

Algorithmic Mechanisms for Internet Supercomputing under Unreliable Communication

 $\frac{ \hbox{Evgenia Christoforou}^1 \quad \hbox{Antonio Fernández Anta}^2, 3}{ \hbox{Chryssis Georgiou}^1 \quad \hbox{Miguel A. Mosteiro}^{3,4}}$

¹Dept. of Computer Science, University of Cyprus

²Institute IMDEA Networks

³LADyR, GSyC, Universidad Rey Juan Carlos

⁴Dept. of Computer Science, Rutgers University

NCA 2011

This work is supported in part by the Cyprus Research Promotion Foundation grand $T\Pi E/\Pi \Lambda HPO/0609(BE)/05$

Introductio
Algorithmic Mechanism

Motivation

- Internet emerges as a viable platform for supercomputing
 - @home systems, volunteering computing (e.g., SETI@home [Korpela et al 01])
 - P2P and Grid computing [Foster, lamnitchi 03]
- **Problem:** Great potentials of Internet-based computing limited by untrustworthy platforms components

4 D > 4 B > 4 E > 4 E > E 9 Q C

Background

Definition

"A game consists of a set of players, a set of moves (or strategies) available to those players, and a specification of payoffs for each combination of strategies." [Wikipedia]

- Game Theory:
 - Players (processors) act on their self-interest
 - Rational behavior: seek to increase own utility choosing strategy according to payoffs
 - Protocol is given as a game
 - Design objective is to achieve equilibrium among players

Background

Definition

Nash Equilibrium (NE): players do not increase their expected utility by changing strategy, if other players do not change [Nash 50]

• Algorithmic Mechanism Design [Nisan, Ronen 01] Games designed to provide incentives s.t. players act "correctly"

 Behave well: reward Otherwise: penalize

The design objective is to induce a desired behavior (e.g. unique NE)

Problem Statement

- Communication uncertainty
 - Messages exchanged may get lost or arrive late
- Possibility of workers not replying
 - Around 5% of the workers are available more than 80% of the time Half of the workers are available less than 40% of the time [Heien, Anderson and Hagihara 09]
 - Long computational length is incur by a task [Kondo et al. 07]
- Master's challenges
 - Provide incentives for workers to reply and reply truthfully
 - Ensure the above in the presence of low network reliability

Prior Work

In Fernandez, Georgiou and Mosteiro 10 an Internet-based master-worker framework was considered

- Game-theoretic approach
- Types of workers:
 - malicious: always report incorrect result
 - altruistic: always compute and report correct result
 - rational: selfishly (in a game-theoretic sense) choose to be honest or cheat
- A reliable network was considered

Contributions

- Develop and analyze two realistic game-theoretic mechanisms
 - Time-based mechanism
 - Reply-based mechanism
- Mechanisms provide the necessary incentives for rational workers to truthfully compute and return the task result, despite:
 - Malicious workers actions
 - Network unreliability
- Apply the mechanisms to two realistic settings:
 - SETI-like volunteer computing applications
 - Contractor-based applications (e.g. Amazons mechanical turk)

Introduction
Algorithmic Mechanisms
Applying the Mechanisms

Algorithms

- Time-based protocol
 - \bullet Master fixes a time T, once it is reached gathers all received replies
 - Ties are broken at random
- Reply-based protocol
 - ullet Master fixes k, minimum estimated number of replies, by choosing n
 - ullet If at least k replies are received, audit with $p_{\mathcal{A}}$
 - Else it does nothing, and incurs penalty $MC_{\mathcal{S}}$
- Note: Master based on statistics may have knowledge to only one of two settings

Introduction
Algorithmic Mechanisms

Framework General Protocol

- ullet Master assigns a task to n workers
- Rational worker cheats with probability $p_{\mathcal{C}}$ (seeking a NE)
- Master audits the responses with probability $p_{\mathcal{A}}$
- If master audits (computes the task itself)
- rewards honest workers and
 - penalizes the cheaters
- If master does not audit
 - Accepts value returned by majority of workers
 - Rewards/penalizes according to one of three models

\mathcal{R}_{m}	the master rewards the majority only
\mathcal{R}_{a}	the master rewards all workers whose reply was received
\mathcal{R}_{\emptyset}	the master rewards no worker

Note: reward models may be fixed exogenously or chosen by the master

Algorithmic Mechanisms for Internet Supercomputing

10/1

Algorithmic Mechanis
Applying the Mechanis

Equilibria Conditions

Guaranteeing: $P_{succ} \geq 1 - \varepsilon$ While maximizing U_M

Pr(master obtains correct answer):

$$P_{succ} = \sum_{i=k}^{n} r_i \left(p_{\mathcal{A}} + (1 - p_{\mathcal{A}}) h_i \right)$$

E(utility of master):

master's utility
$$U_M = -\sum_{i=0}^{k-1} r_i M C_{\mathcal{S}} + \sum_{i=k}^n r_i (p_{\mathcal{A}} \alpha_i + (1-p_{\mathcal{A}}) \beta_i)$$

Expected utility of the worker when choosing to be honest over cheating and be honest over not replying

$$\Delta U_{\mathcal{HC}} = \boldsymbol{\pi}_{\mathcal{H}} \cdot \boldsymbol{w}_{\mathcal{H}} - \boldsymbol{\pi}_{\mathcal{C}} \cdot \boldsymbol{w}_{\mathcal{C}} \ge 0$$
$$\Delta U_{\mathcal{HN}} = \boldsymbol{\pi}_{\mathcal{H}} \cdot \boldsymbol{w}_{\mathcal{H}} - \boldsymbol{\pi}_{\mathcal{N}} \cdot \boldsymbol{w}_{\mathcal{N}} > 0$$

Mechanism Design

Master protocol to chose p_A

- Free rationals (master does not rely on rational workers)
 - Case 1: probability of malicious workers p_{μ} very large, high p_{A}

$$p_{\mathcal{A}} \leftarrow 1 - \varepsilon / \sum_{i=k}^{n} r_i c_i$$

• Case 2: probability of altruistic workers p_{α} big

$$p_{\mathcal{A}} \leftarrow 0$$

• Case 3: rationals probability of being honest $p_{\mathcal{H}}$ is 1, even if $p_{\mathcal{A}} = 0$

$$p_{\mathcal{A}} \leftarrow 0$$

- Guided rationals (force the behavior of rational workers)
 - Rationals enforced to reply correctly ($p_{\mathcal{C}} = 0$ and $p_{\mathcal{N}} = 0$)
 - p_A is set according to worker's equilibria conditions depending on the reward model

4□ > 4□ > 4□ > 4□ > 4□ > 1□

Algorithmic Mechanisms for Internet Supercomputing

SETI-like Scenario

Volunteering Computing

Time-based Mechanism

- d = 0.9. n = 75
- Upper plane \mathcal{R}_{\emptyset} , middle \mathcal{R}_{m} and lower plane \mathcal{R}_a
- Master audits around $p_{\mu} = 0.35$

- Reward model $\mathcal{R}_{\rm m}$, d=0.9
- Upper plane n=15, middle n=55, lower plane n=75
- For n=15, earlier change to auditing strategy

SETI-like Scenario

Volunteering Computing

- each worker
 - incurs in no cost to perform the task ($WC_T = 0$)
 - obtains a benefit ($WB_V > WC_T = 0$) (recognition, prestige)
- master
 - incurs in a (possibly small) cost to reward a worker ($MC_{\mathcal{V}} > 0$) (advertise participation)
 - may audit results at a cost $(MC_A > 0)$
 - obtains a benefit for correct result $(MB_{\mathcal{R}} > MC_{\mathcal{V}})$
 - suffers a cost for wrong result $(MP_{\mathcal{W}} > MC_{\mathcal{A}})$
- d > 0, as it is considered in the analysis as well
- Master can choose p_A and n so that U_M is maximized for $P_{succ} > 1 - \varepsilon$ for any given worker-type distribution, reward model, and set of payoff parameters in the SETI scenario.

Algorithmic Mechanisms for Internet Supercomputing

SETI-like Scenario

Volunteering Computing

Reply-based Mechanism

- k > 1
- Chernoff bounds for calculating k

$$k = \boldsymbol{E} - \sqrt{2\boldsymbol{E}\ln(1/\zeta)}$$

with probability at least $1-\zeta$, $0<\zeta<1$, where $E=nd(p_{\alpha}+p_{\mu})$

• $\zeta = 1/n$ (used in plot)

- $n \in [65, 95], p_{\rho} \in [0, 1]$
- Appropriate value of n to get at least k replies
- p_o increase, k decrease

