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Abstract

The flexibility of current graphics hardware is still not enough to
ensure the full implementation of an original complex algorithm
such as a local tone mapping operator, which maintains the same
quality performances as its original CPU implementation. Signifi-
cant changes are often needed to the original CPU implementation
in order to overcome many of the limitations of the current graph-
ics hardware. As a result of this we often have reduced quality
reproduction, and the frame rate of the GPU implementation is not
always acceptable for real-time applications. In this paper, we show
how to change the CPU implementation of a state of the art local
tone mapping operator for accelerating the computation process to
real time frame rates. We also present a modification of the lumi-
nance local adaptation computation, showing a simple but not yet
exploited property of the Gaussian filter, allowing us to maintain
the same quality appearance of the original tone mapping operator.
Finally we test the hardware implementation on NVIDIA graphics
cards on several images and as well as a video. We compare our
hardware implementation with the corresponding CPU implemen-
tation and previous work.

1 Introduction

The conversion from High Dynamic Range to traditional display lu-
minance is known as tone-mapping (TM). TM is a very important
last step in the (re-)production of realistic images and many opera-
tors have been proposed. However, the computational requirements
of a complex tone mapping operator (TMO) is still such that itis
not possible to achieve high quality results in real-time. Existing
TMOs can be subdivided in two basic categories: global and lo-
cal operators. Global TMOs apply the same operation to all pixels
of the input image, while local operators take into consideration
the local properties of individual pixels and use this information to
preserve the local contrast reproduction. The graphics hardware,
currently available, is becoming more and more flexible and suit-
able for general purpose programming, but there are still several
limitations that restricts the possibility of implementing complex
algorithms such as local TMOs. In fact a difficult aspect of GPU
programming, as discussed in Goodnight et al. [Goodnight etal.
2003], is that it requires exceedingly careful optimisation in order to
achieve the performance that is expected. Several factors contribute
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to this problem, such as: memory bandwidth, driver overhead, etc.
Some of these problems can be reduced, but not completely avoided
[Goodnight et al. 2003].

Recently, several high-level programming languages for GPUs
were introduced, which help the programmer to speed up the pro-
gramming phase, but on the other hand the limited number of as-
sembly instructions (1024), still reduces the possibilityto imple-
ment a sophisticated algorithm without significantly modifying it.

In this paper, we propose a hardware implementation of a state-
of-the-art local TMO, showing how it is possible to overcomethe
limitations and drawbacks that still affect the direct implementation
of a state of art TMO directly on the GPU. This implementationis
able to deliver in real-time the results of the original TMO (CPU
implementation), maintaining intact its quality reproduction. No
trade-off between quality and speed is required. Additionally, a
modification of the local luminance adaptation computationof the
original TMO is presented.

The paper is organised as follow. Section 2 describes related work.
Section 3 provides an overview of the hardware implementation.
Section 4 shows the experimental results. Finally Section 5con-
cludes and suggests possible future work.

2 Related Work

The concept of TM was introduced by Tumblin and Rushmeier
[Tumblin and Rushmeier 1993], in which they proposed a tone re-
production operator that preserves the apparent brightness of scene
features. Subsequenly many TMOs have been proposed that can
be classified as either global or local as discussed in the Section 1.
All these TM methods concern accurate operators that attempt to
reproduce individual visual effects at non-interactive rates.

Is not the purpose of this paper to give a complete overview of
the state-of-art of the TMOs proposed in the literature. Fora full
overview of tone mapping see[Devlin et al. 2002]. In this Section
we will concentrate on reviewing the work that attempts to develop
a real time TMO.

The interactive solutions to the TM problem can be classifiedin
two main categories: direct GPU implementation of the original
TMO, and definition of a general acceleration platform. The first
one refers to the implementation of the original CPU implementa-
tion of the TMOs directly on the GPU. This often requires a signif-
icant modification of the original CPU implementation. As a result
of this we have reduced quality when compared with the outputob-
tained with the original TMO. In addtion, as a final drawback,the
time performances are rapidly decreasing as the resolutionof the



input frame increases [Goodnight et al. 2003]. The second cate-
gory, see Artusi et al. [Artusi et al. 2003], aims to develop aframe-
work that can be applied to the current state of art TMOs in order
to achieve interactive rates. The main advantage of this idea is that
no modifications are required to the original TMOs, that are still
implemented on the CPU.

Several authors, including Durand and Dorsey [Durand and Dorsey
2000][Durand and Dorsey 2002] and Ward et al. [Ward Larson
et al. 1997], have proposed some acceleration methods in order to
improve the computational performance of their TMOs. Several
global TMOs which currently do achieve interactive rates, tightly
coupled with current graphics hardware, have been proposedby Co-
hen et al. [Cohen et al. 2001] and Scheel et al. [Scheel et al. 2000].
Goodnight et al.[Goodnight et al. 2003] discussed the troublesome
aspects of the GPU programming and presented a hardware imple-
mentation of the Reinhard et al. operator [Reinhard et al. 2002].
They also proposed a different algorithm for the photographic zone
computation, in order to overcome the limitations of current graph-
ics hardware. Krawczyk et al. [Krawczyk et al. 2005] presented the
reproduction of perceptual effects within real-time tone mapping.
Artusi et al. [Artusi et al. 2003] proposed a general framework
usable only for global operators. They analysed the acceleration
problem and discussed the hardware implementation of this frame-
work, reducing the implementation complexity without modifying
the rendering pipeline.

3 Implementation

Throughout this paper the uppercase notation ofRGB (red,green,
and blue triplet) andLUM (luminance) will represent high dy-
namic range quantities, while lower case notation means lowdy-
namic range quantities. We have chosen the TMO proposed by
[Ashikhmin 2002] for two reasons. First, it achieves visualappeal-
ing results. Second, it presents similar algorithmic structure to the
previous work concerning HW implementation of TMOs. This will
allow us to compare the ability of our implementation to achieve
a better performance in terms of speed and quality, with previous
work in a straightforward manner.Our implementation is depicted
in Fig. 1.

The process roughly comprises the following stages:

• ConvertRGB to LUM

• ComputeLa image with the neighborhood growing procedure

• ScaleLUM with La, recombine withRGB and apply gamma
correction to compute finalrgb result

We use OpenGL and the OpenGL Shading Language to implement
the previously mentioned stages. Framebuffer objects (FBOs) are
used to provide a fast way for floating point textures, as wellas
floating point render-targets. Initialization of the structures is done
once at application startup. Every stage uses one or more floating
point textures as input and outputs the result to the double-buffered
FBO resultbuffer. All computations are implemented as fragment
shaders.

3.1 Computation of luminance, minimum and max-

imum

The first step consists of converting theRGB input data toLUM.
The resulting luminance value is stored together with theRGB

Figure 1: Per-pixel view of our implementation.

triplet as (R,G,B,LUM) in the resultbuffer. Afterwards, anim-
age pyramid is used to compute minimum and maximum values
of LUM. We create the pyramid by using the original input image
as the base (level=0). For each level we bisect the before headed
level until it reaches a size of 1x1 pixels. That way 4 pixels of level
k are projected onto 1 pixel of levelk +1, storing the min and max
in the red and green channel. We end up with one pixel, holdingthe
minimum and maximum value of theLUM input image, see Fig.1.

To smooth the high changes in brightness between the frames,
we do a simple interpolation using eq. 1. ThenewMinMax holds
the minimum and maximum values of the current frame, while
psMinMax represents the interpolated values from the last frame.
Linear scaling is applied to compute the new min and max lumi-
nance values (intMinMax) of the current frame.

intMinMax = p fMinMax +(newMinMax − p fMinMax)/scale (1)

The scale value has been chosen experimentally as 8.0.

3.2 Neighborhood growing procedure

In the original CPU implementation [Ashikhmin 2002], a Gaus-
sian pyramid was chosen to compute the levels of Gaussian blur.
We have chosen a slightly different approach, based upon apply-
ing the same gaussian filter kernels recursively. We utilize2 one
dimensional filter kernels: (1,2,1) fors and (1,4,6,4,1) for 2s. The
resultbuffer, which stores the interim results at each iteration is or-
ganised in the following way: to keep up with the computationand
store all important results, 4 channels are needed per pixel. The
configuration of the quadruple is as follows: (Ls,L2s,La,α). Ls and
L2s represent theLUM value, filtered with radiuss and 2s. TheLa
is the current adaptation value, and theα builds a switch: Whenlc



exceeds threshold,α is set to 1.0 andLa stays fixed for the pixel,
for the rest of the procedure.

In the first pass of each iteration we blur the result image of the
last iteration horizontally - this interim results are called Ls’ and
L2s’. After swapping the resultbuffer it is bound as a texture and the
process of 1D-blurring is repeated again (now the vertical version
of the filter kernels). The results are stored inLs andL2s. These
values are used in the same pass to compute thelc of the current
iteration. After selecting the rightLa based upon thelc, we obtain
the pixel layout already described. We repeat the neighborhood
growing procedure untils is equal tonumIterations.

3.2.1 Recursive computation of the Gaussian pyramid

In this subsection we describe in more detail the recursive Gaus-
sian filter technique used for the neighborhood growing procedure
(Sec. 3.2). We will exploit one simple but useful property ofthe
Gaussian filter, which help to accelerate the entire process: If we
use the elements of Pascal’s triangle as the filter kernel, the result
of a Gaussian filter of general sizen× s is equivalent to the result
of a Gaussian filter of sizes applied recursivelyn times.

Gaussian filters themselves are separable, i.e. that it is enough to
just prove this for the one dimensional form of the filter.

i Coefficients
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
... ...

Every line with the indexi = 2∗ s can be taken as a Gaussian 1D
filter, with size s ((1), (1,2,1), ...).

s i = 2∗ s Coefficients
0 0 1
1 2 1 2 1
2 4 1 4 6 4 1
3 6 1 6 15 20 15 6 1
... ... ...

We now want to prove that s-times execution of the recursive
method with the base element (1,2,1) on a line of pixels is equal to
a filter having index 2∗s. First we compute the result by processing
the pixel line twice with the base element (1,2,1)

A′ = ?+2A+B
B′ = A+2B+C
C′ = B+2C +D

...
H ′ = G+2H + I
I′ = H +2I+?

which yields the following scanline:A′B′C′D′E ′F ′G′H ′I′, while
the second iteration looks like this:

A′′ = ?+2A′ +B′

B′′ = A′ +2B′ +C′

C′′ = B′ +2C′ +D′

...
H ′′ = G′ +2H ′ + I′

I′′ = H ′ +2I′+?

which results in:A′′B′′C′′D′′E ′′F ′′G′′H ′′I′′. The ? symbolises the
question of which value has to be taken, if the filter runs overthe
border of the image. We will discuss this question later, andconcen-
trate just on the ”complete” terms. Now we compute pixel values
for a sample line of pixels:ABCDEFGHI with filter of s = 2 (i.e.
(1,4,6,4,1) ), resulting in

Ã = ?+6A+4B+C
B̃ = ?+4A+6B+4C +D
C̃ = A+4B+6C +4D+E
D̃ = B+4C +6D+4E +F

...
Ĩ = G+4H +6I+?

Which results in the pixel linẽAB̃C̃D̃ẼF̃G̃H̃Ĩ. We know that, start-
ing with C′′ (to avoid the question of border pixels) we have:C′′ =
B′+2C′ +D′ = (A+2B+C)+2∗ (B+2C+D)+(C+2D+E) =
A+4B+6C +4D+E = C̃.

Becauses = 1 provides the same result for both (we use (1,2,1) in
both cases), and is also valid for s=2, we need to prove the wayfrom
s→ s+1 holds for all s. Because of the binomial coefficient, where
we can construct the coefficients for every(x + y)n by looking at
Pascal’s triangle at index n, we know that every 2∗ nth element is
constructible by taking the n-th power of the base element(x+y)2:

n (x+y)2n Coefficients
0 1 1
1 (x+y)2 1 2 1
2 (x+y)4 1 4 6 4 1
... ... ...

The iterated application of the base element (1,2,1) means nothing
else than the above, which proves the concept.
Though both methods are equal in a mathematical way, numerical
errors can lead to very small differences. These differences are no
problem for us, because we don’t need the exact result of the equa-
tion, but only a criteria to decide if a value is much bigger than its
neighborhood or nearly equal.

3.3 Recombination

We then tone mapLa with Eq.2 which uses the world capacity func-
tion, defined in eq.3. With the eq. 4 we ’infuse back’ the fine de-
tails in the final tone mapped image as described in the original
CPU implementation [Ashikhmin 2002]. This value is then used to
scale each component of theRGB triplet by La/Ld , followed by a
gamma correction, which is implemented as texture lookup. The
whole computation needs one filter pyramid and one additional
framebuffer object for the resultbuffer. All computationsare exe-
cuted on a per-pixel basis. The computation of theLminmax needs
log(max(width,height) − 1))/log(2) + 1 passes. The conversion
from RGB to LUM, the computation ofLa, and the recombination



HDR Image Size (pixels)
aeroporto.hdr 1024x705

lamp.hdr 400x300
memorial.hdr 512x768

nave.hdr 720x480
rosette.hdr 720x480
stilllife.hdr 1240x846

Table 1: Dimensions of the HDR images used for testing.

HDR Image RMS % error mean % error
aeroporto.hdr 0.053 % 0.008 %

lamp.hdr 1.063 % 0.023 %
memorial.hdr 0.041 % 0.025 %

nave.hdr 0.201 % 0.091 %
rosette.hdr 0.043 % 0.035 %
stilllife.hdr 0.074 % 0.051 %

Table 2: RMS and mean percent errors of our GPU implementation,
of the local Ashikhmin operator, computed as described in the Eq.
5 and Eq. 6 respectively. These values are computed considering
the CPU implementation of the operator as the accepted values.

together need 2+ 2∗ (numIterations) rendering passes. The LD-
MAX is a predefined constant, describing the maximum contrast of
a display. It is therefore set to LDMAX=100.

T M(La) = LDMAX(C(La)−C(Lmin))/((C(Lmax)−C(Lmin)) (2)

C(L)=



















L/0.0014 i f L<0.0034

2.4483+log(L/0.0034)/0.04027 i f 0.0034≤L<1

16.5630+(L−1)/0.4027 i f 1≤L<7.2444

32.0693+log(L/7.2444)/0.0556 otherwise

(3)

Ld(x,y) = (L(x,y)T M(La(x,y))/La(x,y) (4)

4 Experimental Results

In this Section we describe the experimental results done for testing
our GPU implementation of the local operator. In table 1 the images
we used for testing are listed.

We demonstrate our GPU implementation in a real-time setting and
on still images; integrating it in a rendering system that receives
HDR frames as input.

The experiments were conducted on a PC with graphics card nVidia
Go6800.

We will compare our GPU implementation with previous works
such as Goodnight et al.[Goodnight et al. 2003] that implemented
the Reinhard et al. [Reinhard et al. 2002] operator that usesa sim-
ilar technique, for computing the local adaptation luminance as the
Ashikhmin model.

We first tested the time performances of the GPU implementation
in a real-time setting. In table 3 we show the results of this test (in
fps). The approach of Goodnight et al. [Goodnight et al. 2003] used
a more complex iterative system. In fact they used n/2 + 2 render
passes for an×n filter kernel. This difference in time performances
decreases drastically when the resolution of the input frame and the
number of zones are increasing; dropping down to non interactive

performances. This is confirmed by a simple comparison of the
fps achieved by our GPU implementation with the fps achievedby
Goodnight et al.[Goodnight et al. 2003]. We can observe thatreal-
time performances are achieved even with the frame resolution of
512×512 pixels, when in the case of Goodnight et al. [Goodnight
et al. 2003] at this resolution the computation performances were
already dropping down. In their case, in order to keep the com-
putation performance at an acceptable value of fps, they needed to
compromise between quality and speed. In our case this is notnec-
essary as shown in table 3.

We can also observe how the overhead added by our GPU imple-
mentation to the rendering process is decreasing with the increase
of the frame resolution. For high frame resolution the overhead is
becoming imperceptible in term of fps. This suggests that for high
frame resolutions no more work can be done on the part of the GPU
of the state of art of the TMO, for improving the time performances
of the real-time application.

The results of Table 3 are reported also in Fig. 2.

In the video submitted with this paper we smooth the high changes
in the dynamic range of the sequence frames. It has been imple-
mented as explained in section 3.1. Recall that the final comparison
of the still images between GPU and CPU implementation of the
TMO, for a correct comparison, is done without the simulation of
the time dependency adaptation process.

Krawczyk et al. [Krawczyk et al. 2005] also claim in their work
real-time performances, but in reality these are obtained only for
low image resolution (320×240 pixels) and when the levels of the
Gaussian pyramid and image resolution are increasing the frame
rates is strongly decreasing to non interactive rates. Furthermore
the time performances were obtained with approximated results, in
term of quality, of the TMO.

In order to validate the hardware implementation, we conducted a
quality comparison with the corresponding images obtainedwith
the CPU implementation of the original algorithm. In fig. 3, we
show the results obtained with the CPU implementation (Right),
and the results obtained with the GPU implementation (Left).

In order to validate the quality comparison we computed the Root
Mean Square (RMS) percent error between the CPU and the GPU
implementations as:

errorRMS% =

√

1
n

Σ[
pcpu(x,y)− pgpu(x,y)

pcpu(x,y)
]2 (5)

wheren is the number of pixel in the image, andp(x,y) is the Lumi-
nance pixel value in the image. We also evaluate the mean percent
error as:

errormean% =
1
n

Σ |
pcpu(x,y)− pgpu(x,y)

pcpu(x,y)
| (6)

Table 2 gives the error calculation for the images used in ourtests.
The values of the errors for the all images used in the tests are com-
parable if not better, in term of RMS and mean percent error, than
obtained in Goodnight et al. [Goodnight et al. 2003].

5 Conclusion and Future Work

We have presented a hardware acceleration of a state of the art local
TMO [Ashikhmin 2002]. We have shown a unexploited but use-



HDR Frame Rendering + GPU TM [fps] Rendering [fps]
256 x 256 39 60
512 x 512 28 29

1024 x 1024 8 9
2048 x 2048 7 9

Table 3: Results (in fps) of the GPU implementation varying the
resolution of the HDR frame. In this table we compare the fps
for the Rendering + GPU TM with the fps for the only Rendering
without applying the GPU TM operator.
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Figure 2: Graphical representation of Table 3.

ful property of the Gaussian filter and how to use it for modifying
the Gaussian blurring technique used for computing the local lumi-
nance adaptation Despite the level of acceleration, the quality of the
output image is maintained when compared with the output image
obtained with the corresponding original CPU implementation. We
also showed that the overhead introduced by our GPU implementa-
tion of the TMO to the rendering process is imperceptible, for high
resolution frames, in term of fps.

These results shown how the main limitations of the current graph-
ics hardware, as image quality reduced and speed strongly related
to the resolution frame, are in part overcome.

We compare our results with two previous work [Goodnight et al.
2003] [Krawczyk et al. 2005], and showed ours has superior quality
and speed.

Future acceleration of local tone mapping operators must bebased
on a different development concept that is based on an anlysis of
the hardware limitations, reducing the necessary compromise for
adapting the original software implementation on the latest hard-
ware.
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Figure 3: (Left) Images obtained with the GPU implementation, (Right) the original CPU implementation.


