operators and arithmetic operators), and the ei are terms. We say that a term is closed
if it contains no variables. The evaluation relation � for closed terms is defined in the
expected manner. We write r̃ for a tuple of syntactic entities r1, . . . , rn.

Finally, we assume a set of process constants C, denoted by C, each with an associated

definition of the form C⟨x̃⟩ def
= P , where P may contain occurrences of C, as well as other

constants. Based on this basic entities, the syntax of of CSDT is given in Table 1, where
T ⊆ T .

Table 1: The Syntax

Actions: η ::= b(w, t, ṽ, tl) broadcast
| r(t, x̃) input

Processes: P ::= 0 Inactive process
| η.P Action prefix
| P1 + P2 Nondeterministic Choice
| cond (e1 � P1, . . . , en � Pn) Conditional
| C⟨ṽ⟩ Process Constant

Networks: M ::= 0
| P :σ Located Node
| M1 |M2 Parallel Composition
| M\T Restriction

Interfaces: σ ::= [[id, ℓ,N,H]]

There are two types of actions in CSDT. A broadcast action b(w, t, ṽ, tl) is a transmission
at transition level tl, of type t ∈ T of the tuple ṽ with intended recipients w, where ′−′

denotes that the message is intended for all neighbors of the transmitting node and j
denotes that it is intended solely for node j. An input action r(t, x̃) represents a receipt of a
message x̃ of type t. In turn, a process can then be inactive, an action-prefixed process, the
nondeterministic choice between two processes, a process constant or a conditional process.
The conditional process cond (e1�P1, . . . , en�Pn) presents the conditional choice between
a set of processes: it behaves as Pi, where i is the smallest integer for which ei evaluates to
true.

On the other hand, networks are built on the basis of located processes, P :σ, where σ
is the node’s topology information which we call its interface. An interface σ contains the
node identifier id, its location ℓ as well as its normal and heartbeat neighbors N and H,
according to its current knowledge. We allow the control part of a located process P :σ,

5

namely P , to access information mentioned in the interface σ, by using the special labels
id, l, N and H, thus allowing the control part of a process to express dependencies on the
node’s neighborhood information. For example, an expression “4 ∈ N” occurring within
P : [[1, ℓ, {2}, {2, 3}]] is evaluated as “4 ∈ {2}”.

Thus, a network can be an inactive network 0, a located node P :σ, a parallel composition
of networks M1 |M2, or a restricted network M\T . In M\T the scope of messages of all
types in T is restricted to network M : components of M may exchange messages of these
types to interact with one another but not with M ’s environment. Note that a type t
restricted within a node P is intended to be distinct from any other occurrences of t in
another network M within some wider network P\{t} |M . To avoid name collisions on
types, we consider α-conversion on processes as the renaming of types that are bound by
some restriction and we say that P and Q are α-equivalent, P ≡α Q, if P and Q differ by
a renaming of bound types.

In what follows, given an interface σ, we write l(σ) and id(σ) for the location and the
identifier mentioned in σ, respectively. Moreover, we use types(M) to denote the set of all
types occurring in activities of M .

2.2 The Semantics

The semantics of CSDT is defined in terms of a structural congruence relation ≡, which
can be found in Table 2, and a structural operational semantics, which is given in Tables 3
and 4.

Table 2: Structural congruence relation

(N1) M ≡ M |0 (N2) M1|M2 ≡ M2|M1

(N3) (M1|M2)|M3 ≡ M1|(M2|M3) (N4) M\T − {t} ≡ M\T if t ̸∈ types(M)

(N5) M\T ≡ (M\T − {t})\{t} (N6) M1 ≡ M2 if M1 ≡α M2

(N7) M1\{t}|M2 ≡ (M1|M2)\{t} if t ̸∈ types(M2)

The rules of Table 3 describe the behavior of located processes in isolation whereas the
rules in Table 4 the behavior of networks. A transition of P (or M) has the form P

α−→ P ′,
specifying that P can perform action α and evolve into P ′ where α can have one of the
following forms:

• b(w, t, ṽ, tl, ℓ) denotes a broadcast to recipients w of a message ṽ of type t at trans-
mission level tl, taking place at location ℓ.

• r(id, t, ṽ, ℓ) denotes a receipt by node id of a message ṽ of type t, taking place at
location ℓ.

• r?(id, t, ṽ, ℓ) denotes an advertisement by node id that it is willing to receive a message
ṽ of type t, at location ℓ.

• τ and µ denote two types of unobservable actions in the calculus. Action τ is asso-
ciated with the effect of restriction (rule (Hide2), Table 4) and µ is associated with

6

the movement of nodes (rule (Move), Table 3) as well as with updates of neighbor-
hood information (rules (InScopeN), (InScopeH), (OutofScopeN) and (OutofScopeH),
Table 4).

We let Act denote the set of all actions and let α and β range over Act and we write type(α)
for the type of an α ∈ Act− {τ, µ}.

Table 3: Transition rules for located nodes

(BCast) (b(w, t, ṽ, tl).P):σ
b(w,t,ṽ,tl,l(σ))−→ P :σ (Rec) (r(t, x̃).P):σ

r(id(σ),t,ṽ,l(σ))−→ P{ṽ/x̃}:σ

(Const)
[P{ṽ/x̃}]:σ α−→ P ′:σ

[C⟨ṽ⟩]:σ α−→ P ′:σ
C⟨x̃⟩ def

= P (Sum)
Pi:σ

α−→ P ′
i :σ

(P1 + P2):σ
α−→ P ′

i :σ
, i ∈ {1, 2}

(Cond)
Pi:σ

α−→ P ′
i :σ

(cond (e1 � P1, . . . , en � Pn)):σ
α−→ P ′

i :σ
ei � true, ∀j < i, ej � false

(Move)
(ℓ, ℓ′) ∈ Nb

P :[[i, ℓ,N,H]]
µ−→ P :[[i, ℓ′, N,H]]

It is worth noting that in the first two rules of Table 3, communication actions are
extended with the location of the process participating in the communication (both for
sending and receiving) and the identifier of the receiving agent, in the case of receiving.
This is needed for implementing communication within a network as described in the rules
of Table 4.

Moving our attention to the rules of Table 4, we point out that the first four rules
implement the underlying neighborhood discovery protocol. Nodes which are within the
normal and high transmission ranges of a located process are included in the appropriate
sets in its interface and, similarly, nodes which have exited these transmission ranges are
removed from the appropriate sets in its interface. In all four cases a µ internal action takes
place signifying a move of the neighborhood-discovery protocol.

The two (Broadcast) rules which follow give semantics to broadcasting within the lan-
guage. They employ the compatibility function comp, where comp(w, i) is evaluated to true
only identifier i is compatible with intended recipient w: comp(w, i) = (w =′ −′ ∨ w = i).
Axiom (Broadcast1) specifies that, if a broadcast is available and there exists is a compati-
ble recipient within the range of the broadcast, the message is received and the broadcast
message is propagated. On the other hand, if a broadcast is available but there is no appro-
priate receiver then, again, the broadcast is propagated in the network (Broadcast2). Note
that rule (Broadcast2) (as well as (Receive)) is defined in terms of the inability of executing
an action via the use of relation “discards”,

α9, which is defined inductively in Table 5.
Moving on to rule (Receive), we point out that a network must advertise the fact that

it may receive an input. This is necessary, otherwise an inactive network and a network

such as M
def
= [r(t, x̃).P]:σ1 | [r(t, ỹ).Q]:σ2 would have exactly the same transition systems

when clearly they would yield distinct behaviors when placed in parallel with a network
such as [b(−, t, ṽ, n).S]:σ (affecting compositionality in the calculus). Now, if rule (Receive)

was enunciated via a normal receive action instead of r?, we would have: M
r(id(σ),t,ṽ,l(σ))−→

[P{ṽ/x̃}]:σ1 | [r(t, ỹ).Q]:σ2 and subsequentlyM | [b(−, t, ṽ, n).S]:σ
b(−,t,ṽ,n,l(σ))−→ ([P{ṽ/x̃}]:σ1 |

[r(t, ỹ).Q]:σ2) | S:σ, which is not the intended meaning of a broadcast communication. In-

7

Table 4: Transition rules for networks

(InScopeN)
l(σ) ∈ rangen(ℓ), id(σ) ̸∈ N

P :[[id, ℓ,N,H]] | Q:σ
µ−→ P :[[id, ℓ,N ∪ {id(σ)},H]] | Q:σ

(OutofScopeN)
l(σ) ̸∈ rangen(ℓ), id(σ) ∈ N

P :[[id, ℓ,N,H]] | Q:σ
µ−→ P :[[id, ℓ,N − {id(σ)}, H]] | Q:σ

(InScopeH)
l(σ) ∈ rangeh(ℓ), id(σ) ̸∈ H

P :[[id, ℓ,N,H]] | Q:σ
µ−→ P :[[id, ℓ,N,H ∪ {id(σ)}]] | Q:σ

(OutofScopeH)
l(σ) ̸∈ rangeh(ℓ), id(σ) ∈ H

P :[[id, ℓ,N,H]] | Q:σ
µ−→ P :[[id, ℓ,N,H − {id(σ)}]] | Q:σ

(Broadcast1)
M1

b(w,t,ṽ,tl,ℓ)−→ M ′
1,M2

r(id,t,ṽ,ℓ′)−→ M ′
2, comp(w, id), ℓ′ ∈ rangetl(ℓ)

M1 | M2
b(w,t,ṽ,tl,ℓ)−→ M ′

1 | M ′
2

(Broadcast2)
M1

b(w,t,ṽ,tl,ℓ)−→ M ′
1 and M2

r(id,t,ṽ,ℓ′)9 ∀id′, ℓ′ · comp(w, id′), ℓ′ ∈ rangetl(ℓ)

M1 | M2
b(w,ℓ,l,t,ṽ)−→ M ′

1 | M2

(Receive)
M1

r(id,ℓ,t,ṽ)−→ M ′
1 and M2

b(w,t,ṽ,tl,ℓ′)9 ∀w, ℓ′, tl · comp(w, id), ℓ ∈ rangetl(ℓ
′)

M1 | M2
r?(id,ℓ,t,ṽ)−→ M ′

1 | M2

(Hide1)
M

α−→ M ′ and type(α) ̸∈ T

M\T α−→ M ′\T

(Hide2)
M

α−→ M ′ and type(α) ∈ T

M\T τ−→ M ′\T

(Par)
M1

α−→ M ′
1, α ∈ {τ, µ}

M1 | M2
α−→ M ′

1 | M2

(Struct)
M1 ≡ M2,M2

α−→ M ′
2,M

′
2 ≡ M ′

1

M1
α−→ M ′

1

stead, only located processes can emit an r(. . .) action and for the system above we have:

M | [b(−, t, ṽ,n).S]:σ ≡ [r(t, x̃).P]:σ1 | ([r(t, ỹ).Q]:σ2 | [b(−, t, ṽ,n).S]:σ)

and since [r(t, ỹ).Q]:σ2 | [b(−, t, ṽ,n).S]:σ
b(−,t,ṽ,n,l(σ))−→ [Q{ṽ/ỹ}]:σ2 | S:σ, then

[r(t, x̃).P]:σ2 | ([r(t, ỹ).Q]:σ2 | [b(−, t, ṽ,n).S]:σ)
b(−,t,ṽ,n,l(σ))−→ [P{ṽ/x̃}]:σ1 | ([Q{ṽ/ỹ}]:σ2 | S:σ)

and by (Struct), M | [b(−, t, ṽ,n).S]:σ
b(−,t,ṽ,n,l(σ))−→ ([P{ṽ/x̃}]:σ1 | [Q{ṽ/ỹ}]:σ2) | S:σ.

For restriction (rules (Hide1) and (Hide2)) we observe that the effect of restricting a set
of types T within a process is to transform all actions involving messages of the restricted
set into internal actions.

2.3 Bisimulation

In the next three sections we build some machinery for reasoning about networks described
in CSDT. First, let us recall that Q is a derivative of P , if there exist actions α1, . . . , αn,

8

Table 5: The “discards” relation

(D1)
α ∈ Act− {µ}

0:σ
α9

(D2)
α ∈ Act− {τ, µ}

(τ.P):σ
α9

(D3)
α ̸∈ {b(w, t, ṽ, tl, l(σ)), µ}

(b(w, t, ṽ, tl).P):σ
α9

(D4)
α ̸∈ {r(id(σ), t, ṽ, l(σ)), µ}

(r(t, x̃).P):σ
α9

(D5) M1
α9 ∧ M2

α9
M1 | M2

α9
(D6) P1:σ

α9 ∧ P2:σ
α9

(P1 + P2):σ
α9

(D7) Pi:σ
α9

(cond (e1 � P1, . . . , en � Pn)):σ
α9

ei � true, ∀j < i, ej � false

(D8)
[P :{ṽ/x̃}]:σ α9
[C⟨ṽ⟩]:σ α9

, C⟨x̃⟩ def
= P (D9) α ∈ Act

0
α9

(D10)
M

α9 or type(α) ∈ T

M\T α9

n ≥ 0, such that P
α1−→ . . .

αn−→ Q. Moreover, we define weak transitions as follows: given

an action α we write P =⇒ Q for P (
τ,µ−→)∗Q, P

α
=⇒ Q for P =⇒ α−→=⇒ Q, and P

α̂
=⇒ Q

for P =⇒ Q if α ∈ {τ, µ}, P r(id,ℓ,t,ṽ)
=⇒ Q, if α = r?(id, ℓ, t, ṽ), and P

α
=⇒ Q otherwise.

The first useful tool which accompanies CSDT is a notion of observational equivalence.
Below we introduce the relation on which we base our study.

Definition 2.1 Bisimilarity is the largest symmetric relation, denoted by ≈, such that, if

P ≈ Q and P
α−→ P ′, there exists Q′ such that Q

α̂
=⇒ Q′ and P ′ ≈ Q′.

We may prove that bisimilarity is a congruence relation:

Lemma 2.2 If P :σ ≈ Q:σ and Pi:σ ≈ Qi:σ for i ∈ {1, . . . , n}, then the following hold:

1. (η.P):σ ≈ (η.Q):σ

2. (P1 +Q):σ ≈ (P2 +Q):σ

3. cond (e1 � P1, . . . , en � Pn):σ ≈ cond (e1 �Q1, . . . , en �Qn):σ

Moreover, if M1 ≈ M2:

4. M1|M ≈ M2|M

5. M1\T ≈ M2\T

Proof: Properties 1-3 as well as 5 are easy to prove by establishing the appropriate
relations. Below we present the proof of 4. Consider

R = {(M1|M,M2|M)|M1 ≈ M2}

Let (M1|M,M2|M) ∈ R and suppose M1|M
α−→ M ′

1|M ′. We need to show that M2|M
α̂

=⇒
M ′

2|M ′′), where (M ′
1|M ′,M ′

2|M ′′) ∈ R. The proof is a case analysis on the possible transi-
tions.

9

• Suppose α ∈ {τ, µ} and M1|M
α−→ M ′

1|M where M1
α−→ M ′

1. Then, M2 =⇒ M ′
2 ≈

M ′
1, M2|M =⇒ M ′

2|M where (M ′
1|M,M ′

2|M) ∈ R as required. The proof is similar if

M
τ−→ M ′.

• Suppose α = r?(id, t, ṽ, ℓ) where M1
α−→ M ′

1 and M ̸ β−→ for any broadcasting action β

which matches α. Since M1 ≈ M2, M2
α

=⇒ M ′
2 ≈ M ′

1 and obviously (M ′
1|M,M ′

2|M) ∈
R. The case is similar in the case that action α is executed by M .

• Suppose α = b(w, t, ṽ, tl, ℓ), M1|M
α−→ M ′

1|M ′, where M1
α−→ M ′

1 and

M ≡ (M1,1|(M1,2| . . . |(Mi,k|M∗) . . .))\T,

where M1,i
r(i,t,ṽ,ℓi)−→ M ′

1,i, comp(w, i), ℓi ∈ rangetl(ℓ), M
∗ ̸r?(i,t,ṽ,ℓ′)−→ , comp(w, i), ℓ′ ∈

rangetl(ℓ), and
M ′ ≡ (M ′

1,1|(M ′
1,2| . . . |(M ′

i,k|M∗) . . .))\T.

Since M1 ≈ M2, M2
b(w,t,ṽ,tl,ℓ)

=⇒ M ′
2 ≈ M ′

1. Furthermore, M2|M ≡ S, where S
def
=

((. . . ((M2|M1,1)|M1,2)| . . . |Mi,k)|M∗)\T and since

S
α

=⇒ ((. . . ((M ′
2|M ′

1,1)|M ′
1,2)| . . . |M ′

i,k)|M2)\T ≡ M ′
2|M ′,

we conclude that (M ′
1|M ′,M ′

2|M ′) ∈ R as required. The case where the roles of M1

and M are swapped is similar.

This completes the proof. 2

It is also worth pointing out that we may establish the following interesting property of
mobile nodes pertaining to their ubiquitous nature, namely:

Lemma 2.3 For any process P with identifier id, locations ℓ and ℓ′ and N,H ⊆ L, if
(ℓ, ℓ) ∈ Nb+, where Nb+ is the transitive closure of relation Nb, then

P [[id, ℓ,N,H]] ≈ P [[id, ℓ′, N,H]].

Proof: The proof involves showing that

S = {(P [[id, ℓ,N,H]], P [[id, ℓ′, N,H]])| for all P, id, ℓ, ℓ′, N,H} ∪ Id

is a bisimulation relation where Id is the identity relation on networks. This is easy to
establish by noting that P [[id, ℓ,N,H]] =⇒ P [[id, ℓ′, N,H]] by application of rule (Move) to
achieve the migration between locations ℓ and ℓ′. 2

Typically, bisimulation relations are used to establish that a system satisfies its speci-
fication by describing the two as process-calculus processes and discovering a bisimulation
that relates them. Their theory has been developed into two directions. On the one hand,
sound and complete axiom systems have been developed for establishing algebraically the
equivalence of processes. On the other hand, proof techniques that ease the task of show-
ing two processes to be equivalent have been proposed. The results presented in the next
section belong to this latter type.

10

2.4 Confluence

In this section we develop the notion of confluence in our calculus. We recall that a pro-
cess is confluent if, from each of its reachable states, “of any two possible actions, the
occurrence of one will never preclude the other” [9]. As shown in [9, 8] for pure CCS, and
generalized in other calculi (e.g. [3, 19, 4, 12, 15, 13]), confluence implies determinacy
and semantic-invariance under internal computation, and it is preserved by several system-
building operators. These facts make it possible to reason compositionally that a system
is confluent and to exploit this fact while reasoning about its behavior. In particular, for
a certain class of confluent processes, in order to check that a property is satisfied in ev-
ery execution of the system it suffices to show that it is satisfied by a single (arbitrary)
execution.

We now turn to consider the notion of confluence in our calculus. We begin with the
notion of determinacy which makes use of the following notation: given actions α and α′

we write α ◃▹ α′ if α and α′ differ only in their specified location, i.e. α′ = α[ℓ′/ℓ], for some
ℓ and ℓ′.

Definition 2.4 M is determinate if, for every derivative M ′ of M and for all actions α,

α′, α ◃▹ α′, whenever M ′ α−→ M1 and M ′ α̂′
=⇒ M2 then M1 ≈ M2.

This definition makes precise the requirement that, when an experiment is conducted
on a process, it should always lead to the same state up to bisimulation. This is irrespective
of the location at which the action is taking place which explains the use of the ◃▹ operator.
As an example, consider processes

M1
def
= b(−, t, ṽ,n).0:[[1, ℓ, {2}, {2}]]

M2
def
= (r(t, x̃).b(−, s, x̃,h).0,):[[2, ℓ, {1}, {1}]]

We observe that M1 is determinate, whereas M1 | M2 is not: Assuming that ℓ ̸∈ rangen(ℓ
′),

M1 | M2
b(−,t,ṽ,n,ℓ)−→ M

def
= 0:[[1, ℓ, . . .]] | b(−, s, x̃,h).0:[[2, ℓ, . . .]]

M1 | M2
µ−→b(−,t,ṽ,n,ℓ′)−→ M ′ def= 0:[[1, ℓ′, . . .]] | (r(t, x̃).b(−, s, x̃,h).0):[[2, ℓ, . . .]]

and M ̸≈ M ′.
As in pure CCS, a CSDT process bisimilar to a determinate process is determinate,

and determinate processes are bisimilar if they may perform the same sequence of visible
actions. The following lemma summarizes conditions under which determinacy is preserved
in CSDT networks.

Lemma 2.5

1. If P :σ is determinate then so is (η.P):σ.

2. If P1:σ + . . .+ Pn:σ is determinate then so is cond (e1 � P1, . . . , en � Pn):σ.

Proof: The proof follows easily and it employs Lemma 2.3. 2

In the case of (2), we point out that the determinacy of each of the Pi:σ is not sufficient
for the determinacy of cond (e1 � P1, . . . , en � Pn):σ. As a counter-example, consider the
process

S
def
= cond (2 ∈ N � b(−, t, 1,h).0, 2 ̸∈ N � b(−, t, 1,h).b(−, t, 1,h).0)[[1, ℓ, {2}, ∅]]

11

where 2 ̸∈ rangen(ℓ). This is due to the fact that, while in S the first case of the condition

is enabled, it is possible that S
µ−→ (...)[[1, ℓ, ∅, ∅]], and, thereby, the second case of the

conditional is enabled.
We point out that determinacy is not preserved by parallel composition. This is il-

lustrated by the composition M1 | M2 discussed above. Notably, determinacy is also not
preserved by restriction. For instance, if we take

M
def
= (b(−, t, ũ,n).M1 + b(−, t, ṽ, n).M2):[[id, ℓ,N,H]]

with M1 and M2 determinate networks with t ̸∈ types(M1)∪types(M2) such that M1 ̸≈ M2,
we have that M is determinate but M\{t} is not: M\{t} τ−→ M1\{t}, M\{t} τ−→ M2\{t}
and M1\{t} ̸≈ M2\{t}.

In order to strengthen determinacy into a notion preserved by a wider range of operators,
and, in particular, parallel composition Milner [9] introduced the notion of confluence.
According to the definition of [9], a CCS process P is confluent if it is determinate and, for
each of its derivatives Q and distinct actions α, β, given the transitions to Q1 and Q2, the
following diagram can be completed.

Q
α−→ Q1

β ⇓ β̂ ⇓
Q2

α̂
=⇒ Q′

2 ∼ Q′
1

The study of confluence was extended and generalized in various other calculi. It is
interesting to note that, in value-passing calculi, a restriction was imposed on the above
definition so that α and β are not inputs on the same channel, thus, allowing to consider

a process such as P
def
= a(x). b(x).0 to be confluent, despite that fact that transitions such

as P
a(2)−→ b(2).0 and P

a(3)−→ b(3).0 cannot be ‘brought together’ in order to complete the
diagram above. Despite this fact, it appears natural to classify P as a confluent process.
Indeed, investigation of confluence in the context of value-passing calculi resulted in ex-
tending the CCS definition above to take account of substitution of values [17, 19]. The
definitions highlight the asymmetry between input and output actions by considering them
separately.

In the context of our work, we also choose to treat emissions and receipts of messages
differently. In particular, regarding the receipt of messages we note that receipt of messages
of ad hoc network nodes is continuously enabled and the receipt of a certain message does
not preclude the receipt of another. It is however often the case that at some point certain
messages are not/no longer relevant for a computation and are discarded without affecting
a node’s execution. We take this into account as follows:

Definition 2.6 M is confluent if it is determinate and, for each of its derivatives M ′ and

distinct actions α, β, where additionally ¬(α ◃▹ β), whenever M ′ α−→ M1 and M ′ β
=⇒ M2

then,

1. if α = r(id, t, ũ, ℓ) and β = r(id, t, ṽ, ℓ′), then, either (1) M1 ≈ M2, or (2) M1
β

=⇒
M ′

1 ≈ M2, or (3) M2
α

=⇒ M ′
2 ≈ M1, or (4) M1

β
=⇒ M ′

1, M2
α

=⇒ M ′
2, and M ′

1 ≈ M ′
2,

2. otherwise, there are M ′
1 and M ′

2 such that M2
α̂

=⇒ M ′
2, M1

β̂
=⇒ M ′

1 and M ′
1 ≈ M ′

2

We point out that in the first clause of the definition, case (1) refers to the case that
both messages are in fact nonsignificant to the process, cases (2) and (3) refer to the case

12

where only one of the two messages is relevant and case (4) to the case when receipt of the
one does not preclude receipt of the other.

We may see that bisimilarity preserves confluence. Furthermore, confluent processes
possess an interesting property regarding internal actions. We define a process P to be
τ -inert if, for each derivative Q of P , if Q

τ−→ Q′ or Q
µ−→ Q′, then Q ≈ Q′. By a

generalization of the proof in CCS, we obtain:

Lemma 2.7 If M is confluent then M is τ -inert.

We proceed with a result on the preservation of confluence by CSDT operators.

Lemma 2.8

1. if P :σ is confluent then so are (τ.P):σ and (b(w, t, x̃, tl).P):σ.

2. If P1:σ + . . .+ Pn:σ is confluent, then so is cond (e1 � P1, . . . , en � Pn):σ.

3. If M is confluent, then so is M\T .

We note that the cases of the input prefix and parallel composition are missing from our
result. Regarding input prefix, it is not difficult to see that, in general, the diamond property
of confluence need not be completed for distinct inputs. Of course, this does not imply that
no input-prefixed process is confluent. For instance, consider process C⟨A⟩ : σ, where

C⟨A⟩ def
= r(t, x).C⟨A− {t, x}⟩, A ̸= ∅

C⟨A⟩ def
= 0, if A = ∅

This process is confluent since any two inputs can be brought together to the same A-
derivative. Indeed, this is the intended interpretation for confluence in our study and in
fact this is the type of processes that we deal with in our case study.

In the case of η.P where η is an output action, it is interesting to note that the confluence
diagram can be completed despite of node mobility. For example, assuming that l(σ) = ℓ,

although M
def
= [b(w, t, x̃, tl).P]:σ can perform actions M

b(w,t,x̃,tl,ℓ)−→ M1 = P :σ and

M
µ−→ [b(w, t, x̃, tl).P)]:σ[ℓ′/ℓ]

b(w,t,x̃,tl,ℓ′)−→ M2 = P :σ[ℓ′/ℓ],

we have b(w, ℓ, t, x̃) ◃▹ b(w, ℓ′, t, x̃) thus the confluence of the process is not endangered.
For the case of parallel composition, if we take

M1 = (r(t, x).b(−, success, x,n).P):[[1, ℓ, {2}, {2}]]
M2 = (b(−, t, ṽ, n).0):[[2, ℓ, {1}, {1}]],

we have that although M1 and M2 are both confluent, their composition is not: Assuming
that ℓ ̸∈ rangen(ℓ

′), we have

M1|M2
b(−,success,ṽ,n,ℓ)−→ M = b(−, success, ṽ,n).P):[[1, ℓ, {2}, {2}]]|0:[[2, ℓ, {1}, {1}]]

M1|M2
µ−→b(−,success,ṽ,n,ℓ′)−→ M ′ = M1|0:[[2, ℓ′, {1}, {1}]]

and clearly M ̸≈ M ′.

13

2.5 Bisimulation and Confluence in Stationary Systems

Our discussion in the previous section has illustrated that the main obstacle in establishing
the compositionality of confluence with respect to parallel composition, as well as other
operators, is that of node mobility. Since during the verification of ad hoc network systems
correctness criteria focus on the behavior of systems once they become stable for a sufficient
amount of time, in what follows we develop a theory of partial confluence that focuses on
system behavior not involving the use of the µ action. This restriction gives rise to notions
of bisimulation, determinacy and confluence in stationary systems and allows for providing
a compositional theory of confluence.

We begin by defining a notion of weak transition, which we call a stationary weak
transition, that permits τ actions and excludes µ actions: Given an action α we write

P =⇒s Q for P (
τ−→)∗Q, P

α
=⇒s Q for P =⇒s

α−→=⇒s Q, and P
α̂

=⇒s Q for P =⇒s Q if

α = τ , P
r(id,ℓ,t,ṽ)
=⇒ s Q, if α = r?(id, ℓ, t, ṽ), and P

α
=⇒s Q otherwise.

In a similar vein, the new notion of bisimilarity, S-bisimilarity matches the behavior of
equivalent systems excluding µ-actions:

Definition 2.9 S-Bisimilarity is the largest symmetric relation, denoted by ≈s, such that,

if P ≈s Q and P
α−→ P ′, α ∈ Act− {µ}, there exists Q′ such that Q

α̂
=⇒s Q

′ and P ′ ≈s Q
′.

It is easy to see that ≈⊂≈s. We may prove that:

Lemma 2.10 S-bisimilarity is a congruence relation.

Proof: The proof follows similarly to that of Lemma 2.2. 2

Based on the notion of S-confluence, we may define the notion of S-determinacy as
follows:

Definition 2.11 M is S-determinate if, for every derivative M ′ of M and for all actions
α ∈ Act− {µ}, whenever M ′ α−→ M1 and M ′ α

=⇒s M2 then M1 ≈s M2.

Lemma 2.12

1. If P :σ is S-determinate then so is (η.P):σ.

2. If Pi:σ, 1 ≤ i ≤ n, are S-determinate then so is cond (e1 � P1, . . . , en � Pn):σ.

3. If M is S-determinate then so is M\F .

Proof: The proof follows similarly to the case of Lemma 2.5. 2

As in the case of determinacy, S-determinacy is not preserved by parallel composition.
To ameliorate this fact we define S-confluence as follows.

Definition 2.13 M is S-confluent if it is S-determinate and, for each of its derivatives M ′

and distinct actions α, β, whenever M ′ α−→ M1 and M ′ β
=⇒s M2 then,

1. if α = r(id, t, ũ, ℓ) and β = r(id, t, ṽ, ℓ), then, either (1) M1 ≈s M2, or (2) M1
β

=⇒s

M ′
1 ≈s M2, or (3) M2

α
=⇒s M ′

2 ≈s M1, or (4) M1
β

=⇒s M ′
1, M2

α
=⇒s M ′

2, and
M ′

1 ≈s M
′
2,

2. otherwise, there are M ′
1 and M ′

2 such that M2
α̂

=⇒s M
′
2, M1

β̂
=⇒s M

′
1 and M ′

1 ≈s M
′
2

14

We may see that S-bisimilarity preserves S-confluence. Furthermore, S-confluent pro-
cesses possess the property that their observable behavior remains unaffected by τ actions.
In particular, we define a process P to be τs-inert if, for each derivative Q of P , if Q

τ−→ Q′,
then Q ≈s Q

′. We may prove:

Lemma 2.14 If M is S-confluent then M is τs-inert.

We proceed with a result on the preservation of confluence by CSDT operators.

Lemma 2.15

1. if P :σ is S-confluent then so are (τ.P):σ and (b(w, t, x̃, tl).P):σ.

2. If Pi:σ, 1 ≤ i ≤ n, are S-confluent, then so is cond (e1 � P1, . . . , en � Pn):σ.

3. If M is S-confluent, then so is M\T .

4. If M1 and M2 are S-confluent then so is M1 | M2.

Proof: We may show that any derivative M ′ of M is confluent by a case analysis on
the possible actions of M ′, similarly to [15]. 2

3 Specification and Verification of a Leader-Election Algo-
rithm

3.1 The algorithm

The algorithm we consider for our case study is the distributed leader-election algorithm
presented in [20]. It operates on an arbitrary topology of nodes with distinct identifiers and
it elects as the leader of the network the node with the maximum identifier.

We first describe the static version of the algorithm which assumes that no topology
changes are possible. We then proceed to extend this description to the mobile setting.
Note that in what follows we use the term ”neighbors” of a node to refer to the nodes that
fall within its normal transmission range, and the term ”heartbeat neighbors” for the nodes
that fall within its high transmission range.

In brief, the static algorithm operates as follows. In its initial state, a network node may
initiate a leader-election computation (note that more than one node may do this) or accept
leader-election requests from its neighbors. Once a node initiates a computation, it triggers
communication between the network nodes which results into the creation of a spanning
tree of the graph: each node picks as its father the node from which it received the first
request and forwards the request to its remaining neighbors. Each node awaits to receive
from each of its children the maximum identifier of the subtree at which they are rooted
and, then, forward it to its father. Naturally, the root will receive the maximum identifier
of the entire computation tree which is the elected leader. The leader is then flooded to the
entire network.

Note that if more than one node initiates a leader-election computation then only one
computation survives. This is established by associating each computation with a source
identifier. Whenever a node already in a computation receives a request for a computation
with a greater source, it abandons its original computation and it restarts a computation
with this new identifier.

In the mobile setting, it is easy to observe that with node mobility, crashes and failures
as well as network partitions and merges, the above algorithm is inadequate. To begin

15

with, let us note that once a leader is elected it emits so-called heartbeat messages to the
environment, which are essentially messages sent at a high transmission level. The absence
of a heartbeat message from its leader triggers a node to initiate a new computation of a
leader. Note that such an absence may just indicate that the node is outside of the high
transmission range of the leader even though they belong to the same connected component
of the network. However, this does not affect the correctness of the algorithm. Based on this
extension, computation proceeds as described by the static algorithm with the exception of
the following fine points:

• Losing a child node. If a node loses a child then it removes the child from the set
of nodes from which it expects an acknowledgement and continues its computation.

• Losing a parent node. If a node loses its father then it assigns itself the role of the
root of its subtree and continues its computation.

• Partition Merges. If two components of the system meet each other, they each
proceed with their computation (if they are still computing a leader) ignoring any
invitations to join the other’s computation. Once they elect their individual leaders
and start flooding their results, each adopts the leader with the largest identifier. An
exception to this is the case when the two nodes that have come into contact have the
same previous-leader field (a piece of information maintained in the mobile version of
the algorithm), in which case they proceed as with the static case with the highest
valued-computation being the winner.

3.2 Specification of the Protocol

In this subsection we model the algorithm in CSDT. We assume that messages exchanged
by the network nodes must be accompanied by one of the following types:

• election: messages of this type are invitations by a node to another to join its com-
putation.

• ack1: a message of this type notifies the recipient that the sender has agreed to enter
its computation and commits to forward the maximum identifier among its downward
nodes.

• ack0: a message a type notifies the recipient that the sender has not agreed to be one
of its children.

• leader: a message of this type announces the elected leader of a computation during
the flooding process.

• reply: a message of this type announces the computation in which a node participates.
Such messages are important for the following reason: If a node x departs from its
location, enters a new computation and returns to its previous location before its
initial neighbors notice its departure, these reply messages will provide these initial
neighbors that x is no longer part of their computation and thus they will no longer
expect x to reply.

• hbeat: a message of this type is emitted by a leader node.

16

In its initial state the algorithm is modeled by the process S consisting of a set of nodes
who possess a leader (although this leader may be outside of their range).

S
def
= (

∏
k∈K

Elected⟨bk, sk, leadk⟩:σk)\T,

where T = {election,ack0,ack1, leader, reply}. Thus, we restrict all but hbeatmessages
emitted by leader nodes which are the messages we wish to observe. Based on these messages
we will subsequently express the correctness criterion of the algorithm.

The description of the behavior of nodes can be found in Figure 1. We now proceed to
provide a step-by-step description of the specification.

A node in Elected possesses a leader, lead, a source, src, and a status, b, which records
whether the process needs to broadcast its leader. A node finds itself in this mode if it
possesses a leader who it believes to be available. It can perform the following actions:

1. If it has not done so already, that is b = 0, it may broadcast its leader via a leader
message, in which case b becomes equal to 1. If the node is a leader (i.e. id = lead)
it sends a heartbeat to notify its heartbeat neighbors of its availability. On the other
hand, if it observes the absence of its leader (condition lead ̸∈ H), it enters InComp
mode, wherein it begins a quest for a new leader with source its own identifier.

2. It may receive a leader broadcast from one of its neighbors. If the advertised leader
is greater than the node’s leader, it adopts it and it sets b = 0. If not, it ignores the
message.

3. It may emit a message of type reply and thus announce to its neighbors that it
participates in a computation with source s.

4. It may receive an election message which amounts to an invitation to enter a new
computation to elect a new leader. It accepts such a message only if the leader
announced in the invitation coincides with its own leader. Thus, it interprets this
message as the loss of its leader, a fact first realized by the source existing in the
message. In response, it enters the InComp mode with father the node who sent the
invitation and source the source provided in the invitation.

The InComp process has a number of parameters: c records whether the node needs to
broadcast a leader election invitation to its neighbors. The second parameter is the node’s
father to which eventually an ack1 message needs to be returned (unless the node itself
is the root of the tree). src and lead are the computation’s source and previous leader,
whereas max is the maximum identifier observed by the node, initially set as the node’s
own identifier. Sets R and A record the neighbors of the node that are expected to reply
and the neighbors to which an ack0 should be returned, respectively. Note that these sets
are regularly updated according to the node’s interface: we write R′ = R ∩ N, A′ = A ∩ N
and father ′ =father, if father∈ N, and NULL, otherwise. It is worth noting that at these
points (as well as others, e.g. ”father = id”, “lead ∈ H”), the ability of referring to the
node’s interface plays a crucial role for the specification of the protocol. Furthermore, the
fact that sets N and H are in fact the believed sets of neighbors and may contain errors is
realistic and it allows us to explore the correctness of the protocol in its full generality.

An InComp node behaves as follows:

1. If it has not done so already, that is c = 0, it may emit an election message to its
neighbors thus inviting them to enter its computation for a leader.

17

Elected⟨0, src, lead⟩ def
= b(−, leader, ⟨lead⟩,n).Elected⟨1, src, lead⟩

Elected⟨1, src, lead⟩ def
=

cond (lead = id ◃ b(−,hbeat, ⟨lead⟩,h).Elected⟨1, src, lead⟩,
lead ̸∈ H ◃ InComp⟨0, id, id,N, ∅, id, lead⟩)

+ r(leader, ⟨lead′⟩). cond (lead < lead′ ◃ Elected⟨0, src, lead′⟩,
true ◃ Elected⟨1, src, lead⟩)

+ b(−, reply, ⟨id, s⟩,n).Elected⟨1, src, lead⟩
+ r(election, ⟨j, l, s⟩). cond (l = lead ◃ InComp⟨0, j, s,N− {j}, ∅, id, lead⟩,

true ◃ Elected⟨1, src, lead⟩)

InComp⟨c,NULL, src,R,A,max, lead⟩ def
= InComp⟨c, id, src, R′, A′,max, lead⟩

InComp⟨1, father, src, ∅, ∅,max, lead⟩ def
=

cond (father = id ◃ Elected⟨0, src,max⟩,
true ◃ b(father,ack1, ⟨id, scr,max⟩,n).Leader⟨father, src,max, lead⟩)

InComp⟨c, father, src,R,A,max, lead⟩ def
=

cond (c = 0 ◃ b(−, election, ⟨id, lead, scr⟩,n). InComp⟨1, father′, scr,R′, A′,max, lead⟩)
+

∑
j∈A b(j,ack0, ⟨id⟩,n). InComp⟨1, father′, scr,R′, A′ − {j},max, lead⟩

+ r(election, ⟨j, l, s⟩).
cond (l = lead ∧ s > src ◃ InComp⟨0, j, s,N− {j}, ∅,max, lead⟩,

l = lead ∧ s = scr ◃ InComp⟨c, father′, scr,R′, A′ ∪ {j},max, lead⟩,
true ◃ InComp⟨c, father, scr,R′, A′,max, lead⟩)

+ r(ack0, ⟨j⟩). InComp⟨1, father′, src,R′ − {j}, A′,max, lead⟩
+ r(ack1, ⟨j, s,max′⟩).

cond (s = src ∧max′ > max ◃ InComp⟨c, father′, src, R′ − {j}, A′,max′, lead⟩,
s = src ∧max′ ≤ max ◃ InComp⟨c, father′, src, R′ − {j}, A′,max, lead⟩,
true ◃ InComp⟨c, father′, src,R′ − {j}, A′,max, lead⟩)

+ r(leader, ⟨l⟩). InComp⟨c, father′, src, R′, A′,max, lead⟩
+ r(reply, ⟨j, s⟩).

cond (src ̸= s ◃ InComp⟨c, father′, src,R′ − {j}, A′ − {j},max, lead⟩,
true ◃ InComp⟨c, father′, src, R′, A′,max, lead⟩)

+ b(−, reply, ⟨id, src⟩,n). InComp⟨c, father′, src, R′, A′,max, lead⟩

Leader⟨NULL, src,max, lead⟩ def
= Elected⟨0, src,maxi⟩

Leader⟨father, src,max, lead⟩ def
=

r(election, ⟨j, l, s⟩).
cond (l = lead ∧ s > src ◃ InComp⟨0, j, s,N− {j}, ∅,max, lead⟩,

true ◃ Leader⟨father′, src,max, lead⟩)
+r(leader, ⟨l⟩).Elected⟨0, src, l⟩
+b(−, reply, ⟨id, src⟩,n).Leader⟨father′, scr,max, lead⟩

Figure 2: The description of a node

2. It may send an ack0 message to inform a neighbor in set A that it will not enter its
election computation. Note that set A is initialized to 0 and it obtains members as a
result of election requests arriving at a node, as is explained below.

3. A node may receive an election message. If this originates from a neighbor j with the
same lead parameter (i.e. a node that was in the same neighborhood during the last
election and not a newly-arrived node) and a higher src parameter, then it accepts the
request and re-starts computation with an appropriate initialization of its fields. Note
that j becomes the father of the node. If the message was received from a neighbor

18

with the same lead and src parameters, that is a node in the same computation, it
stores j in the set A so as to inform j that it does not accept it as its father. If both
of the above fail, the node ignores the message.

4. A node may receive an ack0 message from a neighbor who does not accept it as its
father. As a result it removes the identifier of the neighbor from its set R.

5. A node may receive an ack1 message from a neighbor. Such a message contains
the maximum value of the subtree rooted at the sender. The receiving node accepts
this message only if originates from a neighbor with the same source (i.e. the same
computation) and, it adopts the received max′ value if this is greater than its own
max.

6. A node may receive leader announcements from its neighbors which it ignores.

7. A node may receive reply messages from its neighbors. If it observes that a neighbor
is involved in a computation with a different source it removes it from both its R and
A sets.

8. A node broadcasts to its neighbors a reply message containing its source.

9. If at any point during execution it loses its father then it sets itself as its father (thus
becoming the root of the tree under construction with respect to the leader election
taking place in its downwards nodes).

10. If a node has completed its computation, that is, its pending acknowledgments A have
been sent out and its children R have responded, then it sends an ack1 message to
its father containing the maximum identifier of its subtree and enters Leader therein
waiting to hear the announcement of the leader, or, if it is the root of its tree, it enters
Elected with leader its max parameter.

Finally, node Leader⟨father, src,max, lead⟩ awaits to be notified of the component’s
leader by its father father. It recalls its computation characterized by its source and
previous leader (src and lead) as well as the maximum node it has observed from its
downstream nodes, max. It behaves as follows:

1. It accepts an election message only if it originates from a node with the same leader
and a higher source.

2. It accepts leader messages and, in fact, it adopts the first leader that becomes avail-
able through such a message.

3. It announces its own status by broadcasting its source via reply messages.

4. In case of the loss of its father, the node enters the Elected with leader its value max.

3.3 Verification of the Protocol

The aim of our analysis is to establish that after a finite number of topology changes,
every connected component of the network, where connectedness is defined in terms of
neighborhood according to the normal transmission range, will elect the node with the
maximum identifier as its leader. Specifically, we consider an arbitrary derivative of S,
namely S1, where we assume that the topology known by all nodes of S1 is consistent with
the network’s state and we prove the following:

19

Theorem 3.1 S1 ≈s (
∏

k∈K Elected⟨1, s,maxk⟩:σk)\T where maxk is the maximum node
identifier in the connected component of node k.

In words, our correctness criterion states that, if at some point nodes stop moving,
all nodes will learn a leader which is the node with the maximum identifier within their
connected component. It is similar in spirit to the criterion of [20], where a temporal logic
proof is presented.

Moving on with the proof of the theorem, let us consider an arbitrary derivative of S.
This has the form:

S1 = (
∏
i∈E

Elected⟨bi, si, leadi⟩:σi|
∏
i∈L

Leader⟨fi, srci,maxi, leadi⟩:σi

|
∏
i∈C

InComp⟨ci, fi, srci, Ri, Ai,maxi, leadi⟩:σi)\T

We can prove by induction on the length of the computation S =⇒s S1 that:

• For all i, leadi,maxi ≥ id(σi);

• If j ∈ Ri and srcj = srci, then j ∈ C and i ∈ {fj} ∪Aj .

Furthermore, we assume that for all i, j, if i ∈ Nj then i ∈ rangen(j), and if i ∈ Hj then
i ∈ rangeh(j).

Recall that K is the set of network nodes, so, K = E ∪ L ∪ C. We partition K into
the sets Ng, g ∈ G, where for all g ∈ G and i, j ∈ Ng, there exists a path between i and
j, whereas, if i ∈ Ng and j ̸∈ Ng, there exists no path between i and j. These sets form
the neighborhoods of our algorithm, where independent computations are taking place. We
write Ng = Eg ∪Lg ∪Cg where Eg = Ng ∩E, Lg = Ng ∩L and Cg = Ng ∩C and we rewrite
process S1 by taking into account the network’s neighborhoods as S1 = (

∏
g∈GCCg)\T ,

where:

CCg = (
∏
i∈Eg

Elected⟨bi, si, leadi⟩:σi|
∏
i∈Lg

Leader⟨fi, srci,maxi, leadi⟩:σi

|
∏
i∈Cg

InComp⟨ci, fi, srci, Ri, Ai,maxi, leadi⟩:σi)\T

We begin to consider computation in each of the neighborhoods Ng, g ∈ G, of the
network and we establish that each such neighborhood will choose as its leader the maximum
identifier known by the nodes:

Lemma 3.2 CCg ≈s Spec1, where Spec1
def
= (

∏
i∈Ng

Elected⟨1, si,maxg⟩:σi)\T and maxg =

max{maxi|i ∈ Ng}.

The proof of this result has a similar flow to the proof of the static case of the algo-
rithm [1] but lifted from value-passing CCS to the new calculus and taking into account
mobility considerations. The proof deals with two important points: The first, concerns the
fact that various computations can independently take place within a neighborhood of the
network. This is because, according to the algorithm, computations with a distinct lead
parameter do not merge their computations until after they elect their leader. Therefore,
computation takes place on a forest as opposed to a tree, which is the case in the static

20

case. The second point is that the nodes comprising CCg are not themselves S-confluent,
therefore we cannot conclude the S-confluence of CCg by construction.

To deal with this, as in [1], the proof takes place in two steps. In the first step, we
consider a simplification of CCg, Fg, where each node x in Fg is associated with a specific
father-node being the unique node that x can accept as its father. We show that, by
construction and Lemma 2.15, Fg is an S-confluent process and we exhibit a stationary weak
transition which leads to Spec1. By Fg’s S-confluence and the fact that Fg =⇒s Spec1, we
conclude that Fg ≈s Spec1. Here we may observe the power of (S-)confluence: it is sufficient
to observe only a single execution of our system. Then, confluence guarantees that in fact
all possible executions lead to the same state up-to bisimulation and, then, by τs-inertness
the result follows. For the second step of the proof we show that whenever CCg =⇒s D
where exists a Fg (i.e. an assignment of fathers to nodes) that is similar to D. Since this
is true for any D we conclude that CCg cannot diverge from the behavior of the Fg’s and
also that it is destined to produce only their behavior. Hence, we may deduce that in fact
CCg ≈s Spec1 as required.

The restricted type of systems employed in the first phase of the proof use the following
processes:

Elected′⟨1, src, f, src′, lead⟩ def
=

. . .
+ r(election, ⟨j, l, s⟩). cond ((l = lead ∧ j = f ∧ s = src′ ∧ s ̸= id) ◃

InComp′⟨0, j, s, j, s,N− {j}, ∅, id, lead⟩
true ◃ Elected′⟨i, src, f, src′, lead⟩)

InComp′⟨c, father, src, f, src′, R,A,max, lead⟩ def
=

. . .
+ r(election, ⟨j, l, s⟩).

cond (l = lead ∧ src ̸= src′ ∧ j = f ∧ s = src′

◃ InComp′⟨0, j, s, j, s,N− {j}, ∅,max, lead⟩
l = lead ◃

InComp′⟨c, father′, scr, f, src′, R′ − {j}, A,max, lead⟩
true ◃ InComp′⟨c, father′, scr, f, src′, R′, A′,max, lead⟩)

+ . . .

Leader′⟨father, src, f, src′,max, lead⟩ def
=

r(election, ⟨j, l, s⟩).
cond (l = lead ∧ src ̸= src′ ∧ j = f ∧ s = src′

◃ InComp′⟨0, j, s, j, s,N− {j}, es,max, lead⟩
true ◃ Leader′⟨father′, scr, f, src′,max, lead⟩)

+ . . .

Thus, Elected′ is similar to Elected except that it may only be activated by a signal
from a specified node-source pair, (f, src′) unless src′ = id in which case it may only
initiate a computation. Similarly, InComp′ and Leader′ are similar to InComp and Leader,
respectively, except that they may only be activated by a signal from a specified node-source
pair, (f, src′) unless they are already in the specific computation.

Returning to a component CCg, we observe that it may contain a number of active
computations which will eventually merge into one. To begin with, nodes that have the
same leader and are within reach of each other will join into one computation tree and elect
the maximum available identifier as their leader. Subsequently, and after they reach the
state Elected they will start flooding their leader within the component with the overall
maximum identifier surviving the process as the component’s leader. To capture the forest

21

created at the first phase of the computation (note that there may be many of them) let
us write L = {leadi|i ∈ Ng} and Kl, l ∈ L, for the subset of Ng consisting of all nodes
with leader parameter l. Each Kl can be partitioned into a set of connected components
which we will denote by Km

l , m ∈ Ml. We point out that although the nodes of Ng are
connected to each other, it is possible that subsets of Ng with the same lead parameter
are not connected to each other (nodes with a different lead parameter may be lying in
between). We now define a set of agents F that capture these forests of computation that
may arise within a CCg, ranged over by Fg:

Fg
def
=

∏
l∈L

∏
m∈Ml

(
∏

i∈El,m

Elected′⟨bi, srci, fi, sl,m, l⟩:σi

|
∏

i∈Ll,m

Leader′⟨fatheri, srci, fi, sl,m,maxi, leadi⟩:σi

|
∏

i∈Cl,m

InComp′⟨ci, fatheri, srci, fi, sl,m, Ri, Ai,maxi, leadi⟩:σi)\T

where if mx = max{srci|i ∈ Ll,m ∪ Cl,m}, then sl,m ∈ {mx} ∪ {idi|i ∈ El,m, i > mxs}, and
for all i ̸= sl,m, fi ∈ Ni and {(idi, fi)|i ∈ Kl,−{sl,m}} is a spanning tree of the component
rooted at node sl,m.

We begin by showing:

Lemma 3.3 Fg =⇒s Spec1.

Proof. Let l ∈ L, m ∈ Ml, and Dl,m be the maximum distance of a node in Km
l from the

root sl,m of the spanning tree and let D = maxl,mDl,m. Fix sets Ad
l,m, 0 ≤ d ≤ Dl,m, such

that:

Ad
l,m =

{
{sl,m} d = 0

{i ∈ Km
l |fi ∈ Ad−1

l,m } d > 0

In other words, A1
l,m contains the nodes that have sl,m as their father, A2

l,m the nodes

whose father is a node of A2
l,m, and so on. We are particularly interested in subsets of these

sets containing those nodes that have not yet entered a computation initiated by sl,m. So
let us write B0

l,m for the nodes with identifier sl,m, that is, the future roots of the forest
of the network, that are either in state Leader or in state InComp⟨0, . . .⟩. Similarly, let
us write Bi

l,m for the subset of Ai
l,m containing those nodes that do not have sl,m as their

source. Further, let us write Chi = {j | fj = i} and F d, 0 ≤ d ≤ D for the process

F d def
=

∏
l∈L

∏
m∈Ml

(
∏

i∈El,m−(B0
l,m∪Bd

l,m)

Elected′⟨bi, srci, fi, sl,m, l⟩:σi

|
∏

i∈Ll,m−(B0
l,m∪Bd

l,m)

Leader′⟨fatheri, srci, fi, sl,m,maxi, leadi⟩:σi

|
∏

i∈Cl,m−(B0
l,m∪Bd

l,m)

InComp′⟨ci, fatheri, srci, fi, sl,m, Ri, Ai,maxi, leadi⟩:σi

|
∏

i∈(B0
l,m∪Bd−1

l,m)

InComp′⟨1, fi, sl,m, fi, sl,m,Ni − {fi}, ∅,maxi, leadi⟩:σi

|
∏

i∈Bd
l,m

InComp′⟨0, fi, sl,m, fi, sl,m,Ni − {fi}, ∅,maxi, leadi⟩:σi)\T

22

We may see that
Fg = F 0 =⇒s F

1 =⇒s . . . =⇒s F
D .

The first move F 0 =⇒s F
1 concerns the emission of an election request by all nodes in B0

l,m.

As a result of this broadcast all these nodes will enter state InComp′⟨1, . . .⟩. Simultaneously,
all nodes at broadcasting distance from these nodes, will accept the invitation and become
InComp′⟨0, sl,m, sl,m, . . .⟩, as required. Similarly, at subsequent moves, nodes at distance i
will forward the invitations to their neighbors, leading the computation to FD.

At this point, all pending leader requests can be sent and ack0 acknowledgements can
be returned, and any reply messages can be emitted yielding FD =⇒s

GD def
=

∏
l∈L

∏
m∈Ml

(InComp′⟨1, sl,m, sl,m, sl,m, sl,m, Chi, ∅,maxi, leadi⟩:σi

|
∏

i∈Ll,k−{sl,m}

InComp′⟨1, fi, sl,m, fi, sl,m, Chi, ∅,maxi, leadi⟩:σi)\T

Now, let us write Gd, 1 ≤ d ≤ D, for the process

Gd def
=

∏
l∈L

∏
m∈Ml

(InComp′⟨1, sl,m, sl,m, sl,m, sl,m, Chi, ∅,maxi, leadi⟩:σ

|
∏

i∈Ad
l,m

InComp′⟨1, fi, sl,m, fi, sl,m, ∅, ∅,maxi, leadi⟩:σi

|
∏

i∈Ad+1
l,m ∪...∪A

Dl,m
l,m

LeaderMode′⟨fi, si, fi, si,mxi, leadi⟩)\T

where mxi is the maximum max-identifier of all nodes in the subtree rooted at node i. It
is easy to see that

GD =⇒s G
D−1 =⇒s . . . =⇒s G

1 .

In particular, for any 0 ≤ d < D, Gd =⇒s G
d−1 consists of the emission of all ack1-messages

by all nodes in Ad
l,m. Since ∪l,mAd

l,m contains exactly the children of all nodes in ∪l,mAd−1
l,m

we may confirm the move.
Now, similarly, G1 =⇒s G

0, where

G0 def
=

∏
l∈L

∏
m∈Ml

(Elected′⟨0, sl,m, sl,m, sl,m, leadl,m⟩:σ

|
∏

i∈Kl,m−{sl,m}

LeaderMode′⟨fi, si, fi, si,mxi, leadi⟩)\T

where leadl,m is the maximum max-identifier existing in Kl,m. It is now trivial to see that
flooding of leader messages will result in the adoption of the maximum leadl,m by all nodes
in the component, so that

G0 =⇒s Spec1

as required.
2

We may now observe that Fg is an S-confluent process:

23

Lemma 3.4 Fg is S-confluent.

Proof. We may check that processes InComp′, Leader′ and Elected′, are S-confluent by
construction. Thus, by Theorem 2.15 the result follows. 2

Given the S-confluence of Fg and Lemma 2.14 we conclude that:

Corollary 3.5 For all Fg ∈ Fg, Fg ≈s Spec1.

Having used confluence to analyze the behavior of Fg, we can now relate it to that of
CCg. Let P range over derivatives of CCg and T range over derivatives of Fg. First, we
introduce a notion of similarity between derivatives of Fg and CCg. We say that P and
T are similar if the computation sources nodes in T are eligible source nodes in P and
additionally, the set of nodes in P that have this source form a subtree of the spanning
tree of T . All such nodes are in the same state in both P and T with the exception of
InComp and Leader nodes of P that are not part of a sl,m computation: in T these nodes
are awaiting to be awoken from their father in order to enter the computation. The precise
definition is as follows:

Definition 3.6 Let

P
def
=

∏
l∈L

∏
m∈Ml

(
∏

i∈El,m

Elected⟨bi, si, l⟩:σi|
∏

i∈Ll,m

Leader⟨fi, srci,maxi, l⟩:σi

|
∏

i∈Cl,m

InComp⟨ci, fi, srci, Ri, Ai,maxi, l⟩:σi)\T

and

T
def
=

∏
l∈L

∏
m∈Ml

(
∏

i∈E1
l,m

Elected′⟨bi, si, fi, sl,m, l⟩:σi

|
∏

i∈Ll,m

Leader′⟨fatheri, srci, fi, sl,m,maxi, l⟩:σi

|
∏

i∈C1
l,m

InComp′⟨ci, fi, sl,m, fi, sl,m, Ri, Ai,maxi, l⟩:σi

|
∏

i∈C2
l,m∪E2

l,m

InComp′⟨0, fi, sl,m, fi, sl,m,Ni, ∅,maxi, l⟩:σi)\T

where

• if mxs = max{srci|i ∈ Ll,k ∪ Cl,k}, then sl,m ∈ {mxs} ∪ {idi|i ∈ El,k, i > mxs},

• for all i ̸= sl,m, fi ∈ Ni and {(idi, fi)|i ∈ Kl,k − {C1
l,m} is a spanning tree of the

component rooted at node sl,m,

• E1
l,m = {i ∈ El,m|si = sl,m} and E1

l,m = {i ∈ El,m|si ̸= sl,m}, and

• C1
l,m = {i ∈ Cl,m|si = sl,m} and C1

l,m = {i ∈ Cl,m|si ̸= sl,m}.

Then we say that P and T are similar processes.

Lemma 3.7 R = {⟨T, P ⟩|P and T are similar} is a strong simulation.

24

Proof. An observation of each of the nodes makes it obvious that any action a node can
perform within T , it can also perform it within P . This leads us to the conclusion that any
T −→ T ′ can be mimicked by P −→ P ′ with T ′ and P ′ similar processes. 2

Our next result establishes a correspondence between CCg and agents Fg ∈ Fg.

Lemma 3.8 If CCg
w

=⇒s P then there exists Fg such that, Fg
w

=⇒s T and P and T are
similar.

Proof. Suppose

CCg
def
=

∏
l∈L

∏
m∈Ml

(
∏

i∈El,m

Elected⟨bi, si, l⟩:σi|
∏

i∈Ll,m

Leader⟨fi, srci,maxi, l⟩:σi

|
∏

i∈Cl,m

InComp⟨ci, fi, srci, Ri, Ai,maxi, l⟩:σi)\T

and

P
def
=

∏
l∈L

∏
m∈Ml

(
∏

i∈E′
l,m

Elected⟨bi, si, l⟩:σi|
∏

i∈L′
l,m

Leader⟨fi, srci,maxi, l⟩:σi

|
∏

i∈C′
l,m

InComp⟨ci, fi, srci, Ri, Ai,maxi, l⟩:σi)\T

where CCg
w

=⇒s P . We say that Fg ∈ F , is compatible with the computation, if

Fg
def
=

∏
l∈L

∏
m∈Ml

(
∏

i∈E1
l,m

Elected′⟨bi, si, fi, sl,m, l⟩:σi

|
∏

i∈Ll,m

Leader′⟨fatheri, srci, fi, sl,m,maxi, l⟩:σi

|
∏

i∈C1
l,m

InComp′⟨ci, fi, sl,m, fi, sl,m, Ri, Ai,maxi, l⟩:σi

|
∏

i∈C2
l,m∪E2

l,m

InComp′⟨0, fi, sl,m, fi, sl,m,Ni, ∅,maxi, l⟩:σi)\T

where Fg is similar to CCg and, if mxs = max{srci|i ∈ L′
l,k ∪ C ′

l,k}, then sl,m ∈ {mxs} ∪
{idi|i ∈ E′

l,k, i > mxs}.
We will prove the result by induction on the length, n, of the transition CCg

w
=⇒s P .

The base case n = 0 is trivially true for any Fg ∈ Fg. Suppose that the result holds for

n = k − 1 and consider CCg
w

=⇒s P
′ α−→ P a transition of length k. Let Fg be compatible

with the computation. Then, Fg is also compatible with the computation CCg
w

=⇒s P
′ and,

by the induction hypothesis, Fg
w

=⇒s T ′ where P ′ and T ′ are similar. Now, consider the

transition P ′ α−→ P . The following cases exist:

• α = τ and the internal action does not involve a source sl,m. Then, we may see that

for T = T ′, T ′ ϵ
=⇒s T

′ with P and T being similar.

• α = τ and the internal action involves a source sl,m. Then, using a case analysis
similar to the one found in the proof of Lemma 3.7, we may find appropriate T such
that T ′ τ−→ T and T , P similar.

25

• α = b(−,hbeat, leadi,h). Then there must exist a process Elected(1, si, leadi) in P ′

and P = P ′. But then, the same process must exist in T ′ and clearly T ′ α−→ T ′. Since
P ′ and T ′ are similar this completes the case.

2

We can now prove our main theorem. We have seen that CCg =⇒s Spec1. Further,

suppose that P0
α

=⇒s with α ̸= leader(max). Then, there exists T0 such that T0
α

=⇒s.
However, this is in conflict with Corollary 3.5. Finally, for the same reason, it is not
possible that P0 =⇒s P

′
1 ̸−→. This implies that P0 ≈s T0, as required.

We prove the following result:

Lemma 3.9 CCg ≈s Spec1.

Proof: Consider the relation

R = {(P, S) | CCg
w−→ P, ∃Fg ∈ Fg · Fg

w−→ T where P, T are similar, and

Spec
w

=⇒s S ≈s T}

We may prove that R is a weak bisimulation. Let (P, S) ∈ R and:

• Suppose P
α−→ P ′, then, by Lemma 3.8 there exists Fg ∈ Fg such that Fg

w−→ T
α−→

T ′ where P ′ is similar to T ′. Since Fg ≈s Spec1, S ≈s T , there exists T ′′ such that

Fg
w−→ T ′′ and T ′′ ≈s S. By the S-confluence of Fg we have that T ≈s T

′′ and T ≈s S.

This implies that S
α

=⇒s S
′ ≈s T

′, as required.

• Suppose S
α−→ S′.Then, T

α−→ T ′ where S′ ≈s T ′. Since P simulates T , P
α

=⇒s P ′

where P ′ simulates T ′, as required

This implies that R is a weak bisimulation and, since CCg, Spec1) ∈ R, this completes the
proof. 2

Bearing in mind that network S1 is a composition of the components CCg, each con-
cerning a distinct communication neighborhood of the network, confluence arguments allow
us to deduce the following:

Lemma 3.10 S1 ≈s S2, where S2
def
= (

∏
g∈G

∏
i∈Ng

Elected⟨1, si,maxg⟩):σi)\T and maxg =

max{maxi|i ∈ Ng}.

Now two cases exist: Either the maxg are nodes located in the neighborhoods CCg, or
they are nodes that, although existed in the components in the past, they no longer reside
in the component. By the same arguments applied for S1, and the fact that all nodes of
the network will now begin computation with max = id, we conclude that:

Lemma 3.11 S2 ≈s S3, where S3
def
= (

∏
g∈G

∏
i∈Ng

Elected⟨1, si,maxg⟩:σi)\T where maxg =

max{idi|i ∈ Ng}.

This gives us the correctness of Theorem 3 and completes the proof. 2

4 Conclusions

In this paper we have introduced a process calculus for reasoning about systems with dy-
namic interconnections and their protocols. A salient aspect of the calculus is its ability to
encode a protocol that manages topology (e.g. discovery of neighbors) thus enabling one to

26

focus on the details of an algorithm at hand while abstracting from topology computations.
The change in the physical topology is discovered by the semantics non-deterministically
via internal actions in a way similar to the implementation of the movement of nodes that
cause these topology changes.

Communication in our calculus takes place via a broadcast-style of messages which also
implements point-to-point communication. This type of communication is used to model
the broadcasting of messages emitted for an intended recipient which often takes place in
real networks. Again here, we may imagine the existence of a lower-level protocol at each
node that filters among the received messages those intended for the node. Furthermore,
we have allowed nodes to broadcast their messages at two different transmission levels. As
illustrated via our case study, the ability to do so is not only useful with respect to saving
power but can also play an important role for protocol correctness. We point out that this
could easily be extended to a wider range of transmission levels by considering a set of
transmission levels T l and replacing sets N and H in a node’s interface by a relation I×T l.
Here we opt to implement two levels for the sake of simplicity and because this is already
sufficient for our case study. Finally, we have introduced the notion of a message type and
a hiding operator based on types. These message types are reminiscent of tags by which
various applications prefix different messages according to their roles and the restriction
operator then allows an observer to focus on a part of the message exchange. As illustrated
via our case study, this can be especially useful for analysis purposes and specifically for
expressing appropriate correctness criteria via bisimulations. In our case study, restriction
over types allowed us to focus on leader announcements emitted by leader nodes.

We have also developed a theory of confluence for our process calculus. This theory
is fairly simple when compared to similar theories for e.g. the π-calculus: the absence of
channels for communication and the broadcasting style of message transmission has removed
a number of considerations relating to confluence preservation. We believe that the results
can be extended to other calculi featuring a broadcasting style of communication. The
results we developed proved to be useful for reasoning about the leader-election algorithm
under study. They allowed us to conclude the confluence of the analyzed systems merely
by construction and then to deduce the desired bisimilarity via τ -inertness. This was a
significant aid for the proof since it permitted us to observe the system in a single execution
path which we selected based on our understanding of the algorithm. By confluence, we
then deduced that all executions lead to the same state up-to bisimulation.

We have illustrated the applicability of the new formalism via the analysis of a leader-
election MANET protocol. In [20], the authors also give a proof of their algorithm using
temporal logic: in particular they show a “weak form of stabilization of the algorithm”,
namely, that after a finite number of topological changes, the algorithm converges to a
desired stable state in a finite amount of time. As we do in our proof, they operate under
the assumption of no message loss. The same algorithm has also been considered in [18]
where its correctness was analyzed for a number of tree and ring-structured initial topologies
for networks with 5 to 8 nodes. In particular, it was shown automatically that it is possible
that eventually a node with the maximum id in a connected component will be elected as the
leader of the component and that every node connected to it via one or more hops will learn
about its election. The reachability nature of this result is due to the lossy communication
implemented in the ω-calculus resulting in no guarantees that a leader will be elected.

In conclusion, we believe that CSDT can be applied for specifying and verifying a
wide range of dynamic-topology protocols and that the theory of confluence can play an
important role in facilitating the construction of their proofs. This belief is supported by
our current work on specifying and verifying a MANET routing algorithm. In future work

27

we are planning to extend our framework in the presence of message loss.

References

[1] Ch. Georgiou, M. Gelastou, and A. Philippou. On the application of formal methods
for specifying and verifying distributed protocols. In Proceedings of NCA’06, pages
195–204. IEEE Computer Society, 2008.

[2] J. Ch. Godskesen. A calculus for mobile ad-hoc networks with static location binding.
Electronic Notes in Theoretical Computer Science, 242(1):161–183, 2009.

[3] J. F. Groote and M. P. A. Sellink. Confluence for process verification. In Proceedings
of CONCUR’95, LNCS 962, pages 152–168, 2005.

[4] X. Liu and D. Walker. Confluence of processes and systems of objects. In Proceedings
of TAPSOFT’95, LNCS 915, pages 217–231, 1995.

[5] M. Merro. An observational theory for mobile ad hoc networks. Information and
Computation, 207(2):194–208, 2009.

[6] M. Merro and E. Sibilio. A timed calculus for wireless systems. In Proceedings of
FSEN’09, Revised Selected Papers, LNCS 5961, pages 228–243, 2010.

[7] N. Mezzetti and D. Sangiorgi. Towards a calculus for wireless systems. Electronic
Notes in Theoretical Computer Science, 158:331–353, 2006.

[8] R. Milner. A Calculus of Communicating Systems. Springer, 1980.

[9] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[10] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts 1 and 2.
Information and Computation, 100:1–77, 1992.

[11] S. Nanz and C. Hankin. A framework for security analysis of mobile wireless networks.
Theoretical Computer Science, 367(1-2):203–227, 2006.

[12] U. Nestmann. On Determinacy and Non-determinacy in Concurrent Programming.
PhD thesis, University of Erlangen, 1996.

[13] A. Philippou and G. Michael. Verification techniques for distributed algorithms. In
Proceedings of OPODIS’06, LNCS 4305, pages 172–186, 2006.

[14] A. Philippou and D. Walker. On transformations of concurrent object programs. In
Proceedings of CONCUR’96, LNCS 1119, pages 131–146, 1996.

[15] A. Philippou and D. Walker. On confluence in the π-calculus. In Proceedings of
ICALP’97, LNCS 1256, pages 314–324, 1997.

[16] K. V. S. Prasad. A calculus of broadcasting systems. Science of Computer Program-
ming, 25(2-3):285–327, 1995.

[17] M. Sanderson. Proof Techniques for CCS. PhD thesis, University of Edinburgh, 1982.

[18] A. Singh, C. R. Ramakrishnan, and S. A. Smolka. A process calculus for mobile ad hoc
networks. In Proceedings of COORDINATION’08, LNCS 5052, pages 296–314, 2008.

28

[19] C. Tofts. Proof Methods and Pragmatics for Parallel Programming. PhD thesis, Uni-
versity of Edinburgh, 1990.

[20] S. Vasudevan, J. Kurose, and D. Towsley. Design and analysis of a leader election
algorithm for mobile ad hoc networks. In Proceedings of ICNP’04, pages 350–360.
IEEE Computer Society, 2004.

29

