by
Demetris Zeinalipour

%8, University of Cyprus &
| H ~ Open University of Cyprus

O

http://lwww.cs.ucy.ac.cy/~dzeina/

Disclaimer

Feel free to use any of the following slides for
educational purposes, however kindly
acknowledge the source.

We would also like to know how you have used
these slides, so please send me emails with
comments or suggestions.

This presentation is available at the URL.:
hitp://www.cs.ucy.ac.cy/~dzeina/talks.html

* Thanks to Michalis Vlachos & Spiros Papadimitriou (IBM TJ
Watson) and Eamonn Keogh (University of California — Riverside)
for many of the illustrations presented in this talk.

Acknowledgements

This presentation is mainly based on the
following paper:

“Distributed Spatio-Temporal Similarity Search™
D. Zeinalipour-Yazti, S. Lin, D. Gunopulos,

ACM 15th Conference on Information and
Knowledge Management, (ACM CIKM 2006),
November 6-11, Arlington, VA, USA, pp.14-23,
August 2006.

Additional references can be found at the end!

Presentation Objectives

Objective 1: Spatio-Temporal Similarity
Search problem. I will provide the algorithmics
and “visual” intuition behind techniques In
centralized and distributed environments.

Objective 2: Distributed Top-K Query
Processing problem. | will provide an overview
of algorithms which allow a query processor to
derive the K highest-ranked answers quickly
and efficiently.

Objective 3: To provide the context that glues
together the aforementioned problems.

4

Spatio-Temporal Data (STD)

« Spatio-Temporal Data Is characterized by:
— A temporal (time) dimension.
— At least one spatial (space) dimension.

« Example: A car with a GPS navigator
— Sun Jul 15t 2007 11:00:00 (time-dimension)
— Longitude: 33° 23' East (X-dimension)
— Latitude: 35° 11'North (Y-dimension)

.‘.'“_:'- i
B -
.

Spatio-Temporal Data

« 1D (Dimensional) Data

— A car turning left/right X /\\/\/

at a static position with a moving floor — 7/

. T
— Tuples are of the form: (time, x)

« 2D (Dimensional) Data do.'?h_,',,f' 3
— A car moving in the plane. Y“’” N

— Tuples are of the form: (time, X, V)

« 3D (Dimensional) Data
— An Unmanned Air Vehicle
— Tuples are of the form: (time, X, y, z)

o “ -
-0 S L

0 - - il o

X

For simplicity, most examples we utilize in this
presentation refer to 1D spatiotemporal data. s

Centralized Spatio-Temporal Data

Centralized ST Data

When the trajectories are stored in a
centralized database.

Example: Video-tracking / Surveillance
t t+1 t+2

capture

Camera performs tracking of
body features (2D ST data)

Distributed Spatio-Temporal Data

Distributed Spatio-Temporal Data

— When the trajectories are vertically
fragmented across a number of remote cells.

— In order to have access to the complete
trajectory we must collect the distributed
subseguences at a centralized site.

=AM |

= Y=

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

_J\/\-
A"~ -
Vo

< <

"/

<
-
v |

>

>

I 1\
|
|

-

8

Distributed Spatio-Temporal Data

« Examplel (Environment Monitoring)

— A sensor network that records the motion of
bypassing objects using sonar Sensors.

Distributed Spatio-Temporal Data

« Examplell (Enhanced 911):

— €911 automatically associates a physical
address with every mobile user in the US.

— Utilizes either GPS technologies or signal
strength of the mobile user to derive this info.

10

Similarity

« A proper definition usually depends on the
application.

o Similarity is always subjective!

11

Similarity

e Similarity depends on the features we consider
(I.e. how we will describe the sequences)

Web Images Groups [MNews Froogle Local more »

1 Advanced Image Search
GO ngle bass search FPrefarences

Images Moderate SafeSearch is on

rockbass.gif basss jpg bass-Irgmouth jpg mo82_anejo-bass jpg
790 x 4208 pixels - 201k 600 x 800 pixels - 120k 722 x 432 pixels - 32k 559 x 795 pixels - 71k
wwwy, dec. state ny. us/. ../ whwvy. danielbuttner. com/ agrino. org/. . freshfishf bass- wwwy. personal. rdg. ac.ukf.. ./
fishspecsfrockbass. gif bassdsale/bassS jpy Irgmouth._jpg miB2_anejo-bass.jpg

St | =
o S ey el Nz
e ._'- '.:' _'._ _‘_.'.'__':.'__:—-._'_Tl' s | ﬁ

12

Similarity and Distance Functions

o Similarity between two objects A, B is usually
assoclated with a distance function

e The distance function measures the distance
between A and B.

Low Distance between two objects

High similarity

* Metric Distance Functions (e.g. Euclidean):
— ldentity: d(x,x)=0
— Non-Negativity: d(x,y)>=0
— Symmetry: d(x,y) = d(y,x)
— Triangle Inequality: d(x,z) <= d(x,y) + d(y,z)

* Non-Metric (e.g., LCSS, DTW): Any of the above
properties is not obeyed.

Similarity Search

Example 1. Query-By-Example in Content Retrieval

Let Q and m objects be expressed as vectors of
features e.g. Q=(“color=#CCCCCC”, "texture=110",

shape=“A\", .)
Objective: Find the K most similar pictures to Q
O1 02 O3

Q = (q 1 , g Oyenry g m) Q \ ; J !.'f A

Scorg(Q, 0i) = Zn:wj * sim(gj, 0ij)

\| O=(0j;, 0j3, ..., 0;p) |/

Answers are fuzzy, i.e., each answer is associated with
a score (03,0.95), (01,0.80), (02,0.60),.... w

Spatio-Temporal Similarity Search

Examples

- Habitant Monitoring: “Find which animals
moved similarly to Zebras in the National Park
for the last year”. Allows scientists to
understand animal migrations and interactions”

[- e “n_. \ ; " o Y »
4 -‘\. B - o 2 b - G -

! 5 - \ ; L WAL o
. b % e ;
e g s ¥ AR Sahh e P
% il it . . J’}‘at&-ﬁ o]

- Big Brother Query: “Find which people
moved similar to person A”

15

Spatio-Temporal Similarity Search

 Implementation

Compare the query with all the sequences In
the DB and return the k most similar sequences

to the query. _ Distance
~_ D=7.3

AVA S J_ K

J\,_?=/\/L

Query —

Spatio-Temporal Similarity Search

Having a notion of similarity allows us to perform:

- Clustering: “Place trajectories in ‘Wps”

- Classification: ASS|gn a trajectory to the most
‘similar’ qroup x

lllll

?i

L
TS

Presentation Outline

d Definitions and Context

d Overview of Trajectory Similarity Measures
 Euclidean Matching
« DTW Matching
« LCSS Matching
« Upper Bounding LCSS Matching

d Distributed Spatio-Temporal Similarity Search
« The UB-K Algorithm
« The UBLB-K Algorithm
 EXxperimentation

O Distributed Top-K Algorithms
« Definitions
« The TJA Algorithm

d Conclusions

18

Trajectory Similarity Measures

A. Euclidean Matching

The trajectories are matched 1:1

T

. Dynamic Time Warping Matching

Copes with out-of-phase matches (using a warping windows

Longest Common SubSequence Matching

Copes with out-of-phase matches and outliers (it ignores them)

i

19

Euclidean Distance

 Most widely used distance measure

* Defines (dis-)similarity between sequences

A and B as (1D case):

n _ T P=1 Manhattan Distance
Lp — (le‘ all]-bfi][") P=2 Euclidean Distance

| =
P=INF Chebyshev Distance

...,bn}

...,an}

20

Euclidean

Distance

 Euclidean vs. Manhattan distance:
- Euclidean Distance (using Pythagoras theorem)

is 6 X V2 = 8.48 points):

Diagonal Green line

- Manhattan (city-block) Distance (12 points):
Red, Blue, and lines

yal

A

/

OFRLDNWhKOUIO

i

2-Dimensional
Scenario

21

01 234 5 606

Disadvantages of Lp-norms

 Disadvantage 1: Not flexible to out-of-phase
matching (i.e., temporal distortions)
— e.g., Compare the following 1-dim sequences:
A=(111003456T)
B= {1112223456}
Distance =9
— Green Lines indicate successful matching, while red
dots indicate an increase In distance.
 Disadvantage 2: Not flexible to outliers (spatial
distortions). Many studies show that
A= {11111 the Euclidean Distance
B= {11111

Distance =9

91111}
lel]|
01111}

Error rate might be as
high as ~30%! 22

Dynamic Time-Warping

Flexible matching in time: Used In speech
recognition for matching words spoken at different

speeds (In voice recognition systems)
Sound signals

Y 7Y P S —

Same idea ¢an work

equally well for generic
Y PP T | FYYsY S — spatio-temporal data...

Dynamic Time-Warping

How does it work?

The intuition Is that we span the matching of an element X
by several positions after X.

Euclidean distance
Al=[1,1,2 2

Euclidean: One-to-one alignment

7\

DTW: One-to-many alignment

DTW distance
Al=[1,1,2 2]

/| d=0

A2=1[1,2 2 2]

Dynamic Time-Warping

 Implemented with dynamic programming (i.e., we
exploit overlapping sub-problems) in O(|A|*|B]).

— Create an array that stores all solutions for all possible

subsequences.

Recursive Definition
L[i,J]] =LpNorm(A,B) +
min{ L(i-1, j-1),
L(-1,]),
L(,]-1) }

.e
oo
ee®
ee®
TX R
""""
oo
[X R
TX R
0e®
ee®
oo ®

®e
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.. n
®e .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
®e
.

Dynamic Time-Warping

"he O(JA|*|B|) time complexity can be reduced to
O(d*min(]JAl,|B|)) by restricting the warping path to

a temporal window & (see LCSS for more detalls).
A

/\/\// We will now only fill the

B highlighted portion of the
Dynamic Programming matrix

Warping window is ©
Al1=[1,1,11 10, 2]

2]

A2=1,10, 2,

|
.o

0

26

Dynamic Time-Warping

e Studies have shown that warping window
0=10% is adequate to achieve high degrees of
matching accuracy.

 The Disadvantages of DTW:
— All points are matched (including outliers)
— Qutliers can distort distance

27

Longest Common Subsequence

 The Longest Common SubSequence (LCSS) is
an algorithm that is extensively utilized in text
similarity search, but is equivalently applicable in
Spatio-Temporal Similarity Search!

« Example:
— String: CGATAATTGAGA
— Substring (contiguous): CGA
— SubSequence (not necessarily contiguous): AAGAA

« Longest Common Subsequence: Given two
strings A and B, find the longest string S that Iis a
subsequence of both A and B; 28

Longest Common Subsequence

Find the LCSS of the following 1D-trajectory

A=3,2,517,4,8,10,7
S S

B=2,54,7,3,10,8,6
LCSS =2,5,4,7

The value of LCSS is unbounded: it depends
on the length of the compared sequences.

To normalize it in order to support sequences of
variable length we can define the LCSS distance:

LCSS Distance between two trajectories
dist(A, B) =1 - LCSS(A,B)/min(JAl,|B|)
e.g. inour example dist (A,B)=1-4/8=0.5

LCSS Implementation

* Implemented with a similar Dynamic
Programming Algorithm (i.e., we exploit
overlapping subproblems) as DTW but with a
different recursive definition:

0 , If A or B isempty
LCSY A B) = 1+ LCSqTail(A),Tail(B)) - |f Head[A]=Head[B]
\max(LCSYTail(A),B), LCSS A Tail(B)) , otherwise

TAIL Head
A=3,2,5 7,4 8, 10,6
B=254 7,3, 10, 8,6

30

LCSS Implementation

int A[] ={3,2,5,7,4,8,10,7};
int B[] ={2,5,4,7,3,10,8,6};
int L[n+1][m+1]; // DP Table

/I Initialize first column and row to assist the DP Table
for (i=0;i<n+1;i++) L[i][0] = O;
for (j=0;j<m+1;j++) L[O][j] = O;

for (i=1;i<n+1;i++) {
for (j=1;j<m+1;j++) {
it (A[i-1] == B[J-1]) {
LOTOT = LO-100-1] + 15
} else {
L[iI[] = max(L[i-1]{j], L[1][j-1]);
}

} : .
Running Time O(JA[*|B])

Phase 1: Construct DP Table

o

DP Table L[][]

M
2| 5| 4| 7| 3| 10| 8| s
A ol ol of of o olo]| o
3 0- ol o , 11 1
2| of 2| 2| 2| 2| 2| 2]2] 12
5 o 1| 2| 2| 2| 2| 2]2] 2
7| of 1| 2| 2| 3| 3| 3[3]| 3
4 o| 1| 2| 3| 3| 3| 3|3 3
8| of 1| 2| 3| 3| 3| 3[4 4
10| of 1| 2] 3| 3| 3| 4|4a] 4
7| o| 1| 2| 3| a| 4| 44
v .
n Solution

LCSS(A,B) = 4

31

LCSS Implementation

reach the left or top boundary

I =n, j=m;

while (1) {
/I Boundary was reached - break
if (1==0)|| § ==0)) break;

// Match

it (A[i-1] == B[J-1]) {
printf("%d,", A[i-1]);
/[Move to L[i-1][j-1] in next round
== J--;

} else {
/ Move to max { L[i][j-1],L[i-1][j] } in next round
it (LOT0-1] >= Li-1]0D) j--
else I--;

} . .

} Running Time O(JA|+|B|)

Phase 2. Construct LCSS Path
Beginning at L[n-1][m-1] move backwards until you

DP Table L[][]

5

4

3

L 1

L

/ll

Q| &I N0 N W

10

vl

WlW |l W |WIN|FP,|O]|O|

Al |JlW|lW|IN|F|F,]|]O]|O
Al AW WIN|FP]|,]|]O|O

O|Jlo|]oj]o|J]o|jJ]o|]o|]o | o

= R R R K= =N
NN NN RO | O

wlwPwuPpw | v,]lo|o

i

AlW|lW|WIW|IN]|FP,]|F,]|O

A

LCSS: 7,4,5,2

Speeding up LCSS Computation

 The DP algorithm requires O(|A|*|B|) time.

 However we can compute it in O(S(|A[|+|B|))
time, similarly to DTW, if we limit the matching

within a ti
 Example

me window of 0.

where 0=2 positions

2|5 |4|7]|3|10|8]s6s
0| 0 o|lo|o|o]ofo

3]0, 0] 0

AR NERER R

5| 0 2q2 2

7] 0 2| 33

4| o0 3 '_f 3 N\

8| 0 3] 3|4

10| 0 4 45 4

7| o Ty €5

* Finding Similar Time Series, G. Das, D. Gunopulos, H. Mannila, In PKDD 1997.

LCSS: 10,7,5,2

Q=2

LCSS 2D Computation

« The LCSS concept can easily be extended to
support 2D (or higher dimensional) spatio-
temporal data.

* The following is an adaptation to the 2D case,
where the computation is limited in time (by
window 8) and space (by window g)

LCSS(A,B) =+

(0, if AorB isempty

1+ LCSS(Tail (A), Tail(B)),
| f ‘ail- biz‘ < & and ‘il— iz‘ <O
max(LCSS(Tail (A),B), LCSS(A, Tail (B)),
otherwise

34

Longest Common Subseqguence

Advantages of LCSS:
— Flexible matching in time
— Flexible matching in space (ignores outliers)

— Thus, the Distance/Similarity is more
accuratel!

ignore majority of noise

match

35

Summary of Distance Measures

Method Complexity* Elastic Matching 1:1 Matching Noise Robustness
(out-of-phase) (outliers)

Euclidean O(n) X v X

DTW O(n*d) v X X

LCSS O(n*5) v v v

* Assuming that trajectories have the same length

7
| } m q[! ~
B \J
1

Any disadvantage with LCSS?

Longest Commeon Subsequence

T30 35

40 20 80 100 T30

36

Speeding Up LCSS

O(d*n) is not always very efficient!
Consider a space observation system that
records the trajectories for millions of stars.

To compare 1 trajectory against the trajectories
of all stars it takes O(&*n*trajectories) time .

Solution: Upper bound the LCSS matching

using a Minimum Bounding Envelope

— Allows the computation of similarity between
trajectories in O(n*trajectories) time!

37

Upper Bounding LCSS*

1 MBE: Minimum Bounding Envelope

‘ 20,

40 pts

|

I
A

! ! ! ! ! ! !
10 20 30 40 50 60 70

Theorem: LCSSs,:(Q, A) < LCSSs, :(MBE(Q), A)

* Indexing multi-dimensional time-series with support for multiple distance measures, 3g
M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, E. Keogh, In KDD 2003.

Presentation Outline

Definitions and Context
d Overview of Trajectory Similarity Measures
 Euclidean Matching
« DTW Matching
« LCSS Matching
« Upper Bounding LCSS Matching
O Distributed Spatio-Temporal Similarity Search
 Definitions
« The UB-K and UBLB-K Algorithms
e EXperimentation
Distributed Top-K Algorithms
e Definitions
« The TJA Algorithm
d Conclusions 39

Distributed Spatio-Temporal Data

Recall that trajectories are segmented across n
distributed cells.

40

System Model

Assume a geographic region G segmented into
n cells {C1,C2,C3,C4}

Also assume m objects moving in G.

Each cell has a device that records the spatial
coordinated of each passing object.

The coordinates remain locally at each cell

a) Map View

b) Cell View

5

\

/ |)
z (% k c2 |

:
i
/
/
....... "'
__________ 41
A

Problem Definition

Given a distributed repository of trajectories
coined DATA, retrieve the K most similar
trajectories to a query trajectory Q.

=5 8 58

DATA:

Challenge: The collection of all trajectories to a
centralized point for storage and analysis Is
expensive!

42

Distributed LCSS

e Since trajectories are segmented over n cells the
computation of LCSS now becomes difficult!

— The matching might happen at the boundary
of neighboring cells.

— In LCSS matching occurs sequentially.

Cell 1

43

Distributed LCSS

* |Instead of computing the LCSS directly, we
measure partial lower bounds (DLB_LCSS) and
partial upper bound (DUB_LCSS)

— l.e., Instead of LCSS(A0,Q)=20 we compute
LCSS(A0,Q)=[15..25]

 We then process these scores using some

novel algorithms we will present next and derive
the K most similar trajectories to Q.

e Lets first see how to construct these scores...

44

Distributed Upper Bound on LCSS

[[[
[MBE: I\g'nimum Bounding Envelople
i 20,

Al

S | —
| | : |]
: I 40 pts [: [6 pts
- »l le—n
IO I 2I0 3IO I 4IO 5I0 6IOI 7I0
cel1 | Cell 2 | Cel3 | cel'
DUB_LCSS:

45

‘Z ?zlLC885,g(I\/I BE(Q), Aij) > LCSSs,:(Q, A)

Distributed Lower Bound on LCSS

 We execute LCSS(Q, Ali) locally at each cell
without extending the matching beyond:
— The Spatial boundary of the cell
— The Temporal boundary of the local A,,.

Q [1]ofo[1]0[0[2[3[2]3]4[3[4[3]

« Atthe end we add the A1|1|0|}0|1|2|3|4}3|3|3|4|3|3|
. LCSS (Q. A1)
partial lower bounds
and construct
DLB LCSS:

LCSS=10

> " LCSS,,(Q,Aj)<LCSS, (Q,A)

j=1

46

The METADATA table

« METADATA Table: A vector that
contains bounds on the similarity
between Q and trajectories Al

 Problem: Bounds have to be
transferred over an expensive

Query
Processo

network

C1,C2,C3

network -————

cl c2 c3 | | METADATA :

id,Ib,ub id,Ib,ub id,Ib,ub id,ub [

A2,4.6 A435 A413 | A720.35 :
A0,6,8 A2,4.6 A0,8,10 -

A4,8,10 AO0,5,7 A2,57 I
ATTI (4 A348 A9,5,7 [

A39,11 W] A9g10 |,| A3810 | I

A979 | a7t I A7,11,137 I
[

| 47

The METADATA table

e Option A: Transfer all bounds towards QP and
then join the columns.

— Too expensive (e.g., Millions of trajectories)

e Option B: Construct the METADATA table
Incrementally using a distributed top-k algorithm

— Much Cheaper! - TJA and TPUT algorithms will be
described at the end!

id,ub
TJA
K

48

The UB-K Algorithm

An iterative algorithm we developed to find the K
most similar trajectories to Q.

Main Idea: It utilizes the upper bounds in the

METADATA table to minimize the transfer of
DATA.

METADATA
DATA

-

O O 010
"‘ - '
e

49

UB-K Execution

Query: Find the K=2 most similar trajectories to Q

Retrieve the
sequences A4,
A2

Stop if TIA
Kth LCSS

Ath UB

METADATA
id,ub

DATA

A4,30

Q
%

LCSS(Q,A4)=23

| =>Kth LCSS

— o

EXACT .

— , O
22
. 23

50

The UBLB-K Algorithm

 Also an iterative algorithm with the same
objectives as UB-K

e Differences:

— Utilizes the distributed LCSS upper-bound
(DUB_LCSS) and lower-bound (DLB_LCSS)

— Transfers the DATA in a final bulk step rather
than incrementally (by utilizing the LBS)

51

UBLB-K Execution

Query: Find the K=2 most similar trajectories to Q

Stop if
Kth LB
>=
TJA
Ath UB
_A=3
K=2 TJA [
'—’ Kth-LB

I
*—=0

METADATA
id,1b,ub

A4,22,30

[BUB

0
%

LCSS(Q,A4)=23

Note: Since the Kth LB 21 >= 20, anything below
this UB is not retrieved In the final phase! 52

Experimental Evaluation

e Comparison System
— Centralized
— UB-K
— UBLB-K
 Evaluation Metrics ™|
— Bytes :
— Response Time e T
e Data

— 25,000 trajectories generated over the road
network of the Oldenburg city using the
Network Based Generator of Moving Objects*.

8000 F

2000

53
* Brinkhoff T., “A Framework for Generating Network-Based Moving Objects”. In Geolnformatica,6(2), 2002.

Performance Evaluation

r varying parameter n in OLDENBURG
im=25K, =500, K=5, x=5, 6=5,:=90)

for va

B0, K=5, 325, 5=5.£=90)

arameter n in OLDENBURG

(m=25
Te+09 ¢ | | T T 10000 I T T T T T T |
- Centralized —e— 1 . 5 | i Centralized —»
L . . o UBK --p- ' | UBK --8-- |
100MB 1e+08 :_ """" o frooes ‘ """"" H .UBLE;'IH 5* _: 16min 1000 (- *‘—'"-_';___1_"__ """""" .UBLE_H %\E =
E‘F L= e e | * """"""""""" """" —: E 100 __T i) __ *
s P
oo bR gsee [AFTITED s B
100KB 100000 |--B~j==m=gr B e o o oo 1 N A I D I e
1 20 20 40 50 60 VO 80 90 100 Mm 20 30 40 &0 &0 TFO 80 90 100
n (Number of Cells) n {Number of Cells)
e Remarks
— Bytes: UBK/UBLBK transfers 2-3 orders of
magnitudes fewer bytes than Centralized.
 Also, UBK completes in 1-3 iterations while UBLBK requires
2-6 Iterations (this is due to the LBs, UBS).
— Time: UBK/UBLBK 2 orders of magnitude less time.

54

Presentation Outline

Definitions and Context

d Overview of Trajectory Similarity Measures
 Euclidean Matching
« DTW Matching
« LCSS Matching
« Upper Bounding LCSS Matching

O Distributed Spatio-Temporal Similarity Search
o Definitions
« The UB-K and UBLB-K Algorithms
 EXxperimentation

O Distributed Top-K Algorithms
 Definitions
« The TJA Algorithm

d Conclusions

55

Definitions

Top-K Query (Q)

Given a database D of n objects, a scoring
function (according to which we rank the
objects in D) and the number of expected
answers K, a Top-K query Q returns the K
objects with the highest score (rank) in D.

Objective:
Trade # of answers with the query execution cost, i.e.,
 Return less results (K<<n objects)

e ...but minimize the cost that is associated with
the retrieval of the answer set (i.e., disk 1/Os,
network 1/0s, CPU etc)

56

Definitions

The Scoring Table

An m-by-n matrix of scores expressing the
similarity of Q to all objects in D (for all attributes).

In order to find the K highest-ranked answers we
have to compute Score(o;) for all objects

(requires O(M*n) tiMe). scorc(o) =S sim(ay. on)

g=1
Score

c2|c3| 4| ¢

01, 91--o1, 92)|<03 74103, 67
03, 90103, 757> 01, 56 jo4, 67
00, 61y |04, 7 02, 56+|f*0l, 58
o4, 077, 02, 1g>(00, 28J 02, 54
02, 01 | 00, 01”No4, 19/No0, 35

n cells

trajectorylD

m
trajectories

~

57

Threshold Join Algorithm (TJA)

TJA Is our 3-phase algorithm that
optimizes top-k query execution in
distributed (hierarchical) environments.

Advantage:
— It usually completes in 2 phases.

— It never completes in more than 3 phases
(LB Phase, HJ Phase and CL Phase)

— It is therefore highly appropriate for distributed
environments

“The Threshold Join Algorithm for Top-k Queries in Distributed Sensor
Networks", D. Zeinalipour-Yazti et. al, Proceedings of the 2nd international
workshop on Data management for sensor networks DMSN (VLDB'2005),
Trondheim, Norway, ACM Press; Vol. 96, 2005.

58

Step 1 - LB (Lower Bound) Phase

Each node sends its K I)Jﬁe e O=="
highest objectIDs 2345 I

Each intermediate node
performs a union of the

U Empty Oij
0 Occupied O;

received results (defined

as T):
cl|c2|c3|cd4|ch LB

1 03,99 | 01,91 [01,92 1 03.74_| 03,67 || 1_103, 01}
0l, 66 03, 90 03, /5 0l, 56 o4, 67
00,63 | 00,61 | 04,70 | 02,56 | o1, 58 :)

02 48 | 04 07 | 02 16 | 00 28 | 02 54 || QUErY: TOP-1

04, 44 02,01 00, 01 04,19 00, 35

59

Step 2 — HJ (Hierarchical Join) Phase

Disseminate T to all nodes TJIA v,

Each node sends back 2) HJ Phase
everything with score above all

objectiDs Iin T.

Before sending the objects,
each node tags as incomplete,
scores that could not be
computed exactly (upper bound)

cl|c2|c3|cd4]| ch HJ

103,99 1 01,391 | 01,92 103,74 [03,67 f| 53 405

llol]-l’l§l6 lllll Ol %ilguolIl.gu3iu7l§l-luoll-’l§16-l|‘ 04’ 67 01 363 T Complete
00,63 | 00,61 [04,70 | 02,56 (201,58 [| J4 354 —|+ Incomplete

0 Empty O,
O Occupieoi O,
@ Incomplete bij

04,44 | 02,01 | 00,01 04,19 00, 35 60

Step 3 — CL (Cleanup) Phase

Have we found K objects with a complete score?
Yes: The answer has been found!

No: Find the complete score for each
Incomplete object (all in a single batch phase)

e (CL ensures correctness!
« This phase is rarely required in practice.

cl|c2|c3|cd4 | ch TOP-5

| 03,99 | 01,91 | 01,92 | 03,74_|_03,67 03,405

ol,66 | 03,90 | 03,75 | 01 56 | 04,67 0l, 363

04,44 | 02,01 | 00,01 | 04,19 | 00, 35 61

Conclusions

| have presented the Spatio-Temporal
Similarity Search problem: find the most
similar trajectories to a query Q when the
target trajectories are vertically fragmented.

| have also presented Distributed Top-K
Query Processing algorithms: find the K
highest-ranked answers quickly and efficiently.

These algorithms are generic and could be
utilized in a variety of contexts!

62

Bibliography

(PAPER) Distributed Spatio-Temporal Similarity Search’, D.
Zeinalipour-Yazti, S. Lin, D. Gunopulos, ACM 15th Conference on
Information and Knowledge Management, (ACM CIKM 2006),
November 6-11, Arlington, VA, USA, pp.14-23, August 2006.

(PAPER) "The Threshold Join Algorithm for Top-k Queries in
Distributed Sensor Networks", D. Zeinalipour-Yazti, Z. Vagena, D.
Gunopulos, V. Kalogeraki, V. Tsotras, M. Vlachos, N. Koudas, D.
Srivastava , In DMSN (VLDB'05), Trondheim, Norway, ACM Series;
Vol. 96, Pages: 61-66, 2005.

(PAPER) “Efficient top-K query calculation in distributed
networks”, P. Cao, Z. Wang, In PODC, St. John's, Newfoundland,
Canada, pp. 206 — 215, 2004.

(PAPER) “Indexing Multi-Dimensional Time-Series with Support
for Multiple Distance Measures”, Vlachos, M., Hadjieleftheriou,
M., Gunopulos, D. & Keogh. E. (2003). In the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
August, 2003. Washington, DC, USA. pp 216-225.

(PAPER) Using Dynamic Time Warping to Find Patterns in Time
Series. Donald J. Berndt, James Clifford, In KDD Workshop 1994.
(PAPER) Finding Similar Time Series. G. Das, D. Gunopulos and

H. Mannila. In Principles of Data Mining and Knowledge Discovery 63
in Databases (PKDD) 97, Trondheim, Norway.

Bibliography

(TUTORIAL) "Hands-On Time Series Analysis with
Matlab", Michalis Vlachos and Spiros Papadimitriou,
International Conference of Data-Mining (ICDM), Hong-
Kong, 2006

(TUTORIAL) "Time Series Similarity Measures", D.
Gunopulos, G. Das, Tutorial in SIGMOD 2001.

Other Tutorials by Eamonn Keogh
http://www.cs.ucr.edu/~eamonn/tutorials.html

(BOOKYS) Jiaweil Han and Micheline Kamber
Data Mining: Concepts and Techniques, 2nd ed.

The Morgan Kaufmann Series in Data Management
Systems, Jim Gray, Series Editor Morgan Kaufmann
Publishers, March 2006. ISBN 1-55860-901-6

64

Thanks!

Questions?

This presentation is available at the following URL:
http://www.cs.ucy.ac.cy/~dzeina/talks.html

O

Related Publications available at:
http://www.cs.ucy.ac.cy/~dzeina/publications.html

