- EUROPEAN THEMATIC NETWORK
for DOCTORAL EDUCATION in COMPUTING
Summer School on Intelligent Systems
Nicosia, Cyprus, July 2-6, 2007

Computational Intelligence Applications
in Software Engineering

Presenters:
Andreas S. Andreou
Assistant Professor

Efi Papatheocharous
PhD Candidate

Constantinos Stylianou
PhD Candidate

{aandreou, cstylianou, efi.papatheocharous}@cs.ucy.ac.cy
Department of Computer Science

University of Cyprus

COMPUTATIONAL INTELLIGENCE APPLICATIONS IN
SOFTWARE ENGINEERING

Part A: Introduction to Computational
Intelligence in Software Engineering

Department of Computer Science

University of Cyprus

/4

'\

A

3

Part A: Outline A

A

v
P 4s.

o

L

1. Basic Software Engineering Concepts
* Software Development Phases
* Complex Fundamental Problems
2. Computational Intelligence
* Artificial Neural Networks
* Genetic Algorithms
® Fuzzy Logic

3. Software Engineering Intelligence: Areas

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part A

Basic Software Engineering Concepts Y

)

) &

Software Engineering:
The process to produce quality software without defects, that is
delivered on time and within budget, meeting clients’ needs and
can be easily maintained

Software Process:
The way we produce software, including

¢ Life-cycle model
* Human resources
* CASE tools

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part A

Basic Software Engineering Conc nt’d)

D4

Life-cycle model :
1. Requirements phase
Specification phase
Design phase
Implementation phase
Integration phase (parallel with 4)

Maintenance phase

N o vk wN

Retirement

Each phase experiences different
fundamental problems

Can CI help here ?

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part A

Basic Sofare glneerlng Conc nt’d)

D4

Requirements :

v Elicitation of right needs

v" Recording of all functions and constraints

v Avoidance of huge and vague documentation, etc...
Specification :

v Vagueness, ambiguity, conflicts

v" Not too technical, yet quite formal

v" Cost and time estimation

v SPMP (tasks, dependencies, duration, resources), etc...

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part A

Basic Software Engineering Conce 'nt’d) $l&)
A

S
D y

Design :
v High-level (architectural) = Logical errors, open architecture
design problems, modularity, coupling, complexity of modules

v Low-level (detailed) - Complexity of data structures and
variables, algorithms selection, flow of control and execution,
cohesion, etc...

Implementation / Integration :
v" Configuration management
v" Programming philosophy and style
v Programming in the many/large/small
v Integration method

v Testing, etc...

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part A

Basic Software Engineering Concepts (Cont’d) %g@%
| §

Continuous effort to improve the Software Process and Quality:
v SEI guidelines
v CMM
v SPICE
v 1S09126

y________ 4
TARGET
Quality Continuous monitoring & PRODUCE
improvement assessment QUALITY
Risk Process

analysis improvement

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part A

Computational Intelligence

Definitions :

Conference: Computational Intelligence - Methods & Applications
- CIMA2005

Defining "Computational Intelligence" is not straightforward. It is
difficult, if not impossible, to accommodate in a formal definition
disparate areas with their own established individualities such as fuzzy
sets, neural networks, evolutionary computation, machine learning,
Bayesian reasoning, etc.

Book: “Computational Intelligence: An Introduction”, Andries P.
Engelbrecht, Wiley 2002

Computational intelligence is the study of adaptive mechanisms to
enable or facilitate intelligent behavior in complex and changing
environments. As such, computational intelligence combines artificial
neural networks, evolutionary computing, swarm intelligence and
fuzzy systems.

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part A

Computational Intelligence (Cont’d)

O Neural Networks

Fuzzy Logic

O Evolutionary Algorithms
Genetic Algorithms
Genetic Programming
Evolutionary Programming Furzy Logic
Evolutionary Strategies
Differential Evolution
Cultural Evolution, Co-evolution etc.

Swarm Intelligence

Case Based Reasoning

Data Mining Techniques
Adaptive Computing Systems
Knowledge Based Systems
Expert Software Systems
Machine Learning Techniques
Hybrid Intelligent Systems

m}

Ooooooooao

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part A

Computal Intelligence (Cont’ — &

Artificial Neural Networks (ANNS) :

v" Offer a powerful, distributed computing architecture that is able
to learn

v/ Organized in layers of connected and interacting computing
elements called neurons (mimic brain)

v/ Represent highly nonlinear, complex, multivariate relationships
that are learned from experimental data

v" Supervised and unsupervised learning

v" Instruments for performing prediction or classification tasks

(e.g. Minsky & Pappert, 1969; Rumelhart & McClelland, 1986; Haykin, 1994)

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part A

Computal Intelligence (Cont’ — &

Evolutionary computing (Genetic Algorithms - GAs) :

v" Constitute a class of optimization algorithms

v' A Genetic Algorithm (GA) provides a search procedure,
which optimizes an objective function

v" The GA maintains and evolves a population of candidate
solutions through crossover and mutation operations to
generate new and better, more fit individuals.

v" Evolution is a stochastic process — It is based on randomness

(e.g. Fogel et al. 1966; Holland, 1975; Koza, 1990-2004)

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part A

Computna Itelligence (Cont’d —— F

Fuzzy Logic :

V" In real world, information is often ambiguous or imprecise.

v An organized method for dealing with imprecise data is called fuzzy
logic

V' The data are considered as fuzzy sets. Traditional sets include or do not
include an individual element; there is no other case than true or false.
Fuzzy sets allow partial membership

v" Fuzzy Logic is basically a multi-valued logic - allows intermediate
values to be defined between conventional evaluations like yes/no,
true/false, black/white, etc.

v’ Notions like rather warm or pretty cold can be formulated
mathematically and processed with the computer

(e.g. Zadeh, 1965, 1973...)

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part A 13

Software gineering Intelligence: Areas

-

Pz
-

>N
. 4/‘9/‘/
P 4% |

Naell

Studying the needs and tackling SE problems via
Computational Intelligent approaches

Research in :

Software Cost Estimation
Component-Based Software Development
Software Testing

Software Failure Modeling

Software Project Management

Software Risk Analysis & Modeling
Software Quality Modeling & Assessment

NNk D=

Software Reliability Modeling & Forecasting
... and more

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part A 14

COMPUTATIONAL INTELLIGENCE APPLICATIONS IN
SOFTWARE ENGINEERING

Part B: Computational Intelligence in
Software Cost Estimation

Department of Computer Science

University of Cyprus

Part B: Outline

>N

<
Pz

>

1. Introduction to Software Cost Estimation (SCE)

®m Problem context and need

m Significance and challenges
2. Literature Review on Software Cost Estimation models
3. Computational Intelligence (CI) in SCE

m Related research carried out at the department

o Qualitatively l:l_' Quantitatively

= Use of Fuzzy Cognitive
Maps (FCM) in SCE

= Cost factors are .
represented as concepts in
the map

]
= QOutput: Higher or lower
than original estimation

04/07/2007

= SCE using ANN with Inputs Selection

Hypothesis / Aim / Motivation
Description of the Datasets
Methodology - Design of the Experiments
Experimental Results
Conclusions
Future Work

Session 4: Computational Intelligence Applications in Software Engineering - Part B 16

O Software Cost Estimation involves:

m Prediction of the resources to be consumed in a software
project.
o Resources in terms of: costs / effort / calendar time

® One of the most critical tasks in software engineering and
project management.

O Software cost estimation takes into account:
Software product size

Functions complexity

Effort — measured in person months
Project schedules

Overall costs of the project

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B

stimation

O Overall costs of a software project include [11:
= Hardware and software costs (including maintenance)
= Travel and training costs
= Effort costs (the dominant factor in most projects)
o salaries of engineers involved in the project
o social and insurance costs

O Effort costs must also take overheads into account:
= costs of building, providing heating and lighting office space

= costs of support staff such as accountants, administrators, system
managers, cleaners and technicians

= costs of networking and communications
m costs of central facilities (e.g., library, staff restaurant, etc.)
m costs of Social Security and employee benefits (e.g., pensions, health

insurance)
[1] Sommerville, lan. 2006. Software Engineering:(8th Edition) (International Computer Science). Addison-Wesley Longman Publishing Co., Inc.
04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B

stimation

(Cont’d) D @

O Estimation requirements
m Boehm’s criteria for evaluating cost models 1:

Criteria Description
1. Definition Has the model clearly defined the costs it is estimating and costs it is excluding?
= 2 Fidelity Are the estimates close to the actual costs expended on the project?
3. Objectivity Does the model avoid allocating most of the software cost variance to poorly calibrated

subjective factors, such as complexity? That is, is it hard to rig the model to get the
results vou want?

4. Constructiveness Can you tell a user why the model gives the estimate it does? Does it help the user
understand the software job to be done?

5. Detail Does the model easily accommodate the estimation of a software system consisting of a
number of subsystems and units? Does it give (accurate) phase and activity breakdown?

6. Stability Do small differences in inputs produce small differences in output cost estimates?

7. Scope Does the model cover the class of software projects whose costs vou need to estimate?

8. Ease of use Are the model inputs and options easy to understand and specify?

9. Prospectiveness Does the model avoid the use of information which will not be kmown until the project is

=) -

complete?

10. Parsimony Does the model avoid the use of highly redundant factors or factors which make no

appreciable contribution to the result?

[1] Boehm, BW. 1981. Software Engineering Economics. Prentice Hall PTR Upper Saddle River, NJ, USA.
o Accuracy

o Early in the development life-cycle

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B 19

N
%

) @

>N

S

D

P42 |

Importance of Software Cost Estimation

[

O Why is it important to estimate software costs accurately and early in the
development cycle?

m For the successful delivery of a software product on time, within budget
and with the anticipated functionality

= For reducing risks, uncertainty, supporting better decision making
= Better project management

O Some inherent problems of software production:
= Complexity
= Conformability
= Changeability
m Invisibility
— “Software is invisible and unvisualizable.” Frederick P. Brooks
— All contribute to making Software Cost Estimation hard.

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B 20

10

Boehm’s Cone of Uncertainty (ref.[1])

Project Cost Project

(size and effort) Schedule
4% 16x
2 125%
15% 11%x
1.25% 110x
[e 10
0.8x o
067 85x
0.5% 8x
125% bx

[mihal Approved Requirements Product Detanled Product
product product specification design design complete

Figure 1: Project Cost Estimates during a sequential development process [2].

- Displays the uncertainty in the estimates at each stage of the project
« Early project estimates will inevitably be highly inaccurate

= Total estimate range is 16x (best-case scenario)

» Could easily become the ‘cloud of uncertainty’ [3]

[1] Boehm, BW. 1981. Software Engineering Economics. Prentice Hall PTR Upper Saddle River, NJ, USA.
[2] McConnell, Steve, “10 Deadly Sins of Software Estimation”, Available from http:/www.construx.com, Accessed 2007.
[3] McConnell, Steve. 2006. Software Estimation: Demystifying the Black Art (Best Practices). Microsoft Press.

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B 21

) ‘

>N

S

Challenges in Early Software Cost Estimation *

»
P42 |

P
L]

O Why is the estimate hard?

High complexity and uniqueness of the software engineering process
Dynamic parameters affecting productivity and effort

Never two software systems or projects are identical

May need to run on unfamiliar computers, or use new technologies
Undergo new processes

Different people may be involved in the development process

o Having different skills, culture, experiences, knowledge
= Limited knowledge and experience concerning the relationships
between the factors affecting software productivity and effort

m Lack of trained estimators with the necessary expertise and knowledge
to support the estimation process

= Low number of active researchers with long-term interest on software
cost estimation compared to the researched topics and approaches

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B 22

11

N
%

\] ‘

S

D

>N

Some facts about the software industry

.

[
L

O The Software Productivity Research LLC surveyed 250 large software projects
(during the period 1995 —2004)
= Software projects tend to have:

o A very high frequency of schedule overruns, cost overruns, quality problems or
even cancellations [3]

o Poor project planning, poor cost estimating, poor measurements, poor milestone
tracking, poor change control, and poor quality control (2]

O The Standish Group 151 surveyed over 40,000 projects in 10 years to reach the
following findings 412
o 23% of all software projects are cancelled before completion

o Only 28% of the completed projects are delivered on time, within budget and with
all originally specified features

o The average software project cost overruns budget by 45%

[1] Jones, Capers; “Software Estimating Methods for Large Projects™; Crosstalk, April 2005.
[2] Jones, Capers. 2004. Software Project Management Practices: Failure Versus Success©. Crosstalk 17, no. 19: 5-9.
[3] Jones, Capers. 2005. “How software estimation tools work™. Software Productivity Research 1996 - 2005 by Capers Jones, Chairman, SPR, Inc.

[4] Laird, Linda M., and M. Carol Brennan. 2006. Software Measurement and Estimation: A Practical Approach (Quantitative Software Engineering
Series). Wiley-IEEE Computer Society Press.

[5] The Standish Group, CHAOS Chronicles, Standish Group Internal Report, 1995, Available at <http:/www.standishgroup.com/>.

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B 23

S

D

Some challenges: History of I'T projects

>N
==
"})&]

P
L)

O Software projects often fail ().

TEAR CONPARY [OUTCOME (COSTS IN US 8)
2005 Hudson Bay Co. [Canada] Prablems with inventory system contribute to $33.3 million® loss.
2004=-05 UK Inland Revenue Software errors ib $3.45 billion* tax-credit
2004 Avis Europe PLC [UK] Enterprise resource planning (ERF) system canceled after $54.5 million' is spent.
2004 Ford Motor Co. 2 after costing 5400 million.
2004 J Sainsbury PLC [UK] pply system after costing $627 million."
2004 Hewlett-Packard Co. =y
2003-04 | ATAT Wireloss Customer relati lead to f $100 million.
2002 McDonald's Corp. Thels led after $170 million is spent.
2002 Sydney Water Corp. [Australia] Billing system canceled after $33.2 million! is spent.
2002 CIGNA Corp. Prablems with CRM system contribute to $445 million loss.
2001 Nike Inc. Prablems with supply-chain management system contribute to $I00 million loss.
2001 Kmart Corp. pply system d aft is spent.
2000 Washingtan, D.C. Ciry affi ing $25 million.

SOURCES: BUSINESS WEEK, CEQ MAGAZINE, COMPUTERWORLD, INFOWEEK, FORTUNE, THE NEW YORK TIMES, TIME, AND THE WALL STREET
JOURNAL

= One of the most common reasons for project failure is the inaccurate
estimate of the needed resources.

— Project managers stress the importance of having supportive methods to

estimate software costs
[1] Charette, R.N. 2005. Why software fails [software failure]. Spectrum, IEEE 42, no. 9: 42- 49.

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B

12

Background on Cost Estimation Models g\]rw
L

[m]

04/07/2007

Types of Cost O Estimation Techniques 1)
estimation models: Technique [——
Algorithmic cost A model is developed using historical cost information that
. modelling relates some software metric (usually its size) to the project
u COStTOI'leI'Ited - cost. An estimate is made of that metric and the model
provide direct predicts the effort required.
estimates Of effort Expert judgement Several experts on the proposed software development
. techniques and the application domain are consulted. They
| | Constralnt- each estimate the project cost. These estimates are compared
: _ and discussed. The estimation process iterates until an agreed
Ol}el"lted h eXpreSS estimate is reached.
relations 1p Estimation by This technique is applicable when other projects in the same
between analogy application domain have been completed. The cost of a hew
project is estimated by analogy with these completed projects.
parameters and Myers (Myers, 1989) gives a very clear description of this
effort over time approach.

Parkinson's Law Parkinson's Law states that work expands to fill the time
available. The cost is determined by available resources rather
than by objective assessment. If the software has to be
delivered in 12 months and 5 people are available, the effort
required is estimated to be 60 person-months.

Pricing to win The software cost is estimated to be whatever the customer
has available to spend on the project. The estimated effort
depends on the customer’s budget and not on the software
functionality.

[1] Sommerville, lan. 2006. Software Engineering:(8th Edition) (i ional Computer Science). Addison-Wesley Longman Publishing Co., Inc.
Session 4: Computational Intelligence Applications in Software Engineering - Part B 25

NI
Background on Cost Estimation Models (Cont’d) %%\E%
||

04/07/2007

O Algorithmic Cost Modeling

= Use a mathematical formula to predict project costs based on estimates of the
project size, the number of software engineers, and other process and product
factors

= [t can be built by analysing the costs and attributes of completed projects and
finding the closest fit formula to actual experience

o Effort = A x SizeBx M

o A is an organisation-dependent constant (local practices, type of software to be
developed etc.), B reflects the disproportionate effort for large projects and M is a
multiplier reflecting product, process and people attributes

o The most commonly used product attribute for cost

estimation is the code Size and it is usually measured in Lines Of Code, Function
Points, Object Points

= Limitations:
o Difficult and subjective to estimate Size at an early project stage

o Subjective measures of A, B and M

Session 4: Computational Intelligence Applications in Software Engineering - Part B 26

13

NN
Background on Cost Estimation Models (Cont’d) %\%%:%
L

O The COCOMO Model

Empirical Algorithmic Model
Derived by collecting data from a large number of software projects

Discover a formula that link the size of the system and product, project
and team factors to the effort to develop the system

Characteristics:
o It is well documented, available in the public domain and supported by
public domain and commercial tools
o It has been widely used and evaluated in a range of organisations
o Redefined over the years from the initial version COCOMO I 11 to a recent
version COCOMO I 12

[1] Boehm, B.W., 1981. Software Engineering Economics. Prentice Hall.

[2] Boehm, B. 2000. Safe and simple software cost analysis. Software, IEEE 17, no. 5: 14-17.

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B 27

NI
\K /V\
g 3 ’ VQ& N
Background on Cost Estimation Models (Cont’d) m P
)
N
o COCOMOI
Project
complexity Formula Description
Simple PM = 2.4 (KDS))** x M Well-understood applications developed by small teams
Moderate PM = 3.0 (KDS))'2 x M More complex projects where team members may have
limited experience of related systems
Embedded PM = 3.6 (KDSI)'?*® x M Complex projects where the software is part of a strongly
coupled complex of hardware, software, regulations and
operational procedures
KDSI : Thousands of Delivered Source Instructions
(m] COCOMO II M : Multipliers are created and adjusted according to project cost drivers
1. Early Prototyping Level
o Estimates based on Object Points and a simple formula is used for effort estimation (draft
requirements+prototyping)
2, Early Design Level
o Estimates based on FP that are then translated to LOC (full reqs+specs, perhaps some initial
design)
3. Post-architecture Level
o Estimates based on LOC
04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B 28

14

A
Background on Estimation model S
ac groun on Lstimation models F\](T
COCOMO (continued)
D continue Attribute Type Description
m P : t t d : RELY Product Required system reliability
I'O_] €Cl Cos I1vVers CPLX Product Complexity of system modules
DOCU Product Extent of documentation required
DATA Product Size of database used
RUSE Product Required percentage of reusable components
TIME Computer Execution time constraint
PVOL Computer Volatility of development platform
STOR Computer Memory constraints
ACAP Personnel Capability of project analysts
PCON Personnel Personnel continuity
PCAP Personnel Programmer capability
PEXP Personnel Programmer experience in project domain
AEXP Personnel Analyst experience in project domain
LTEX Personnel Language and tool experience
TOOL Project Use of software tools
SCED. Project Development schedule compression
SITE Project Extent of multisite working and quality of inter-site
communications
Return
04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B 29

o COCOMO II - Formulas

1. Early Prototyping Level
o PM = (NOP x (1 - %reuse/100)) / PROD

o PM is the effort in person-months, NOP is the number of object points and PROD is the
productivity

2. Early Design Level

o PM = A x Size®x M + PM, where M = PERSxRCPXxRUSExPDIFxPREXxFCILxSCED

o PM, = (ASLOC x (AT/100)) / ATPROD

o PM,, is a factor used when code is generated automatically, with ASLOC being the number of
automatically generated LOC, AT the percentage of total system code automatically generated,
and ATPROD the productivity level for automatic code

3. Post-architecture Level

o ESLOC = ASLOC x (AA + SU +0.4DM + 0.3CM +0.3IM)/100

o ESLOC is equivalent number of lines of new code. ASLOC is the number of lines of reusable
code which must be modified, DM is the percentage of design modified, CM is the percentage
of the code that is modified , IM is the percentage of the original integration effort required for
integrating the reused software. SU is a factor based on the cost of software understanding, AA
is a factor which reflects the initial assessment costs of deciding if software may be reused

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B

Background on Cost Estimation Models (Cont’d) D@

\

15

NP
P
- - : 8.
Computational Intelligence in SCE D¢
A\
O There is need for intelligent methods to support software cost estimations
O Computational Intelligence seems to provide optimal solutions to complex
problems, and combine elements of learning, adaptation and evolution
Study (Year) mparing Approach Dataset Results
Belady
COCOMO
R MMRE=27%
Dolado (1998) Nempal Mot works 21::;2:
Genetic Algorithms* ‘Acad Env. MMRE=22%
Matson
CART
Neural Network: COCOMO&
Sl Ely) N:E:lN:txﬂc: Ezi::kk{::olg) Kemerer R 09979
Hybrd(NN&GA)*
Neural Networks*
Mair (2000) CBR Deshamais MMRE=21%
RI
Burgess (2001) ::n“’ﬁge;‘::‘“ ing* Deshamais MMRE=37%
Neural Networks P p——
Ldri (2002) COCOMO mﬂfj;f;gg
. Incr. Interpretability
Xu (2004) iﬁ = COCOMO MMRE=13%
Martin (2005) Fuzzy logic MMRE=0 1057
Hybnd Soft Computing
Huang (2006) (Newral Networks, Fuzzy, Improvement=13%
Algorithmic-Expert)
04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B 31

Computational Intelligence in SCE (Cont’d)

|

O Research Topics and Estimation Approaches [1]

Estimation | -1989 1990-1999 2000-2004 Total
Research topic | -1989 1990-1999 | 20002004 | Total Sppioach
Lo | Rg 21 (51%) 76 (47%) 51(51%) 148 (43%)
Em 30 (73%) | 96 (59%) 58 (58%) 184 (61%)
An TE%) 5 (%) 15 (16%) 31 (10%)
P 8(20%) | 7(4%) 3(3%) 18 (6%) g o) I) =759
Cm 3(7%) 13 (8%) 4{4%) 20 (7%) Wb 3(7%) 5(3%) 4 (4%) 12 (%)
sm 5(12%) | 99 (24%) 16 (16%) 60 (20%) P TR | aT@ee | 1a(aw) &8 @2%)
oi 9(22%) | 25(15%) | 14(14%) | 48(16%) &] FER 910 il
U 2 (5%) 10 6%) 13{13%) 25 (8%) bl A = L L]
& 7 a Nn 00%) 1 (7%) T (11%) (%)
Ep 2 (5%) 8 (5%) 6 (6%) 16 (5%) 10 20 (45%) 4 (9%) 5(5%) 3 (13%)
Ds 0 (0%) 1(1%) 2(2%) 3(1%) By 0(0%) 1(1%) 6 (6%) 7 (2%)
ot 0 (0%) 3(2%) (1% a(1%) b 7(0%) 3@ HeZ) He)
The abbreviations used are: Esfimation method = Em, Production funcfion = P, Ll E o) 76w | 16015%) L]
albeaon G oo O S esiRe o ST VAo s S, T abbrevialons used ae: g = ogrosson, A1 = Aoy, €] Exper uaament
; Wb = Work break-down, Fp = Functon Point, Gt = Classifcation and regression
Uncertainty assessments = Un, Measures of estimation performance = Ep, Data set same, 8« Bl v Nocasd sk T oo = Bosmtars
properties = Ds, Other =0t b = Combination of estimates, Ot = Other

O There is no silver bullet
O Each approach contains limitations

“Software Estimation has been identified as one of the three great
challenges for half-century-old in computer science.”

[1] Jorgensen, M., and M. Shepperd. 2007. A Systematic Review of Software Development Cost Estimation Studies. Software Engineering, IEEE Transactions on 33, no. 1: 33-53

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B 32

16

O Recent work: Identify and select best suited project attributes
O Hypothesis:
m Identify critical project characteristics
= Evaluate their impact on the evolution of software cost
— Could provide more accurate estimations

O Aim: Accurately predict software development cost
= Computational Intelligent (CI) methods
= Input Sensitivity Analysis (ISA)
— Find the optimal set of input parameters in order to:
o describe better the cost of a software project
o in earlier phases of the software development life-cycle (SDLC)

O Motivation:

m [If a satisfactory and reliable model is devised it can constitute the basis for:

o contract negotiations, project charging, classification of tasks, allocation of human
resources, monitoring task progress, etc.

[1] E. Papatheocharous, A. Andreou, “Software Cost Estimation Using Artificial Neural Networks with Inputs Selection”, Proc. of the 9th International Conf. on Enterprise
Information Systems, pp.398-407, ICEIS Madeira, 2007.

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B 33

Description of Datasets

O Desharnais (1988)

m ~80 systems developed by a
Canadian software development
house

Id Table 1. Desharnais Attributes

O ISBSG (Release 9)
m International Software
Benchmarking Standards Group
o Broad cross range data (multi-

organisational, multi-application
domain, multi-environmental)

Id Table 2. ISBSG Attributes

1 | Project Name 1 | Project Name
2 | Team’s Experience (Years) 2 | Functional Size
3 | Project Manager’s Experience 3 | Adjusted Function Points
4 | Length Of Development 4 | Unadjusted Function Points
5 | Development Effort (Hours) 5 | Project Elapsed Time
6 Number Of Transactions 6 | Project Inactive Time
7 | Number Of Entities 7 | Count Approach
§ | Unadjusted Function Points § | Normalised Work Effort
9 Scope 9 | Productivity Delivery Rate
10 | Adjusted Function Points -
11| Language 79 | Lines of Code
04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B 34

17

Artificial Neural Networks (ANN)

| 2l

O A simple neuron definition:
= The basic unit of an ANN, simulating a biological neuron.
= Inspiration originates from the desire to model the way the
human brain works and create sophisticated artificial systems
that are capable of intelligent computations, similar to the
computations of the biological neurons in the brain structures.

O Structure of a simple neuron z
1
= One or more Inputs 7 w,
2
= Weights : ¥
= Activation functioq w3 4
. oo 1 X,
o Slgmo.ld Y=1i.—=
o Gaussian
o Etc. Threshokd 8
Figure 2: Structure of a simple neuron
04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B 35

Artificial Neural Networks (ANN) (Cont’d) E’]ﬁ

O ANN definition:
= An ANN can be viewed as a directed graph.
= It is composed of a number of basic computational elements (called neurons

{ input |} Hidden
i Layer i1 Layer

= Supervised Vs Unsupervised learning
o It requires a desired output in order to learn
o It has the ability to:
= Represent complex relationships
= Identify patterns
= Learn and Generalise the acquired knowledge

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B 36

18

[

63
Artificial Neural Networks (ANN) (Cont’d) Vﬁ’g

O A single layer Perceptron Model of McCulloch-Pitts [11:
m Consists of:
o A set of inputs weights
o A threshold
o A hard limiter
m The hidden layers provide connectivity between the inputs and outputs.

O The network may also have feedback, which will take result variables and use them as
input to prior processing nodes

O Feed-forward Multi-Layer Perceptron (MLP)
m Consists of multiple layers of computational units
m Interconnected in a feed-forward way

= Each neuron in one layer has directed connections to the neurons of the subsequent
layer

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B 37

b

Artificial Neural Networks (ANN) (Cont'd) Vﬁ[ﬁ

O Software models assessing cost or effort use:

m Feed-forward MLP form of ANN, supervised learning methods and back-
propagation training algorithm.

7/' Aw; = x:8
Input |‘
Data

Output
Layer
Input Hidden

Layer Layer

O 1. Initialize the weights in the network (often randomly)
2. repeat
* foreach example e in the training set do
1. 0 = neural-net—output (network, e) ; forward pass
2. T = teacher output for e
3. Calculate error (T - 0) at the output units
4. Compute delta_wi for all weights from hidden layer to output layer : backward pass
5. Compute delta wi for all weights from input layer to hidden layer ; backward pass continued
6. Update the weights in the network
* end
3. until all examples classified correctly or stopping criterion satisfied
4. returninetwork)

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B 38

19

~
Methodology - Design of the Experiments)¢

O Step 1: Data Pre-processing
= Null values
= Incomplete data
= Normalization [-1, 1]
O Step 2: Iterative process
m Data Sampling:
0 70% training / 20% validation / 10% testing
m Use Feed-forward Multi-Layer Perceptron ANN with varying hidden
neurons
m Select 20% of the best ANNs based on performance metrics
= Apply Inputs Sensitivity Analysis (ISA)
o Sum input weights
o Identify important inputs
* Strict (S) Threshold: w; ~ (=) mni)
= Less Strict (LS) Threshold: i =Max(w,—w,)*0,25
o Estimate inputs acceptance percentage rate rare_toal, =
O Step 3: Derive Final Parameters (FP) set

Sor LS

num_of _ ANNs_W,
total _number _ ANNs i

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B 39

Evaluation of ANN’s Performance

>N

o
N

=2

e () = X, ()

T2
O Relative Mean Absolute Error (RMAE) RMAE(n) = nz:‘
X, (D)
Z[(xm,,(i) — Xactn) - (xm () = X predn)]
O Correlation Coefficient (CC) CC=——2=

J [i(xm,,(i) e) }[i(xw(i) -)z}

i=l i=l

O Normalized Root Mean Squared Error (NRMSE) NRMSE(n) = RMSE() __ RMSE(m)

N S

1 n
O Where, RMSE<n>=\/;Z[xm @)= x,, OF

O Pred(l)
= How many data predictions k out of n (total number of data points
predicted) performed well, i.e., their RE metric given in equation is lower
than level I: pred(l) = L
n

e (1) = X100 0]

m Relative Error (RE): RE(m)=

Xoer (D)

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B 40

20

Experimental Results Desharnais

D da

O Desharnais Indicative Results (Performance Errors vs Average Weights vs

Threshold Acceptance)
ANN erimental Results / Training And Testing Errors (Indicative runs — out of 10 iterations
ANN TRAINING TESTING
B NEMSE cC MSE | RMAE MAE pred | NRMSE cC MSE RMAE MAE pred
-20- 12328 | 0.972 0058 11012 0502 09811 3280 0552 0026 | 0.047 0366
-16- 2480 068, 0066 11033 0507 1 3666 0325 .0033 061 0440
-10- 3055 .051 0100 1235 L0729 09811 3777 0215 0035 063 0504
-19- 11797 083 0034 0709 0453 1 4661 8007 0053 .073: 0600
ANN Experimental Results / Average Weights for each Input
AN Team Exp. Manager Exp. | Length Transactions | Entities Points adj. Envergure Points non adj. Language
-20- L0658 .0010 0238 0600 .2068 .0790 L0577 1495 0658
-16- .1232 0100 0354 .2124 .0633 4583 .0200 .0300 1232
-10- 1096 1718 0699 0845 2855 .3058 0698 1939 1096
-19- L0835 L0176 1047 L0951 .2519 L1112 1179 .0312 0855
ANN Experimental Results Input Sensitivity Analysis / Strict (S) and Less Strict (LS) Approach
ANN Team Exp. Manager Exp. | Length Transactions | Entities Points adj, Envergure Points non adj. Language
S Ls s Ls S| Ls s LS s Ls s LS s Ls S LS s Ls
-16- v v v v v

Deshamais Dataset Final Parameter Set Selected

Strict Less Strict ‘Early’
Points adjusted Points adjusted Points adjusted
FP(DeSharnaiS): Points non adjusted | Points non adjusted | Points non adjusted
Team Experience Team Experience
Transactions Manager Experience
Entities

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B

Experimental Results ISBSG

|
>

4

A

) ¢

A

A A

-

Threshold Acceptance)

O ISBSG Indicative Results (Performance Errors vs Average Weights vs

04/07/2007 Session 4: Computational Intel

ANN Experimental Results / Training And Testing Errors (Indicative runs — out of 10 iterations)
TRAINING TESTING
NRMSE cC MSE RMAE MAE pred(l) NRMSE cC MSE MAE pred
03857 0.9237 0.0020 0.0349 0.0294 1 0.3761 0.9381 0.0044 0.0474 1
0.4307 0.9026 0.0026 0.0355 0.029 0.9980 0.3764 0.9500 0.0048 0.0430 0.9932
0.4034 0.8727 0.0034 0.0434 0.0373 0.9980 0.3387 0.9482 0.0044 0.0432 0.9932
03294 0.9452 0.0015 0.0300 0.0256 1 0.2616 0.9675 0.0025 0.0328 1
ANN Experi I Results / Average Weights for each Input
T Reported pdr | Projectpdr | Normalized Normalized | |] Enquiy Tnterface Added Deleted
(afp) (ufp) pdr (afp) plr(ufp) | PN | count count comnt count
18-22-1 0.10 0.02 0.086 0.01 0.05 0.14 0.016 01t 0.08
18-23-1 0.09 0.18 0.153 0.13 0.05 0.07 0131 0.06 0.01
18-35-1 0.04 0.03 0.013 0.01 0.08 0.06 0.088 011 0.01
18-19-1 0.00 0.15 0.185 0.18 011 0.18 0.011 0.15 022
ANN erimental Results Input Sensitivity Analysis / Strict (S) and Less Strict (LS) Approach
Reported pdr Project pdr Normalized Normalized Input count Enquiry Interface Added Deleted
ANN (afp) (ufp) pdr (afp) pdr (ufp) P count count count count
) LS S Ls S LS S LS s LS S Ls s LS S LS S LS
-22-
23~
-35-
10-
ISBSG Dataset Final Parameter Set Selected
Strict Less Strict ‘Early’
FP(ISBSG) Normalised PDR (afp) | Normalised PDR (afp) = Functional size
- File count File count Adjusted Function Points
Added count Added count Nommalised PDR (afp)
Enquiry count
Changed count

21

O
N /V\
Final Runs — Validation with the FP set @
A
Desharnais dataset ANN Final Runs ISBSG dataset ANN Final Runs
TESTING TESTING
NRMSE | CC | MSE | RMAE | MAE | pred(l) NRMSE | C€C | MSE | RMAE | MAE | pred))
Strict (S) Approach Strict (S) Approach
0.6916 | 0.6999 | 0.0169 | 0.1956 | 0.0907 1 05246 | 08523 | 00077 | 00374 | 00350 | 09932
07172 | 06762 | 00181 | 02089 | 01027 1 2193 97 0.0013 | 00260 | 0.0242 1
08602 | 05801 | 00261 | 02431 | 01125 1 4290 .90 0.0052 | 00418 | 0.0390 | 0.9932
07202 | 06759 | 00183 | 02026 | 00905 1 3364 .93 0.0035 | 0.0390 | 0.0360 1
Less Strict (LS) Approach Less Strict (LS) Approac!
6330 8330 | 0.015 0.1844 | 0.0806 03031 | 09565 | 00026 | 00384 | 00355 1
6967 771 0.017 0.1875 | 0.0767 05220 | 08617 | 00077 | 00445 | 00418 | 09932
6104 841 0.013 0.1718 | 0.0826 05984 | 08055 00101 | 00389 | 00360 | 09932
6414 8040 | 0.014 0.1780 | 0.0781 06938 | 07178 | 00136 | 00495 | 00457 | 09932
“Ideal” (Early Phase) Approach “TIdeal” (Early Phase) Approach
08772 | 04852 | 00272 | 02463 | 01108 1 02968 | 0.9559 | 0.0024 | 0.0302 | 0.0363 1
07052 | 0.7405 | 00175 | 02044 | 0.0932 1 02355 | 09731 | 00015 | 00258 | 00239 1
07419 | 0.6769 | 0.0194 | 02005 | 0.0045 1 01062 | 09805 | 00010 | 00232 | 00218 1
0.8300 | 05076 | 0.0248 | 02370 | 0.1349 1 02805 | 09602 | 00022 | 00276 | 00257 1
O Reducing the number of attributes we achieved low performance error values
O Results are more than promising — there is slight rise in the performance metrics
O Fairly similar results during testing
O Relatively similar predictive power of the initial and the reduced FP set
— Achieved to reduce the necessary number of attributes in the estimates
— Using attributes that can be measured early can produce accurate cost estimations
04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B 43

Conclusions

4

D da

Z

O Consistent results in the parameters selected by both S and LS
= Highly important inputs (Desharnais):
o Points Adjusted
= Highly important inputs (ISBSG):
o Normalised PDR (afp)
— Software Size and Product Delivery Rate are the highly significant cost drivers

O Isolated significant parameters for new experiments
m Results indicated highly accurate effort estimates
o Minimised the number of parameters used
o An average of 3 to 5 specific parameters is sufficient

O Applied ‘early’ estimate
= Similarly successful estimates as before

O Opverall benefit of the methodology:
= Higher efficiency, Lower complexity, High accuracy
= Early estimation
= Identify parameters that decisively influence the evolution of software cost

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B

22

%
=

4

A

N

Future Work A

D ¢

A

-

O Further investigation of the approach proposed
= Eliminate limitations of the approach
= Apply the approach on other datasets
= Examine the consistency of the FP set

O Assess the importance of cost factors with other methods

= Investigate other Computational Intelligence Techniques (e.g., Genetic
Algorithms, Fuzzy Logic)

O Incorporate the model in a real-life software cost estimation environment
m assess the degree to which a set of inputs measured under the same
software development conditions, team and project characteristics may
derive consistent dependencies to software costs

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part B

COMPUTATIONAL INTELLIGENCE APPLICATIONS IN
SOFTWARE ENGINEERING

Part C: Computational Intelligence in
Component-Based Software Engineering

Department of Computer Science

University of Cyprus

Part C: Outline

\

1. Introduction
= Problem statement
= Goals
m Previous attempts
2. Clustering algorithms
= Notations
m Fuzzy k-modes clustering
= Entropy-based clustering
3. Methodology
= Evolution
m Description
= Demonstration
= Evaluation
4. Concluding remarks
= Synopsis
® Pros and cons
= Future work

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

Introduction

%

AN/ZANNVA

\

| 72
u%
=

O Problem statement
O Goals

O Previous attempts

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

24

N

) &

S

Problem Statement

Y
Pz |

O Component-based software development process:

= constructing large and often complex systems from smaller,
autonomous and reusable software units called software
components.

O 4 Steps:

= Component qualification (suitability testing)
o Discovery and evaluation

= Component adaptation
o Configuration

m Assembling components into systems
o Integration

= System evolution
o Maintenance

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C 49

. PN
oals () ‘/T
L
O Aim
m Improve the component-based development process
O How?
m Shorten the process’ development time
O Where?

= Component qualification — discovery
O Requirements
m For searching: efficiency
m For retrieving: adequateness
O Method?
m Cluster components in the repository into subsets
» Find the nearest subset to the user’s search preference
m Retrieve most suitable from in there

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

25

Previous Attempts

B

|l

O Informal
m Facets (Pietro-Diaz, 1987, 1991)

m Free-text analysis for automatically extracting keywords
(Girardi, 1995)

m Semantic networks (Sugumaran, 2003; Yao, 2004)

O Formal

m Specification-based (Chu, 2000; Nakkrasae, 2003 ;
Nakkrasae, 2004)

m Modelling artefacts (Chang, 2005)
O Self-organising maps (Wang, 2004)
O Genetic algorithms (Andreou, 2004)

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

Pz,
L

>

Clustering Algorithms

B

|l

O Notations
O Clustering approach used by (Tsekouras, 2004)
employs:
= Entropy-based clustering (Yao, 2003)
m Fuzzy k-modes clustering (Huang, 1998)

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

Pz,

>

26

Notations

O A dataset X ={X,, X,, ..., X, } consists of n objects

O Each of these objects can be defined by a set of
attributes, A, A,, ..., A and attribute A jcan take
any value from its domain,DOM(Aj), forl <j <m

O The dataset can therefore be logically viewed as a
conjunction of attribute-value pairs x, € DOM(A)
[Ai’l = xi,l] A [4’2 = xi,z] Ao A [Ai,m =X,], where

O A cluster is a representative of a subset of data and is
denoted by Z, = {zl,l, Zygs oo zl,m}

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C 53

Entropy-based Clustering

O Basic idea

m Groups similar data objects together into clusters based on
data objects’ entropy values using a similarity measure

O Passes through the dataset only once
O Requires a threshold of similarity parameter

O Can be used to compute the number of clusters
in a dataset as well as to find the locations of
cluster centres

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

27

Entropy-based Clustering (Cont’d)

O Algorithm:

04/07/2007

m For each data object, calculate its entropy value based on
E = =) [5;log,(5;) — (1-S)log,(1-5)] S, = ™
j=1
i#k
= The data object achieving the lowest entropy value is
selected the first cluster centre

m Data objects with high similarity to the recently selected
cluster centre (i.e., data objects with a similarity value
higher than the threshold) are removed from the dataset.

m Once these data objects are removed from the dataset, the
number of clusters is increased and the data object with the
next least entropy value is selected and the procedure
repeats until there are no objects left in the dataset.

Session 4: Computational Intelligence Applications in Software Engineering - Part C 55

Entropy-based Clustering (Cont’d)

>N
N
]

04/07/2007

Algorithm: Entropy-based clustering

1. Select threshold of similarity, # and set the initial number of
clusters ¢ = 0.

2. Determine the total entropy values H for each data object in
X.

3. Setec =c+1.

4. Select the data object X, with the least entropy H , and set

n

Z, = X,,, asthe ¢” cluster centre.

n

5. Remove X . and all data objects having similarity with X .

greater than f from X .

6. If X is empty then stop; otherwise go to step 3.

Session 4: Computational Intelligence Applications in Software Engineering - Part C

28

Entropy-based Clustering (Cont’d)

NP

\
/A

) |

X1
X2 — D2—+S2 — E2
Xz — D3~ S3 — Es

\

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

Entropy-based Clustering (Cont’d) @

X{1/2/3/4/5/6|7 8|9(1011|12

EmaI 44.59|42.63|43.32|43.69(42.74|44.01|44.34|43.19|43.28|42.98 43.12(44.13

O Similarity of objects using a threshold 8 = 0.50

C1 C2

C3 C4

O k =4 with cluster centres = {2, 5, 11, 6}

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

29

0.00|0.36|0.22|0.38|0.52|0.46

0.68

0.46

0.64

0.43

0.10

0.49

0.36/0.00/0.31|0.72|0.38|0.36

0.38

0.72

0.36

0.68

0.33

0.43

0.22{0.31(0.00|0.38|0.46|0.46

0.46

0.36

0.41

0.36

0.88

0.46

0.38(0.72(0.38|0.000.46|0.49

0.36

0.72

0.41

0.64

0.38

0.46

0.52|0.38|0.46|0.46|0.00|0.46

0.56

0.38

0.77

0.36

0.26

0.41

0.46|0.36|0.46|0.49|0.46|0.00

0.43

0.43

0.20

0.43

0.46

0.68

0.68(0.38(0.46|0.36|0.56|0.43

0.00

0.41

0.64

0.36

0.32

0.49

0.46|0.72|0.36|0.72|0.38|0.43

0.41

0.00

0.38

0.82

0.38

0.46

0.64(0.36(0.41)|0.41|0.77|0.20

0.64

0.38

0.00

0.38

0.26

0.41

0.43/0.68(0.36|0.64|0.36|0.43

0.36

0.82

0.38

0.00

0.38

0.43

0.10|0.33|0.88|0.38|0.26|0.46

0.32

0.38

0.26

0.38

0.00

0.33

oo alooNo v s =X

0.49|0.43|0.46|0.46|0.41|0.68

0.49

0.46

0.41

0.43

0.33

0.00

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

Fuzzy k~-Modes Clustering

0 Basic Idea

partitions to a minimum.
O Requires:
m Finite number & (< n)
m Dissimilarity measure
m Updating function

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

m Create a finite number (k) of partitions of the
objects within a dataset so that it maximises the
similarity of objects within a partition but at the
same time keeps the similarity of objects between

30

Fuzzy k~Modes Clustering (Cont’d) E%é%

O k-Modes Algorithm:
m Select k initial cluster centres randomly

m Assign each data object to the cluster it is most
similar to using a dissimilarity measure

m After all objects have been assigned, update the
new cluster centres based on the frequency of
categories of attributes (modes of attributes)

m The algorithm repeats until there is no change in
the (re)assignment of objects or the location of the
cluster centres

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

Fuzzy k~Modes Clustering (Cont’d) E%é%

O Fuzzy k-Modes Algorithm:
m Select k initial clusters randomly
m Calculate the degree of membership of each data object to
all clusters —

0, ifX, =2, hzl

1
s [d(z, X,) V(a-1) °
E{d(zh, x»}

m After all objects have been assigned with a degree of
membership, update the new cluster centres based on the
frequency of categories of attributes (modes of attributes)

m The algorithm repeats until there is no change in the
reassignment of objects or in the location of the centres

ifX,#7 and X, #Z,,1 < h < k

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

31

Fuzzy k-Modes Clustering (Con'd) E’]ﬂ

Algorithm: Fuzzy k-Modes clustering

1. Select k initial clusters randomlyZ“’ = {Zl“’, Z;", ey Z,f"}.

2. Determine W) such that F(W, Z“)) is minimised.

3. Sett = 1.

4. Determine Z""" satisfying for such that F(W(", Z('“)) is
minimised.
If F(W('), Z('“)) = F(W('), Z(')) then stop; otherwise go to
step 5.

5. Determine W " using the same equation used in step 2, such
that F(W(”'), Z(”')) is minimised.
If F(W(”'), Z(”')) = F(W(’), Z(”')) then stop; otherwise set

t = t+1 and go to step 4.

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

Fuzzy k-Modes Clustering (Cont’d) E '

O Distance between an object and the centres is measured by
simply matching the attributes of the dataset and storing them
in a partition matrix

L 0, x. =x,,
d(X, X,) = Y6(x, x,,) 5(x,0 %)) ={ =
j=1

L ox;#x,,

X/ 1/2/3/4/5/6/7(8|9|10/11/12

Cl/15|2 16| 3 |13|13 |16 | 4 |14 | 5 | 16 | 14

02 6 [16 | 11 [13 | 5 | 11 6 |12 | 7 | 14 | 10 | 12

C3|/12|17 |5 |15 7 |11 |11 16| 7 |15 4 |13

C4 11|11 (10 |11 |13 | 2 |14 |11 | 11 |12 | 10| 3

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

32

Fuzzy k~Modes Clustering (Cont’d)

O Cluster centres are updated using a frequency-based method
that computes the modal values of each attribute defining the
objects in the dataset

XM pix|si/n|t flcin k| e e
X2 e siv|t flclb k| e|c
X3lelblsiw|t/ I|flc|/blnjelc
Xpi x|y witip/flcini/niele
X5/eix|s|glf flw bl k| t]le
Zl e|x|s|w|t|p|flc|b|k|el|e

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

Methodology

O Evolution
O Description
O Validation

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

33

>

%
=

L

Evolution

Pz
L

O Component clustering
m Previous attempt with genetic algorithms
® k-Means
® k-Modes

O Limitations of k-modes with respect to software
components clustering

m Inability torank use fuzzy /modes instead

o Sensitivito iitial-chs

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C 67

Description P%\[”T

O Steps:

|.Component clustering

1 Pre-processing (Entropy-based clustering)

1 Actual clustering (Fuzzy k-modes clustering)
2 Isolate search cluster

1 Get user’s search preference

] Construct (closest) search cluster(s)
3.Retrieve components

1 Assign search preference to search cluster(s)

1 Isolate range of membership degrees

] Rank and display results to user

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C 68

34

'\

A

/4

A

Methodology Scheme ‘

o

Server (Application Administrator) Side

repository

Q number of clusters

threshold of similarit Entropy-based initial cluster centres Fuzzy k-modes
clustering clustering
Application
Administrator
final cluster centres
fuzziness exponent partition matrix
clusters 5

Client (User) Side

Q search preference 4

level of PS search search cluster PS ranking

Application 3
User

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C 69

/4

A

'\
A

A A

o

search

cluster

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C 70

{
Y
.
Demonstration %?
’7]
Pt o s ~ Search Result
serece T - Companent Name Confdence
010 000006050405061001010000000000 8667 % m
Specific MDI Sound - 052 000103050407 060001010000000000 80.00 %
o it 031 000012050405061001000000000000 80.00 %
023 000011050405061001010000010000 80.00 %
026 000011051305000001010000020000 7333 %
R 02 000011050405000001010002000001 7333%
— Operaing Sy stem Independence il 0D00DG50407060001000002000000 33 %
009 000005050400061001010000010000 7333 %
Operatig [yindows 2000 B 857 135312051305000001010000000000 BB.67 %
System 863 135912050405061001000000000000 BBE7 %
— Other Features. 839 135909051305060001010002000000 BBE7 %
a1 135909050405051001010000000001 BB.67 %
Visibilty of 826 135906050407060001010000000001 BBE7 %
_ Data DoEmentaton 610 094209050407060001010000020000 BBET %
597 094103091305060001010000000000 BBE7 % L
Enarvmton rca) 049 000106090405060001010000010001 BBE7 %
046 000104051305060001000000000001 BBE7 %
043 000104050405061001010002000001 BBE7 %
040 000012091305061001010000000001 BBE7 %
Jecn Fome Synchronisstion 037 000012051307050501010002000000 B6.67 %
ety 018 000003090505000001010000010000 6667 %
013 000005051305000501010000020000 BBE7 %
Password e 7 Bincin 012 000005050505000001010002020000 BBE7 %
Protected ° o 004 000004051305060501000002000000 BBE7 %
875 135912091305060501010000000000 60.00 %
869 135912051305001001010000000000 60.00 %
868 135912051305000001010002000000 60.00 %
Utilisati Confid 862 135912050405060501010000020001 60.00 %
r r 847 135911050400060001010000010001 60.00 %
a1 1359090904050B0001010002020000 60.00 %
= Confidence Level 832 135909050400080001000000010000 60.00 %
810 135904050400060501010002000000 60.00 %
B03 094112050505060501010000020000 60.00 %
Memory 55 P 565 093812051305000501010000000000 60.00 %
067 000112051 60.00 % @
04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

Evaluation

O With a given a set of components, does the
methodology adequately cluster the components and
retrieve those most suitable based on a user’s search
preference?

O Design of Experiments

= 1000 random components and 1 random search preference
m Calculation of the similarity of all components with regards
to the search preference

O The comparison was made according to the closest
components in the dataset achieving similarity above:

m 50% (near)
®m 75% (nearer)
m 90% (nearest)

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

36

Evaluation (Cont’d)

%
b
»}Y

O Performing searches using three different variations
of the preference:

m 15 attributes
= 8 attributes
= 4 attributes

O For entropy-based clustering: Threshold of similarity
parameter 8 = {0.50, 0.55}

O For fuzzy k-modes clustering: Weighting exponent a
={1.10, 1.20}

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C 73

Evaluation (Cont’d) %)m

O 15 attributes

Similarity to search preference > 50 %
Number of known near components 17
£=0.50 p=055
a=1.10 a=1.20 a=1.10 a=1.20
13 (76%) 9 (53%) 11 (65%) 8 (47%)

Similarity to search preference > 75 %
Number of known nearer components 7
£=0.50 p=055
a=1.10 a=1.20 a=1.10 a=1.20
7(100%) 7(100%) 7 (100%) 7 (100%)

Similarity to search preference > 90 %
Number of known nearest components 2
£=0.50 p=055
a=1.10 a=1.20 a=1.10 a=1.20
2 (100%) 2 (100%) 2 (100%) 2 (100%)

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C 74

37

Evaluation (Cont’d)

O 8 attributes

Similarity to search preference > 50%
Number of known near components 45

=050 B=0.55
a=1.10 a=1.20 a=1.10 a =1.20

12 (27%) 9 (20%) 10 (22%) 8 (18%)

Similarity to search preference > 75%
Number of known nearer components 10

=050 B=0.55
a=1.10 a=1.20 a=1.10 a =120

9(90%) _ 8(80%) 8 (80%) 8 (80%)

Similarity to search preference > 90%
Number of known nearest components 2

£=050 $=055
=110 a=120 a=110 _ a=120

2 (100%) 2 (100%) 2 (100%) 2 (100%)

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

Evaluation (Cont’d)

O 4 attributes

Similarity to search preference > 50%
Number of known near components 87

=050 £ =0.55
a=110 =120 a=110 =120

15(17%) 9(10%) L1 (13%) 8 (9%)

Similarity to search preference > 75%
Number of known nearer components 23

=050 £ =0.55
a=110 a=120 a=110 =120

9 (39%) 8 (35%) 8(35%) 7 (30%)

Similarity to search preference > 90%
Number of known nearest components 7

=050 £ =0.55
a=110 a=120 a=110 =120

7 (100%) 6 (86%) 6 (86%) 6 (86%)

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C

38

Concluding Remarks %%E{%

O Synopsis
O Pros and cons

O Future work

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C 77

>N
Dol
Naell

Synopsis

|
7 N
L

O Component-based software engineering builds large
and complex software systems from small,
autonomous and reusable pieces

O Process can be time-consuming due to discovery and
evaluation of components

O Introduction of component repositories to store and
organise software components — the need for
techniques to search and retrieve software
components from repositories

O Methodology reduces the time to locate components
for reuse by using a hybrid clustering scheme using
an entropy-based fuzzy k-modes clustering algorithm

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C 78

39

Pros and Cons i
N

O Pros:

Accurate

Efficient

Effective

Flexible

Expandable

Simple

Low-demanding in terms of number of inputs
High quality

o Cons:

m The two parameters it relies on can significantly change search results
o Subjectivity of the clustering process
= Too many clusters created by entropy-based clustering

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C 79

. $1&
Future Work Vﬁa@

) ¢

O Attempt to apply the methodology to a real
component repository and implemented with client-
server model

O Modification/refinement of component features

O Try to find a way to automatically calculate
parameters:

m threshold of similarity
m Weighting (fuzziness) exponent

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering - Part C 80

40

b

N

Rl

Overall Summary - Discussion N2

&
|
5&

04/07/2007 Session 4: Computational Intelligence Applications in Software Engineering 81

Thank you for your attention.
Questions?

Department of Computer Science

University of Cyprus

