





# Algorithmic Mechanisms for Reliable Master-Worker Internet-based Task Computing

## Chryssis Georgiou

Dept. of Computer Science University of Cyprus

May 9th, 2012 Storrs, CT, USA

This work is supported in part by the Cyprus Research Promotion Foundation grant ΤΠΕ/ΠΛΗΡΟ/0609(ΒΕ)/05

## Outline

- Motivation and preliminaries
- Framework and contributions
- Algorithmic Mechanism
- Application of the mechanism
  - □ SETI-like scenario
  - Contractor scenario
- Conclusions

**MOTIVATION AND PRELIMINARIES** 



## Top Three Supercomputers (2012)

- K Computer, RIKEN Advanced Institute for Computational Science (2011), Japan
  - □ CPUs: 88,128 SPARC64 VIIIfx 8-core 2.0GHz
  - □ 11,280 TFLOPS (11.2 PetaFLOPS)
- **Tianhe-1A,** Tianjin National Supercomputer Center, (2010), China
  - □ CPUs: 186,368 NUDT X5670 6-core 2.93GHz
  - □ 4,701 TFLOPS (4.7 PetaFLOPS)
- Jaguar Cray XT5-HE, Cray Inc (2009), USA
  - □ CPUs: 224,162 AMD x86 64 Opteron 6-core 2.6GHz 2,331 TFLOPS (2.33 PetaFLOPS)

\$\$\$\$\$\$

## **Computational Tasks**

- Increasing demand for processing complex computational tasks
  - One-processor machines have limited computational resources
  - □ Powerful parallel machines (supercomputers) are expensive and are not globally available
- rges as a viable platform for supercomputing Intern/

  - e.g., EGEE Grand Computing me projects Volunteer Master-Worker > e.g., SETI@home, AIDS@home, Forum

PrimeNet

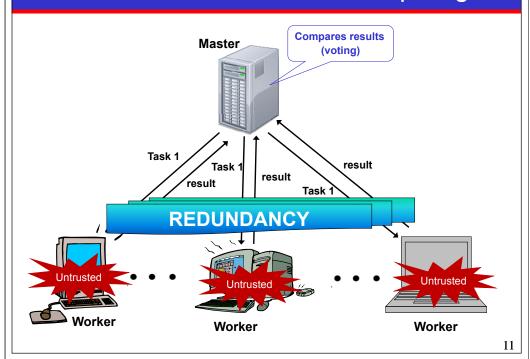
#### SETI

- Search for ExtraTerrestrial Inteligence
- Internet-based public volunteer computing project
  - □ Employs the BOINC software platform
  - Hosted by the Space Sciences Laboratory, at the University of California, Berkeley, USA
- Purpose: analyze radio (telescopic) signals, searching for signs of extra terrestrial intelligence
- O How to use it:
  - Register your PC
  - Downloads the SETI data analyzer (screensaver mode)
  - □ When PC is idling, it starts analyzing data
  - When done, sends results, gets new data chunk to analyze http://setiathome.berkeley.edu/



Arecibo Radio Telescope, Puerto Rico

## SETI@home by the numbers


- As reported in November 2009
  - □ 278,832 active CPUs (out of a total of 2.4 million) in 234 countries
  - □ 769 TFI OPs

Comparable processing power with top Supercomputers @ a fraction of the cost!

Great potential limited by untrustworthy entities

10

## **SETI-like Internet-based Computing**



#### Redundant Task-Allocation

Two different approaches:

- "Classical" distributed computing: pre-defined worker behavior
  - Malicious workers fabricate and report a bogus result
  - Altruistic workers compute and truthfully report correct result

Malicious-tolerant voting protocols are designed

[Sarmenta 2002, Fernandez et al 2006, Konwar et al 2006]

- Game-theoretic: workers act upon their best interest
  - □ Workers are Rational, i.e., they act selfishly aiming to maximize their own benefit

Incentives are provided to induce a desired behavior

[Yurkewych et al 2005, Fernandez et al 2008]

BUT realistically, the three types of workers may coexist!

## Our Approach

#### **Consider all worker types**

- Types of workers:
  - malicious: always report incorrect result
  - □ altruistic: always compute and report correct result
  - rational: selfishly choose to be honest or a cheater
- Combine the two approaches
  - Game-theoretic approach:
    - > Computations modeled as strategic games
    - > Provide incentives to induce desired rationals behavior
    - Master chooses whether to audit the returned result or not
  - Classical distributed computing approach:
    - ➤ Design malice-aware voting protocols
- Objective: Reliable Internet-based Master-Worker Computing with provable guarantees

## Background

A game consists of a set of players, a set of strategies available to those players, and a specification of payoffs (utilities) for each combination of strategies [wikipedia]

- Game Theory:
  - □ Players (processors) act on their self-interest
  - Rational [Golle Mironov 01] behavior: seek to increase their utility
  - □ Protocol is given as a game
  - □ Design objective is to achieve equilibrium among players

Nash Equilibrium (NE): players do not increase their expected utility by changing strategy, if other players do not change their strategy [Nash 50]

Algorithmic Mechanism Design

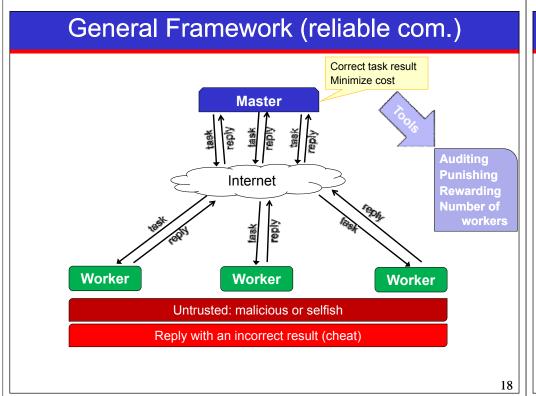
- Games are designed to provide necessary incentives such that rational players act "correctly"
  - □ Behave well: Reward
  - Otherwise: Penalize
- The design objective is to induce a desired behavior (e.g., a unique NE)

[Nisan Ronen 01]

15

\_\_\_

14

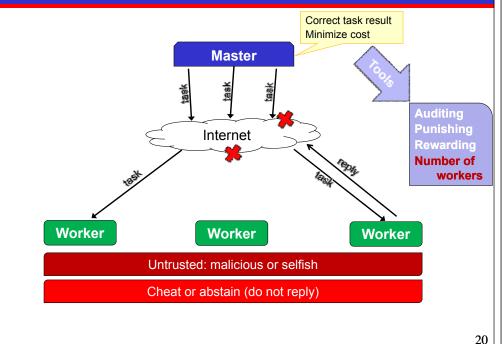

## FRAMEWORK AND CONTRIBUTIONS

#### Framework

- Developed a general framework that captures the essential characteristics of existing Master-Worker platforms
  - Assuming communication between the master and the workers is reliable
  - Assuming that communication might be unreliable and workers may be unavailable
- Workers' types:
  - □ Unknown type of workers → Bayesian game [Harsanyi '67]
  - Known probability distribution over types

 $p_{
ho}$  : Rational  $p_{\mu}$  : Malicious  $p_{\alpha}$  : Altruistic

such that  $p_o + p_u + p_\alpha = 1$ 




## Contributions (reliable com.)

Reliable communication assumed

- Designed an algorithmic mechanism
  - □ Provides, when necessary, incentives to rational workers to act correctly so that
    - ➤ Master obtains correct task result (whp)
    - ➤ Despite malicious workers actions
- Analyzed the mechanism under two existing Internetbased Master-Worker settings
  - □ SETI-like volunteer computing systems
  - □ Profit-seeking Internet-based computational service Provide clear tradeoffs between reliability and cost under different system parameters

## General Framework (unreliable com.)



## Contributions (unreliable com.)

Unreliable communication, worker unavailability

- Designed two algorithmic mechanisms
  - □ Provides, when necessary, incentives to rational workers to act correctly so that
    - ➤ Master obtains correct task result (whp)
    - > Despite malicious workers actions and network unreliability

Both mechanisms are useful in different situations

When communication is reliable, we get the mechanism of the reliable communication case

- Analyzed the mechanisms under the two mentioned application-examples
  - Provides clear tradeoffs between reliability, cost and network unreliability

## ALGORITHMIC MECHANISM [RELIABLE COMMUNICATION]

#### **Master Protocol**

- $\circ$  Master assigns a task to n workers and collect replies
- Rational workers cheat with probability pc
- Master audits the responses with probability PA
- If master audits
  - rewards honest workers and
  - penalizes the cheaters
- If master does not audit
  - Accepts value returned by majority of workers
  - Rewards/penalizes according to one of four reward models

| $\mathcal{R}_{\mathrm{m}}$ | the master rewards the majority only                       |
|----------------------------|------------------------------------------------------------|
| $\mathcal{R}_{\mathrm{a}}$ | the master rewards all workers                             |
| $\mathcal{R}_{\emptyset}$  | the master does not reward any worker                      |
| $\mathcal{R}_{\pm}$        | the master rewards the majority and penalizes the minority |

23

## Payoff parameters

#### Payoff parameters

| $WP_{\mathcal{C}}$ | worker's punishment for being caught cheating    |
|--------------------|--------------------------------------------------|
| $WC_T$             | worker's cost for computing the task             |
| WBy                | worker's benefit from master's acceptance        |
| $MP_{\mathcal{W}}$ | master's punishment for accepting a wrong answer |
| $MC_{\mathcal{Y}}$ | master's cost for accepting the worker's answer  |
| $MC_{\mathcal{A}}$ | master's cost for auditing worker's answers      |
| $MB_{\mathcal{R}}$ | master's benefit from accepting the right answer |

Note that it is possible that  $WB_{\mathcal{Y}} \neq MC_{\mathcal{Y}}$ 

#### Master's Goals

- o Obtain the correct task result with a parameterized probability:  $P_{wrong} \leq \varepsilon$
- $\circ$  Then increase its utility (benefit):  $\mathsf{U}_\mathsf{M}$
- Depending on the type distribution, the master might or might not rely on rational workers
- The master must choose the auditing probability  $p_A$  in such a way, to "force", when needed, the rational workers to act correctly ( $p_C = 0$ )
- We computed the equilibrium conditions under general payoffs values and system parameters

## Equilibrium Conditions (1)

For a finite game, a mixed strategy profile  $\sigma^*$  is a MSNE if and only if, for each player i: [Osborne 03]

$$U_i(s_i, \sigma_{-i}) = U_i(s_i', \sigma_{-i}), \forall s_i, s_i' \in supp(\sigma_i)$$

$$U_i(s_i, \sigma_{-i}) \ge U_i(s_i', \sigma_{-i}), \forall s_i, s_i' : s_i \in supp(\sigma_i), s_i' \notin supp(\sigma_i)$$

 $s_i$ : strategy of player i in strategy profile s

 $\sigma_i$ : probability distribution over pure strategies of player i in  $\sigma$ 

 $U_i(s_i, \sigma_{-i})$ : expected utility of player i using strategy  $s_i$  in  $\sigma$ 

 $supp(\sigma_i)$  : set of positive-probability strategies in  $\sigma$ 

## Equilibrium Conditions (2)

#### Strategic payoffs

|                                                       | $\mathcal{R}_\pm$                    | $\mathcal{R}_{\mathrm{m}}$          | $\mathcal{R}_{\mathrm{a}}$          | $\mathcal{R}_{\emptyset}$  |
|-------------------------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|----------------------------|
| $w_{\mathcal{C}}^{\mathcal{A}}$                       | $-WP_{\mathcal{C}}$                  | $-WP_{\mathcal{C}}$                 | $-WP_{\mathcal{C}}$                 | $-\mathit{WP}_\mathcal{C}$ |
| $w^{\mathcal{A}}_{\overline{\mathcal{C}}}$            | $WBy - WC_T$                         | $WBy - WC_T$                        | $WBy - WC_T$                        | $WBy - WC_T$               |
| $w_{\mathcal{C}}^{\mathcal{C}}$                       | $WB_{\mathcal{Y}}$                   | $WB_{\mathcal{Y}}$                  | $WB_{\mathcal{Y}}$                  | 0                          |
| $w^{\mathcal{C}}_{\overline{\mathcal{C}}}$            | $-WP_{\mathcal{C}}-WC_{\mathcal{T}}$ | $-WC_{\mathcal{T}}$                 | $WBy-WC_T$                          | $-WC_{\mathcal{T}}$        |
| $w_{\mathcal{C}}^{\overline{\mathcal{C}}}$            | $-WP_{\mathcal{C}}$                  | 0                                   | WBy                                 | 0                          |
| $w^{\overline{\mathcal{C}}}_{\overline{\mathcal{C}}}$ | $WB_{\mathcal{Y}}-WC_{\mathcal{T}}$  | $WB_{\mathcal{Y}}-WC_{\mathcal{T}}$ | $WB_{\mathcal{Y}}-WC_{\mathcal{T}}$ | $-WC_T$                    |

 $w_{s_i}^{\mathcal{X}}$  payoff of player i using strategy  $s_i \in \{\mathcal{C}, \overline{\mathcal{C}}\}$  if

$$\mathcal{X} = \left\{ \begin{array}{ll} \mathcal{A} & \text{master audits} \\ \mathcal{C} & \text{majority of workers cheat and master does not audit} \\ \overline{\mathcal{C}} & \text{majority of workers does not cheat and master does not audit}_{27} \end{array} \right.$$

26

## Equilibrium Conditions (3)

For each player i and each reward model, enforce unique NE in

$$\Delta U = U_i(s_i = C, \sigma_{-i}) - U_i(s_i = \bar{C}, \sigma_{-i})$$

$$\Delta U = (w_{\mathcal{C}}^{\mathcal{A}} - w_{\overline{\mathcal{C}}}^{\mathcal{A}})p_{\mathcal{A}} + (1 - p_{\mathcal{A}}) \left( (w_{\mathcal{C}}^{\mathcal{C}} - w_{\overline{\mathcal{C}}}^{\mathcal{C}}) \mathbf{P}_{q}^{(n-1)} (\lceil n/2 \rceil, n-1) + (w_{\mathcal{C}}^{\overline{\mathcal{C}}} - w_{\overline{\mathcal{C}}}^{\overline{\mathcal{C}}}) \mathbf{P}_{q}^{(n-1)} (0, \lfloor n/2 \rfloor - 1) + (w_{\mathcal{C}}^{\mathcal{C}} - w_{\overline{\mathcal{C}}}^{\overline{\mathcal{C}}}) \binom{n-1}{\lfloor n/2 \rfloor} q^{\lfloor n/2 \rfloor} (1 - q)^{\lfloor n/2 \rfloor} \right)$$

where  $q = p_{\mu} + p_{\rho}p_{\mathcal{C}}$ ,  $\mathbf{P}_{q}^{(n)}(a,b) = \sum_{i=a}^{b} \binom{n}{i} q^{i} (1-q)^{n-i}$ 

ensuring

 $P_{wrong} \leq \varepsilon$ 

while maximizing

 $max U_M$ 

## **Equilibrium Conditions**

Guaranteeing:  $P_{wrong} \leq \varepsilon$  While maximizing  $U_M$ 

Pr(master obtains wrong answer):

$$P_{wrong} = (1 - p_{\mathcal{A}}) \mathbf{P}_q^{(n)}(\lceil n/2 \rceil, n)$$

E(utility of master):

$$U_{M} = p_{\mathcal{A}} \left( MB_{\mathcal{R}} - MC_{\mathcal{A}} - n(1-q)MC_{\mathcal{Y}} \right) +$$

$$(1 - p_{\mathcal{A}}) \left( MB_{\mathcal{R}} \mathbf{P}_{q}^{(n)}(0, |n/2|) - MP_{\mathcal{W}} \mathbf{P}_{q}^{(n)}(\lceil n/2 \rceil, n) + \gamma \right)$$

where

28

$$\gamma = \begin{cases} -MCy(\mathbf{E}_{1-q}^{(n)}(\lceil n/2 \rceil, n) + \mathbf{E}_q^{(n)}(\lceil n/2 \rceil, n)) & \mathcal{R}_{\mathbf{m}} \text{ and } \mathcal{R}_{\pm} \text{ models} \\ -nMCy & \mathcal{R}_{\mathbf{a}} \text{ model} \\ 0 & \mathcal{R}_{\emptyset} \text{ model} \end{cases}$$

$$\mathbf{E}_{p}^{(n)}(a,b) = \sum_{i=a}^{b} {n \choose i} i p^{i} (1-p)^{n-i}, p \in [0,1]$$

## Mechanism Design

#### Master protocol to choose $p_A$

Free rationals (master does not rely on rational workers )

• Case 1: probability of malicious workers  $p_{\mu}$  very large, high  $p_{\mathcal{A}}$   $p_{\mathcal{A}} \leftarrow 1 - \varepsilon / \mathbf{P}_{p_{\mu} + p_{\alpha}}^{(n)}(\lceil n/2 \rceil, n)$ 

• Case 2: probability of altruistic workers  $p_{\alpha}$  big  $p_{\mathcal{A}} \leftarrow 0$ 

• Case 3: rationals probability of being honest  $p_{\mathcal{H}}$  is 1, even if  $p_{\mathcal{A}}=0$   $p_{\mathcal{A}}\leftarrow 0$ 

• Guided rationals (enforce the behavior of rational workers  $p_{\mathcal{C}} = 0$ )

$$p_{\mathcal{A}} \leftarrow \begin{cases} 1 - \frac{WP_{c} + WB_{\mathcal{Y}} - WC_{\mathcal{T}}}{WP_{c} + WB_{\mathcal{Y}}(\mathbf{P}_{p_{\mu} + p_{\rho}}^{(n-1)}(\lfloor n/2 \rfloor, n-1) + \mathbf{P}_{p_{\mu} + p_{\rho}}^{(n-1)}(\lceil n/2 \rceil, n-1))} & \mathcal{R}_{\mathbf{m}} \\ \frac{WC_{\mathcal{T}}}{WP_{c} + WB_{\mathcal{Y}}} + \psi, \text{ for any } \psi > 0 & \mathcal{R}_{\mathbf{a}} \& \mathcal{R}_{\emptyset} \\ 1 - \frac{WP_{c} + WB_{\mathcal{Y}})(\mathbf{P}_{p_{\mu} + p_{\rho}}^{(n-1)}(\lfloor n/2 \rfloor, n-1) + \mathbf{P}_{p_{\mu} + p_{\rho}}^{(n-1)}(\lceil n/2 \rceil, n-1))} & \mathcal{R}_{\pm} \end{cases}$$

• if  $U_M(\mathbf{p}_A, \mathbf{q}) < U_M(1 - \varepsilon, p_\mu + p_\rho)$  then  $p_A \leftarrow 1 - \varepsilon$ 

## **Optimality**

**Theorem:** In order to achieve  $P_{wrong} \le \varepsilon$ , the only feasible approaches are either to enforce a NE where  $p_C = 0$  or to choose  $\mathcal{P}_{\mathcal{A}}$  so that  $P_{wrong} \le \varepsilon$  even if all rational workers cheat.

#### Proof.

 $\begin{array}{c} \Delta U \text{ is increasing in } q \; \big(\Delta U(p_{\mathcal{C}} < 1) \leq \Delta U(p_{\mathcal{C}} = 1)\big) \\ & \to \text{ the only } \text{unique NE corresponds to } p_{\mathcal{C}} = 0. \\ \text{For any other NE where } p_{\mathcal{C}} > 0, \; p_{\mathcal{C}} = 1 \text{ is also a NE} \\ & \to P_{wrong} \text{ worst case when all players} \\ \text{cheat.} \end{array}$ 

31

## Computational Issues

- The mechanism for the master to choose appropriate values of  $p_{\mathcal{A}}$  involves
  - Simple arithmetic calculations
  - Computing binomial probabilities
  - Verification of conditions for NE

All these computations can be carried out using well-known numerical tools of polynomial cost.

 Together with the task, the master sends a certificate (p<sub>A</sub>, payoffs, n, reward) of the uniqueness of the desired NE to the workers PUTTING THE MECHANISM INTO ACTION



## Volunteering Computing (SETI-like)

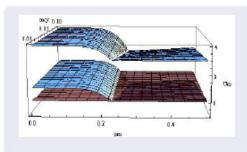
- Each worker
  - $\Box$  Incurs in no cost to perform the task:  $WC_T = 0$
  - □ Obtains a benefit:  $WB_{\mathcal{Y}} > 0$  (recognition, prestige top contributors list)
- Master
  - □ Incurs in a (possibly small) cost to reward a worker (advertise participation): $MC_{\mathcal{V}} > 0$

  - $\Box$  Obtains a benefit for correct result:  $MB_{\mathcal{R}} > MC_{\mathcal{Y}}$
  - $\ \square$  Suffers a cost for wrong result:  $MP_{\mathcal{W}} > MC_{\mathcal{A}}$

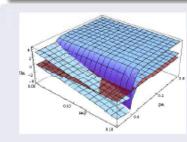
## **Mechanism Instantiation**

Instantiating the mechanism designed on these conditions the master can choose  $p_{\mathcal{A}}$  and n so that  $U_M$  is maximized for  $P_{wrong} \leq \varepsilon$  for any given worker-type distribution, reward model, and set of payoff parameters in the SETI scenario.

$$U_{M} \approx \max\{MB_{\mathcal{R}} - MC_{\mathcal{A}} - n(1 - p_{\mu})MC_{\mathcal{Y}},$$
  
$$MB_{\mathcal{R}}\mathbf{P}_{p_{\mu}}^{(n)}(0, \lfloor n/2 \rfloor) - MP_{\mathcal{W}}\mathbf{P}_{p_{\mu}}^{(n)}(\lceil n/2 \rceil, n) + \gamma\}$$


$$\gamma = \begin{cases} -MC_{\mathcal{Y}}(\mathbf{E}_{1-p_{\mu}}^{(n)}(\lceil n/2 \rceil, n) + \mathbf{E}_{p_{\mu}}^{(n)}(\lceil n/2 \rceil, n)) & \text{for the } \mathcal{R}_{\mathbf{m}} \text{ and } \mathcal{R}_{\pm} \text{ models.} \\ -nMC_{\mathcal{Y}} & \text{for the } \mathcal{R}_{\mathbf{a}} \text{ model.} \\ 0 & \text{for the } \mathcal{R}_{\emptyset} \text{ model.} \end{cases}$$

35


#### **Plots**

- Plots illustrating trade-off between reliability and cost
- Parameters' value:
  - MC<sub>A</sub> = 1, normalizing parameter
  - MPw = 100
  - Different values,don't change qualitatively the results
- 3D plots: Graphical characterization of the master's utility
  - $p_{\mu} \in [0, 0.5]$  ( $p_{\mu} < 0.1$  in empirical evaluations on SETI-like system, Einstein@home, Estrada, Taufer and Anderson 09. )
  - $MC_{\mathcal{V}} \in [0, 0.1]$ , small maintenance cost of contribution list

## Examples



- $\mathcal{R}_{\emptyset}$ , n=15
- Upper plane  $MB_R = 4$ , lower plane  $MB_R = 1$ , red plane  $U_M = 0$
- Master audits around  $p_{\mu} = 0.2$



- R<sub>∅</sub>, n = 75
- Upper plane  $MB_{\mathcal{R}}=4$ , lower plane  $MB_{\mathcal{R}}=1$ , red plane  $U_M=0$
- Master audits around  $p_u = 0.4$

36

## **Contractor Scenario**

- Each worker
  - $\Box$  Incurs in a cost for computing: $WC_T > 0$
  - $\Box$  Receives payment for computing the task (not volunteers): $WB_{\mathcal{V}} = MC_{\mathcal{V}} > 0$
  - $\Box$  Must have economic incentive:  $U_i > 0$
- Master

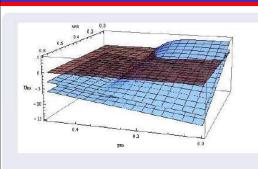
  - $\Box$  Receives a benet (from consumers for the provided service):  $MB_{\mathcal{R}} > MC_{\mathcal{Y}}$
  - May audit and has a cost for wrong result:

$$MP_{\mathcal{W}} > MC_{\mathcal{A}} > 0$$

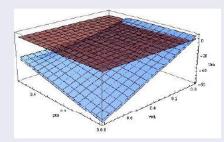
## **Mechanism Instantiation**

Instantiating the mechanism designed on these conditions the master can choose  $p_{\mathcal{A}}$  and n so that  $U_M$  is maximized for  $P_{wrong} \leq \varepsilon$  for any given worker-type distribution, reward model, and set of payoff parameters in the Contractor scenario.

$$\begin{split} U_{M} \approx \max \left\{ MB_{\mathcal{R}} - MC_{\mathcal{A}} - n(1-p_{\mu})S, \\ & \frac{WC_{\mathcal{T}}}{S} \left( MB_{\mathcal{R}} - MC_{\mathcal{A}} - n(1-p_{\mu})S \right) \\ & + \left( 1 - \frac{WC_{\mathcal{T}}}{S} \right) \left( MB_{\mathcal{R}} \mathbf{P}_{p_{\mu}}^{(n)}(0, \lfloor n/2 \rfloor) - MP_{\mathcal{W}} \mathbf{P}_{p_{\mu}}^{(n)}(\lceil n/2 \rceil, n) \right) \right\} \end{split}$$


(for  $\mathcal{R}_{\emptyset}$  reward model)

20


### **Plots**

- Parameters' value:
  - $MC_A = 1$ , normalizing parameter
  - $MP_{W} = 100$
  - S = 0.8
  - Different values, don't change qualitatively the results
- 3D plots: Graphical characterization of the master's utility
  - $p_{\mu} \in [0, 0.5]$  ( $p_{\mu} < 0.1$  in empirical evaluations on SETI-like system, Einstein@home, Estrada, Taufer and Anderson 09. )
  - $WC_T \in [0, S]$

## **Examples**



- $\mathcal{R}_{\emptyset}$ , n=15
- Upper plane  $MB_{\mathcal{R}}=4$ , lower plane  $MB_{\mathcal{R}}=1$ , red plane  $U_M=0$
- Master audits around  $p_{\mu} = 0.35$



- $\mathcal{R}_0$ , n = 75
- Upper plane  $MB_{\mathcal{R}}=4$ , lower plane  $MB_{\mathcal{R}}=1$ , red plane  $U_M=0$
- Master audits around  $p_{\mu} = 0.48$

#### **CONCLUSIONS**

## Summary

- Combined
  - □ Classical distributed computing approach WITH
  - Game-theoretic approach

towards reliable Master-Worker Internet-based Task computing under

- Malicious, altruistic and rational workers
- Communication uncertainty and worker unavailability
- Mechanisms trade reliability ( $\varepsilon$ ) and cost ( $U_M$ ) (and network unreliability)

12

#### Added Value

 As an example: instantiation of such mechanism in two real-world scenarios

BOINC-based systems (such as SETI@home) send the same task to three (3) workers. Our analysis identifies rigorously, for any given system parameters, the best allocation that BOINC-based systems could deploy.

The analysis on the contractor scenario opens the way for commercial Internet-based supercomputing where a company, given specific system parameters, could calculate its profit (if any) before agreeing into providing a proposed computational service.

## Ongoing and Future Work

- Consider task execution over multiple rounds over workers that their behavior changes over time
  - □ View the computations in the Master-Worker framework as *Evolutionary Games*
- Reinforcement learning
  - □ The Master uses knowledge gained in past rounds to
    - > decrease of its probability of error in future rounds
    - > increase its utility in future rounds
  - □ The workers use prior knowledge to increase their utility
- Worker reputation
  - Measure the workers' reputation based on prior behavior and use it as an additional incentive for rational workers to act correctly.



# Thank you!

Chryssis Georgiou chryssis@cs.ucy.ac.cy www.cs.ucy.ac.cy/~chryssis