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Abstract—Honeywords are false passwords associated with
each user account. Using a honeyword to login sets off
an alarm as a data breach has been detected. Existing
approaches for detecting data breaches using honeywords
suffer from the need of a trusted component to tell honey-
words from the valid password. Once this trusted component
is compromised, then honeywords can offer no assistance
for mitigating or detecting a data breach. In this paper, we
present Lethe, a honeywords-based data-breach detection
system that requires no trusted components, other than
a trusted bootstrap, and keeps limited transient state for
verifying login attempts.

Lethe is based on two fundamental principles. First,
Lethe generates honeywords using a Machine Learning (ML)
model, which constantly evolves. This means that an attacker
that compromises the Honeyword Generation Technique
(HGT) cannot reproduce the same set of honeywords, and
thus cannot tell which password was used as the initial
generator. In particular, Lethe is the first system that allows
an attacker to fully compromise the HGT without affecting
the security of already generated honeywords.

Second, Lethe is not aware of the valid password. In
fact, for Lethe the only one that knows the actual password
is the user that selected it in the first place. Lethe records
login events, but without storing anywhere the password
used. These login events can be further replayed in another
server, which can check if, for a particular user, there were
at least two different passwords used and therefore detect a
data breach.

Lethe allows the detection of a data breach determin-
istically and not probabilistically as similar approaches do.
Additionally, Lethe allows detecting data breaches that are
associated with rarely used accounts. Lethe can signal an
alarm even if a user account that has logged in just once with
the system is compromised. This is in contrast to other efforts
that require legitimate users to authenticate with the system,
after the attacker has done so, for detecting the breach. To
demonstrate the effectiveness of Lethe, we provide a fully
functional prototype, along with the ML-based HGT, and
assess the provided security with a set of diverse attackers.

Index Terms—honeyword, decoy password, password, data
breach detection

1. Introduction

Passwords firmly remain the most prevalent method
for user authentication and are expected to keep their
place in the foreseeable future, despite their notorious

defects in both security and usability [1], [2]. For example,
existing password-based authentication systems maintain
a sensitive file F comprised of all registered users’ hashed
passwords; if F is successfully retrieved and reverted
by cracking the hashes, an adversary can undetectably
impersonate any user. Nowadays, it is no news to hear
that even high-profile web services, such as Yahoo [3],
Dropbox [4], LinkedIn [5] and Facebook [6], have been
compromised and their passwords are leaked. These data
breaches are often detected after several months or years
since the attackers had exploited those services and posted,
or even sold, their data online [1].

An interesting approach for timely detecting data
breaches, initially proposed by Juels and Rivest, is to
utilize honeywords [2]. Honeywords are false passwords
associated with each user account. Even if an attacker
has successfully retrieved and reverted the password file
F , they must still decide about each user’s real password
from a set of k distinct sweetwords 1. Note that for each
user account only one of those k sweetwords is the real
password. Using a honeyword to login sets off an alarm
as a data breach has been reliably detected.

While potentially effective, honeywords suffer from
two related shortcomings that have limited their use in
practice [7]. First, honeywords are only useful if it is hard
to differentiate them from the real password. In particular,
Juels and Rivest proposed four Honeyword Generation
Techniques (HGTs), which have been later shown to be
ineffective to meet the expected security requirements [1].
Later, however, other HGTs followed, achieving close to
the optimal robustness against state-of-the-art honeyword-
distinguishing attacks [8].

Second, previous proposals that leverage honeywords
require a trusted component to detect the entry of a
honeyword. This component must retain a secret state
even after the target has been breached [2], [8], [9]. Such
a trusted component, however, is a strong assumption and
begs the question of whether one could have been relied
upon to prevent the breach of the target’s database in the
first place. One approach showing that honeywords can be
used to detect a target’s database breach with no persistent
secret state at the target, was initially proposed by Wang
et al. [7]. In particular, the authors propose Amnesia, a
data-breach detection framework that enables the target
to detect its own breach probabilistically.

Amnesia uses a marking scheme for noting possible

1. Each user’s real password and their k − 1 honeywords are called
sweetwords. Juels and Rivest suggest to use 20 sweetwords per user
account (k = 20) [2].
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user-chosen passwords. This marking scheme ensures that
the last used sweetword to access an account is always
marked; the remaining sweetwords are marked indepen-
dently with a certain probability. In case an attacker
accesses an account using a different than the user-chosen
password and the actual user-chosen password becomes
unmarked, then, when the legitimate user next accesses
the account, an alarm will be signalled since the supplied
password is unmarked.

We provide a full description of the marking scheme,
the complete list of limitations and a thorough comparison
of this work with Amnesia in Sec. 2.3. In short, Amnesia
can detect the breach probabilistically and only when le-
gitimate users authenticate explicitly with their passwords,
and not using established cookies, after the breach has
actually happened. This is a rather strong assumption,
since users tend to rarely authenticate with websites by
explicitly entering their passwords. The most recent study
we are aware of is back in 2016, which reports users
having at least a single password-entry event per day
[10], while past research, of 2007, reports that computer
users undertake between 8 and 23 password-entry events
every day [11]. We expect that this evident reduction
in explicitly entering passwords to be further augmented
today, especially with the prevalence of mobile specific-
site apps, where the user logs in just once with the service.

In this paper, we provide the design and implemen-
tation of Lethe, which offers deterministic detection of a
data breach, without relying on users to explicitly authenti-
cate with the service after the breach has happened. Lethe
is a bounded-time data-breach detection system, which
does not require the external trusted entity, that detects the
entry of a honeyword, to be trusted at all times. This is in
contrast to the original honeywords schema [2]. Compared
to Amnesia that assumes users often access their accounts,
Lethe can detect a breach deterministically in a few hours,
even when the user has performed a single login in their
entire lifetime. Note that the average detection delay of a
data breach ranges from 7 to 15 months [12], [13].

Lethe does not rely on any persistent secret state
located in storage for determining the success of its users’
login attempts. In fact, for Lethe the only one that knows
the actual password is the user that has selected the
password in the first place - hence the name Lethe 2. Fur-
thermore, Lethe can defend against attackers that can gain
full access to the deployed HGT. Due to the stochasticity
involved in the selected HGT, it is impossible to reproduce
the same sweetwords for any given password. An attacker
that wants to infer the real password by entering all
passwords to the HGT will simply produce entirely new
sets of sweetwords that signal zero information about the
real password.

Lethe’s operation involves two servers, namely the
authentication server, S, and the checking server, C.
Both servers initialize a cryptographically secure Random
Number Generator (RNG), namely RS and RC , using the
same seed, which is then discarded. Thus, S and C are
essentially synchronized on producing random integers in
the range [1, 20].

2. Lethe, from the ancient Greek word “λήθη”, which means for-
getting. A fully functional prototype is available on Bitbucket (https:
//bitbucket.org/srecgrp/lethe-public/).

Moreover, S records login events, stores them in a
logins file L and blends the user-chosen password with
sweetwords. The position of the password given by the
user is decided by invoking RS , randomizing the positions
of the remaining sweetwords. As a result, an adversary
that has access to the logins file L, has the same success
rate as in the classic honeywords paradigm, which is 1/20
if 20 sweetwords are used per user account.

Periodically, when the data-breach detection phase
occurs, server C replays all login events by invoking its
own RNG (RC), and selecting the sweetword that was
given by the user for each login attempt. If C identifies
at least one case where different sweetwords have been
provided as input for the same user account, C raises a
data breach alarm.

Otherwise, if no breach is detected, C simulates a
login attempt with the last used sweetword for each user
account, by invoking S’s RNG (RS), and overwrites the
logins file L. This action allows C to check if different
sweetwords have been provided as input for the same user
account between different data breach detection points. As
a result, Lethe is capable of detecting a data breach even
if a user has been logged in only once in their lifetime,
during registration.

Our contributions can be summarized as follows.

1) We propose Lethe, a honeywords-based data-
breach detection framework that allows the target
to detect a breach deterministically. Lethe reduces
the need for an external trusted entity, namely
honeychecker, for detecting the entry of a hon-
eyword. In particular, Lethe requires the external
trusted entity to be trusted only during the data-
breach detection phase, which happens off-line.
This is in contrast to the original honeychecker,
which is required to vet for any authentication
attempt, and thus be trusted at all times. Compro-
mising Lethe’s trusted entity, at any time beyond
checking, does not reveal the actual passwords.

2) We are the first to propose a deterministic data-
breach detection framework that guarantees the
detection of such incidents in a few hours, with-
out being dependent on any persistent secret state
for validating login attempts. Furthermore, in
contrast to other approaches found in the liter-
ature, Lethe does not require specific steps to
be made from the legitimate users for signalling
an alarm. In other words, Lethe is capable of
detecting a data breach incident irrespective to
the legitimate users’ actions.

3) Contrary to other papers that assume attackers
who cannot infer the HGT, Lethe relaxes this
assumption and allows for adversaries that can
gain complete access to the HGT. Nonetheless,
Lethe protects against such adversaries due to
the stochasticity involved in the selected HGT,
which makes it impossible to reproduce the same
sweetwords for any given password. An attacker
that wants to infer the real password by entering
all passwords to the HGT will simply produce
entirely new sets of sweetwords that signal zero
information about the real password.

4) Lethe does not require backup authentication
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mechanisms to be deployed in case an attacker,
who managed to breach into the system, triggers
a password reset, in contrast to similar techniques
found in the literature [7]. Instead, Lethe is by-
design capable of handling such cases and timely
signalling data-breach alarms.

The rest of this paper is organized as follows. Some
preliminaries regarding the generation/operation of hon-
eywords and decoy passwords, as well as Amnesia’s as-
sumptions/limitations and how Lethe deals with them, are
discussed in Sec. 2. In Sec. 3, we provide the detailed
threat model used in this work, and later, in Sec. 4, we
provide the detailed architecture and operation of Lethe.
In Sec. 5, we evaluate our framework and, in Sec. 6, we
provide a detailed discussion in regards to its strengths and
limitations. Finally, in Sec. 7, we outline related work, and
in Sec. 8, we conclude this work.

2. Preliminaries

In this section, first, we provide some background
knowledge in regards to honeywords (Sec. 2.1) and decoy
passwords (Sec. 2.2), and second, we discuss Amnesia’s
limitations and how Lethe copes with them (Sec. 2.3).

2.1. Generating Honeywords

Honeywords are only useful if it is hard to differentiate
them from the real password [1]. One can decide regarding
whether or not a HGT produces high-quality honeywords
using the metrics proposed by Wang et al. [1], namely
flatness and success-number graphs.

• A flatness graph plots the probability of distin-
guishing the real password versus the number
of allowed sweetword login attempts per user x
(x ≤ 20). A perfect HGT allows for a maximum
of x× 1/20 success rate for each allowed number
of sweetword login attempts per user x.

• A success-number graph plots the total number
of successful login attempts (logins with a real
password), versus the total number of failed login
attempts (logins with a honeyword). The success-
number graph measures to what extent a method
will produce vulnerable honeywords that could be
easily distinguished. A perfect HGT produces 20
sweetwords per user with the same probability of
being the real password.

For gathering the appropriate statistics and plotting
the two aforementioned graphs Wang et al. deploy a hon-
eyword distinguishing attacker, namely Normalized Top-
PW. This adversary aims to find as many as possible real
passwords before making T1 failed login attempts per user
and T2 failed login attempts in total.

A Normalized Top-PW adversary tries each sweetword
in decreasing order of normalized probability of being the
real password. The probability of each sweetword swi,j

(1 ≤ i ≤ n and 1 ≤ j ≤ 20, where n is the total
number of users) comes directly from a known probability
distribution of a leaked password dataset D, such as
RockYou [14], and is calculated as follows. For each
sweetword that exists in D then Pr(swi,j) = PD(swi,j)

else Pr(swi,j) = 0. ∀x ∈ D, PD(x) = Count(x)/|D|,
where Count(x) is the number of occurrences of x in D
and |D| is the size of the leaked password dataset D.

Moreover, a Normalized Top-PW adversary first at-
tacks the user accounts for which their most probable
honeyword is closest to 1. Thus, it normalizes each user’s
20 sweetwords as follows. ∀swi,j ∈ n × 20 sweetwords,

Pr(swi,j) = Pr(swi,j)/
∑20

t=1 Pr(swi,t). If T1 > 1 and
after a sweetword has been attempted, the probability
of all the other unattempted sweetwords should be re-
normalized.

Furthermore, any proposed HGT should ensure its
non-reversibility property [8]. In other words, it has to
be computationally inefficient or impossible to go from
the enriched with honeywords password file to the initial
password file containing only the real password for each
user. This will ensure that any adversary that retrieves and
reverts the password file F , cannot reproduce the actual
model used for generating those honeywords.

One such honeywords generation framework, that
is robust against a Normalized Top-PW adversary and
ensures its non-reversibility property, is HoneyGen [8].
HoneyGen leverages representation learning techniques to
learn useful and explanatory representations from each
operator’s password corpus for generating honeywords
that are indistinguishable from real passwords.

HoneyGen leverages Machine Learning (ML) tech-
nologies on purpose since the intrinsic stochasticity of
the utilized models ensure that reversing the algorithm
is computationally hard. In particular, the authors propose
a hybrid HGT that is split into two phases. First, they
train a word embeddings model, namely FastText, on
the operator’s password corpus, which allows to learn the
structure of the input and produce a word embedding
for each password. This enables them to query the word
embeddings model regarding the top-k nearest neighbours
of a given password. Second, they issue a chaffing-by-
tweaking technique for stochastically perturbing the re-
turned passwords, thus adding an extra step of random-
ness.

HoneyGen outperforms the state-of-the-art HGTs and
meets the expected security requirements in terms of flat-
ness and success-number graphs. In this paper, we utilize
HoneyGen to guarantee that the adversary cannot achieve
more than the random guessing baseline attack success
rate when having access to either the password file F or
the actual model used for generating those honeywords.

2.2. Decoy Passwords

Decoy passwords were initially proposed to tackle the
problem of password reuse, which can cause a system to
fail if a user recycles the same password across vouching
services [15]. Honeywords and decoy passwords have the
same generation requirements. That is, they have to be
indistinguishable from the real password. However, they
differ in their core functionality. In particular, the main
difference between decoy passwords and honeywords is
that any of the decoys can successfully authenticate the
user into the system, whereas the use of a honeyword sets
off an alarm [2].

Lethe cannot tell the real password from the hon-
eywords as it removes the honeychecker component. In
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Lethe’s context only the legitimate user knows the real
password. Instead, what Lethe can tell is whether or not
different sweetwords have been provided as input, for a
particular user account. Thus, Lethe combines honeywords
with decoys as, during the authentication phase, if any of
the sweetwords for a particular user is given as input,
Lethe approves access to the system. However, Lethe
can detect cases where different sweetwords have been
provided as input for a specific user account. If this is the
case, Lethe signals a data breach alarm.

2.3. Amnesia

Amnesia marks users’ sweetwords probabilistically
with binary values. Marking ensures that the password
last used to access the account is always marked, and thus
its associated binary value is 1. For each successful login
attempt, the user’s set of sweetwords is remarked with
probability premark, in which case the entered password
is marked with probability 1 and each of the other sweet-
words is marked independently with probability pmark.
As a result, if an attacker accesses an account using
a honeyword, then the user-chosen password becomes
unmarked with probability premark(1 − pmark). In that
case, the breach will be detected when the legitimate user
next accesses the account, since the password they supply
is unmarked.

Limitations. Amnesia offers only probabilistic detec-
tion guarantees, which might not be enough for certain
cases. First, repeatedly observing the sweetwords left
marked by legitimate user logins permits the attacker to
narrow in on the user-chosen password as the one that is
always marked. This means that legitimate logins should
remark the passwords as rarely as possible (premark

should be small) or that, when remarking occurs, already
marked passwords stay that way (pmark should be large).

Second, if an attacker accesses an account between
two logins by the user, a remarking of the real password
must occur if there is to be any hope of the second
legitimate login triggering a detection. This means that
premark should be large, which imposes a contradiction
with the previous point.

Third, an attacker can repeatedly trigger many remark-
ings, between consecutive legitimate logins, and stop until
the initial marking sequence is restored. Doing so, will en-
sure that the next legitimate login signals no data breach.
This suggests that an attacker cannot trigger arbitrarily
many remarkings on an account, i.e., premark should
be small, or that when remarkings occur, significantly
many passwords are left unmarked, i.e., pmark should be
small. This comes to direct contradiction with both points
previously mentioned. Generally speaking, selecting the
optimal values for premark and pmark is not a trivial task,
let alone the fact that in any case the adversary has a
larger chance of evading detection compared to the chance
provided by the classic honeywords schema [2].

Fourth, Amnesia assumes an optimal HGT that cannot
be accessed or reverted as this would enable adversaries
to distinguish the real passwords from the honeywords
deterministically.

How Lethe Copes with Amnesia’s Limitations. Lethe
resolves all of the difficulties discussed in the previous

paragraphs. In particular, in Lethe’s context all sweet-
words have an equal probability of being the real password
as we do not use any sort of sweetwords’ marking. As a
result, Lethe tackles Amnesia’s first limitation.

In addition, Lethe does not require any specific steps to
be made by the legitimate users, which is widely deemed
not desirable, for signalling a data breach, in contrast to
Amnesia’s approach. In particular, Lethe guarantees the
detection of a data breach irrespective to the legitimate
users’ actions. In this way, Lethe tackles Amnesia’s sec-
ond and third limitations.

Furthermore, Lethe relaxes Amnesia’s assumption that
the adversaries cannot infer the deployed HGT and allows
for attackers that can trigger the generation of honeywords
anytime (see Sec. 5.2.3).

Finally, Lethe’s deterministic nature improves Amne-
sia’s approach for tackling password reuse as it eliminates
its probabilistic component. Combining Lethe with Am-
nesia’s approach for tackling password reuse guarantees
the detection of a data breach incident in case it happens.

3. Threat Model

The threat model of Lethe follows exactly the threat
model of Amnesia, i.e., “an attacker to breach the target
passively only 3, in which case it captures all persistent
storage at the site associated with validating or managing
account logins” [7]. Additionally, as in Amnesia, the
attacker cannot reveal the TLS private key, MiTM the
connection and predict future randomness by exfiltrating
the state of the RNGs. All these assumptions (secure
cryptography and secure random numbers) are explicitly
stated also in Amnesia. However, Lethe, in contrast to
Amnesia, allows an attacker to interfere with the honey-
words generation algorithm.

Lethe utilizes two servers, one that runs the authenti-
cation and validates logins (authentication server S) and
one that checks for data breaches (checking server C).
The two servers communicate with TLS and we assume
that the attacker cannot break the cryptography of the
communication. Nevertheless, we assume that both servers
can be compromised, multiple times but for a short period
(see below), and all storage –all vital information stored
there and not just hashed passwords– can be leaked.
We allow attackers to compromise the servers using the
techniques recorded in real incidents [16].

Following the threat model of Amnesia, we assume
that attackers are not able to replace the code, break the
cryptography or predict future randomness of our system.
These assumptions stem from the fact that attackers aim
on exfiltrating massively user credentials without being
detected. According to studied data breaches, attackers
do not hold the compromise for a long period. They just
target the storage information, and not the system. This is
natural, since attackers may be benefited by further selling
the credentials, or using the cracked credentials to other
sites, rather than affecting the actual system that holds the
credentials.

Attackers that have compromised any of the two
servers may passively monitor the memory of the system.

3. Following this threat model, potential attackers cannot modify/edit
or overwrite files F and L associated with users’ logins and passwords.
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In that case, attackers may reveal some of the users’
supplied passwords. For instance, if the user logs in
with the server while the latter is compromised, then the
attacker may passively sniff the user-supplied password
from memory. Lethe cannot protect against this, and this
is the case for Amnesia.

However, we anticipate that an attacker risks being
detected by holding the compromise for a long period
to sniff passively in real-time passwords; users rarely
authenticate by supplying passwords (most of the time
they use established cookies), and the attacker essentially
needs to exfiltrate a bulk amount of passwords and not
just a few. We stress here that there is no system, to the
best of our knowledge, that can protect against an attacker
that has full access to the memory of the system for the
entire period of the system’s operation.

Finally, in contrast to other papers that assume attack-
ers who cannot interfere with the honeywords generation
algorithm, Lethe relaxes this assumption and allows for
attackers that can trigger the generation of honeywords
anytime. An attacker may supply any input to the HGT,
observe the output and compare it with leaked credentials
in order to guess the machine-generated ones. Lethe can
protect against this (see Sec. 5.2.3).

4. Lethe

Lethe is based on two servers, the authentication server
S, which is the typical web site that offers users with an
authentication form, and the checking server C, which
detects the data breach. Both servers can be compromised
(see Sec. 3) after a first trusted bootstrap phase, where
both servers initialize a cryptographically secure RNG.
The generator is initialized in both servers with a seed that
is then discarded. For details on how Lethe returns back to
normal state in case the servers become de-synchronized
see Sec. 4.7.

Once the two servers are initialized, then Lethe starts
the authentication and data-breach detection algorithms.
The authentication server S records login events from
users, when entering their passwords, and the checking
server C periodically checks if there was a data breach.
A login event triggers the generator, and permutes the
used password based on the random value released. Once
the login has happened, the associated random value is
discarded, and only the event is recorded, e.g., user Alice
is logged in successfully in the system.

Both servers are unaware of the users’ real passwords,
so compromising any of them, or even both, at any time,
reveals zero information about the real passwords stored
along with the rest of the sweetwords. Detection happens
periodically by replaying all login events and checking if
there were different sweetwords used for one particular
account. Since the two servers share a common RNG, C
can replay all login events as appeared in S and detect if
an account has been accessed with multiple sweetwords.
Detection is deterministic even for compromised accounts
that issued a single login attempt in their entire lifetime,
during registration.

We assume that with Lethe in place attackers will
focus their efforts to exploit the checking time where
all passwords are exposed. Therefore, we offload this

checking time to C, which is an external server with min-
imal functionality for checking for a data breach off-line.
Note that this server needs to be protected only during
checking. Compromising the memory of the server at any
other time reveals nothing useful for the attacker. Com-
promising the storage of the server at any time, including
checking, does not reveal the actual passwords since they
are blended with honeywords. This is in contrast to the
original honeychecker, which reveals all valid passwords
and honeywords when either its memory or storage are
compromised [2].

4.1. Lethe’s Operation

Lethe’s operation is split into four phases, namely
registration (fig. 1(a)), authentication (fig. 1(b)), data
breach detection (fig. 1(c)), and password reset (fig. 1(d)).
Registration and authentication phases invoke the authen-
tication server S, whereas the data breach detection, which
occurs once per day and off-line, and password reset
phases invoke both the authentication server S and the
checking server C. S and C utilize two synchronized
cryptographically secure RNGs, namely RS() and RC(),
which are initialized using the same seed at the start of
Lethe’s operation. Then, this seed is discarded. As a result,
server S and C are essentially synchronized on producing
random integers in the range of [1, 20]. The initialization
process is done via the trusted bootstrap.

Note that the trusted bootstrap is a state where the
system is not operational. That is, there are no inputs or
incoming connections processed and it is performed in a
fully isolated environment. During this phase, we assume
no attacks. The entire process of the trusted bootstrap is
fairly simplistic and involves only the synchronization of
two RNGs. Thus, it can be carried out in a short time
during the initialization of the system where no external
inputs are processed.

4.2. Registration Phase

Fig. 1(a) shows Lethe’s registration phase. As shown,
Lethe uses a HGT to produce 19 honeywords for the
password given by the user. Then, the list of 20 sweet-
words (19 honeywords + the real password) is stored in
F along with the user’s ID. We utilize HoneyGen as
our HGT for the reasons explained in Sec. 2.1. In short,
we allow HoneyGen to be compromised, since future
invocations of honeywords generation cannot reveal the
original password; using a single password as input to
HoneyGen twice results to entirely different generated
sweetwords. After the registration process is completed
Lethe uses the provided ID and password to log the user
into the system.

4.3. Authentication Phase

Fig. 1(b) shows Lethe’s authentication phase. As
shown, the server S uses the provided ID and password
to retrieve the list of sweetwords sws stored in F for that
particular user. If the given password exists as a sweetword
in sws, Lethe creates a new list sws where the provided
password is stored at a random position (1-20) specified
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(a) Registration phase. First, the server S feeds the user’s real
password to the deployed HGT and receives, as a response, the list
sws containing 20 sweetwords (1 of them being the real password).
Second, the server S stores the list of sweetwords sws to the password
file F along with the user’s ID.

(b) Authentication phase. First, the server S retrieves a copy of the
list of sweetwords sws for the provided ID from the password file
F . Second, it checks whether the provided password exists as a
sweetword in sws. If yes, S: (i) removes password from sws, (ii)
randomizes the positions of the remaining sweetwords, (iii) places the
password in the specific position derived from RS(), (iv) stores the
new list of sweetwords sws, along with the user’s ID, in logins file L,
and (v) approves access to the system. If not, the user is denied access
to the system.

(c) Data breach detection phase. First, the checker C iterates over
all login attempts (records in L) and extracts each user’s selected
sweetword by invoking RC(). For each login attempt the checker C
checks if the user’s selected sweetword is the same as the one stored
in last_used_sw dictionary. If yes, it proceeds to the next record,
else it sounds an alarm. If C encounters a user for which an entry
in last_used_sw does not exist, it creates a new entry for that user
and stores the used sweetword. Finally, if no data breach has been
detected, the checker C: (i) overwrites L, and (ii) iterates over all
(user_id, used_sw) pairs in last_used_sw and for each one of them
it creates a new sweetwords list sws, where each user’s last used
sweetword is stored at the position derived from RS(), randomizing
the positions of the remaining sweetwords.

(d) Password reset phase. In order for this phase to kick in, the
authentication phase, see fig. 1(b), has to precede. First, the user issues
the password reset option. Second, the server S asks from the user to
provide the new password. After the user provides the new password
(step 3) and hits submit, the server S initiates the registration phase
(step 4, see fig. 1(a)). A potential data breach will be detected at the
end of the day when the data breach detection phase will kick in.

Figure 1. Lethe’s operation phases, namely registration (fig. 1(a)), authentication (fig. 1(b)), data breach detection (fig. 1(c)), and password reset
(fig. 1(d)). Lethe does not work with plain passwords but with hashed ones. In some visualizations we omit the H() function for better understanding.

by RS() and randomizes the positions of the remaining
sweetwords. Afterwards, S stores the reordered list of
sweetwords and the ID of the user into logins file L, and
authenticates the user into the system. The system declines
access if the given password does not exist in sws. It
is worth mentioning that for a system with millions of
passwords the overhead for this phase is practically zero.

Note that the server S cannot tell if the user has
entered the real password or not. The only fact that S can
check is if the user has entered a valid sweetword. For S,
during authentication all sweetwords are valid passwords.
S assumes that a legitimate login uses the real password,
but a malicious login uses one of the other sweetwords
and that can be detected in the short future. Furthermore,

note that S does not record which password was actually
used during a successful login. Instead, S permutes the
sweetwords based on a random token.

Only one that has a synchronized random generator
can replay the login attempts and see which passwords
were actually used. Otherwise, even S cannot go back in
time and re-use the released random tokens to infer which
passwords were used, unless the random tokens are stored,
which is not the case.

4.4. Data Breach Detection Phase

Fig. 1(c) shows Lethe’s data-breach detection phase.
We refer to the interval between two successive data-
breach detection points as an epoch. During this phase,
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which happens at the end of each epoch, the server C
iterates over all login attempts in L, and checks whether or
not different sweetwords have been provided as passwords
for a particular user account. If this is the case, Lethe sets
off an alarm as a data breach has been detected. For doing
so, C invokes RC(), for selecting the sweetword that was
given by the user for each login attempt.

The checking server maintains a dictionary, namely
last_used_sw, containing the last used sweetword for
each user account. This dictionary is discarded after
checking is completed. By using this dictionary, C can
infer if a login was made with a provided password
that is different than the one stored in last_used_sw for
that particular user. The computational complexity of data
breach detection phase is O(n), where n represents the
total number of lines in logins file L.

Note that C releases random tokens, as it happened
during the actual authentication in S, and replays all login
events. This replay can be done only by C because it has
access to the synchronized generator. Also, this replay can
happen once, since all random tokens are discarded and
going back to the generator’s sequence is not possible.
This replay is not possible even in S, which recorded all
login events in the first place.

Detection can happen since C in replaying all login
events can infer if a particular user authenticated with
more than one sweetwords in the system. However, we
expect that during an epoch most of the users will have
logged in once or even zero times in the system. For this,
after the checking phase has been completed and no data
breach has been detected, C overwrites the logins file L.
In particular, the checking server C adds one record for
each user account placing the last used sweetword at the
position derived from the server S’s RNG, randomizing
the positions of the remaining sweetwords.

This step essentially simulates a user login with the
last sweetword used. This simulated login is propagated
from epoch to epoch. For instance, a user that performed
a single login attempt, during registration, will have their
single successful login attempt propagated in the follow-
ing epochs; it is, thus, sufficient for an attacker to log
in just once as the particular user but with a different
sweetword for signalling the detection of a data breach.

4.5. Handling Password Reset

In Amnesia the breach detection happens when the
legitimate user logs into their account after the attacker
has done so. Thus, in case that an attacker triggers a
password reset the legitimate user is locked out of their
account, without a data breach being detected. For this
reason, Amnesia requires the target to utilize a backup
authentication method, before enabling password reset.

Contrary, Lethe is capable of signalling a data breach
alarm without the need of any backup authentication
mechanism (see Fig. 1(d)). In particular, for the attacker
to issue the password reset routine, they have to first
log into the system, and thus the authentication phase
(see Fig. 1(b)) has to be executed with the given ID and

password 4. Note that during the authentication phase, the
adversary must guess the correct password from the list of
20 sweetwords. Otherwise, the next data breach detection
phase occurrence, at the end of the epoch, will signal an
alarm if different sweetwords are provided as password
for the same user account. Afterwards, when the attacker
enters the new password and clicks submit, Lethe initiates
the registration phase (see Fig. 1(a)).

Whenever a password reset is issued, the event is
logged in L. Lethe can differentiate between a password
reset issued by the legitimate user and by an attacker,
assuming the attacker has used the wrong password to log
in for triggering the reset. At the end of the epoch, while
checking all authentication events, Lethe will signal that a
data breach has happened, before reaching the password-
reset event, since the attacker’s login with the wrong
password is going to be processed first. Now, assuming
there is no data breach detected and a password-reset event
is processed, then a new login, with the new password, is
forwarded from C to S, and the new password is now
used from all future epochs.

4.6. Example of Operation

In order to better communicate Lethe’s operation we
provide a step-by-step example with two epochs, showing
how data breach detection works, assuming one registered
user and an authentication system that uses ten sweet-
words per user account (see Fig. 2).

Initially, at epoch 1, the user registers to the system
using the password PW1. Lethe derives the list of sweet-
words for the given password, by issuing HoneyGen, and
next authenticates the user into the system. The authenti-
cation involves receiving a random integer from RS(), i.e.,
1, which will be used for storing the given password at the
specific position in the list of sweetwords, randomizing
the positions of the remaining sweetwords. Note that
Lethe cannot differentiate the user-chosen password from
the sweetwords; in Fig. 2, we use the notation PW to
indicate the sweetword that is used by the user during
authentication.

Next, during the same epoch, the user logs into the
system once more, giving the password PW1 as input.
Lethe invokes RS() and creates another record in logins
file L placing PW1 at the position 8. Next, the user logs
into the system one more time, during the same epoch,
using again PW1. The same procedure is followed, and a
new entry is created in L placing PW1 at position 2.

Afterwards, the end of epoch occurs and the data
breach detection phase kicks in. During this phase, the
server C replays all login events. In particular, for each
record in L, the checking server C invokes RC() and se-
lects the respective sweetword located at that position. As
shown, C observes the same password, that is, PW1, for
all user’s login attempts, and thus no breach is detected.
Next, C initiates the start of the new epoch, by creating
a new record in L and storing the last used sweetword
(PW1) at position 3 that was received by invoking RS().

4. Note that the password reset phase does not apply on resetting
forgotten passwords, where standard practices can be followed, but only
on the intentional change of the password. This is the case for both
Amnesia and Lethe.
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Epoch Event Action File L

1 User registers with password PW1 RS ← 1 PW1 SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9

1 User authenticates with password PW1 RS ← 8 SW2 SW4 SW8 SW3 SW7 SW9 SW5 PW1 SW4 SW6

1 User authenticates with password PW1 RS ← 2 SW2 PW1 SW3 SW8 SW6 SW9 SW7 SW4 SW8 SW5

Data breach detection phase
1 used_sweetword = PW1 RC ← 1 PW1 SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9

1 used_sweetword = PW1 RC ← 8 SW2 SW4 SW8 SW3 SW7 SW9 SW5 PW1 SW4 SW6

1 used_sweetword = PW1 RC ← 2 SW2 PW1 SW3 SW8 SW6 SW9 SW7 SW4 SW8 SW5

No data breach detected.
Next epoch

2 Add last used_sweetword to L RS ← 3 SW8 SW3 PW1 SW5 SW6 SW9 SW7 SW4 SW2 SW1

2 User authenticates with password PW2 RS ← 4 SW2 SW1 SW9 PW2 SW3 SW5 SW4 SW7 SW6 SW8

Data breach detection phase
2 used_sweetword = PW1 RC ← 3 SW8 SW3 PW1 SW5 SW6 SW9 SW7 SW4 SW2 SW1

2 used_sweetword = PW2 �= PW1 RC ← 4 SW2 SW1 SW9 PW2 SW3 SW5 SW4 SW7 SW6 SW8

Signal a data breach alarm!

Figure 2. A timeline of Lethe’s operation assuming 1 registered user and an authentication system that uses 10 sweetwords per user account. As
shown, for the 1st epoch, Lethe detects the entry of a single password (PW1) for all user’s login attempts, thus, not signalling a data breach. Then,
server C starts the new epoch and propagates the last used sweetword by adding it back to L. For the 2nd epoch, the checking server C observes a
login attempt using a different, than the one given before, password (PW2). As a result, C signals an alarm since a data breach has been detected.

During the 2nd epoch the attacker logs into the system
providing a different password, PW2. Lethe invokes RS()
and creates a new record in L placing the given password
(PW2) at position 4. Finally, the data breach detection
phase occurs once more and the server C replays all login
events using RC(). Invoking RC() once returns 3 and C
selects PW1 as the last used sweetword. C invokes RC()
once more and receives 4. Then, C selects the sweetword
located at position 4 (PW2) and compares it with the
previous one (PW1). C realizes that PW1 �= PW2 and
immediately signals an alarm.

Finally, Figs. 3 and 4 show two more example time-
lines, where the user logs in once, during registration, and
then logs in again, at a significantly later epoch e, using
either the same (Fig. 3) or a different (Fig. 4) password.
In both cases, we can see that the user’s initial successful
login attempt is propagated to all subsequent epochs. This
propagation mechanism makes Lethe capable of detecting
a data breach irrespective to the user’s login attempts.

4.7. De-synchronization of S and C

Intuitively, RNGs can be de-synchronized in cases
where users are involved. For example, when a user
accidentally issues more random tokens than needed. This
is not the case with Lethe, where machines release ran-
dom tokens following a prescribed algorithm. Nonethe-
less, a de-synchronization event between RS() and RC()
can potentially happen in case: (a) one of the servers
crashes/loses its state of the RNG, and (b) an attacker
manages to explicitly make a call to either RS() or RC()
in order to trigger a de-synchronization. This would lead
in a data breach being detected while there was not one.
In this section, we provide details on how Lethe can be
re-synchronized in case of such situations.

When a de-synchronization event happens, there are
two parts to be addressed: (a) detection and (b) re-
synchronization. For (a), Lethe instructs S and C to issue
a random number and check it over TLS at the start of
each epoch. If the numbers are different then it means
that there was a de-synchronization event in the previous
epoch. In that case, Lethe is not able to detect if a data
breach has happened in the last epoch, since it might be
a false positive or an actual breach. We assume that (i)

the data breach, if there was one, will be detected in a
future epoch and (ii) several de-synchronization events
is an indicator that the system is experiencing abnormal
behavior.

For (b), which is already implemented in our system,
we use the trusted bootstrap. Lethe needs no state to run
again correctly, since the state is actually shared by the
users that know their own valid passwords. Moreover,
Lethe is able to detect a data breach in the next epoch.
Note that in such case, files L and F are both reset to a
clean state.

5. Evaluation

In this section we evaluate Lethe. Compared to other
systems, Lethe involves the network communication of
two servers, S and C, for detecting a data breach.
This communication, although not frequent, can introduce
some overhead, which is moderate. We explore this over-
head below. Moreover, we provide a discussion of how
Lethe can detect a breach when different attackers attempt
to leak the passwords later in this section.

5.1. Network Overhead

In order for Lethe to operate as expected, servers S
and C must maintain a copy of files F and L. S updates
F every time a new user is registered and L for each new
login attempt, assuming the provided password is valid.

When the data breach detection phase occurs, C has
to update its own instances of files F and L. For updating
F , C needs only the new registered users along with their
sweetword lists. These updated records can be sent to C
either in their plain text format or in a compressed form.
For example, if 500k new users are registered the size
of the updates is 102 MB and 46.5 MB for the plain or
compressed form 5, respectively.

For updating L, C needs the records for the new login
attempts made to S. Similar to F ’s updates, the new login
attempts can be either transferred in their plain text format
or in a compressed form with similar file sizes as the

5. We use WinZip, however, other libraries that compress text files
more efficiently, such as 7-zip, do exist.
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Epoch Event Action File L

1 User registers with password PW1 RS ← 1 PW1 SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9

Data breach detection phase
1 used_sweetword = PW1 RC ← 1 PW1 SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9

No data breach detected.
Next epoch

2 Add last used_sweetword to L RS ← 3 SW8 SW3 PW1 SW5 SW6 SW9 SW7 SW4 SW2 SW1

Data breach detection phase
2 used_sweetword = PW1 RC ← 3 SW8 SW3 PW1 SW5 SW6 SW9 SW7 SW4 SW2 SW1

No data breach detected.
. . .
. . .
. . .
Next epoch

e Add last used_sweetword to L RS ← 4 SW2 SW1 SW9 PW1 SW3 SW5 SW4 SW7 SW6 SW8

e User authenticates with password PW1 RS ← 9 SW2 SW6 SW1 SW9 SW3 SW4 SW7 SW5 PW1 SW8

Data breach detection phase
e used_sweetword = PW1 RC ← 4 SW2 SW1 SW9 PW1 SW3 SW5 SW4 SW7 SW6 SW8

e used_sweetword = PW1 RC ← 9 SW2 SW6 SW1 SW9 SW3 SW4 SW7 SW5 PW1 SW8

No data breach detected.
Next epoch
e+ 1 Add last used_sweetword to L RS ← 5 SW7 SW5 SW8 SW1 PW1 SW6 SW9 SW4 SW3 SW2

. . .

. . .

. . .

Figure 3. A timeline of Lethe’s operation, where the registered user logins once (at registration) and then logins at a very later epoch e, using the
same password (PW1). As shown, the data breach detection phase, that occurs at epoch e, does not detect a data breach, and thus does not signal
an alarm.

Epoch Event Action File L

1 User registers with password PW1 RS ← 1 PW1 SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9

Data breach detection phase
1 used_sweetword = PW1 RC ← 1 PW1 SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9

No data breach detected.
Next epoch

2 Add last used_sweetword to L RS ← 3 SW8 SW3 PW1 SW5 SW6 SW9 SW7 SW4 SW2 SW1

Data breach detection phase
2 used_sweetword = PW1 RC ← 3 SW8 SW3 PW1 SW5 SW6 SW9 SW7 SW4 SW2 SW1

No data breach detected.
. . .
. . .
. . .
Next epoch

e Add last used_sweetword to L RS ← 4 SW2 SW1 SW9 PW1 SW3 SW5 SW4 SW7 SW6 SW8

e User authenticates with password PW2 RS ← 9 SW2 SW6 SW1 SW9 SW3 SW4 SW7 SW5 PW2 SW8

Data breach detection phase
e used_sweetword = PW1 RC ← 4 SW2 SW1 SW9 PW1 SW3 SW5 SW4 SW7 SW6 SW8

e used_sweetword = PW2 �= PW1 RC ← 9 SW2 SW6 SW1 SW9 SW3 SW4 SW7 SW5 PW2 SW8

Signal a data breach alarm!

Figure 4. A timeline of Lethe’s operation, where the registered user logins once (at registration) and then logins at a very later epoch e, using a
different password (PW2). As shown, the data breach detection phase, that occurs at epoch e, detects this incident, due to the propagated last used
sweetword (PW1), and thus signals a data breach alarm.

ones mentioned above. However, when the data breach
detection phase is completed and C needs to propagate
the sweetwords used for each user account to the next
epoch, it is enough to ask S for a list containing n random
tokens, where n is the number of registered users, from its
RNG. These tokens are essentially integers in the range
[1, 20] and if we have 1 million registered users we only
need to transfer a file of size 3.3 MB (or 737 KB if we
compress it).

5.2. Security Analysis

Lethe can be attacked in numerous ways. We discuss
here all possible attacks and how Lethe behaves. The
relevant threat model (see Sec. 3) for Lethe is similar to
the one used in Amnesia with some relaxations to allow
for even stronger adversaries.

5.2.1. Attacking the Authentication Server. An attacker
that compromises the storage of S cannot reveal any
of the users’ real passwords, since they are all blended
with honeywords. The attacker can use any of the sweet-
words associated with a particular account to successfully
authenticate with the system. However, they risk being
detected if they use a sweetword that is not the user’s real
password. Thus, the attacker has a probability of 1/20
for being not detected, when logging to an account of a
particular user and for a system with 19 honeywords in
place.

The attacker can compromise S multiple times and
observe the passwords stored in the disk, which constantly
change during user logins. However, the attacker cannot
tell real passwords from honeywords, since: (a) the at-
tacker has no access to the RNG that is used to permute
the honeywords and (b) we assume that future random
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values cannot be compromised –this is aligned with the
assumptions in Amnesia.

Finally, the attacker can compromise S and sniff pass-
words, or random numbers, from memory. This cannot be
protected by Lethe, but this is also out of scope for similar
efforts [7]. As discussed in Section 3, we anticipate that at-
tackers aim at compromising a vast amount of passwords,
and not just a few, that can sniff from memory when users
authenticate with the server. In fact, a fully compromised
server that allows users to authenticate resembles more
the threat model of phishing [17] and not the one of a
data breach.

5.2.2. Attacking the Checking Server. An attacker that
compromises the storage of C cannot reveal any of the
users’ real passwords, since they are all blended with
honeywords. The storage of C does not change frequently,
but only during checking. Again, the attacker can compro-
mise the storage of C multiple times, but since there is no
access to the RNG or to future values of it, the attacker
cannot tell which password is the real one.

In contrast to S, C is a really minimal system. In
fact, most of the time C can be off-line since C uses
the network only for receiving login updates once every
epoch. Even during checking for a data breach, C can be
off-line. This means that practically C can minimize the
window of opportunity for becoming compromised. The
only interaction of C with the network is for receiving the
login events from S through a TLS connection, which we
assume secure, that is only open for a limited time and
very sporadically.

Finally, compromising the memory of C during check-
ing is out of scope. Again, having a full compromise and
inspecting the memory of the system is out of scope for
similar works [7]. But, note that C can be easily protected
since there is limited interaction of C with the rest of the
system. Later, in Section 6.4, we provide some directions
for improving Lethe’s robustness against adversaries that
can compromise server C during the checking time.

5.2.3. Attacking HoneyGen. Contrary to Amnesia, Lethe
relaxes the assumption that the adversaries cannot infer
the HGT used to produce the honeywords for each user’s
password and allows for attackers that can trigger the
generation of honeywords anytime. This is important as
in the case that adversaries manage to invert the HGT,
they can go from the enriched with honeywords password
file back to the initial password file having only the real
password for each user account.

For attacking the HGT an adversary can either: (a)
gain access to, or (b) reproduce, the actual honeywords
generation model stored in server S. Lethe protects from
both cases. For the first scenario, even if the adversaries
gain access to the honeywords generation model they
cannot use it to extract the real password from the honey-
words, by supplying any sweetword that exists in F and
comparing the retrieved list of sweetwords with the one
stored in F for each user. This is due to the added step of
randomness in HoneyGen’s hybrid HGT, which makes it
impossible to respond with the same set of sweetwords
(see Table 1), and the continuous batch retraining of
its weights, every 1,000 newly registered users, which
dramatically changes its previous operation mechanics [8].

For the second scenario, HoneyGen offers protection
by design as it is impossible to reproduce the same honey-
words generation model used to generate the honeywords
included in password file F for the same aforementioned
reasons.

5.2.4. Lethe’s Bounded Data Breach Detection Time.
One of the main concerns for data breach detection frame-
works is to minimize the time interval between the actual
data breach incident and its detection from the system
[1], [7], [8]. The optimal case scenario is the classic
honeywords schema, where a data breach is detected as
soon as the adversary attempts to log in with a honeyword
[2]. However, this is hard to be achieved in practice when
removing the honeychecker component.

Amnesia requires the legitimate user to login, after
the attacker accesses the account using a honeyword, for
signalling a data breach alarm. Thus, Amnesia assumes
that users often access their accounts using their login
credentials, something which is not the case 6. Even if
this is the case, Amnesia may miss detecting a data breach
incident due to its probabilistic nature, i.e., stochasticity
when marking the users’ sweetwords. In contrast, Lethe
can detect a data breach deterministically in a few hours,
even when the user has performed a single login in their
entire lifetime, during registration.

6. Discussion

This section provides a detailed discussion in regards
to: (a) the way that Lethe improves the classic honey-
words schema (Sec. 6.1), (b) how Lethe can be used with
Amnesia’s monitors for efficiently detecting data breaches
in case of password reuse (Sec. 6.2), and (c) Lethe’s
limitations (Sec. 6.3).

6.1. Improving the Classic Honeywords
Paradigm

Lethe improves the classic honeywords schema in
two ways. First, Lethe removes the need for the external
trusted entity to be trusted at all times, and thus minimizes
the window of opportunity for becoming compromised. In
Lethe’s context, C needs to be trusted only during the data
breach detection phase, which happens off-line.

Second, Lethe does not rely on any persistent secret
state for validating login attempts; in Lethe’s context, an
adversary that accesses all persistent storage at the site
associated with validating or managing account logins
cannot reveal any of the users’ real passwords since they
are blended with honeywords.

6.2. Tackling Password Reuse

Users tend to select easy-to-remember passwords
rather than uniformly distributed [8]. Not only that, but
they also reuse their chosen passwords across multiple
accounts [18], [19], [20]. As a result, in the case where

6. There is a trend in users entering their passwords less frequently,
which makes detection schemes, based on explicit user logins, less
efficient [7].
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TABLE 1. THREE EXAMPLE HONEYWORD LISTS RECEIVED FROM HONEYGEN, WHEN GIVEN THE PASSWORD “jeremiah523” AS INPUT. AS

SHOWN, THE RETRIEVED LISTS ARE DIFFERENT, THUS, MAKING IT IMPOSSIBLE FOR POTENTIAL ATTACKERS TO REPRODUCE THE SAME SET OF

SWEETWORDS AS THE ONE STORED IN PASSWORD FILE F FOR EACH USER ACCOUNT, EVEN WHEN HAVING ACCESS TO THE ACTUAL

HONEYWORDS GENERATION MODEL ITSELF.

Hw1 Hw2 Hw3 Hw4 Hw5 Hw6 Hw7 Hw8 Hw9 Hwi Hw19

jeremiah23 jeremiah0623 jeremy823 jeremie03 jeremiaH1 jeremiah91 jeremiebarabin jeremy_23 jeremiah29vs11 ... jeremiej1

Jeremiah23 jeremiah51 jeremiah29v11 jeremieh1 jeremiah1 $jeremiah$1 jeremias13 jeremie007 jeremy423 ... jeremiah29:11

jeremiah41 jeremias03 jeremey1 jeremiah29 jeremiah61 jeremylee1 jeremmi1 1jeremiah1 jeremy2006 ... jeremie03

an adversary compromises two targets tar1 and tar2 (em-
ploying honeywords), for which a specific user maintains
accounts on both of them, the user-chosen password will
likely be the one contained in the intersection of the
two sweetword lists. Even if the second target tar2 is
not compromised, the attacker can reveal the user-chosen
password by testing the leaked sweetwords, from the
compromised target tar1, at tar2 one by one, which is
also known as a credential stuffing attack [21].

For addressing the credential stuffing attacks, Amnesia
enables the target to monitor for the entry of passwords
stolen from it at other sites, called monitors. In particular,
incorrect passwords entered for the same user at monitors
are treated as if they had been entered locally at the
target. For doing so, Amnesia introduces a cryptographic
protocol, namely Private Containment Retrieval (PCR), by
which a monitor transfers the password attempted in an
unsuccessful login to the target, but only if the attempted
password is one of the sweetwords for the same account
at the target.

Lethe’s approach is orthogonal with Amnesia detec-
tion and can be in principle used with Amnesia’s monitors.
If that happens, Lethe is faster in signalling a data breach
alarm because detection is not based on users entering
their passwords.

6.3. Lethe’s Limitations

Lethe’s servers S and C employ two RNGs, which
are synchronized on producing random integers in the
range [1, 20]. These two generators are initialized during
the trusted bootstrap phase using a sensitive seed, which
is immediately discarded. However, in case an adversary
gains access to the seed before it is discarded, they can
compute positions of the used sweetwords in the logins
file L. The most common sweetword for each user will
be most probably the real password.

Furthermore, although Lethe bounds the time interval
between the actual data breach incident and its detection
by the system, it still allows adversaries to act undetected
for a certain amount of time (a few hours). This is due
to Lethe’s agnostic nature regarding the users’ real pass-
words. In particular, Lethe authenticates login attempts
that utilize any of the sweetwords for a particular user
and later, during the data breach detection phase, checks
whether or not different sweetwords have been provided as
input for a specific user account. This duration, however,
may be enough to cause significant damage to the target
system in case the password file F is leaked.

Attackers that have compromised any of the two
servers and passively monitor the memory of the sys-
tem for a long period may reveal some of the users’

supplied passwords. Similar to other honeywords-based
detection frameworks, such as Amnesia, Lethe cannot
protect against such cases.

However, we anticipate that adversaries risk being
detected by holding the compromise for a long period
to sniff, passively and in real-time passwords, let alone
the fact that users rarely authenticate by supplying their
credentials. Usually, attackers need to exfiltrate a bulk
amount of passwords and not just a few. Note that for the
time being, no system that can protect against adversaries
that have full access to the memory of the system for its
entire period of operation exists, at least to our knowledge.
We have stressed all this discussion in Section 5.

6.4. Improving Lethe

An attacker that monitors, for a long period, the mem-
ory of the system can reveal some of the users’ supplied
passwords. More importantly, however, an attacker that
compromises the memory of server C during the checking
time can reveal the real passwords for all user accounts.
There are two possible directions for mitigating this prob-
lem: (a) employing an RNG per user account, and (b)
utilizing trusted computing.

A Single RNG per User Account. In its current form,
Lethe utilizes a single RNG to encode and subsequently
validate login attempts. The use of a single generator
forces C to examine all user accounts, even the ones that
are inactive, every epoch. An alternative option is to assign
each user with an RNG. A unique generator per user can
facilitate in checking only the active accounts each time.
In that case, an attacker that has fully compromised C and
can inspect its memory during checking can leak only the
passwords of specific accounts.

Trusted Computing. In Lethe’s current schema, C re-
alizes an isolated data-breach detection environment. This
is because the checking for a data breach happens off-line,
and thus the window of opportunity for compromising C
is minimized. In principle, this operation could be real-
ized in the main server using trusted computing, such as
SGX [22] or similar upcoming technologies [23], and thus
removing the need of maintaining two servers. Notice, that
the RNG of C generates all sensitive random tokens fast,
during checking, and therefore needs protection. On the
other hand, the RNG of S generates random tokens slowly,
whenever a user authenticates with their password.

Isolating the RNG of C enables Lethe to utilize a
single server for performing both authenticating a user into
the system and checking for a data breach. By doing so,
the network communication overhead discussed in Section
5.1, is eliminated since there is no need for Lethe to
transfer updates of files F and L to an external server.
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7. Related Work

Several techniques for making off-line password
guessing harder exist. However, all of them impose signif-
icant performance limitations [8]. In particular, machine-
dependent functions have poor scalability [24], dis-
tributed cryptography techniques require client-side sys-
tem changes which is not user friendly [25], and external
password-hardening services are subject to a single point
of failure [26].

Contrary, an interesting direction, initially proposed
by Juels and Rivest, is to deploy honeywords, which are
false passwords associated with each user’s account, for
detecting password leakage [2]. When using honeywords,
even if an attacker steals and reverts the password file F ,
containing the users’ hashed passwords, they must still
decide about the real password from a set of 20 distinct
sweetwords. Using a honeyword to login sets off an alarm
as a data breach incident has been reliably detected. For
generating those honeywords, Juels and Rivest proposed
four random replacement-based HGTs, which have been
later shown to be ineffective to meet the expected security
requirements [1].

Bojinov et al. [27] suggested to hide the real password
file F amongst others, which are similar to F but decoy
ones. For constructing these decoy password files, they
proposed a syntax-based HGT in which honeywords are
generated using the same syntax as the real passwords. In
particular, the authors parse each password into a series of
tokens containing consecutive characters of letters, digits,
or special characters, and then, replace each character with
a randomly selected one that matches the token’s type.

Erguler suggested an alternative HGT that selects the
honeywords from existing user passwords [28]. However,
the effectiveness of Erguler’s HGT is yet to be verified us-
ing the relevant metrics, i.e., flatness and success-number
graphs, while also suffering from significant shortcom-
ings, such as critical deployment issues, low robustness
against the “peeling-onions style” distinguishing attack,
and limited honeywords generation spectrum [1].

Dionysiou et al. [8] introduced HoneyGen, a practical
and non-reversible HGT that causes state-of-the-art dis-
tinguishing attackers to fail. HoneyGen leverages repre-
sentation learning techniques to generate realistic looking
honeywords, and takes advantage of the stochasticity of
the utilized ML models to ensure its non-reversibility
property. In doing so, HoneyGen meets the expected secu-
rity requirements in terms of flatness and success-number
graphs. Finally, HoneyGen supports the generation of
honeywords with arbitrary length and structure.

Almeshekah et al. [24] proposed a machine-dependent
function, namely a hardware security module, to be de-
ployed in the authentication server S (target) for producing
the hashes of the given passwords. Thus, an attacker who
is unaware of this defence mechanism and tries to crack its
database off-line will produce plausible decoy passwords
that, when submitted, alert the target site to its breach.

Kontaxis et al. [15] proposed SAuth, a protocol that
employs authentication synergy among different services.
In this context, the authors suggest the use of decoy
passwords to tackle the problem of password reuse, which
can cause a system to fail if a user recycles the same pass-
word across all vouching services [15]. The key difference

between decoy passwords and honeywords is the fact that
any of the decoys can successfully authenticate the user
to the service, whereas the use of a honeyword sets off
an alarm as an attack has been detected [2].

Various papers have suggested the use of decoy ac-
counts, which are false accounts with no owner, that if ever
accessed, signal a data breach alarm [29]. For example,
DeBlasio et al. [30] proposed to register a decoy email, at
a separate email provider, for each decoy account using
the same email address and password. Thus, if a successful
login attempt at the uncompromised email provider is
observed for any of those decoy emails, then the system
sets off an alarm. However, similar to all other works in
the field, except from Amnesia, this schema places trust
to a third party, which in this case is the email provider,
for detecting data breaches.

The aforementioned papers require the use of an extra
trusted component, such as a honeychecker [2], [8], [28],
a machine-dependent function [24], or an external secure
email provider [30], whose state is assumed to remain
secret even after the attacker breaches the target.

The first approach which is free of this, rather strong,
assumption, is the framework proposed by Wang et al. [7],
namely Amnesia. Amnesia is a honeywords-based breach
detection framework that allows the target to probabilis-
tically detect its own data breach. Furthermore, Amnesia
enables the target to monitor for the entry of passwords
stolen from it at other sites, called monitors. Using their
set-up, incorrect passwords entered for the same user at
monitors are treated (for the purposes of breach detection)
as if they had been entered locally at the target. The
authors introduce a cryptographic protocol, namely PCR,
with which a monitor transfers the password attempted
in an unsuccessful login to the target, but only if the
attempted password is one of the sweetwords for the same
account at the target.

8. Conclusion

In this paper, we proposed Lethe, a honeywords-based
data-breach detection framework that is not dependent on
an always trusted external entity for detecting the entry
of a honeyword and on any persistent secret state for
validating login attempts. Lethe guarantees the detection
of a data breach incident with the same probability as in
the classic honeywords paradigm, that is, 19/20 in case
20 sweetwords are used for each user account.

Furthermore, Lethe bounds the time an attacker can
use breached credentials to access accounts without alert-
ing the target to its data breach. In Lethe’s context, if an
adversary logs into the system using a sweetword that
is different from the one given by the legitimate user
during the registration phase, a data breach is guaranteed
to be detected in a few hours. Finally, Lethe allows for
adversaries that can gain full access to the honeywords
generation model. Such adversaries, however, cannot harm
Lethe since the deployed honeywords generation model
makes it impossible to reproduce the same set of sweet-
words for any given password.
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