

Achieving Reliability in Master-Worker Computing via Evolutionary Dynamics

Evgenia Christoforou

Antonio Fernandez Anta Chryssis Georgiou Miguel A. Mosteiro

Angel Sanchez

University of Cyprus Institute IMDEA Networks University of Cyprus Kean University and URJC Univ. Carlos III de Madrid

August 30th, 2012

Rhodes, Greece

This work is supported in part by the Cyprus Research Promotion Foundation grant TΠE/ΠΛΗΡΟ/0609(BE)/05

INTERNET-BASED TASK COMPUTING

- Increasing demand for processing complex computational tasks
 - + One-processor machines have limited computational resources
 - + Powerful parallel machines (supercomputers) are expensive and are not globally available
- Internet emerges as a viable platform for supercomputing
 - + Grid and Cloud computing
 - × e.g., EGEE Grid, TERA Grid, Amazon's EC2
 - + Master-Worker volunteer computing: @home projects × e.g., SETI@home, AIDS@home, Folding@home, PrimeNet

SETI-LIKE INTERNET-BASED COMPUTING

PRIOR WORK

 Rational workers: act upon their best interest, i.e., choose the strategy that maximizes their own benefit

[Shneidman Parkers 03]

- × In Internet-based master-worker task computation
 - + Honest: compute and report correct result
 - + Cheat: fabricate and return a bogus result
- Mechanisms with reward/punish schemes that provide incentives to workers to be honest
 - + One shot: in each round a task is performed and no knowledge is forwarded to the next round

[Yurkewych et al 2005, Fernandez et al 2008]

Can the repeated interaction between the master and the workers be exploited effectively?

OUR APPROACH

- We introduce the concept of *evolutionary dynamics* under the biological and social perspective and relate them to Internet-based master-worker task computing
- Employ reinforcement learning both on Master and Workers

[Camerer 03,Szepesvari 10]

 Objective: Develop a reliable computation platform where the master obtains the correct task results

BACKGROUND: EVOLUTIONARY DYNAMICS

* Evolutionary dynamics applied first in biology

- + Tool to study the mathematical principles according to which life is evolving
- + Inspiration for many fields: sociology, economics, anificial intelligence (multi-agent systems) etc.

 Inspired by dynamics of evolution as a mean to model workers adaptation to a truthful behavior

BACKGROUND: EVOLUTIONARY STABLE STRATEGY

Evolutionary Game Theory

In biological terms: the application of game theory to evolving populations of life forms

Our aim: Evolutionary Stable Strategy

A strategy is called evolutionary stable if, when the whole population is using this strategy, any group of invaders (mutants) using a different strategy will eventually die over multiple generations (evolutionary rounds).

Gintis 2000]

BACKGROUND: REINFORCEMENT LEARNING

NEINFORCEMENT LEARNING

BACKGROUND: NOTION OF ASPIRATION

NOTION OF ASPIKATION

- Bush and Mosteller's model, aspiration based
 - + player's adapt by comparing their experience with an aspiration level

[Bush Mosteller 55]

9

11

- + an aspiration a_i for player *i*
 - × the minimum benefit it expects to obtain in an interaction

CONTRIBUTIONS (i)

Initiate the study of the evolutionary dynamics of Internet-based master-worker computations through reinforcement learning :

 Develop and analyze a mechanism based on reinforcement learning to be used by the master and the workers

10

CONTRIBUTIONS (ii)

- Show necessary and sufficient conditions under which the mechanism ensures eventual correctness (EC)
- * Convergence time: The number of rounds to achieve eventual correctness
 - + We show, both in expectation and with high probability, that our mechanism reaches convergence time quickly
 - + Complement our analysis with simulations

PAYOFFS

WP _C	Worker's punishment for being caught cheating
<i>WC_T</i>	Worker's cost for computing a task
WB_y	Worker's benefit from master's acceptance

MASTER'S PROTOCOL

PROTOCOL FOR WORKER i

Set initial p_{C_i} (e.g., 0.5)

Repeat

Receive a task from the master

Set $S_i = -1$ with probability p_{C_i} , $S_i = 1$ otherwise

If $S_i = 1$ then **compute** the task and **send** the result

Else send an arbitrary result

Get payoff II

$$p_{C_i} \leftarrow p_{C_i} - \alpha_w \cdot (\Pi_i - a_i) \cdot S_i$$

 α_w : learning rate (tunes the extent of change)

CONDITIONS FOR EVENTUAL CORRECTNESS

• We analyze the evolution of the master-worker system as a *Markov chain* and we show:

For the system to achieve eventual correctness, it is necessary and sufficient to set

 $WB_y \ge a_i + WC_T, \ \forall i \in \mathbb{Z}, \ |\mathbb{Z}| > n/2$

Given that $p_{\mathcal{A}} > 0$

15

13

16

MASTER-WORKER SYSTEM AS MARKOV CHAIN

TERMINOLOGY

- ***** Covered worker is one that receives at least its aspiration a_i and the computing WC_T cost
- * In any given round r, honest worker is one for which $p_{C}^{r-1}=0$
- Honest state is one where the majority of workers are honest
- * Honest set is any set of honest states
- Opposite cases: uncovered worker, cheater worker, cheat state, and cheat set respectively
- * Let a set of states *S* be called **closed** if, once the chain is in any state $s \in S$, it will not move to any state $s' \notin S$

EVENTUAL CORRECTNESS PROOF ROADMAP

To show eventual correctness, we must show eventual convergence to a closed honest set

- × We need to show
 - + that there exists at least one such closed honest set
 - + that all closed sets are honest
 - + that one honest closed set is reachable from any initial state

EVENTUAL CORRECTNESS PROOF ROADMAP

Lemma 1. Consider any set of workers $Z \subseteq W$ such that $\forall i \in Z : WB_{\mathcal{Y}} \geq a_i$. If |Z| > n/2, then the set of states

 $S = \{ (p_{\mathcal{A}}, p_{C1}, \dots, p_{Cn}) | (p_{\mathcal{A}} = 0) \land (\forall w \in Z : p_{Cw} = 1) \},\$

is a closed cheat set.

Lemma 1: Motivates the necessity of $p_{\mathcal{A}} > 0$

Lemma 2. If there exists a set of workers $Z \subseteq W$ such that |Z| > n/2 and $\forall i \in Z : WB_{\mathcal{Y}} < a_i + WC_T$, then no honest set is closed.

Lemma 2: Motivates the necessity of a covered majority

Lemma 3. Consider any set of workers $Z \subseteq W$ such that $\forall i \in Z : WB_{\mathcal{Y}} \geq a_i + WC_{\mathcal{T}}$ and $\forall j \notin Z : WB_{\mathcal{Y}} < a_j + WC_{\mathcal{T}}$. If |Z| > n/2, then the set of states

 $S = \{ (p_{\mathcal{A}}, p_{C1}, \dots, p_{Cn}) | \forall w \in Z : p_{Cw} = 0 \},\$

is a closed set.

Lemma 3: Proves that there exists at least one honest closed set

EVENTUAL CORRECTNESS PROOF ROADMAP

KOOL KONDUNE

Theorem 1. If $p_{\mathcal{A}} > 0$ then, in order to guarantee with positive probability that, after some finite number of rounds, the system achieves eventual correctness, it is necessary and sufficient to set $WB_{\mathcal{Y}} \ge a_i + WC_T$ for all $i \in \mathbb{Z}$ in some set $Z \subseteq W$ such that |Z| > n/2.

EVENTUAL CORRECTNESS PROOF ROADMAP

LKOOL KONDWAL

Lemma 4. Consider any set of workers $Z \subseteq W$ such that $\forall i \in Z : WB_{\mathcal{Y}} \geq a_i + WC_{\mathcal{T}}$ and $\forall j \notin Z : WB_{\mathcal{Y}} < a_j + WC_{\mathcal{T}}$. Then, for any set of states

 $S = \{ (p_{\mathcal{A}}, p_{C1}, \dots, p_{Cn}) | \exists Y \subseteq W : (|Y| > n/2) \land (\forall w \in Y : p_{Cw} = 0) \land (Z \not\subseteq Y) \},\$

S is not a closed set.

Lemma 5. Consider any set of workers $Z \subseteq W$ such that $\forall i \in Z : WB_{\mathcal{Y}} \geq a_i + WC_{\mathcal{T}}$ and $\forall j \notin Z : WB_{\mathcal{Y}} < a_j + WC_{\mathcal{T}}$. If |Z| > n/2 and $p_{\mathcal{A}} > 0$, then for any set of states

 $S = \{ (p_{\mathcal{A}}, p_{C1}, \dots, p_{Cn}) | \exists Y \subseteq W : (|Y| > n/2) \land (\forall w \in Y : p_{Cw} > 0) \},\$

 $S \ is \ not \ a \ closed \ set.$

Lemma 4-5: Proves that all closed sets are honest and that one honest closed set is reachable from any initial state

EXAMPLES OF CONVERGENCE

 Under certain conditions, the expected convergence time is

$$\left(\alpha_w \cdot (WB_y - WC_T - \max_i \{a_i\}) \cdot \varepsilon\right)^{-1}$$

where

$$\varepsilon \in (0, 1 - (WC_T + \max_i \{a_i\})/WB_y).$$

21

EXAMPLES OF CONVERGENCE

• Under certain conditions, the convergence time is at most

$$\ln(1/\varepsilon)/p + 1/dec$$

with probability at least

$$(1-\varepsilon)(1-e^{-n/96})(1-e^{-n/36})^{1/dec}$$

where

$$dec = \min_{i} \{ \alpha_w \cdot \min\{a_i, WB_y - WC_T - a_i \} \}, \text{ and } \varepsilon \in (0, 1)$$

SIMULATIONS

- We created our own simulation setup by implementing our mechanism
- * Choose parameters likely to be encountered:
 - + 9 workers (e.g. SETI@home 3 workers)
 - + initial $p_{C_i} = 0.5$
 - + initial pA = 0.5
 - + τ = 0.5 (master does not tolerate a majority of cheaters)
 - + aspiration $a_i = 0.1$ for each worker
 - + $\alpha = \alpha_m = \alpha_w \quad \alpha \in \{0.1, 0.01\}$ + $WB_{\mathcal{Y}} \in \{1, 2\}$ set as our normalizing + $WC_{\mathcal{T}} = 0.1$ + $WP_{\mathcal{C}} \in \{0, 1, 2\}$

26

SIMULATIONS

Cheating probability for the workers as a function of evolutionary rounds

SIMULATIONS

SUMMARY

Initiate the study of the evolutionary dynamics of Internetbased master-worker computations through reinforcement learning:

- * Develop and analyze our mechanism
- Under necessary and sufficient conditions the master reaches eventual convergence
- Our analysis shows that eventual convergence can be reached quickly
 - + Complement our analysis with simulations

FUTURE WORK: Study the implications of adding a reputation system to our mechanism

Thank you!

Evgenia Christoforou evgenia.christoforou@cs.ucy.ac.cy