
Algorithmic Mechanisms for Internet Supercomputing
under Unreliable Communication

Evgenia Christoforou
Univ. of Cyprus

evgenia.christoforou@gmail.com

Antonio Fernández Anta
Institute IMDEA Networks and URJC

antonio.fernandez@imdea.org

Chryssis Georgiou
Univ. of Cyprus

chryssis@cs.ucy.ac.cy

Miguel A. Mosteiro
Rutgers Univ. and URJC
mosteiro@cs.rutgers.edu

Abstract—This work, using a game-theoretic approach, con-
siders Internet-based computations, where a master processor
assigns, over the Internet, a computational task to a set of
untrusted worker processors, and collects their responses. The
master must obtain the correct task result, while maximizing
its benefit. Building on prior work, we consider a framework
where altruistic, malicious, and rational workers co-exist. In
addition, we consider the possibility that the communication
between the master and the workers is not reliable, and that
workers could be unavailable; assumptions that are very realis-
tic for Internet-based master-worker computations. Within this
framework, we design and analyze two algorithmic mechanisms
that provide, when necessary, appropriate incentives to rational
workers to act correctly, despite the malicious’ workers actions
and the unreliability of the network. These mechanisms are
then applied to two realistic Internet-based master-worker
settings, a SETI-like one and a contractor-based one, such as
Amazon’s mechanical turk.

Keywords-mechanism design; task performance; Internet-
based computing; malicious, altruistic, rational workers; unre-
liable communication.

I. INTRODUCTION

Motivation and prior work: In the last few years we
have witnessed the Internet becoming a viable platform for
processing complex computational jobs. Several Internet-
oriented systems and protocols have been designed to op-
erate on top of this global computation infrastructure; ex-
amples include Grid systems (e.g., [5], [17]), the “@home”
projects [2], such as SETI [12], and peer-to-peer computing–
P2PC (e.g., [8], [18]). Although the potential is great, the
use of Internet-based computing is limited by the untrustwor-
thiness nature of the platform’s components (see, e.g., [2],
[9]–[11], [18]).

In SETI, data is distributed for processing to millions of
voluntary machines around the world. At a conceptual level,
in SETI there is a machine, call it the master, that sends
jobs, across the Internet, to these computers, call them the
workers. These workers execute and report back the result of
the computation task. However, these workers are not trust-
worthy, and hence might report incorrect results. In SETI,
the master attempts to minimize the impact of these bogus
results by assigning the same task to several workers and

This work is supported in part by the Cyprus Research Promotion
Foundation grant TΠE/ΠΛHPO/0609(BE)/05, Comunidad de Madrid grant
S2009TIC-1692, Spanish MICINN grant TIN2008–06735-C02-01, and
NSF grant 0937829.

comparing their outcomes (that is, redundant task allocation
is employed [2]). Another popular master-worker Internet-
based application is Amazon’s mechanical turk [1]. Here the
master and the workers can be in fact humans that contribute
time for solving problems in exchange to economic rewards.
A person who wishes to have a problem (task) solved can act
as a master processor and “hire” worker processors (other
persons) through the mechanical turk platform and have its
task computed.

In [6], an Internet-based master-worker framework was
considered where a master processor assigns, over the Inter-
net, a computational task to a set of untrusted worker pro-
cessors and collects their responses. Three type of workers
were assumed: altruistic, malicious, and rational. Altruistic
workers (aka the “good” workers) always compute and
return the correct result of the task, malicious workers (aka
the “bad” workers) always return an incorrect result, and
rational (selfish) workers act based on their self-interest. In
other words, the altruistic and malicious workers have a
predefined behavior: the first are honest and the latter are
cheaters. Rational workers decide to be honest or to cheat
based on which strategy would increase their benefit (utility).
(In a massive computation platform, such as the Internet,
one cannot preclude the co-existence of all three worker
types.) Under this framework, a game-theoretic mechanism
was designed that provided necessary incentives to the
rational workers to compute and report the correct task
result despite the malicious workers’ actions. The design
objective of the mechanism is for the master to force a
desired Nash Equilibrium (NE) [13], i.e., a strategy choice
by each rational worker such that none of them has incentive
to change it. The NE is the one in which the master achieves
a desired probability of obtaining the correct task result,
while maximizing its benefit. The utility of the mechanism
was demonstrated by applying it to the abovementioned
paradigmatic applications: a SETI-like volunteer computing
system and a contractor-based system, such as Amazon’s
mechanical turk.
Contributions: This work extends the master-worker frame-
work of [6] by additionally considering the possibility that
the communication between the master and the workers
is not reliable. That is, we consider the possibility that
messages exchanged may get lost or arrive late. This com-
munication uncertainty can either be due to communication-

related failures or due to workers being slow in processing
messages (or even crashing while doing so). For instance,
Heien at al. [10] have found that in BOINC only around 5%
of the workers are available more than 80% of the time, and
that half of the workers are available less than 40% of the
time. This fact, combined with the length of the computation
incurred by a task [11], justifies the interest of considering in
the Internet-based master-worker framework the possibility
of workers not replying.

In order to introduce this possibility in the framework,
we consider that there is some positive probability that the
master does not receive a reply from a given worker. Since it
is now possible for a worker’s reply not to reach the master,
we additionally extend the framework of [6] by allowing
workers to abstain from the computation. (In [6] workers
did not have the choice of abstaining.) Imagine the situation
where a rational worker decides to compute and truthfully
return the task result but its reply is not received by the
master. As we explain in Section II, in this case the master
provides no reward to the worker, while the worker has
incurred the cost of performing the task. Hence, it is only
natural to provide to the workers the choice of not replying
(especially when the reliability of the network is low). This
makes the task of the master even more challenging, as
it needs to provide the necessary incentives to encourage
rational workers to reply and do so truthfully, even in the
presence of low network reliability.

Within this extended framework, we develop and analyze
two game-theoretic mechanisms, a time-based mechanism
and a reply-based one, that provide the necessary incen-
tives for the rational workers to truthfully compute and
return the task result, despite the malicious workers’ actions
and the network unreliability. Furthermore, we apply our
mechanisms to two realistic settings: SETI-like volunteer
computing applications and contractor-based applications
such as Amazon’s mechanical turk. More details can be
found in [16].

II. MODEL AND DEFINITIONS

Master-workers framework: We consider a distributed
system consisting of a master processor that assigns, over
the Internet, a computational task to a set of n workers to
compute and return the task result. The master, based on
the received replies, must decide on the value it believes is
the correct outcome of the task. The tasks considered in this
work are assumed to have a unique solution (although such
limitation reduces the scope of application of the presented
mechanisms, there are plenty of computations where the
correct solution is unique: e.g., any mathematical function).
Worker types: Each worker has one of the following
types: rational, malicious, or altruistic. The exact number
of workers of each type is unknown, but a type probability
distribution is known: each worker is independently of one
of the three types with probabilities pρ, pµ, pa, respectively,

where pρ+pµ+pa = 1. In this paper, a worker being honest
means that it truthfully computes and returns the correct task
result, while a cheating worker does not compute the task but
returns a bogus result to the master. Malicious and altruistic
workers always cheat and are honest, respectively, without
caring on how such a behavior impacts their utilities. On
the other hand, rational workers are assumed to be selfish
in a game-theoretic sense, that is, their aim is to maximize
their benefit (utility) under the assumption that other workers
do the same. So, a rational worker decides to be honest,
cheat or not reply to the master (unlike the work in [6],
workers can abstain and choose not to reply) depending
on which strategy maximizes its utility. As a result, each
rational worker cheats with probability pC , it is honest with
probability pH, and does not reply with probability pN , such
that pC + pH + pN = 1. It is understood that if a worker
decides not to reply, then it does not perform the task.

Network unreliability: Unlike the work in [6], the com-
munication network is considered to be unreliable, and
workers could be unavailable, which are very realistic as-
sumptions for Internet-based master-worker computations,
as suggested, for example, by the work of Heien at al. [10].
We model this shortcoming assuming that the communica-
tion with each worker fails stochastically and independently
of other workers. Furthermore, we assume two settings, one
where the probability of communication failure depends on
time (the more the master waits for replies the larger the
probability of obtaining more replies), and a second one
where the probability of communication failure is fixed
(hence, the more workers the master hires the larger the
number of replies). As we will see in the next section,
the first setting leads to a time-based mechanism and the
second one to a reply-based mechanism. In our analysis,
we let d1 be the probability of any worker being available
and receiving the task assignment message by the master,
d2 be the probability of the master receiving the worker’s
response (has the worker chosen to reply), and d = d1 · d2
be the probability of a round trip, that is, the probability
that the master receives the reply from a given worker. We
also assume that there is some chance of a message being
delivered to its destination, i.e. d > 0, a realistic assumption
for today’s Internet’s infrastructure.

Master’s objectives: The main objective of the master is to
guarantee that the decided value is correct with probability
at least 1 − ε, for a desired constant 0 ≤ ε ≤ 1. Then,
having achieved this, the master wishes to maximize its
own benefit (utility). As, for example, in [15], [7], and
[6], while it is assumed that rational workers make their
decision individually, it is assumed that all the (malicious
and rational) workers that cheat return the same incorrect
answer; this yields a worst case scenario, and hence analysis,
for the master with respect to its probability of obtaining the
correct result.

Auditing, payoffs and reward models: To achieve its
objectives, the master employs, if necessary, auditing and
reward/penalizing schemes. The master might decide to
audit the responses of the workers (with a cost). In this work,
auditing means that the master computes the task itself and
checks which workers have been truthful or not. We denote
by pA the probability of the master auditing the responses
of the workers.

Furthermore, the master can reward and punish workers,
which can be used (possibly combined with auditing) to
encourage rational workers to be honest (altruistic workers
need no encouragement, and malicious workers do not care
about their utility). When the master audits, it can accurately
reward and punish the workers. When the master does not
audit, it decides on the majority of the received replies and
may apply different reward/penalizing schemes. (From the
assumptions that cheaters send the same incorrect answer
and that tasks have unique solutions, it follows that there can
be only two kind of replies: a correct and an incorrect one).
In this work we consider the three reward models shown
below:

Rm the master rewards the majority only
Ra the master rewards all workers whose reply was received
R∅ the master does not reward any worker

Auditing or not, the master neither rewards nor punishes
a worker from whom it did not receive its response. Due to
the unreliability of the network, when the master does not
receive a reply from a worker it can not distinguish whether
the worker decided to abstain, or there was a communication
failure in the round trip (it could be the case that the worker
did not even receive the task assignment message). Hence,
it would be unfair to punish a worker for not getting its
response; imagine the case where the worker received the
request, performed the task and replied to the master, but
this last message got lost! On the other hand, if it is indeed
the case that a worker received the task assignment message
but decided to abstain, then it gets no reward. If the reward is
much bigger than the worker’s cost for computing the task,
this alone can be a counter incentive to such a strategy.

The payoff parameters considered in this work are shown
below. All parameters are non-negative. Note that there are
different parameters for the reward WBY to a worker and
the cost MCY of this reward to the master; this models
the fact that the cost for the master might be different
from the benefit for a worker (in some applications they
could in fact be completely unrelated). Although workers
are not penalized for not replying, our model allows the
possibility for the master to be penalized for not getting
any replies (parameter MCS). This provides an incentive
for the master to choose (when it can) more workers to
assign the task (especially if d is small) or to increase their
incentives for replying. (If convenient, MCS could be set
to zero.) Among the parameters involved, we assume that

WPC worker’s punishment for being caught cheating
WCT worker’s cost for computing the task
WBY worker’s benefit from master’s acceptance
MPW master’s punishment for accepting a wrong answer
MCY master’s cost for accepting the worker’s answer
MCA master’s cost for auditing worker’s answers
MCS master’s cost for not getting any reply
MBR master’s benefit from accepting the right answer

the master has the freedom of choosing WBY and WPC ;
by tuning these parameters and choosing n, the master can
achieve the desired trade-offs between correctness and cost.
All other parameters can either be fixed because they are
system parameters or may also be chosen by the master.

III. ALGORITHMIC MECHANISMS

In this section we present the mechanisms we design and
show their analysis.
Algorithms: As mentioned, we consider two different set-
tings for modeling network unreliability, which yield two
different protocols.

Figure 1 presents the time-based protocol. Based on how
the probability of communication failure depends on time,
the master fixes a time T , it sends the specification of the
task to be computed to n workers, and waits for replies. Once
time T is reached, the master gathers all received replies,
and chooses to audit the answers with probability pA. If
the answers were not audited, it accepts the result of the
majority (ties are broken at random). Then, it applies the
corresponding reward model.

Figure 2 presents the reply-based protocol. Here the
master, by appropriately choosing n, fixes k, an estimate of
the minimum number of replies that wants to receive with
high probability. (We discuss in the next subsection how k is
computed and what is the probability of not receiving at least
that many answers). The master sends the task specification
to the n workers and gets replies. If at least k replies are
received, then the master chooses to audit the answers with
probability pA and proceeds as the other protocol. In case
that less than k replies are received, then the master does
nothing and it incurs penalty MCS .

Notice that both protocols are one-shot, in the sense that
they terminate after one round of communication between
the master and the workers. This enables fast termination
and avoids using complex cheater detection and worker
reputation mechanisms. The benefit of one-round protocols
is also partially supported by the work of Kondo et al. [11]
that have demonstrated experimentally that tasks may take
much more than one day of CPU time to complete.

Each of the above protocols basically comprises a game,
that the master designs, and the rational workers play look-
ing for a Nash Equilibrium (NE) in an effort to maximize
their benefit. Therefore, based on the type distribution, the
master must choose a value of pA that would yield a unique
NE that best serves its purposes. The reason for uniqueness

1 send(task, pA, certificate) to n workers
2 wait time T for replies
3 upon expire of time T do
4 audit the answers with probability pA
5 if the answers were not audited then
6 accept the majority
7 end if
8 apply the reward model

Figure 1. Master Algorithm for the Time-based Mechanism

1 send(task, pA, certificate) to n workers
2 if at least k replies are received then
3 audit the answers with probability pA
4 if the answers were not audited then
5 accept the majority
6 end if
7 apply the reward model
8 end if

Figure 2. Master Algorithm for the Reply-based Mechanism

is to force all workers to the same strategy; this is similar
to strong implementation in Mechanism Design, cf., [3],
[14]. For computational reasons, the master, along with the
task specification and the chosen value of pA, also sends
a certificate to the workers. The certificate includes the
strategy that the workers must play to achieve the unique NE
together with the appropriate data (system parameters/payoff
values and reward model) to demonstrate this fact (more
about the certificate can be found in [6]).

Recall that the main objective of the master is to achieve
probability of accepting the correct task result of at least 1−
ε. Once this is achieved, then it seeks to maximize its utility
as well. Based on the type distribution, it could be the case
that the master may achieve this without relying on actions
of the rational workers (e.g., the vast majority of workers
are altruistic). Following the terminology of [6], such cases
fall into the free rationals scenario. The cases in which the
master needs to enforce the behavior of rational workers
fall into the guided rationals scenario. In this scenario, the
master must choose pA such that the benefit of the rational
workers is maximized when pC = pN = 0; in other words,
rational workers choose to be honest (pH = 1) and hence
they compute and truthfully return the correct task result.

The protocol ran by the master for choosing pA is
presented in Figure 3. Together with each of the protocols
in Figures 1 and 2 comprise our mechanisms. The analysis
of the mechanisms and the lemmas referenced in Figure 3
are given in the next subsection.

We now provide a couple of examples that demonstrate
that both mechanisms are useful:
(a) As discussed in Section II, we consider two settings with
respect to the probability of the communication failure: one
in which it depends on time, and one in which it is fixed.
The master could have knowledge (e.g., based on statistics)
of only one of the two settings. In such a case, it has no
choice other than using the mechanism designed for that
setting.
(b) It is not difficult to see that the time-based mechanism
is more likely to use auditing than the other one, on the

other hand, the reply-based mechanism runs the risk of not
receiving enough replies. Hence, the time-based mechanism
would be more preferable in case the cost of auditing is low,
and the reply-based mechanism in case the cost of auditing
is high and the value of parameter MCS is small.
Equilibria Conditions and Analysis: We begin the analysis
of our mechanisms by elucidating the following proba-
bilities, expected utilities, and equilibria conditions. For
succinctness, the analysis of both mechanisms is presented
for a minimum number of replies k, where k = 1 for
the time-based mechanism and k ≥ 1 for the reply-
based mechanism. For the latter, for a given worker type
distribution, the choice of n workers, and d, even if all
rational workers choose not to reply, the master will receive
at least E = nd(pα+pµ) replies in expectation. Thus, using
Chernoff bounds, it can be shown that the master will receive
at least k = E −

√
2E ln(1/ζ) replies with probability at

least 1−ζ, for 0 < ζ < 1 and big enough n (e.g., ζ = 1/n).

Pr(worker cheats|worker replies): q = pµ+pρpC
1−pρpN

Pr(worker does not cheat|worker replies): q = pα+pρpH
1−pρpN

= 1−q
Pr(reply received): r = d(1− pρpN)
Pr(reply not received): r = 1− r
Then, r(q + q) + r = 1.

Pr(i out of n replies received): ri =

(
n

i

)
rirn−i

Pr(majority honest | i replies received):

hi =

b i
2
c−1∑
j=0

(
i

j

)
qjqi−j + (1 + d i

2
e − b i

2
c)1
2

(
i

b i
2
c

)
qb

i
2
cqd

i
2
e.

Pr(majority cheats | i replies received):

ci =

i∑
j=d i

2
e+1

(
i

j

)
qjqi−j + (1 + d i

2
e − b i

2
c)1
2

(
i

d i
2
e

)
qd

i
2
eqb

i
2
c.

Pr(master obtains correct answer):

Psucc =

n∑
i=k

ri (pA + (1− pA)hi) (1)

E(utility of master):

UM = −
k−1∑
i=0

riMCS +

n∑
i=k

ri
(
pAαi + (1− pA)βi

)
(2)

where,

αi = MBR −MCA − nd(pα + pρpH)MCY

βi = MBRhi −MPWci −MCYγi

and where, γi = 0 for R∅, γi = i for Ra, and for Rm is,

γi =

i∑
j=d i

2
e+1

(
i

j

)
j(qjqi−j + qjqi−j)+

(1 + d i
2
e − b i

2
c)1
2

(
i

d i
2
e

)
d i
2
e(qd

i
2
eqb

i
2
c + qd

i
2
eqb

i
2
c).

1 if Pr[majority honest | all rationals honest] < 1− ε then /* Psucc is small, even if pH = 1 */
2 pC ← 1; pN ← 0; pA ← 1− ε

/∑n
i=k rici; /* cf. Lemma 2 */

3 elseif Pr[majority honest | all rationals cheat] ≥ 1− ε then /* Psucc is big, even if pC = 1 */
4 pC ← 1; pN ← 0; pA ← 0; /* cf. Lemma 3 */
5 elseif Pr[majority honest | all rationals honest] ≥ 1− ε and
6 ∆UHC(pH = 1, pA = 0) ≥ 0 and ∆UHN (pH = 1, pA = 0) ≥ 0 then /* pH = 1, even if pA = 0 */
7 pC ← 0; pN ← 0; pA ← 0; /* cf. Lemma 3 */
8 else /* pC = 0 and pN = 0 enforced */
9 pC ← 0; pN ← 0; set pA as in Lemma 4; /* cf. Lemma 4 */

10 if UM (pA, pN , pC) < UM
(
pA = (1− ε)

/∑n
i=k ri, pN = 1, pC = 0

)
then

11 pN ← 1; pA ← (1− ε)
/∑n

i=k ri; /* cf. Lemma 1 */

Figure 3. Master protocol to choose pA. The expressions of k, ri, and ci are defined in Section III

We denote by ∆US1S2
the difference on the expected

utilities of a rational worker when choosing strategy S1 over
strategy S2. Then, for any rational worker, the equilibria
conditions are:{

∆UHC = πH ·wH − πC ·wC ≥ 0
∆UHN = πH ·wH − πN ·wN ≥ 0

(3)

The components of the vectors denoted by w• in (3)
correspond to the different payoffs received by the given
worker for each of the various events that may outcome
from the game when the worker has chosen strategy •,
and the components of the vectors denoted by π• to the
probabilities that those events occur. A thorough detail of
their specific values is left to the full version [16] of this
extended abstract for brevity. These conditions are defined
for the guided rationals case so that a pure NE where pH = 0
is precluded. We now proceed to analyze the different cases,
first considering the free rationals scenario and then the
guided rationals one. Proofs can be found in [16].

1) Free Rationals: Here we study the various cases
where the behavior of rational workers does not need to be
enforced. As mentioned before the main goal is to carry out
the computation obtaining the correct output with probability
at least 1 − ε. Provided that this goal is achieved, it is
desirable to maximize the utility of the master. Hence if, for
a given instance of the problem, the expected utility of the
master utilizing the mechanism presented is smaller than the
utility of just setting pA big enough to guarantee the desired
probability of correctness, independently of the outcome of
the game, the latter is used. We establish this observation in
the following lemma.

Lemma 1. In order to guarantee Psucc ≥ 1−ε, it is enough
to set pA = (1− ε)

/∑n
i=k ri, making pN = 1.

We consider now pessimistic worker-type distributions,
i.e., distributions where pµ is so large that, even if all
rationals choose to be honest, the probability of obtaining
the correct answer is too small. Hence, the master has to
audit with a probability big enough, perhaps bigger than
the minimum needed to ensure that all rationals are honest.
Nevertheless, for such pA, rational workers still might use
some NE where pH < 1. Thus, the worst case for Psucc has
to be assumed. Formally,

Lemma 2. In order to guarantee Psucc ≥ 1−ε, it is enough
to set pA = 1− ε

/∑n
i=k rici, making pC = 1 and pN = 0.

Now, we consider cases where no audit is needed to
achieve the desired probability of correctness. I.e., we study
conditions under the assumption that pA = 0. The first case
occurs when the type-distribution is such that, even if all
rational workers cheat, the probability of having a majority
of correct answers is at least 1− ε. A second case happens
when the particular instance of the parameters of the game
force a unique NE such that rationals are honest, even if
they know that the result will not be audited. We establish
those cases in the following lemma.
Lemma 3. In order to guarantee Psucc ≥ 1 − ε, if∑n
i=k rihi ≥ 1 − ε making pC = 1 and pN = 0; or the

same condition holds but making pC = 0 and pN = 0 and
there is a unique NE for pH = 1 and pA = 0, then it is
enough to set pA = 0.

2) Guided Rationals: We now study worker-type dis-
tributions such that the master can take advantage of a
specific NE to achieve the desired bound on the probability
of error. Given that the scenario where all players cheat was
considered in Section III-1, in this section it is enough to
study ∆UHC and ∆UHN for each reward model, condition-
ing ∆UHC(pC = 1) ≥ 0 and ∆UHN (pN = 1) ≥ 0 to
obtain appropriate values for pA. As proved in the following
lemma, the specific value pA assigned depends on the reward
model, and it is set so that a unique pure NE is forced at
pH = 1 and the correctness probability is achieved.
Lemma 4. In order to guarantee Psucc ≥ 1 − ε, if∑n
i=k rihi < 1 − ε making pC = 1 and pN = 0, and∑n
i=k rihi ≥ 1 − ε making pC = 0 and pN = 0, then it is

enough to set pA as follows.
For R∅,

pA =
WCT

d2WBY
∑n−1
i=k−1 r

′
i

(4)

For Ra,
pA =

WCT

d2(WBY + WPC)
∑n−1
i=k−1 r

′
i

, d2WBY

n−1∑
i=k−1

r′i ≥WCT

(5)
For Rm,

pA =
WCT /d2 −WBY

∑n−1
i=k−1 r

′
i(h
′
i − c′i)

(WBY + WPC)
∑n−1
i=k−1 r

′
i −WBY

∑n−1
i=k−1 r

′
i(h
′
i − c′i)

(6)

pA =
WCT /d2 −WBY

∑n−1
i=k−1 r

′
ih
′
i

WBY
∑n−1
i=k−1 r

′
i −WBY

∑n−1
i=k−1 r

′
ih
′
i

(7)

Where

r′i =
(n−1
i

)
rirn−1−i,

h′i =
∑b i

2
c

j=0

(i
j

)
qjqi−j +

(
d i
2
e − b i

2
c
)
1
2

(i
d i
2
e
)
qd
i
2
eqb

i
2
c,

c′i =
∑i
j=d i

2
e
(i
j

)
qjqi−j +

(
d i
2
e − b i

2
c
)
1
2

(i
b i
2
c
)
qb
i
2
cqd

i
2
e,

for pC = 1 in conditions (5)(a) and (6), and for pN = 1 in conditions

(4), (5)(b) and (7).

3) Correctness and Optimality: The following theorem
summarizes the previous analyses, and proves the correct-
ness of the mechanisms designed.

Theorem 5. For any given system parameters, the values of
pA obtained in Sections III-1 and III-2 satisfy that Psucc ≥
1− ε.

Furthermore, it turns out that the strategy enforced by our
mechanisms is optimal.

Theorem 6. In order to achieve Psucc ≥ 1 − ε, the only
feasible approaches are either to enforce a NE where pH =
1 or to use a pA as shown in Lemma 2.

IV. APPLICATION OF THE MECHANISMS

In this section two realistic scenarios in which the master-
worker model considered could be naturally applicable are
proposed. For these scenarios, we determine how to choose
pA and n in the case where the behavior of rational workers
is enforced, i.e., under the conditions of Lemma 4.
SETI-like Scenario: We first consider a volunteering com-
puting system such as SETI@home. In this case, we assume
that workers incur in no cost to perform the task, but they
obtain a benefit by being recognized as having performed
it. Hence, we assume that WBY > WCT = 0. The master
incurs in a (possibly small) cost MCY when rewarding a
worker. The master may audit the values returned by the
workers with cost MCA > 0. We also assume that the
master obtains a benefit MBR > MCY if it accepts the
correct result, and suffers a cost MPW > MCA if it accepts
an incorrect value. Also, as stressed before, d > 0.

Plugging WCT = 0 in the lower bounds of Lemma 4
it can be seen that, for this scenario and conditions, in
order to achieve the desired Psucc, it is enough to set pA
arbitrarily close to 0 for all three models. So, we want to
choose δ ≤ pA ≤ 1, with δ → 0, so that the utility of
the master is maximized. Using calculus, it can be seen that
UM is monotonic in such range, but the growth of such
function depends on the specific instance of the master-
payoff parameters. Thus, it is enough to choose one of the
extreme values of pA. Replacing in Eq. (2),

UM ≈ −
k−1∑
i=0

riMCS +

n∑
i=k

ri max{αi, βi} (8)

For pN = 0 and αi, βi as in Eq. (2). The approximation
given in Eq. (8) provides a mechanism to choose pA and n
so that UM is maximized for Psucc ≥ 1 − ε for any given
worker-type distribution, reward model, and set of payoff
parameters in the SETI scenario.
Contractor Scenario: The second scenario considered is a
company that buys computational power from Internet users

and sells it to computation-hungry costumers. An example
is Amazon’s Mechanical Turk [1]. In this case the company
pays the users an amount S = WBY = MCY for using their
computing capabilities, and charges the consumers another
amount MBR > MCY for the provided service. Since the
users are not volunteers in this scenario, we assume that
computing a task is not free for them (i.e., WCT > 0), and
that rational workers must have incentives to participate, that
is, their utility must be positive. As in the previous case, we
assume that the master verifies and has a cost for accepting
a wrong value, such that MPW > MCA > 0. Also as before
we assume that d > 0.

Using similar reasoning as before (and calculus), for
example, for theR∅ model, using Lemma 4 and conditioning
that workers must have positive utility, we get,

UM = −
k−1∑
i=0

riMCS

+
n∑
i=k

ri max

{
αi, βi + (αi − βi)

WCT

d2WBY
∑n−1
i=k−1 r

′
i

}
.

REFERENCES

[1] Amazon’s Mechanical Turk, https://www.mturk.com.
[2] D. Anderson. BOINC: A system for public-resource computing and

storage. In proc. of GRID 2004, pp. 4–10.
[3] M. Babaioff, M. Feldman, and N. Nisan. Combinatorial agency. In

proc. of ACM EC 2006, pp. 18–28.
[4] K. Eliaz. Fault tolerant implementation. Review of Economic Studies,

69:589–610, 2002.
[5] “Enabling Grids for E-sciencE”, http://www.eu-egee.org.
[6] A. Fernández Anta, Ch. Georgiou and M. A. Mosteiro. Algorithmic

Mechanisms for Internet-based Master-Worker Computing with Un-
trusted and Selfish Workers. In proc. of IPDPS 2010, pp. 378-388.

[7] A. Fernández Anta, Ch. Georgiou, and M. A. Mosteiro. Designing
mechanisms for reliable Internet-based computing. In proc. of NCA
2008, pp. 315–324.

[8] I.T. Foster and A. Iamnitchi. On death, taxes, and the convergence of
P2P and grid computing. In proc. of IPTPS 2003, pp. 118–128.

[9] P. Golle and I. Mironov. Uncheatable distributed computations. In
proc. of CT-RSA 2001, pp. 425–440.

[10] E.M. Heien, D.P. Anderson, and K. Hagihara. Computing low latency
batches with unreliable workers in volunteer computing environments.
Journal of Grid Computing, 7:501–518, 2009.

[11] D. Kondo, F. Araujo, P. Malecot, P. Domingues, L. Silva, G. Fedak,
and F. Cappello. Characterizing result errors in Internet desktop grids.
In proc. of Euro-Par 2007, pp. 361–371.

[12] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky.
SETI@home: Massively distributed computing for SETI. Comp. in
Science and Engineering, 3(1):78–83, 2001.

[13] J.F. Nash. Equilibrium points in n-person games. National Academy
of Sciences, 36(1):48–49, 1950.

[14] N. Nisan and A. Ronen. Algorithmic mechanism design. Games and
Economic Behavior, 35:166–196, 2001.

[15] L. Sarmenta. Sabotage-tolerance mechanisms for volunteer computing
systems. Future Generation Computer Systems, 18(4):561–572, 2002.

[16] Technical Report of this work,
http://www.cs.ucy.ac.cy/ric/MARfailTR.pdf.

[17] “TeraGrid”, http://www.teragrid.org.
[18] M. Yurkewych, B.N. Levine, and A.L. Rosenberg. On the cost-

ineffectiveness of redundancy in commercial P2P computing. In proc.
of CCS 2005, pp. 280–288.

