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In this paper we propose PALPS, a Process Algebra with Locations for Population Systems. PALPS
allows us to produce spatially-explicit, individual-based models and to reason about their behavior.
Our calculus has two levels: at the first level we may define the behavior of an individual of a
population while, at the second level, we may specify a system as the collection of individuals of
various species located in space, moving through their life cycle while changing their location, if they
so wish, and interacting with each other in various ways such as preying on each other. We describe
the syntax and the semantics of PALPS and we illustrate its applicability via simple examples.

1 Introduction

During the last years we have witnessed an increasing trend towards the use of formal frameworks for
reasoning about biological as well as ecological systems including process algebras [14, 15, 11], cellular
automata [6] and P-systems [4]. Process algebras, first proposed in [13, 8] to aid the understanding
and reasoning about concurrent systems, have proved to provide a number of features that make them
amenable towards capturing biological processes. In particular, process algebras are especially suited
towards the so-called individual-based approach of modeling populations as they enable one to describe
the evolution of each individual of the population as a process and, subsequently, to compose a set of
individuals (as well as their environment) into a complete ecological system. Features such as time,
probability and stochastic behavior, which have been extensively studied within the context of process
algebras, can be exploited to provide more accurate models, while associated analysis tools can be used
to analyze and predict their behavior.

In this work, our aim is to introduce a process-algebraic framework equipped with the notion of a
location to enable spatially-explicit modeling of ecological systems. In particular, we propose a domain-
specific process algebra which associates individuals with information about their position and thus al-
lows to explore location-dependent behavior of a population system. There exists a variety of existing
work which introduces location behavior into formal frameworks. Amongst them, we mention [2, 9, 1]
which introduce the concept of a location into frameworks developed for reasoning about biological
processes. Relevant proposals that introduce locations in process algebras for reasoning about ad hoc
networks can be found in [12, 7, 10] while more recently [3] introduces a π-calculus equipped with the
notion of space. The novelty of our proposal is that it associates location information with population-
system specific behavior such as reproduction and preying. In the next section we present our process
calculus and in the final section we conclude with remarks on future work.
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2 The Process Calculus

In our calculus, PALPS (Process Algebra with Locations for Population Systems), we consider a system
as a set of individuals operating in space, each possessing a species and a location identifier. Movement
in the calculus is modeled via a specialized action whose effect is to change the location of an individual,
with the restriction that the originating and the destination locations are neighboring locations. The
notion of neighborhood is implemented via a relation Nb where (`,`′) ∈ Nb exactly when locations `
and `′ are neighbors.

2.1 The Syntax

We continue to formalize the syntax of PALPS. We begin by describing the basic entities of the calculus.
We assume a set of channels Ch, ranged over by a, b, as well as a set of locations Loc ranged over by
`, `′. Furthermore, we assume a set of special labels S corresponding to the species under consideration,
ranged over by s, s′. To model preying, we assume the existence of a relation Prey ⊆ S× S, where
(s,s′) ∈ Prey if individuals of species s prey on individuals of species s′.

Our calculus also employs a set of logical expressions ranged over by e. One of our main aims
being to facilitate reasoning about spatial-dependent behavior, these conditions are intended to capture
environmental (location-relevant) situations which may affect the behavior of individuals. In the present
form of PALPS we limit conditions about the environment to observations on the number of individuals
of the same or another species co-existing within the same location. Thus, we consider expressions e, to
be built as follows:

e ::= true | ¬e | e1∧ e2 | (s@`) ./ c | @` ./ c

where c is a natural number and ./∈ {=,≤,≥}, the intention being that (s@`) ./ c is satisfied in a system
if the number of individuals of species s at location ` are equal to / less than / greater than c. We also
write @` ./ c to denote that the total number of individuals of all species at location ` are ./ c. Note that
we allow ` to also take the special value myloc. This label refers to the actual location of the individual
which is checking the containing condition, no matter which this location might be, and it is instantiated
to this location when the individual is placed within a context and a location (see rule (Loc) in Table 2).
We then write S |= e for a population system S and an expression e, exactly when S satisfies e. The
relation |= is defined by induction on e in Table 4.

The syntax of PALPS consists of three levels: (1) the individual level (ranged over by P ), (2) the
species level (ranged over by R) and (3) the system level (ranged over by S). Their syntax is defined via
the following BNF’s

P ::= 0 | η .P | P1 + P2 | cond (e1 ¤P1, . . . ,en ¤Pn) | C

R ::= !a.P

S ::= 0 | P:[[s, `]] | R:[[s]] | S1 |S2 | S\L | [S]

where a ∈ Ch, L⊆ Ch, C ranges over a set of process constants C , each with an associated definition of
the form C def= P, where the node P may contain occurrences of C, as well as other constants, and

η ::= a | a | move | prey | √ .

Beginning with the individual level P, the 0 process represents the inactive individual. η .P describes
the individual who first engages in activity η and then behaves as P. Activity η can be an (input) action
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on a channel a, written simply as a, a complementary (output) action on a channel a, written as a, a
movement action, move, a preying action, prey, or a time-passing action,

√
. Actions of the form a,

and a, a ∈ Ch, are used to model arbitrary activities performed by an individual e.g. eating, observing
the environment as well as reproduction. A

√
action measures a tick on a global clock and is used to

separate the phases/rounds of an individual’s behavior. Essentially, given a system, the intention is that in
any given time unit all individuals perform their available actions, possibly synchronizing as necessary,
until they synchronize on their next

√
action. P1 + P2 represents the nondeterministic choice between

P1 and P2. The conditional process cond (e1 ¤P1, . . . ,en ¤Pn) presents the conditional choice between a
set of processes: it behaves as Pi, where i is the smallest integer for which ei evaluates to true. Finally,
process constants provide a mechanism for including recursion in the calculus.

Moving on to the species level, we note that during their life cycle, individuals may produce off-
springs. To capture the creation of new individuals, we employ the special species processes R. R,
defined as !a.P, is a replicated process which may continuously receive input through channel a. This
results in the creation of a new individual P. Such inputs will be provided by individuals in the phase of
reproduction.

Finally, population systems are built on the basis of located individuals, P:[[s, `]], where s and ` are
the species and the location of the individual, and species C:[[s]], where s is the name of the species.
Furthermore, S\L models the restriction of the use of channels in set L within S and [S] is the closure
operator. This operator is applied at the highest level of a population system and its semantic significance
is that it allows us to select the valid behavior of the system based on the conditions that the system
satisfies.

As an example, consider the model described in [2] where a set of individual live on an n×n lattice
of resource sites and go through phases of reproduction and dispersal. Specifically, the studied model
considers a population where individuals disperse in space while competing for a location site during
their reproduction phase. They produce an offspring only if they have exclusive use of a location. After
reproduction the offsprings disperse and continue indefinitely with the same behavior. In PALPS, we
may model the described species s as !rep.P, where

P def= move.
√

.cond (s@myloc = 1¤P1; true¤
√

.P)

P1
def= rep.

√
.P1 + rep.rep.

√
.P1

We point out that the conditional construct allows us to determine the exclusive use of a location by an
individual. The special label myloc is used to illustrate that the location of interest is the actual location of
an individual once the individual is placed in a context within a system definition. Furthermore, note that
P1 models the nondeterministic production of one or two offsprings of the species. During the dispersal
phase, an individual moves to a neighboring location which is chosen nondeterministically, as prescribed
in the semantics of the next section. Then a system containing of two individuals at a location ` and one
in location `′ can be modeled as

System def= [P:[[`,s]]|P:[[`,s]]|P:[[`′,s]]|(!rep.P):[[s]]].

To model a competing species s′ which preys on s, we may define the process !rep′.Q, where

Q def= prey.
√

.Q1 +
√

.Q2

Q1
def= rep′.

√
.Q

Q2
def= prey.

√
.Q1 +

√
.die.0
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This species looks for a prey. If it succeeds it produces an offspring. If it fails for two consecutive time
units its dies.

The notion of food at a location may also be modeled in PALPS. A channel eat is employed to model
eating and, for example, a food source at location ` of amount n which replenishes every t time units can
be described as Foodn,t :[[ f , `]], where

Foodi, j
def=





eat.Foodi−1, j +
√

.Foodi, j−1 if i > 0, j > 0√
.Foodi, j−1 if i = 0

Foodn,t if j = 0

2.2 The Semantics

The semantics of PALPS is defined in terms of a structural operational semantics, which is given in
Tables 1-3. The rules of Table 1 describe the behavior of individuals in isolation, the rules in Table 2 the
behavior of systems and the rule of Table 3 describes the behavior of closed systems. A transition of P

has the form P
e,η
³ P′, specifying that P can perform action η under condition e and evolve into P′.

Table 1: Transition rules for individuals

(Nil) 0
true,

√
³ 0 (Act) η .P

true,η
³ P

(Sum) Pi
e,α
³ P′i , i ∈ {1,2}
P1 +P2

e,α
³ P′i

(Const) P
e,α
³ P′

C
e,α
³ P′

C def= P

(Cond)

Pi
e,α
³ P′i ,e

′ = ei∧ (
∧

j<i

¬ei)

cond (e1 ¤P1, . . . ,en ¤Pn)
e∧e′,α
³ P′i

Axiom (Nil) specifies that the inactive process may allow time to pass while Axiom (Act) states
that η .P can always execute action η and evolve to P. Rules (Sum) and (Const) express the semantics
of nondeterministic choice and process constants in the expected way, where (Cond) stipulates that a
conditional process may perform an (conditional) action of continuation Pi assuming that ei evaluates to
True and all e j, j < i are false.

Moving on to the higher level of the semantics, a transition of S has the form S
e,α−→ S′, signifying that

S can perform action α under condition e and evolve into S′. Actions α can have one of the following
forms:

• a@` and a@` denote the execution of actions a and a respectively at location `.

• preys@` denotes the execution of a prey action at location ` by an individual belonging to the
species s.

• τ denotes the internal action. This may arise when two complementary actions take place at the
same location or when a move or a prey action take place. We are not interested in the precise
location of internal actions, thus, this information is omitted.

• √ denotes the time passing action.
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Note that in Table 2 we write θ to range over all η actions with the exception of the specialized actions
move and prey, which are treated separately, and β to range over all α actions with the exception of
action preys@`.

Table 2: Transition rules for systems

(Loc) P
e,θ
³ P′

P:[[s, `]] e@`,θ@`−→ P′:[[s, `]]
(Move) P

e,move
³ P′,(`,`′) ∈ Nb

P:[[s, `]] e,τ−→ P′:[[s, `′]]

(Par1) S1
e,β−→ S′1

S1|S2
e,β−→ S′1|S2

(Par2) S1
e1,a@`−→ S′1,S2

e2,a@`−→ S′2
S1|S2

e1∧e2,τ−→ S′1|S′2

(RepA) ` ∈ Loc
(!a.P):[[s]] true,a@`−→ P:[[s, `]]|(!a.P):[[s]]

(RepT) (!a.P):[[s]]
true,

√
−→ (!a.P):[[s]]

(PreyS) S1
e,preys@`−→ S′1, s′ ∈ Preys(s), S≡ (S1 | S2 | P:[[s′, `]])\L

S
e,τ−→ (S′1 | S2)\L

(PreyI) P
e,prey
³ P′

P:[[s, `]] e,preys@`−→ P′:[[s, `′]]

(Hide) S
e,α−→ S′,α 6∈ {a@`,a@`|a ∈ L}

S\L
e,α−→ S′\L

(Time) S1
e1,
√

−→ S′1,S2
e2,
√

−→ S′2
S1|S2

e1∧e2,
√

−→ S′1|S′2

To begin with, rule (Loc) embeds location information to actions of a located process. Note that
we define e@` by e[`/myloc], that is, the condition with all instances of myloc substituted by `. Next,
rule (Move) specifies that a located process may nondeterministically move to any neighboring location.
Rules (Par1) and (Par2) stipulate the semantics of the parallel composition construct (their symmetric
versions are omitted). Rule (RepA) defined the semantics of the replication construct. Here we may
observe how the generator of new individuals may create a new located individual of a species while itself
remaining in the environment for further use. Note that (!a.P):[[s]] can communicate with individuals at
all locations and the newly-instantiated individual acquires the location of its parent. Furthermore, a
species may liberally allow time ticks (axiom (RepT)). Moving on to rules (PreyI) and (PreyS) we may
see how a preying individual may kill an individual of a species on which it preys. Note that this rules
is defined on top of a structural equivalence relation ≡. The axioms of interest to us with respect to this
relation are the following where ch(S) refers to the set of all channels in S.

S≡ S\ /0 S1|S2 ≡ S2|S1

(S\L1)\L2 ≡ S\(L1∪L2) (S1|S2)|S3 ≡ S1|(S2|S3)

S≡ S[a/b] , if a 6∈ ch(S) S1\{a}|S2 ≡ (S1|S2)\{a}, if a 6∈ ch(S2)

Essentially, this relation allow us to rewrite a system while isolating a prey and a predator and, conse-
quently, extinguish the prey according to the rule.

Rule (Hide) implements restriction of the set of channels in L and, finally, (Time) imposes a syn-
chronous nature to the time-passing action

√
.

The transition relation we have just defined is a conditional relation: transitions are decorated by
conditions that determine when they can occur. Naturally, we are interested in distilling the behavior of
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a system for conditions that evaluate to true. To achieve this, we have introduced the closure construct
which should be applied at the top level of systems to signal their completion. Given such closed systems
we may now evaluate the various conditions of the actions of transition system−→ and select only those
transitions whose condition evaluates to true. The new transition relation is symbolized as 7→ where we
write CS α7→CS′ whenever the closed system CS can perform action α and evolve to CS′. This relation is
defined by the rule (Close) in Table 3.

Table 3: Transition rule for closed systems

(Close) S
e,α−→ S′,S |= e
[S] α7→ [S′]

The satisfaction relation |= is defined inductively on the structure of systems as shown in Table 4.

Table 4: The satisfaction relation

S |= true

S |= ¬e if and only if ¬(S |= e)

S |= e1∧ e2 if and only if S |= e1∧S |= e2

S |= s@` ./ c if and only if num(S, `,s) ./ c

S |= @` ./ c if and only if num′(S, `) ./ c

The auxiliary functions num(S, `,s) and num′(S, `) compute the number of individuals at location `
in system S of a specific species s (num(. . .)) or for all species (num′(. . .)). Their definition is straight-
forward. Below we present that of num(. . .).

num(0, `,s) = 0

num(P:[[s, `′]], `,s) = 1, if ` = `′

num(P:[[s, `′]], `,s) = 0, if ` 6= `′

num(R:[[s]], `,s) = 0

num(S1 |S2, `,s) = num(S1, `,s)+num(S2, `,s)
num(S\L, `,s) = num(S, `,s)
num([S], `,s) = num(S, `,s)

3 Concluding remarks

This paper reports on work in progress towards the development of a process calculus for the spatially-
explicit and individual-based modeling of ecological systems. In future work we intend to extend our
study by developing the theory of the calculus and introducing probabilistic behavior. Most importantly,
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we plan to implement a tool to accompany our language for performing simulations and possibly analysis
of modeled systems. In related work, we have in fact implemented a prototype tool for a variant of the
calculus containing probabilistic choice, locations, movement and reproduction [5]. As our experiments
have shown, and as one would expect, the notion of location increases the complexity of evaluating
systems. Thus, our future work will also concentrate on providing optimizations for system analysis.
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