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Abstract

The flexibility of current graphics hardware is still not exgh to
ensure the full implementation of an original complex aitjon
such as a local tone mapping operator, which maintains tme sa
quality performances as its original CPU implementatiomgnii-
cant changes are often needed to the original CPU implemth@mta
in order to overcome many of the limitations of the curreratyr

ics hardware. As a result of this we often have reduced gualit
reproduction, and the frame rate of the GPU implementasarot
always acceptable for real-time applications. In this pape show
how to change the CPU implementation of a state of the art loca
tone mapping operator for accelerating the computationga®to
real time frame rates. We also present a modification of the-lu
nance local adaptation computation, showing a simple buyeio
exploited property of the Gaussian filter, allowing us to mhzin
the same quality appearance of the original tone mappintatpe
Finally we test the hardware implementation on NVIDIA grigsh

cards on several images and as well as a video. We compare ou

hardware implementation with the corresponding CPU impglem
tation and previous work.

1 Introduction

The conversion from High Dynamic Range to traditional cagdu-
minance is known as tone-mapping (TM). TM is a very important
last step in the (re-)production of realistic images andyrapera-
tors have been proposed. However, the computational exgeints

of a complex tone mapping operator (TMO) is still such thas it
not possible to achieve high quality results in real-timedisgng
TMOs can be subdivided in two basic categories: global and lo
cal operators. Global TMOs apply the same operation to algi

of the input image, while local operators take into consitien
the local properties of individual pixels and use this infation to
preserve the local contrast reproduction. The graphicdwene,
currently available, is becoming more and more flexible antt s
able for general purpose programming, but there are stitbrag
limitations that restricts the possibility of implemergimomplex
algorithms such as local TMOs. In fact a difficult aspect ofusP
programming, as discussed in Goodnight et al. [Goodniglat.et
2003], is that it requires exceedingly careful optimisafioorder to
achieve the performance that is expected. Several faatotsloute
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to this problem, such as: memory bandwidth, driver overhetd
Some of these problems can be reduced, but not completabjeal/o
[Goodnight et al. 2003].

Recently, several high-level programming languages fotJ&P
were introduced, which help the programmer to speed up the pr
gramming phase, but on the other hand the limited number-of as
sembly instructions (1024), still reduces the possibil@yimple-
ment a sophisticated algorithm without significantly megtig it.

In this paper, we propose a hardware implementation of &-stat
of-the-art local TMO, showing how it is possible to overcothe
limitations and drawbacks that still affect the direct ieplentation

of a state of art TMO directly on the GPU. This implementai®n
able to deliver in real-time the results of the original TMORU
implementation), maintaining intact its quality reprotion. No
trade-off between quality and speed is required. Additigna
modification of the local luminance adaptation computatibthe
original TMO is presented.

The paper is organised as follow. Section 2 describes telatek.
Section 3 provides an overview of the hardware implemeonati
Section 4 shows the experimental results. Finally Sectiaorb
cludes and suggests possible future work.

2 Related Work

The concept of TM was introduced by Tumblin and Rushmeier
[Tumblin and Rushmeier 1993], in which they proposed a t@ae r
production operator that preserves the apparent brightifescene
features. Subsequenly many TMOs have been proposed that can
be classified as either global or local as discussed in thgoBek
All these TM methods concern accurate operators that attemnp
reproduce individual visual effects at non-interactiviesa

Is not the purpose of this paper to give a complete overview of
the state-of-art of the TMOs proposed in the literature. dfull
overview of tone mapping see[Devlin et al. 2002]. In thist®ec

we will concentrate on reviewing the work that attempts teedtep
areal time TMO.

The interactive solutions to the TM problem can be classified
two main categories: direct GPU implementation of the oagi
TMO, and definition of a general acceleration platform. Thst fi
one refers to the implementation of the original CPU impletae
tion of the TMOs directly on the GPU. This often requires aig
icant modification of the original CPU implementation. Aseault
of this we have reduced quality when compared with the owiput
tained with the original TMO. In addtion, as a final drawbaitle
time performances are rapidly decreasing as the resolofiohe



input frame increases [Goodnight et al. 2003]. The secome ca \ R \ G| B \ 0 \
gory, see Artusi et al. [Artusi et al. 2003], aims to develdpaane- v
work that can be applied to the current state of art TMOs ireord compute Luminance
to achieve interactive rates. The main advantage of thisiglehat R ‘ G| B ‘ L
no modifications are required to the original TMOs, that dile s
implemented on the CPU.

h J

Several authors, including Durand and Dorsey [Durand andéyo el campuiSlmin(Eimax
2000][Durand and Dorsey 2002] and Ward et al. [Ward Larson L{L]o]o Lin |Lnax| O | O
et al. 1997], have proposed some acceleration methods @n tod v

improve the computational performance of their TMOs. Salver horizontal blur
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global TMOs which currently do achieve interactive ratéghtty
coupled with current graphics hardware, have been profmns€a-
hen et al. [Cohen et al. 2001] and Scheel et al. [Scheel edal]2
Goodnight et al.[Goodnight et al. 2003] discussed the tesdme
aspects of the GPU programming and presented a hardware-impl
mentation of the Reinhard et al. operator [Reinhard et &)2P0 <o
They also proposed a different algorithm for the photogiapbne
computation, in order to overcome the limitations of cutignaph-
ics hardware. Krawczyk et al. [Krawczyk et al. 2005] presdrthe
reproduction of perceptual effects within real-time tonapping.
Artusi et al. [Artusi et al. 2003] proposed a general framéwo Y
usable only for global operators. They analysed the actiber >4 )
problem and discussed the hardware implementation ofriduisd- f
work, reducing the implementation complexity without nfgitig e

the rendering pipeline. . ‘ g ‘ b ‘ |

vertical blur & adaption comp.
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Figure 1: Per-pixel view of our implementation.
3 Implementation

triplet as (R,G,B,LUM) in the resultbuffer. Afterwards, &m-

age pyramid is used to compute minimum and maximum values
of LUM. We create the pyramid by using the original input image
as the base (level=0). For each level we bisect the befordekea
level until it reaches a size of 1x1 pixels. That way 4 pixdlkel

k are projected onto 1 pixel of levkh- 1, storing the min and max

in the red and green channel. We end up with one pixel, holitieg
minimum and maximum value of tHdJM input image, see Fig.1.

Throughout this paper the uppercase notatiofRGB (red,green,

and blue triplet) andUM (luminance) will represent high dy-
namic range quantities, while lower case notation meansdipw
namic range quantities. We have chosen the TMO proposed by
[Ashikhmin 2002] for two reasons. First, it achieves visappeal-

ing results. Second, it presents similar algorithmic dtriesto the
previous work concerning HW implementation of TMOs. Thidl wi
allow us to compare the ability of our implementation to aeki

a better performance in terms of speed and quality, withipusv To smooth the high changes in brightness between the frames,

yvorl§ in a straightforward manner.Our implementation isicieul we do a simple interpolation using eq. 1. Th&Vyinvax holds
in Fig. 1. the minimum and maximum values of the current frame, while
. . ) PSvinmax represents the interpolated values from the last frame.
The process roughly comprises the following stages: Linear scaling is applied to compute the new min and max lumi-
e ConvertRGB to LUM nance valuesifitminvax) of the current frame.

o Computel 5 image with the neighborhood growing procedure

e ScaleLUM with L,, recombine witlRGB and apply gamma intminMax = PfMinmax + (NeWMinmax — Pfvinmax)/scale (1)
correction to compute finabb result

We use OpenGL and the OpenGL Shading Language to impIementThe scale value has been chosen experimentally as 8.0.
the previously mentioned stages. Framebuffer objects €¥B@e

used to provide a fast way for floating point textures, as asl| . .

floating point render-targets. Initialization of the stwres is done 3.2 Neighborhood growing procedure

once at application startup. Every stage uses one or mottinfjoa

point textures as input and outputs the result to the dobbffered In the original CPU implementation [Ashikhmin 2002], a Gaus
FBO resultbuffer. All computations are implemented as rfragt sian pyramid was chosen to compute the levels of Gaussian blu
shaders. We have chosen a slightly different approach, based upoly-app

ing the same gaussian filter kernels recursively. We utitizene
dimensional filter kernels: (1,2,1) ferand (1,4,6,4,1) for@ The
resultbuffer, which stores the interim results at eachatten is or-

3.1 Computation of luminance, minimum and max- ganised in the following way: to keep up with the computatiol

imum store all important results, 4 channels are needed per. pikie¢
configuration of the quadruple is as follow$:s{Los,La,0). Ls and
The first step consists of converting tR&B input data toLUM. Lo represent theUM value, filtered with radius and . Thel,

The resulting luminance value is stored together with R&B is the current adaptation value, and théuilds a switch: Wheih



exceeds thresholdy is set to 1.0 and.; stays fixed for the pixel,
for the rest of the procedure.

In the first pass of each iteration we blur the result imagehef t
last iteration horizontally - this interim results are edllLs' and
Los'. After swapping the resultbuffer it is bound as a texturd #re
process of 1D-blurring is repeated again (now the vertieasion
of the filter kernels). The results are storedLinandL,s. These
values are used in the same pass to computé.tbéthe current
iteration. After selecting the right, based upon thk, we obtain
the pixel layout already described. We repeat the neigldmath
growing procedure unts is equal tonumlterations.

3.2.1 Recursive computation of the Gaussian pyramid

In this subsection we describe in more detail the recursigass
sian filter technique used for the neighborhood growing @dace
(Sec. 3.2). We will exploit one simple but useful propertytioé
Gaussian filter, which help to accelerate the entire procksse
use the elements of Pascal’s triangle as the filter kernelretbult
of a Gaussian filter of general sirex sis equivalent to the result
of a Gaussian filter of sizeapplied recursively times.

Gaussian filters themselves are separable, i.e. that iigginto
just prove this for the one dimensional form of the filter.

Coefficients
1
11
121
1331
14641
15101051
1615201561

OO WNEO —

Every line with the index = 2x s can be taken as a Gaussian 1D
filter, with size s ((2), (1,2,1), ...).

s | i=2xs | Coefficients
0 0 1

1 2 121

2 4 14641
3 6

1615201561

We now want to prove that s-times execution of the recursive
method with the base element (1,2,1) on a line of pixels iskgu

a filter having index 2 s. First we compute the result by processing
the pixel line twice with the base element (1,2,1)

AN = ?4+2A+B
B = A+2B+C
C = B+2C+D
H = G+2H+I
I = H+2+?

which yields the following scanlineA’B'C'D’E’'F'G'H’l’, while
the second iteration looks like this:

A" = 242N +B
B// — A/+ZB/+C/
C// — B/+2C/+D/
H” = G +2H +I
1" = H+2'+?

which results in:A”B"C"D"E"F"G"H”1”. The ? symbolises the
question of which value has to be taken, if the filter runs dker
border of the image. We will discuss this question later,@mten-
trate just on the "complete” terms. Now we compute pixel galu
for a sample line of pixelsABCDEFGHI with filter of s= 2 (i.e.
(1,4,6,4,1) ), resulting in

?+6A+4B+C

?+4A+6B+4C+D
A+4B+6C+4D+E
B+4C+6D+4E+F

T O o >

-
I

G+4H +61+2

Which results in the pixel iINABEDEFGHT. We know that, start-
ing with C” (to avoid the question of border pixels) we ha@¥:=
B'+2C'+D' = (A+2B+C)+2x(B+2C+D)+(C+2D+E) =
A+4B+6C+4D+E =C.

Becauses = 1 provides the same result for both (we use (1,2,1) in
both cases), and is also valid for s=2, we need to prove thdnoay
s— s+ 1 holds for all s. Because of the binomial coefficient, where
we can construct the coefficients for eve®H-y)" by looking at
Pascal’s triangle at index n, we know that everyrh element is
constructible by taking the n-th power of the base elenenty)2:

n | (x+y)* | Coefficients
0 1 1

1| (x+y)? 121

2

(x+y)* | 14641

The iterated application of the base element (1,2,1) meatisny
else than the above, which proves the concept.

Though both methods are equal in a mathematical way, nuateric
errors can lead to very small differences. These differelace no
problem for us, because we don’t need the exact result ofghe-e
tion, but only a criteria to decide if a value is much biggeartits
neighborhood or nearly equal.

3.3 Recombination

We then tone mahp, with Eg.2 which uses the world capacity func-
tion, defined in eq.3. With the eq. 4 we 'infuse back’ the fine de
tails in the final tone mapped image as described in the aligin
CPU implementation [Ashikhmin 2002]. This value is thendite
scale each component of tR&B triplet by La/Lg, followed by a
gamma correction, which is implemented as texture lookupe T
whole computation needs one filter pyramid and one additiona
framebuffer object for the resultbuffer. All computatioae exe-
cuted on a per-pixel basis. The computation of thgmax heeds
log(max(width, height) — 1)) /log(2) + 1 passes. The conversion
from RGB to LUM, the computation ok 5, and the recombination



| HDRImage| Size (pixels) |

aeroporto.hdr| 1024x705
lamp.hdr| 400x300
memorial.hdr| 512x768
nave.hdr| 720x480
rosette.hdr| 720x480

stilllife.hdr 1240x846

Table 1: Dimensions of the HDR images used for testing.

HDR Image | RMS % error | mean % error]

aeroporto.hdr]  0.053 % 0.008 %
lamp.hdr 1.063 % 0.023 %
memorial.hdr 0.041 % 0.025 %
nave.hdr 0.201 % 0.091 %
rosette.hdr 0.043 % 0.035 %
stilllife.hdr 0.074 % 0.051 %

Table 2: RMS and mean percent errors of our GPU implementatio
of the local Ashikhmin operator, computed as described éngb.
5 and Eq. 6 respectively. These values are computed comgjder
the CPU implementation of the operator as the acceptedsalue

together need 2 2« (numiterations) rendering passes. The LD-
MAX is a predefined constant, describing the maximum cohtrfis
a display. Itis therefore set to LDMAX=100.

TM(La) = LDMAX(C(La) *C(Lnﬁin))/((c(l—max) *C(Lm'n)) (2)

L/0.0014 ifL<0.0034
clL)= 2.4483+log(L/0.0034)/0.04027 if0.0034<L<1 (3)
L= 16,5630+ (L—1)/0.4027 if1<L<7.2444
320693+log(L,/7.2444/0.0556  otherwise
Ld (x7y) = (L(x7y)TM(La(xvy))/l‘a(xvy) (4)

4 Experimental Results

In this Section we describe the experimental results doniesting
our GPU implementation of the local operator. In table 1 thages
we used for testing are listed.

We demonstrate our GPU implementation in a real-time ge#tind
on still images; integrating it in a rendering system thaterees
HDR frames as input.

The experiments were conducted on a PC with graphics cadiaVi
G06800.

We will compare our GPU implementation with previous works
such as Goodnight et al.[Goodnight et al. 2003] that implees:
the Reinhard et al. [Reinhard et al. 2002] operator that ases-
ilar technique, for computing the local adaptation lumiteas the
Ashikhmin model.

We first tested the time performances of the GPU implememtati
in a real-time setting. In table 3 we show the results of ths (in
fps). The approach of Goodnight et al. [Goodnight et al. 2088d

a more complex iterative system. In fact they used n/2 + 2eend
passes for a x nfilter kernel. This difference in time performances
decreases drastically when the resolution of the inputdérand the
number of zones are increasing; dropping down to non intigeac

performances. This is confirmed by a simple comparison of the
fps achieved by our GPU implementation with the fps achidwed
Goodnight et al.[Goodnight et al. 2003]. We can observe it
time performances are achieved even with the frame reeolati
512x 512 pixels, when in the case of Goodnight et al. [Goodnight
et al. 2003] at this resolution the computation performaneere
already dropping down. In their case, in order to keep the-com
putation performance at an acceptable value of fps, thegate®
compromise between quality and speed. In our case this isauet
essary as shown in table 3.

We can also observe how the overhead added by our GPU imple-
mentation to the rendering process is decreasing with ttredse

of the frame resolution. For high frame resolution the oearhis
becoming imperceptible in term of fps. This suggests thahigh
frame resolutions no more work can be done on the part of thé GP
of the state of art of the TMO, for improving the time performas

of the real-time application.

The results of Table 3 are reported also in Fig. 2.

In the video submitted with this paper we smooth the high gean

in the dynamic range of the sequence frames. It has been-imple
mented as explained in section 3.1. Recall that the final eoisyn

of the still images between GPU and CPU implementation of the
TMO, for a correct comparison, is done without the simulatd

the time dependency adaptation process.

Krawczyk et al. [Krawczyk et al. 2005] also claim in their Wor
real-time performances, but in reality these are obtaingy for
low image resolution (328 240 pixels) and when the levels of the
Gaussian pyramid and image resolution are increasing teefr
rates is strongly decreasing to non interactive rates. hEcrtore
the time performances were obtained with approximatedtsgsu
term of quality, of the TMO.

In order to validate the hardware implementation, we cotatlia
quality comparison with the corresponding images obtaiweh
the CPU implementation of the original algorithm. In fig. 3ew
show the results obtained with the CPU implementation (Righ
and the results obtained with the GPU implementation (Left)

In order to validate the quality comparison we computed thetR
Mean Square (RMS) percent error between the CPU and the GPU
implementations as:

()

_ |15 Pepu(X,Y) — Pgpu(X.Y) 15
errorRuS. = \/nZ[ Pepu(X,Y) ]

wherenis the number of pixel in the image, apdx, y) is the Lumi-
nance pixel value in the image. We also evaluate the meaemterc
error as:

Pepu(X,Y) — Pgpu(X,Y) |
Pepu(X,Y)

(6)

1
error mean% = HZ\

Table 2 gives the error calculation for the images used irtests.

The values of the errors for the all images used in the testsan-

parable if not better, in term of RMS and mean percent erham t
obtained in Goodnight et al. [Goodnight et al. 2003].

5 Conclusion and Future Work

We have presented a hardware acceleration of a state ofttioealr
TMO [Ashikhmin 2002]. We have shown a unexploited but use-



| HDR Frame| Rendering + GPU TM [fps]| Rendering [fps]|
60

256 x 256 39

512 x 512 28 29
1024 x 1024 8 9
2048 x 2048 7 9

Table 3: Results (in fps) of the GPU implementation varyihg t
resolution of the HDR frame. In this table we compare the fps
for the Rendering + GPU TM with the fps for the only Rendering
without applying the GPU TM operator.
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Figure 2: Graphical representation of Table 3.

ful property of the Gaussian filter and how to use it for moitify
the Gaussian blurring technique used for computing thd looa-
nance adaptation Despite the level of acceleration, thigoéthe
output image is maintained when compared with the outpugéna
obtained with the corresponding original CPU implementatiWe
also showed that the overhead introduced by our GPU implenen
tion of the TMO to the rendering process is imperceptiblehigh
resolution frames, in term of fps.

These results shown how the main limitations of the curreaplg-
ics hardware, as image quality reduced and speed strorighgde
to the resolution frame, are in part overcome.

We compare our results with two previous work [Goodnightlet a
2003] [Krawczyk et al. 2005], and showed ours has superialityu
and speed.

Future acceleration of local tone mapping operators mubtked
on a different development concept that is based on an antysi
the hardware limitations, reducing the necessary comm®rar
adapting the original software implementation on the latesd-
ware.
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Figure 3: (Left) Images obtained with the GPU implementati®&ight) the original CPU implementation.



