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Algorithmic Mechanisms for Reliable
Master-Worker Internet-based Computing

Evgenia Christoforou, Antonio Fernández Anta, Chryssis Georgiou, Miguel A. Mosteiro

Abstract —We consider Internet-based master-worker computations, where a master processor assigns, across the Internet, a
computational task to a set of untrusted worker processors, and collects their responses. Examples of such computations are the
“@home” projects such as SETI. In this work various worker behaviors are considered. Altruistic workers always return the correct
result of the task, malicious workers always return an incorrect result, and rational workers act based on their self interest. In a massive
computation platform, such as the Internet, it is expected that all three type of workers coexist. Therefore, in this work we study Internet-
based master-worker computations in the presence of malicious, altruistic, and rational workers. A stochastic distribution of the workers
over the three types is assumed. In addition, we consider the possibility that the communication between the master and the workers is
not reliable, and that workers could be unavailable. Considering all the three types of workers renders a combination of game-theoretic
and classical distributed computing approaches to the design of mechanisms for reliable Internet-based computing. Indeed, in this
work we design and analyze two algorithmic mechanisms to provide appropriate incentives to rational workers to act correctly, despite
the malicious workers’ actions and the unreliability of the communication. Only when necessary, the incentives are used to force the
rational players to a certain equilibrium (which forces the workers to be truthful) that overcomes the attempt of the malicious workers to
deceive the master. Finally, the mechanisms are analyzed in two realistic Internet-based master-worker settings, a SETI-like one and
a contractor-based one, such as Amazon’s Mechanical Turk. We also present plots that illustrate the trade-offs between reliability and
cost, under different system parameters.

Index Terms —Algorithmic Mechanism design, Internet-based Computing, Reliability and Fault-tolerance, Untrusted workers, Unreli-
able communication.
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1 INTRODUCTION

1.1 Motivation and Prior Work

As an alternative to expensive supercomputing parallel ma-
chines, the Internet has recently become feasible as a com-
putational platform for processing complex computational
jobs. Several Internet-oriented systems and protocols have
been designed to operate on top of this global computation
infrastructure; examples include Grid systems [17], [57],the
“@home” projects [6], such as SETI [38], Amazon’s Me-
chanical Turk [5], and peer-to-peer computing–P2PC [23],
[60]. Although the potential is great, the use of Internet-
based computing is limited by the untrustworthy nature of
the platform’s components [6], [26], [31]. Let us take SETI
as an example. In SETI, data is distributed for processing
to millions of voluntary machines around the world. At a
conceptual level, in SETI there is a machine, call it themaster,
that sends jobs, across the Internet, to these computers, call
them theworkers. These workers execute and report back the
result of the task computation. However, these workers are
not trustworthy, and hence might report incorrect results.In
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SETI, the master attempts to minimize the impact of these
bogus results by assigning the same task to several workers and
comparing their outcomes (that is, redundant task allocation
is employed [6]), but there are also other methods [14], [36],
[59].

This problem has recently been studied under two different
views: from a “classical” distributed computing view [20],
[37], [40], [54] and from a game-theoretic view [21], [60].
Under the first view, the workers are classified as either
malicious (Byzantine) or altruistic, based on a predefined
behavior. The malicious workers have a “bad” behavior which
results in reporting an incorrect result to the master. This
behavior is, for example, due to a hardware or a software error
or due to an ill-state of the worker such as being a wrongdoer
intentionally. Altruistic workers exhibit a “good” behavior,
that is, they compute and return the correct task result (called
simply “result” throughout the paper). From the perspective of
the master, the altruistic workers are the “correct” ones. Under
this view, “classical” distributed computing models are defined
(e.g., a fixed bound on the probability of a worker being
malicious is assumed) and typical malicious-tolerant voting
protocols or distributed verification mechanisms are designed.

Under the game-theoretic view, workers act on their own
self-interestand they do not have an a priori established
behavior, that is, they are assumed to berational [2], [26], [55].
In other words, the workers decide on whether they will be
honestand report the correct result, orcheatand report a bogus
result, depending on which strategy increases their benefitor
utility. Under this view, Algorithmic Mechanisms [2], [12],
[49] are employed, where games are designed to provide
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the necessary incentives so that processors’ interests arebest
served by acting “correctly”. In particular, the master provides
some reward (resp. penalty) should a worker be honest (resp.
cheat). The design objective is for the master to force a desired
uniqueNash equilibrium(NE) [48], i.e., a strategy choice by
each worker such that none of them has incentive to change it.
That Nash equilibrium is the one in which the master achieves
a desired probability of obtaining the correct result.

The above views could complement one another, if a certain
computation includes only malicious and altruistic workers, or
only rational workers. However, the pragmatic situation onthe
Internet is different: all three types of workers might co-exist
in a given computation. One could assume that all workers
are rational but, for example, what if a software bug occurs
that makes a worker deviate from its protocol, and hence
compute and return an incorrect result? This worker is no
longer exhibiting a rational behavior, but rather an erroneous or
irrational one. From the master’s point of view such behavior
can be seen as malicious.

In this paper we consider the possibility that all three types
of workers co-exist. Furthermore, we consider the possibility
that the communication between the master and workers is not
reliable. This communication uncertainty can either be dueto
communication-related failures or due to workers being slow
in processing messages (or even crashing while doing so).
For instance, Heien at al. [31] have found that in BOINC
only around 5% of the workers are available more than 80%
of the time, and that half of the workers are available less
than 40% of the time. This fact, combined with the length
of the computation [35], justifies the interest of considering
in the Internet-based master-worker framework the possibility
of workers not replying. We introduce the unreliability of
communication in our model assuming that a worker’s reply
is received by the master with some probability smaller than
1.

Since it is possible that a worker’s reply does not reach the
master, we also allow workers to abstain from the computation.
Imagine the situation where a rational worker returns the
correct result but its reply is not received by the master. Aswe
explain in Section 2, in this case the master does not reward the
worker, but the worker has incurred the cost of performing the
task. Hence, it is natural to allow the workers to abstain from
replying, specially when the communication reliability islow.
This strategy choice makes the task of the master even more
challenging, as it needs to provide the necessary incentives to
encourage rational workers to reply and to do so truthfully,
even in the presence of low communication reliability.

1.2 Contributions

We study Internet-based master-worker computations under
the assumption that each worker’s behavior is either malicious,
altruistic or rational. Furthermore, we also assume that a
worker’s output may never be received. The presence of
all three types of workers, naturally renders a combination
of game-theoretic and classical approaches to the design
of algorithmic mechanisms for distributed computing. Our
model captures the hardest shortcomings of an Internet-based

platform, yielding mechanisms that are resilient to undesired
worker behavior and uncertainty of reply. In particular our
contributions are as follows:
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• We identify a collection of realistic payoff parame-
ters and reward models and we formulate the Internet-
based master-worker computation problem as aBayesian
game[30] (Section 2). We assume a probability distribu-
tion of workers among the worker types. The master and
the workers do not know the type of other workers, only
the probability distribution. The rational workers play a
game looking for a Nash Equilibrium, choosing to be
honest, cheat or abstain while the malicious and altruistic
workers have a predefined strategy, malicious cheat and
altruistic are honest. The master does not participate in
the game, it only designs the game to be played. The
communication reliability is modeled by a parametric
probability.

• We develop and analyze two algorithms (a time-based
algorithm and a reply-based one) that provide incentives
to the rational workers to return the correct result, despite
the malicious workers’ actions and the communication
unreliability (Section 3). The algorithms are parametrized
in terms of a probability of auditingpA (defined in
Section 2), and a parametric probabilityd modeling
the communication reliability. Each of the algorithms
implements an instance of the Bayesian game. Under a
general worker-type probability distribution, we analyze
the master’s utility and probability of success (probability
of obtaining the correct result) and identify the conditions
under which the game has a unique NE.
The reason to enforce auniqueNE is to achieve correct-
ness taking advantage of the presence of rational players.
As we show in the proof of Theorem 6, if multiple NE
were allowed, choosing deterministically to cheat would
be also an equilibrium strategy. Thus, for the purpose
of a worst-case analysis with respect to the probability
of success, it would have to be assumed that rational
players choose to cheat, yielding the presence of rationals
irrelevant. The reason to aim for a NE at all is that,
although it is known that equilibria do not always yield
optimal solutions, it is a “safe” way for the rational
players to obtain high utility satisfaction [50, Chapter 1].
More importantly, a NE isstable, that is, once proposed,
it is against the interest of the players to individually
deviate.

• Under specific worker-type probability distributions, we
design a protocol in which the master chooses the values
of pA to guarantee a parametrized bound on the proba-
bility of success (Section 3). Once this is achieved, the
master also attempts to maximize its utility. This protocol
together with each of the above-mentioned algorithms
comprise a mechanism. Note that the mechanisms de-
signed (and their analyses) are general in that reward
models can either be fixed exogenously or be chosen by
the master. It is also shown that our mechanisms are the
only feasible approaches for the master to achieve a given
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bound on the probability of success.
• Under the constraint of the bounded probability of

success, we show how to maximize the master utility
in two real-world scenarios (Section 4). The first sce-
nario abstracts a system of volunteering computing like
SETI [38]. The second scenario abstracts a contractor-
based application where a company buys computational
power from Internet users and sells it to computation-
hungry consumers. One such application is Amazon’s
Mechanical Turk [5] where the master and the workers
can be in fact humans that contribute time for solving
problems for profit.

• Finally, to provide a better insight on the usability of
our mechanisms, and to illustrate the trade-offs between
reliability and cost, we have characterized the utility of
the master for the above-mentioned scenarios via plots by
choosing system parameters as derived by empirical eval-
uations of master-worker Internet-based systems in [16]
and [19].

1.3 Related work

Prior examples of game theory in distributed computing in-
clude work on Internet routing [25], [39], [45], [52], resource/-
facility location and sharing [24], [27], containment of viruses
spreading [47], secret sharing [2], [29], P2P services [3],[42],
[43] and task computations [21], [60]. For more discussion on
the connection between game theory and distributed comput-
ing we refer the reader to the surveys by Halpern [28] and by
Abraham, Alvisi and Halpern [1], and the book by Nisan et
al [50].

Eliaz [18] seems to be the first to formally study the co-
existence of Byzantine (malicious) and rational players. He
introduces the notion ofk-fault-tolerant Nash Equilibriumas
a state in which no player benefits from unilaterally deviating
despite up tok players acting maliciously. He demonstrates
this concept by designing simple mechanisms that implement
the constrained Walrasian function and a choice rule for the
efficient allocation of an indivisible good (e.g., in auctions).
Abraham et al [2] extend Eliaz’s concept to accommodate
colluding rational players. In particular they design a secret
sharing protocol and prove that it is(k, t)-robust, that is, it
is correct despite up tok colluding rational players andt
Byzantine ones.

Aiyer et al. [3] introduce the BAR model to reason about
systems with Byzantine (malicious), Altruistic, and Rational
participants. They also introduce the notion of a protocol
being BAR-tolerant, that is, the protocol is resilient to both
Byzantine faults and rational manipulation. (In this respect,
one might say that our algorithmic mechanisms designed in
this work is BAR-tolerant.) As an application, they designed
a cooperative backup service for P2P systems, based on a
BAR-tolerant replicated state machine. Li et al [43] also
considered the BAR model to design a P2P live streaming
application based on a BAR-tolerant gossip protocol. Both
works employ incentive-based game theoretic techniques (to
remove the selfish behavior), but the emphasis is on building
a reasonably practical system (hence, formal analysis is traded

for practicality). Recently, Li et al [42] developed a P2P
streaming application, called FlightPath, that provides ahighly
reliable data stream to a dynamic set of peers. FlightPath, as
opposed to the above-mentioned BAR-based works, is based
on mechanisms forapproximate equilibria[11], rather than
strict equilibria. In particular,ǫ-Nash equilibria are considered,
in which rational players deviate if and only if they expect to
benefit by more than a factor ofǫ. As the authors claim, the
less restrictive nature of these equilibria enables the design of
incentives to limit selfish behavior rigorously, while it provides
sufficient flexibility to build practical systems.

Gairing [25] introduced and studiedmalicious Bayesian
congestion games. These games extend congestion games [53]
by allowing players to act in a malicious way. In particular,
each player can either be rational or, with a certain probability,
be malicious (with the sole goal of disturbing the other
players). As in our work, players are not aware of each
other’s type, and this uncertainty is described by a probability
distribution. Among other results, Gairing shows that, unlike
congestion games, these games do not in general possess
a Nash Equilibrium in pure strategies. Also he studies the
impact of malicious types on the social cost (the overall
performance of the system) by measuring the so-calledPrice
of Malice. This measure was first introduced by Moscibroda
et al [47] to measure the influence of malicious behavior for
a virus inoculation game involving both rational (selfish) and
malicious nodes. Alon et al. [4] studied the implications of
Bayesian ignorance.

Besides investigating the co-existence of malicious and
rational players, also the co-existence of altruistic and rational
players has been considered. Hoefer and Skopalik [32] study
congestion games with altruist players, assuming a level of
altruismβi for each playeri: βi = 0 being a pure selfish and
βi = 1 being a pure altruist player. The work of Kuznetsov and
Schmid [41] describes arbitrary social relationships between
players through a social range matrix. Their work considers
the existence of different degrees of rationality or altruism, and
the existence of malicious players as well. Their definitionof
maliciousness and altruism is with respect to the whole set of
players. (I.e., malicious players aim at reducing the utility of
the rest of players, while altruistic players aim at increasing
these utilities.) Instead, in the context of master-workertask
computing, we assume that maliciousness and altruism is with
respect to the master. At the end of Section 2.1 we discuss the
possibility of considering different levels (or types) of rational
players in our work, as they do.

Monderer and Tennenholtz [46] consider computations
where an interested party wishes to influence the behavior of
rational agents in a game, without having control of the game.
In our work the master designs the game (and the protocol) to
be played by the workers. Hence, the work in [46], in some
sense, complements our work, as it is applicable to situations
where it is not possible for the central authority to modify the
game rules.

In our work we have the master process auditing, when
needed, and verifying the workers’ answers. The work in [40]
proposes a distributed verification mechanism in which the
rational workers verify each other’s tasks. This can potentially
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disburden the master, especially in multi-round computations.
The focus in our work is to design a mechanism in such
a way, that auditing is applied only when necessary, rather
than designing a verification mechanism. However, it would
be interesting to investigate whether our mechanism could be
combined with a distributed verification mechanism as then
one presented in [40].

Distributed computation in presence of selfishness was
studied within the scope of combinatorial agencies in Eco-
nomics [7]–[9], [15]. The basic model considered is a combi-
natorial variant of the classical principal-agent problem[44]:
A master (principal) must motivate a collection of workers
(agents) to exert costly effort on the master’s behalf, but
the workers’ actions are hidden from the master. Instead of
focusing on each worker’s actions, the focus is on complex
combinations of the efforts of the workers that influence the
outcome. Based on these complex dependencies between the
workers’ actions, atechnology functionis defined by the
master. In [7], where the problem was first introduced, the
goal was to study how the utility of the master is affected if
the equilibria space is limited to pure strategies. To that extent,
the computation of a few Boolean functions is evaluated. In
[9] mixed strategies were considered: if the parameters of
the problem yield multiple mixed equilibrium points, it is
assumed that workers accept one suggested by the master. The
work in [15] investigates the effect of auditing by allowing
the master to audit some workers (by random sampling) and
verify their work. In our work, we do not use any technology,
instead we implement our own algorithm. Furthermore, the
master decides probabilistically whether to audit all workers
or none, and the master assumes no dependencies between
the workers. Another important difference is that in our
framework, the worker’s actions are nothidden. The master
receives a response by each worker and it is aware that
either the worker has truthfully performed the task or not.
The outcome is affected by each worker’s action in the case
that no auditing is performed, but via auditing the master
can determine the exact strategy used by each worker and
apply a specific reward/punishment scheme. In the framework
considered in combinatorial agency, the master witnesses the
outcome of the computation, but it has no knowledge of the
possible actions that the worker might take. For this purpose,
the master needs to devise contracts for each worker based
on the observed outcome of the computation and not on
each worker’s possible action (as in our framework). Finally,
our scheme considers worker punishment, as opposed to the
schemes in combinatorial agency where workers cannot be
fined (limited liability constraint); this is possible in our
framework as worker’s actions are contractible and verifiable
(either it performs a task or not).

2 MODEL AND DEFINITIONS

2.1 Master-workers Framework and Worker Types

We consider a distributed system consisting of a master
processor that assigns, over the Internet, a computationaltask
to a set ofn workers to compute and return the result. The
master, based on the received replies, must decide on the

value it believes is the correct outcome of the task. The tasks
considered in this work are assumed to have a unique solution;
although such limitation reduces the scope of application of the
presented mechanisms [56], there are plenty of computations
where the correct solution is unique: e.g., any mathematical
function.

Each of then workers has one of the following types,
rational, malicious, or altruistic. The type of any workerw
is known only by w. That is, neither the master nor the
other workers know the type of workerw. Furthermore, the
number of workers of each type is unknown to everyone. With
respect to the worker types, the only knowledge available
is a probability distribution over those types. Specifically, it
is known that each worker is independently of one of the
three types with probabilitiespρ, pµ, pα, respectively, where
pρ+pµ+pα = 1. The knowledge of the distribution over types
could be obtained, for example, statistically from existing
master-worker applications. If such information is inaccurate
it is enough to overestimatepµ and underestimatepα (as we
do in Section 4.3.1 from SETI-like systems [16], [19]) to
achieve correctness, although at a bigger expense. Malicious
workers always cheat and altruistic workers are always honest,
independently of how such behavior impacts their utilities.
In the context of this paper, being honest means to compute
and return the correct result, and cheating means returning
some incorrect value. On the other hand, rational workers are
assumed to be selfish in a game-theoretic sense, that is, their
aim is to maximize their benefit (utility) under the assumption
that other workers do the same. So, a rational worker decides
to be honest, cheat or not reply to the master (workers may
choose not to reply) depending on which strategy maximizes
its utility. As a result, each rational worker cheats with
probabilitypC , it is honest with probabilitypH, and does not
reply with probabilitypN , such thatpC + pH + pN = 1. It is
assumed that if a worker decides not to reply, then it does not
perform the task.

The above model implies that all rational workers share
the same probability distribution over the possible strategies
(cheat, be honest, abstain), i.e., all rational workers areof
the same type. Otherwise, in order to model the individuality
of the non-monetary part of each rational worker’s bene-
fit/penalty, the distribution over types could be generalized
to different types of rational workers instead of one. More
precisely, define a probability distribution over each possible
combination of payoffs inR4, restricting signs appropriately,
so that each rational worker draws independently its strategic
normal form from this distribution. However, the analysis
presented here would be the same but using expected payoffs,
the expectation taken over such distribution. Thus, for thesake
of clarity and without loss of generality, we assume that the
strategic normal form is unique for all players.

2.2 Communication Unreliability

The communication network is considered to be unreliable,
and workers could be unavailable. These are very realistic
assumptions for Internet-based master-worker computations as
suggested, for example, by the work of Heien at al. [31]. We
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model this shortcoming by assuming that the communication
with each worker fails stochastically and independently of
other workers.

Furthermore, we assume two settings, one where the proba-
bility of communication failure depends on time (the more the
master waits for replies the larger the probability of obtaining
more replies), and a second one where the probability of
communication failure is fixed (hence, the more workers the
master hires the larger the number of replies). As we will see
in Section 3, the first setting leads to atime-basedmechanism
and the second one to areply-basedmechanism.

In our analysis, we letd1 > 0 be the probability of any
worker being available and receiving the task assignment
message by the master,d2 > 0 be the probability of the master
receiving the worker’s response (has the worker chosen to
reply), andd = d1 ·d2 be the probability of a round trip, that is,
the probability that the master receives the reply from a given
worker; that is,d represents the communication reliability.
Hence,d2 is the probability value that the master achieves
by waiting T time (for the time-based mechanism) or hiring
n workers (for the reply-based mechanism).

2.3 Master’s Objectives, Auditing, Payoffs and Re-
ward Models

The objective of the master is twofold. First, the master has
to guarantee that the decided value is correct with probability
at least1 − ε, for a known constant0 ≤ ε < 1. Then, having
achieved this, the master wants to maximize its own benefit
(utility). As, for example, in [54], [20] and [21], while it is
assumed that workers make their decision individually and
with no coordination, it is assumed that all the (malicious and
rational) workers that cheat return the same incorrect value.
This yields a worst-case scenario (and hence analysis) for the
master with respect to its probability of obtaining the correct
result; it subsumes models where cheaters do not necessarily
return the same answer. (In some sense, this can be seen as a
cost-free, weak form of collusion.)

To achieve its objectives, the master employs, if necessary,
auditing and reward/penalizingschemes. The master might
decide to audit the response of the workers (at a cost). In this
work, auditing means that the master computes the task by
itself, and checks which workers have been truthful or not.
We denote bypA the probability of the master auditing the
responses of the workers.

Furthermore, the master can reward and punish workers,
which can be used (possibly combined with auditing) to
encourage rational workers to be honest (altruistic workers
need no encouragement, and malicious workers do not care
about their utility). When the master audits, it can accurately
reward and punish workers. When the master does not audit,
it decides on the majority of the received replies, and may
apply different reward/penalizing schemes. In this work we
consider three reward models shown in Table 1. Each reward
model is essentially different from the others and can be used
depending on the specifics of the application considered.

Auditing or not, the master neither rewards nor punishes a
worker from whom it did not receive its response. Due to the

Rm the master rewards the majority only
Ra the master rewards all workers
R∅ the master does not reward any worker

TABLE 1: Reward models

unreliability of the communication, when the master does not
receive a reply from a worker it can not distinguish whether
the worker decided to abstain, or there was a communication
failure in the round trip (it could be the case that the worker
did not even receive the task assignment message). Hence,
it would be unfair to punish a worker for not getting its
response; imagine the case where the worker received the
request, performed the task and replied to the master, but this
last message got lost!

The payoff parameters considered in this work are detailed
in Table 2. Note that the first letter of the parameter’s name
identifies whose parameter it is.M stands for master andW
for worker. Then, the second letter gives the type of parameter.
P stands for punishment,C for cost, andB for benefit.

WPC worker’s punishment for being caught cheating
WCT worker’s cost for computing the task
WBY worker’s benefit from master’s acceptance
MPW master’s punishment for accepting a wrong answer
MCY master’s cost for accepting the worker’s answer
MCA master’s cost for auditing worker’s answers
MCS master’s cost for not getting a “sufficient” replies
MBR master’s benefit from accepting the right answer

TABLE 2: Payoffs. All these parameters are non-negative.

Observe that there are different parameters for the reward
WBY to a worker and the costMCY of this reward to the
master. This models the fact that the cost to the master might
be different from the benefit for a worker. In fact, in some
applications they may be completely unrelated. For example,
in scenarios such as SETI, workers carry out the computation
for free. Nevertheless, the master may still incur in some
costs for processing the replies, posting a list of participants,
etc. Although workers are not penalized for not replying, our
model allows the possibility for the master to be penalized
for not getting enough replies (parameterMCS); the actual
number of “enough” replies is quantified in Section 3. This
provides an incentive for the master to choose (when it can)
more workers to assign the task (especially ifd is small) or
to increase their incentives for replying; if convenient,MCS

could be set to zero. As usual in algorithmic mechanism
design, we include a punishment in addition to the incentive.
This is an implementation of a “carrot and stick” incentive-
based mechanism when dealing with rational workers. Such
mechanism is possible when the workers’ actions are con-
tractible and verifiable as in our model (unlike the case of
combinatorial agencies). Nevertheless, observe that, if needed,
the punishment may be disabled settingWPC = 0 (as some
instances here). Among the parameters involved, we assume
that the master has the freedom of choosingWBY andWPC ;
by tuning these parameters and choosingn, the master can
achieve the desired trade-offs between correctness and cost.
All other parameters can either be fixed because they are
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system parameters or may also be chosen by the master.

2.4 Game Theory Concepts and Problem Formula-
tion

We study the problem under the assumption that the rational
workers, orplayers, will play a game looking for an equi-
librium (recall that malicious and altruistic workers havea
predefined strategy: malicious cheat, and altruistic are honest).
The master does not play the game, it only defines the protocol
and the parameters to be followed (i.e., it designs the game
or mechanism). The master and the workers do not know
the type of other workers, only the probability distribution.
Hence, the game played is a so-called game with imperfect
information orBayesian game[30]. The action space is the
set of pure strategies{C,H,N}, and the belief of a player is
the probability distribution over types.

More formally, the Internet-based Master-Worker compu-
tation considered in this work is formulated as the Bayesian
gameG(W, ε,D, A, pA, d1, d2,R, pfs), whereW is the set of
n workers,1 − ε ∈ [0, 1] is the desired success probability
of the master obtaining the correct result,D is the type
probability distribution (pρ, pµ, pα), A = {C,H,N} is the
workers’ actions space,pA is the probability of the master
auditing the workers’ responses,d1 and d2 are the prob-
abilities characterizing the reliability of the communication
(d = d1 · d2), R is one of the reward models given in
Table 1, andpfs are the payoffs as described in Table 2.
Each player knows in advance the distribution over typesD,
the total number of workers (n), the probability characterizing
the communication reliability (d1, d2) and its normal strategic
form, which is assumed to be unique.

The core of the mechanisms we develop is the computation
of pA. Based on the type distribution, the master must choose
a value ofpA that would yield aNash Equilibriumthat best
serves its purposes. Recall from [51], that for any finite game,
a mixed strategy profileσ is amixed-strategy Nash equilibrium
(MSNE) if, and only if, for each playeri,

Ui(si, σ−i) = Ui(s
′
i, σ−i), ∀si, s

′
i ∈ supp(σi),

Ui(si, σ−i) ≥ Ui(s
′
i, σ−i),

∀si, s
′
i : si ∈ supp(σi), s

′
i /∈ supp(σi),

wheresi is the strategy used by playeri in the strategy profile
s, σi is the probability distribution over pure strategies used
by playeri in σ, σ−i is the probability distribution over pure
strategies used by each player buti in σ, Ui(si, σ−i) is the
expected utility of playeri when using strategysi with mixed
strategy profileσ, andsupp(σi) is the set of strategies inσ
with positive probability.

The above definition applies to our setting as follows. First
notice that there is no NE where some players choose a pure
strategy and others do not, because the game is symmetric for
all rational players. (Should many types of rational players
be considered, then we would have to consider such a NE.)
Assume first that there is a NE with mixed-strategies (that is,
a NE where no strategy is chosen with probability1). Then,
the expected utility of a worker is the same for each pure
strategy that such worker can choose with positive probability,

and it is not less than the expected utility of a pure strategy
with probability zero of being chosen (if there is any). On the
other hand, if only pure strategies are included in a NE (thatis,
there is only one strategy that can be chosen), that means that
the expected utility of a worker is not less than the expected
utility on the remaining pure strategies. Let us illustratewith
an example. IfpC = 1/2, pH = 1/2, pN = 0 is a NE, that
means that the expected utility of a worker is the same if it
cheats or is honest, and it is not less than the utility if it does
not reply. On the other hand, ifpC = 0, pH = 1, pN = 0 is a
NE, then the expected utility of an honest worker is not less
than the expected utility of cheating or not replying.

We denote by∆US1S2
the difference on the expected

utilities of a rational worker when choosing strategyS1 over
strategyS2. Then, for the purposes of the game we consider,
in order to find conditions for equilibria, we want to study for
each playeri

{
∆UHC = πH · wH − πC · wC

∆UHN = πH · wH − πN · wN
(1)

The expression· π• · w• denotes the utility of the worker
when choosing strategy•; we present the components of the
expression in detail in Section 3.

The following notation will be used throughout:

P
(n)

q (a, b) ,

b∑

i=a

(
n

i

)
qi(1 − q)n−i.

The notation used throughout the paper is summarized in
Table 3.

3 ALGORITHMIC MECHANISMS

In this section we present the mechanisms we design and
analyze them. In particular, we show two different algorithms
that the master runs in order to obtain the result of the task.
Each of these algorithms is essentially an instance of the game
we defined in the previous section. Before running one of the
algorithms, the master must chose an appropriate value ofpA;
it does so by running a protocol we also present in this section.
This protocol, together with each of the algorithms the master
runs to obtain the tasks, comprises a mechanism.

3.1 Algorithms

As discussed in Section 2.2, we consider two different settings
for modeling communication unreliability, which yield two
different algorithms.

Figure 1 presents thetime-basedalgorithm. Based on how
the probability of communication failure depends on time, the
master fixes a timeT , it sends the specification of the task to
be computed ton workers, and waits for replies. Once timeT
is reached, the master gathers all received replies, and chooses
to audit the answers with probabilitypA. If the answers were
not audited, it accepts the result of the majority (ties are broken
at random). Then, it applies the corresponding reward model.

Figure 2 presents thereply-basedalgorithm. Here the mas-
ter, by appropriately choosingn, fixes k, an estimate of the
minimum number of replies that wants to receive with high
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W = {1, 2, . . . , n} set ofn workers
M master processor
d1 probability of a worker being available and receiving the task assignment message by the master
d2 probability of the master receiving the worker’s response (has the worker chosen to reply)
d d = d1 · d2, probability that the master receives a reply from a given worker
pρ probability of a worker to be of rational type
pµ probability of a worker to be of malicious type
pa probability of a worker to be of altruistic type
pA probability that the master audits (computes task and checks worker answers)

Psucc probability that the master obtains correct answer
ε known constantε ∈ [0, 1], 1− ε desired bound on the probability of success

{C,H,N} action space of a worker
pC probability of a worker to cheat
pH probability of a worker to be honest
pN probability of a worker not replying
s strategy profile (a mapping from players to pure strategies)
si strategy used by playeri in the strategy profiles
s−i strategy used by each player buti in the strategy profiles
σ mixed strategy profile (mapping from players to prob. distrib. over pure strat.)
σi probability distribution over pure strategies used by player i in σ

σ−i probability distribution over pure strategies used by eachplayer buti in σ

Ui(si, σ−i) expected utility of playeri with mixed strategy profileσ
supp(σi) set of strategies of playeri with probability > 0 in σ

∆US1S2
difference on the expected utilities of a rational worker when choosing
strategyS1 over strategyS2

P
(n)

q (a, b)
Pb

i=a

`

n

i

´

qi(1− q)n−i

TABLE 3: Summary of Symbols

probability. (We discuss in the next subsection howk is
computed and what is the probability of not receiving at least
that many answers). The master sends the task specification to
then workers and gets replies. If at leastk replies are received,
then the master chooses to audit the answers with probability
pA and proceeds as the other protocol. In case that less thank
replies are received, then the master does nothing and it incurs
penaltyMCS .

Notice that both algorithms are one-shot, in the sense that
they terminate after one round of communication between
the master and the workers. This enables fast termination
and avoids using complex cheater detection and worker rep-
utation mechanisms. The benefit of one-round protocols is
also partially supported by the work of Kondo et al. [35]
that have demonstrated experimentally that there are common
tasks that may take much more than one day of CPU time
to complete. Having said that we do note that a multi-round
computation could be analyzed by computing the expectations
and probabilities in our analysis along all rounds. We leavethis
as subject of future work.

Each of the above algorithms basically implements an
instance of the game we presented in Section 2.4. The master
designs the game and the rational workers play looking for a
Nash Equilibrium (NE) in an effort to maximize their benefit.
Therefore, based on the type distribution, the master must
choose the value ofpA that would yield aunique NE that
best serves its purposes. The reason for uniqueness is to force
all workers to the same strategy; this is similar tostrong
implementationin Mechanism Design, cf., [7], [49]. Multiple
equilibria could be considered that could perhaps favor the
utility of the master. However, in this work, correctness isthe
priority which, as shown later, our mechanisms guarantee.

In order to make the computation feasible to the workers,
the master sends together with the task and the chosen value
of pA a certificatepointing out the only possible equilibrium.
The certificate includes the strategy that the workers must
play to achieve the unique NE together with the appropriate
data to demonstrate this fact. These data include the system
parameters/payoff values and the reward model; together with
the value ofpA is enough to verify uniqueness (see the analysis
in Section 3.2.3).

Recall that the main objective of the master is to achieve
probability of accepting the correct result of at least1 − ε.
Once this is achieved, then it seeks to maximize its utility
as well. Based on the type distribution, it could be the case
that the master may achieve this without relying on actions
of the rational workers (e.g., the vast majority of workers are
altruistic). Such cases fall into what we call thefree rationals
scenario. The cases in which the master needs to enforce
the behavior of rational workers (pH) fall into what we call
the guided rationals scenario. In this scenario, the master
must choosepA so that the benefit of the rational workers
is maximized whenpC = pN = 0; in other words, rational
workers choose to be honest (pH = 1) and hence they compute
and truthfully return the correct result. The protocol ran by
the master for choosingpA is presented in Figure 3. Together
with each of the algorithms in Figures 1 and 2 comprise our
mechanisms. The analysis of the mechanisms and the lemmas
referenced in Figure 3 are given in the next subsection.

Note that both designed mechanisms are useful and can be
used depending on the setting. For example:
(a) As discussed in Section 2.2, the probability of the commu-
nication failure could depend on time, or be fixed. The master
could have knowledge (e.g., based on statistics) of only one
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1 send(task, pA, certificate) to n workers
2 wait time T for replies
3 upon expire of time Tdo
4 audit the answers with probabilitypA

5 if the answers were not auditedthen
6 accept the majority
7 end if
8 apply the reward model

Fig. 1: Master’s Time-based Algorithm

1 send(task, pA, certificate) to n workers
2 if at leastk replies arereceived then
3 audit the answers with probabilitypA

4 if the answers were not auditedthen
5 accept the majority
6 end if
7 apply the reward model
8 end if

Fig. 2: Master’s Reply-based Algorithm

1 if Pr[majority honest| all rationals honest] < 1− ε then /* Psucc is small, even ifpH = 1 */
2 pC ← 1; pN ← 0; pA ← 1− ε

‹
Pn

i=k
rici; /* cf. Lemma 2 */

3 elseif Pr[majority honest| all rationals cheat] ≥ 1− ε then /* Psucc is big, even ifpC = 1 */
4 pC ← 1; pN ← 0; pA ← 0; /* cf. Lemma 3 */
5 elseif Pr[majority honest| all rationals honest] ≥ 1− ε and
6 ∆UHC(pH = 1, pA = 0) ≥ 0 and ∆UHN (pH = 1, pA = 0) ≥ 0 then /* pH = 1, even ifpA = 0 */
7 pC ← 0; pN ← 0; pA ← 0; /* cf. Lemma 3 */
8 else /* pC = 0 andpN = 0 enforced */
9 pC ← 0; pN ← 0; setpA as in Lemma 4; /* cf. Lemma 4 */

10 if UM (pA, pN , pC) < UM

`

pA = (1− ε)
‹

Pn

i=k
ri, pN = 1, pC = 0

´

then
11 pN ← 1; pA ← (1− ε)

‹
Pn

i=k
ri; /* cf. Lemma 1 */

Fig. 3: Master protocol to choosepA. The expressions ofk, ri, andci are defined in Section 3.2

of the two settings. In such a case, it has no choice other than
using the mechanism designed for that setting.
(b) It is not difficult to see that the time-based mechanism is
more likely to use auditing than the other one, on the other
hand, the reply-based mechanism runs the risk of not receiving
enough replies. Hence, the time-based mechanism would be
more preferable in case the cost of auditing is low, and the
reply-based mechanism in case the cost of auditing is high
and the value of parameterMCS is small.

3.2 Equilibria Conditions and Analysis

We begin the analysis of our mechanisms by elucidating
the following probabilities, expected utilities, and equilibria
conditions. For succinctness, the analysis of both mechanisms
is presented for a minimum number of repliesk, wherek = 1
for the time-based mechanism andk ≥ 1 for the reply-
based mechanism. For the latter, for a given worker type
distribution, the choice ofn workers, andd, even if all rational
workers choose not to reply, the master will receive at least
E = nd(pα +pµ) replies in expectation. Thus, using Chernoff
bounds, it can be shown that the master will receive at least
k = E −

√
2E ln(1/ζ) replies with probability at least1− ζ,

for 0 < ζ < 1 and big enoughn (e.g.,ζ = 1/n).

3.2.1 Probabilities and expected utilities.

Given the description of the mechanisms and the system
parameters, it is not difficult to compute the following:

Pr(worker cheats|worker replies):q =
pµ+pρpC

1−pρpN

Pr(worker does not cheat|worker replies):

q̂ =
pα + pρpH
1 − pρpN

= 1 − q

Pr(reply received from worker):r = d(1 − pρpN )

Pr(reply not received from worker):̂r = 1 − r

Then,r(q + q̂) + r̂ = 1.

Pr(i out of n replies received):ri =

(
n

i

)
rir̂n−i

Pr(majority honest| i replies received):

hi =

⌊i/2⌋−1∑

j=0

(
i

j

)
qj q̂i−j

+ (1 + ⌈i/2⌉ − ⌊i/2⌋)
1

2

(
i

⌊i/2⌋

)
q⌊i/2⌋q̂⌈i/2⌉.

Pr(majority cheats| i replies received):

ci =

i∑

j=⌈i/2⌉+1

(
i

j

)
qj q̂i−j

+ (1 + ⌈i/2⌉ − ⌊i/2⌋)
1

2

(
i

⌈i/2⌉

)
q⌈i/2⌉q̂⌊i/2⌋.

Pr(master obtains correct answer):

Psucc =

n∑

i=k

ri (pA + (1 − pA)hi) (2)

E(utility of master):

UM = −
k−1∑

i=0

ri · MCS +

n∑

i=k

ri

(
pAαi + (1 − pA)βi

)
(3)

where,

αi = MBR − MCA − nd(pα + pρpH)MCY

βi = MBRhi − MPWci − MCYγi
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and where,γi = 0 for R∅, γi = i for Ra, and forRm is,

γi =

i∑

j=⌈i/2⌉+1

(
i

j

)
j(q̂jqi−j + qj q̂i−j)

+ (1 + ⌈i/2⌉ − ⌊i/2⌋)
1

2

(
i

⌈i/2⌉

)
⌈i/2⌉(q̂⌈i/2⌉q⌊i/2⌋ + q⌈i/2⌉q̂⌊i/2⌋).

3.2.2 General Equilibria Conditions

Recall from Section 2.4 that Equation (1) states the conditions
we want to study for each playeri. In particular, as discussed
there, we want∆UHC ≥ 0 and∆UHN ≥ 0.

The components of the vectors denoted byw• in (1)
correspond to the different payoffs received by the given
worker for each of the various events that may outcome from
the game when the worker has chosen strategy•, and the
components of the vectors denoted byπ• correspond to the
probabilities that those events occur. Their detail valuesare
given in Tables 4, 5, and 6; Table 7 lists the used notation.
These conditions are defined so that a pure NE wherepH = 0
is precluded.

3.2.3 Analysis Based on the Worker-type Distribution

Appropriate strategies to carry out the computation with the
desired probability of success under the free rationals and
guided rationals scenarios are considered in this section.It is
important to stress again that, in order to obtain a mechanism
that is useful for any of those scenarios we do not restrict
ourselves to a particular instance of payoffs or reward models
leaving those variables as parameters. Thus, we focus our
study here on how to choosepA to have the probability of
success bounded by1 − ε for each of the reward models
assuming that the payoffs have already been chosen by the
master or are fixed exogenously. For settings where payoffs
and reward models are a choice of the master, its utility can
be easily maximized choosing those parameters conveniently
in Equation 3, as demonstrated in Section 4.

Although known, the worker-type distribution is assumed
to be arbitrary. Likewise, the particular value ofε is arbitrary
given that it is an input of the problem. Finally, although the
priority is to obtainPsucc ≥ 1− ε, it is desirable to maximize
the utility of the master under such restriction. Therefore, as
it can be seen in Figure 3, the protocol the master runs for
choosingpA takes into account both the free rationals and
guided rationals scenarios as discussed in Section 3.1.

We now proceed to analyze the different cases, first consid-
ering the free rationals scenario and then the guided rationals
one.

3.2.3.1 Free Rationals.: Here we study the various cases
where the behavior of rational workers does not need to be
enforced. As mentioned before, the main goal is to carry out
the computation obtaining the correct output with probability
at least1−ε. Provided that this goal is achieved, it is desirable
to maximize the utility of the master. Hence if, for a given
instance of the problem, the expected utility of the master
utilizing the mechanism presented is smaller than the utility of
just settingpA big enough to guarantee the desired probability
of correctness, independently of the outcome of the game, the

latter is used. We establish this observation in the following
lemma.

Lemma 1. In order to guaranteePsucc ≥ 1− ε, it is enough
to setpA = (1 − ε)

/ ∑n
i=k ri, makingpN = 1.

Proof: Conditioning Equation 2 to be≥ 1−ε, it is enough

to makepA ≥
1 − ε∑n
i=k ri

. Given that
∑n

i=k ri is the probability

thatk or more replies are received, it is minimized whenpN =
1. Therefore, the claim follows.

We consider now pessimistic worker-type distributions, i.e.,
distributions wherepµ is so large that, even if all rationals
choose to be honest, the probability of obtaining the correct
answer is too small. Hence, the master has to audit with a
probability big enough, perhaps bigger than the minimum
needed to ensure that all rationals are honest. Nevertheless,
for suchpA, rational workers still might use some NE where
pH < 1. Thus, the worst case forPsucc has to be assumed.
Formally,

Lemma 2. In order to guaranteePsucc ≥ 1− ε, it is enough
to setpA = 1 − ε

/∑n
i=k rici, makingpC = 1 and pN = 0.

Proof: Conditioning Equation 2 to be≥ 1 − ε, pA ≥

1− ε
/ n∑

i=k

rici. Given that
∑n

i=k rici is the probability thatk

or more replies are received and the majority of them cheat,
it is maximized whenpC = 1 (hence,pN = 0). Therefore, the
claim follows.

Now, we consider cases where no audit is needed to achieve
the desired probability of correctness. I.e., we study conditions
under the assumption thatpA = 0. The first case occurs when
the type-distribution is such that, even if all rational workers
cheat, the probability of having a majority of correct answers
is at least1 − ε. A second case happens when the particular
instance of the parameters of the game force a unique NE
such that rationals are honest, even if they know that the result
will not be audited. We establish those cases in the following
lemma.

Lemma 3. If any of the following holds:

•
∑n

i=k rihi ≥ 1 − ε makingpC = 1 and pN = 0; or
•

∑n
i=k rihi ≥ 1−ε makingpC = 0 andpN = 0 and there

is a unique NE forpH = 1 and pA = 0,

then, in order to guaranteePsucc ≥ 1− ε, it is enough to set
pA = 0.

Proof: Conditioning Equation 2 to be≥ 1 − ε under the
assumption thatpA = 0, it is enough

n∑

i=k

rihi ≥ 1 − ε. (4)

To find the condition for the case where even if all rationals
cheat the probability of success is big enough, we replace
pC = 1 and pN = 0 in Eq.(4). For the condition when the
NE corresponds to somepC < 1, we observe the following.
Replacing in∆UHC and ∆UHN for each reward model the
value pA = 0, it can be shown that∆UHC(pC , pA = 0) is
non-increasing in the intervalpC ∈ [0, 1] for all three reward
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Rm Ra R∅

wAR
C −WPC −WPC −WPC

wC wCR
C WBY WBY 0

wHR
C 0 WBY 0

wX bR
C 0 0 0

wAR
H WBY − WCT WBY − WCT WBY − WCT

wH wCR
H −WCT WBY − WCT −WCT

wHR
H WBY − WCT WBY − WCT −WCT

wX bR
H −WCT −WCT −WCT

wN wXX
N 0 0 0

TABLE 4: Payoff vectors. Refer to Table 7 for notation.

πAR
C dpA

πC πCR
C

d(1 − pA)
∑n−1

i=0

(
n−1

i

)
rir̂n−1−i

( ∑i
j=⌈i/2⌉

(
i
j

)
qj q̂i−j +

(
⌈i/2⌉ − ⌊i/2⌋

)
1
2

(
i

⌊i/2⌋

)
q⌊i/2⌋q̂⌈i/2⌉

)

πHR
C

d(1 − pA)
∑n−1

i=0

(
n−1

i

)
rir̂n−1−i

( ∑⌊i/2⌋−1
j=0

(
i
j

)
qj q̂i−j +

(
⌈i/2⌉ − ⌊i/2⌋

)
1
2

(
i

⌊i/2⌋

)
q⌊i/2⌋q̂⌈i/2⌉

)

πX bR
C d1(1 − d2)

πAR
H dpA

πH πCR
H

d(1 − pA)
∑n−1

i=0

(
n−1

i

)
rir̂n−1−i

( ∑i
j=⌈i/2⌉+1

(
i
j

)
qj q̂i−j +

(
⌈i/2⌉ − ⌊i/2⌋

)
1
2

(
i

⌊i/2⌋

)
q⌈i/2⌉q̂⌊i/2⌋

)

πHR
H

d(1 − pA)
∑n−1

i=0

(
n−1

i

)
rir̂n−1−i

( ∑⌊i/2⌋
j=0

(
i
j

)
qj q̂i−j +

(
⌈i/2⌉ − ⌊i/2⌋

)
1
2

(
i

⌈i/2⌉

)
q⌈i/2⌉q̂⌊i/2⌋

)

πX bR
H d1(1 − d2)

πN πXX
N d1

TABLE 5: Probability vectors for the time-based mechanism.Refer to Table 7 for notation.
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πAR
C dpA

∑n−1
i=k−1

(
n−1

i

)
rir̂n−1−i

πC πCR
C

d(1 − pA)
∑n−1

i=k−1

(
n−1

i

)
rir̂n−1−i

( ∑i
j=⌈i/2⌉

(
i
j

)
qj q̂i−j +

(
⌈i/2⌉ − ⌊i/2⌋

)
1
2

(
i

⌊i/2⌋

)
q⌊i/2⌋q̂⌈i/2⌉

)

πHR
C

d(1 − pA)
∑n−1

i=k−1

(
n−1

i

)
rir̂n−1−i

( ∑⌊i/2⌋−1
j=0

(
i
j

)
qj q̂i−j +

(
⌈i/2⌉ − ⌊i/2⌋

)
1
2

(
i

⌊i/2⌋

)
q⌊i/2⌋q̂⌈i/2⌉

)

πX bR
C d1(1 − d2) + d

∑k−2
i=0

(
n−1

i

)
rir̂n−1−i

πAR
H dpA

∑n−1
i=k−1

(
n−1

i

)
rir̂n−1−i

πH πCR
H

d(1 − pA)
∑n−1

i=k−1

(
n−1

i

)
rir̂n−1−i

( ∑i
j=⌈i/2⌉+1

(
i
j

)
qj q̂i−j +

(
⌈i/2⌉ − ⌊i/2⌋

)
1
2

(
i

⌊i/2⌋

)
q⌈i/2⌉q̂⌊i/2⌋

)

πHR
H

d(1 − pA)
∑n−1

i=k−1

(
n−1

i

)
rir̂n−1−i

( ∑⌊i/2⌋
j=0

(
i
j

)
qj q̂i−j +

(
⌈i/2⌉ − ⌊i/2⌋

)
1
2

(
i

⌈i/2⌉

)
q⌈i/2⌉q̂⌊i/2⌋

)

πX bR
H d1(1 − d2) + d

∑k−2
i=0

(
n−1

i

)
rir̂n−1−i

πN πXX
N d1

TABLE 6: Probability vectors for the reply-based mechanism. Refer to Table 7 for notation.

w••
• payoff of event• ∧ • ∧ •

π••
◦ probability of event• ∧ •, conditioned on the event◦

ℓ••j the worker has choosen strategyj ∈ {C,H,N}
ℓA•
• the master audits

ℓC•• the master does not audit and the majority cheats
ℓH•
• the master does not audit and the majority does not cheat

ℓ•R• the communication is successful and the master receives enough replies

ℓ•
bR

• the communication fails or the master does not receive enough replies
X true (equivalent to “any value”)

TABLE 7: Notation for Tables 4, 5, and 6;ℓ ∈ {w, π}.

models, and∆UHN (pN , pA = 0) is non-increasing in the
intervalpN ∈ [0, 1] for all three reward models as well. Thus,
if ∆UHC(pC = 1, pA = 0) ≥ 0 and∆UHN=1(pN = 1, pA =
0) ≥ 0, the rate of growth of∆UHC and ∆UHN implies a
single pure NE atpH = 1. Then, replacingpC = 0 andpN = 0
in Eq.(4) the claim follows.

3.2.3.2 Guided Rationals.: We now study worker-type
distributions such that the master can take advantage of a
specific NE to achieve the desired bound on the probability of
success. Given that the scenario where all players cheat was
considered in the free rationals scenario, here it is enoughto
study∆UHC and∆UHN for each reward model, conditioning
∆UHC(pC = 1) ≥ 0 and ∆UHN (pN = 1) ≥ 0 to
obtain appropriate values forpA. As proved in the following
lemma, the specific valuepA assigned depends on the reward
model, and it is set so that a unique pure NE is forced at

pH = 1 (rendering the rationals truthful), and the correctness
probability is achieved.

Lemma 4. If
∑n

i=k rihi < 1−ε makingpC = 1 andpN = 0,
and

∑n
i=k rihi ≥ 1 − ε makingpC = 0 and pN = 0 then, in

order to guaranteePsucc ≥ 1 − ε, it is enough to setpA as
follows.

For R∅,

pA =
WCT

d2WBY
∑n−1

i=k−1 r′i
(5)
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For Ra,

pA =
WCT

d2(WBY + WPC)
∑n−1

i=k−1 r′i
(6)

d2WBY

n−1∑

i=k−1

r′i ≥ WCT (7)

For Rm,

pA =
WCT /d2 − WBY

∑n−1
i=k−1 r′i(h

′
i − c′i)

(WBY + WPC)
∑n−1

i=k−1 r′i − WBY

∑n−1
i=k−1 r′i(h

′
i − c′i)

(8)

pA =
WCT /d2 − WBY

∑n−1
i=k−1 r′ih

′
i

WBY

∑n−1
i=k−1 r′i − WBY

∑n−1
i=k−1 r′ih

′
i

(9)

Where
r′i =

(
n−1

i

)
rir̂n−1−i,

h′
i =

∑⌊i/2⌋
j=0

(
i
j

)
qj q̂i−j +

(
⌈i/2⌉ − ⌊i/2⌋

)
1
2

(
i

⌈i/2⌉

)
q⌈i/2⌉q̂⌊i/2⌋,

c′i =
∑i

j=⌈i/2⌉

(
i
j

)
qj q̂i−j +

(
⌈i/2⌉ − ⌊i/2⌋

)
1
2

(
i

⌊i/2⌋

)
q⌊i/2⌋q̂⌈i/2⌉,

for pC = 1 in conditions (6) and (8), and forpN = 1 in
conditions (5), (7) and (9).

Proof: We compute the general conditions for each re-
ward model from Equations (1). (Refer to Tables 4, 5, and 6
for details.) Recall that, for succinctness, the analysis of both
mechanisms is presented for a number of repliesk, where
k = 1 for the time-based mechanism andk = nd(pα +

pµ)
(
1 −

√
2 ln(1/ζ)

nd(pα+pµ)

)
for the reply-based mechanism.

Conditions for reward modelR∅:

∆UHC = dpA(WBY + WPC)

n−1∑

i=k−1

r′i − WCT d1 ≥ 0

∆UHN = dpAWBY

n−1∑

i=k−1

r′i − WCT d1 ≥ 0

Thus, it is enough to use the latter condition only.

Conditions for the reward modelRa:

∆UHC = dpA(WBY + WPC)

n−1∑

i=k−1

r′i − WCT d1 ≥ 0

∆UHN = dWBY

n−1∑

i=k−1

r′i − WCT d1 ≥ 0

Conditions for the reward modelRm:

∆UHC = dpA(WBY + WPC)

n−1∑

i=k−1

r′i − d1WCT

+ d(1 − pA)WBY

n−1∑

i=k−1

r′i(h
′
i − c′i) ≥ 0 (10)

∆UHN = dpAWBY

n−1∑

i=k−1

r′i − d1WCT

+ d(1 − pA)WBY

n−1∑

i=k−1

r′ih
′
i ≥ 0 (11)

Notice that
∑n−1

i=k−1 r′ih
′
i is the probability that at least

k − 1 other workers reply, and the majority of them is honest
and

∑n−1
i=k−1 r′ic

′
i is the probability that at leastk − 1 other

workers reply, and the majority of them cheat. It can be seen
that, whenpN is fixed, the equilibria condition 10 for this
model is non-increasing onpC ∈ [0, 1 − pN ] as follows.
Only

∑n−1
i=k−1 r′i(h

′
i − c′i) depends onpC in this condition.

When pC increases andpN is fixed, the probability that the
majority of repliers is honest decreases. On the other hand,
the probability that the majority cheats increases withpC , but
given that it is negated the slope is negative. Likewise, it can
be seen that, whenpC is fixed, the equilibria condition 11 for
this model is non-increasing onpN ∈ [0, 1 − pC ] as follows.
Only

∑n−1
i=k−1 r′ih

′
i depends onpN in this condition. WhenpN

increases andpC is fixed, the probability that the majority of
repliers is honest decreases. Therefore, replacing in the above
conditions for∆UHC(pC = 1) ≥ 0 and∆UHN (pN = 1) ≥ 0
the claim follows.

3.3 Correctness and Optimality

The following theorem proves the correctness of the mech-
anisms presented in Section 3.1. Its proof is the simple
aggregation of the results presented in Section 3.2.

Theorem 5. For any given system parameters, the values of
pA chosen after running the protocol depicted in Figure 3
satisfy thatPsucc ≥ 1 − ε.

We now argue that only two approaches are feasible to
bound the probability of accepting an incorrect value. In this
respect, the strategy enforced by the mechanisms we designed
is optimal.

Theorem 6. In order to achievePsucc ≥ 1 − ε, the only
feasible approaches are either to enforce a NE wherepH = 1
or to use apA as shown in Lemma 2.

Proof: It can be seen as in Lemma 4 that∆UHC is non-
increasing forpC ∈ [0, 1 − pN ] and∆UHN is non-increasing
for pN ∈ [0, 1 − pC ]. Then, the only NE that can be made
unique corresponds topH = 1. Consider any other NE where
pH < 1 (which is not unique). ThenpC = 1 and pN = 1
are also both NE. In face of more than one equilibrium to
choose from, different players might choose different ones.
Thus, for the purpose of a worst-case analysis with respect to
the probability of correctness, it has to be assumed the worst
case, i.e.pA has to be set as in Lemma 2.

3.4 Computational Issues

In Sections 3.1 and 3.2.3 we discussed a protocol for the mas-
ter to choose appropriate values ofpA for different scenarios.
A natural question is what is the computational cost of this
protocol. In addition to simple arithmetical calculations, there
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are two kinds of relevant computations required: binomial
probabilities and verification of conditions for Nash equilibria.
Both computations aren-th degree polynomial evaluations and
can be carried out using any of the well-known numerical
tools [34] with polynomial asymptotic cost. These numerical
methods yield only approximations, but all these calculations
are performed either to decide in which case the parameters fit
in, or to assign a value topA, or to compare utilities. Given
that these evaluations and assignments were obtained in the
design as inequalities or restricted only to lower bounds, it is
enough to choose the appropriate side of the approximation in
each case.

Regarding the computational resources that rational workers
require to carry out these calculations, notice that the choice
of pA in the mechanisms either yields a unique NE inpH = 1
or does not take advantage of the behavior of rational workers
(Theorem 6). Furthermore,pC = 1 was assumed as a worst
case (with respect to probability of success). Notice from
Tables 4–7 and the equilibrium conditions (eq. (1)) that setting
WPC = WBY = 0 for the cases where we do not use the
behavior of the rational workers,pC = 1 is a dominant strategy.
(Recall thatWBY and WPC can be chosen by the master.)
Thus, the mechanisms are enriched so that rational workers
are enforced to use always a unique NE, eitherpC = 0 or
pC = 1.

4 PUTTING THE MECHANISMS INTO ACTION

In this section two realistic scenarios in which the master-
worker model considered could be naturally applicable are
proposed. For these scenarios, we determine how to choose
pA andn in the case where the behavior of rational workers
is enforced, i.e., under the conditions of Lemma 4. Again, for
succinctness, the analysis of both mechanisms is presentedfor
a number of repliesk.

4.1 SETI-like Scenario

The first scenario considered is a volunteering computing
system such as SETI@home, where users accept to donate part
of their processors idle time to collaborate in the computation
of large tasks. In this case, we assume that workers incur in
no cost to perform the task, but they obtain a benefit by being
recognized as having performed it (possibly in the form of
prestige, e.g., by being included on SETI’s top contributors
list). Hence, we assume thatWBY > WCT = 0. The master
incurs in a (possibly small) costMCY when rewarding a
worker (e.g., by advertising its participation in the project).
As assumed in the general model, in this model the master
may audit the values returned by the workers, at a cost
MCA > 0. We also assume that the master obtains a benefit
MBR > MCY if it accepts the correct result of the task, and
suffers a costMPW > MCA if it accepts an incorrect value.
Also it is assumed, as stressed before, thatd > 0 (there is
always a chance that the master will receive a reply from the
worker).

Plugging WCT = 0 in the lower bounds of Lemma 4
it can be seen that, for this scenario and conditions, in
order to achieve the desiredPsucc, it is enough to setpA

arbitrarily close to0 for all three models. So, we want to
chooseδ ≤ pA ≤ 1, with δ → 0, so that the utility of
the master is maximized. Using calculus, it can be seen that
UM is monotonic in such range, but the growth of such
function depends on the specific instance of the master-payoff
parameters. Thus, it is enough to choose one of the extreme
values ofpA. Replacing in Equation 3, we get

UM ≈ −
k−1∑

i=0

riMCS +

n∑

i=k

ri max{αi, βi}, (12)

wherepN = 0 andαi, βi as in Equation (3). The approxima-
tion given in Equation (12) provides a mechanism to choose
pA and n so thatUM is maximized forPsucc ≥ 1 − ε for
any given worker-type distribution, reward model, and set of
payoff parameters in the SETI scenario.

4.2 Contractor Scenario

The second scenario considered is a company that buys
computational power from Internet users and sells it to
computation-hungry costumers, such as Amazon’s Mechanical
Turk [5]. In this case the company pays the users an amount
S = WBY = MCY for using their computing capabilities,
and charges the consumers another amountMBR > MCY

for the provided service. Since the users are not volunteersin
this scenario, we assume that computing a task is not free for
them (i.e.,WCT > 0), and that rational workers must have
incentives to participate (i.e.,U > 0). As in the previous case,
we assume that the master verifies and has a cost for accepting
a wrong value, such thatMPW > MCA > 0. Also as before
we assume thatd > 0 andpN = 0.

As mentioned before, using calculus it can be seen thatUM

is monotonic onpA but the growth depends on the specific
instance of master-payoff parameters. Thus, the maximum
expected utility can be obtained for one of the extreme values.
Trivially, 1 is an upper bound forpA. For the lower bound,pA
must be appropriately bounded so that the utility of rational
workers is positive andPsucc ≥ 1 − ε. For example, for the
R∅ model, using Lemma 4 and conditioningU > 0, we get,

UM = −
k−1∑

i=0

riMCS

+
n∑

i=k

ri max

{
αi, βi + (αi − βi)

WCT

d2WBY
∑n−1

i=k−1 r′i

}

(13)

As in the previous section, the approximation given in
Equation (13), and similar equations for the other reward
models which are omitted for clarity, provide a mechanism to
choosepA andn so thatUM is maximized forPsucc ≥ 1− ε
for any given worker-type distribution, reward model, and set
of payoff parameters in the contractor scenario.

4.3 Graphical Characterization of Master’s Utility

In this section, to provide a better insight of the usabilityof
our mechanisms and to illustrate interesting trade-offs between
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reliability and cost, we present a graphical characterization of
the master’s utility, both in the SETI-like and the Contractor
settings.

4.3.1 SETI-like Scenario
We begin by considering the timed-based mechanism, then
the reply-based one, and then the special case of reliable
communication. Recall that the only knowledge available on
the workers type is a probability distribution. Such knowledge
could be obtained statistically from existing master-worker
applications such as [16], [19]. To err on the safe side, we
overestimatepµ and underestimatepα with respect to those
statistics.

4.3.1.1 Timed-based Mechanism.: For this mechanism,
we considerMCA = 1 as our normalizing parameter and
we take MPW = 100, MCS = 10 and MBR = 4 as
realistically large enough values (with respect toMCA = 1).
Our experiments concluded that using other values for these
parameters do not change qualitatively the results. We choose
pµ ∈ [0, 0.5] as we believe this is a reasonable interval. As
it can be seen from the empirical evaluations of SETI-like
systems reported in [16] and [19],pµ is less than0.1. So we
took a larger range onpµ to examine its general impact on the
utility of the master. We choose[0, 0.1] as the range ofMCY ,
to reflect the small cost incurred by the master for maintaining
a workers contribution list.

We consider three plot scenarios were we varypµ andMCY

as discussed above:
(a) We fix d = 0.9 and n = 75 and compute the master’s
utility for all three reward models. The results are depicted in
Figure 4(a).
(b) We fix n = 75, we consider theRm model and compute
the master’s utility overd = 0.5, 0.9, 0.99. See Figure 4(b).
(c) We fix d = 0.9, we consider theRm model and we
compute the master’s utility overn = 15, 55, 75. The results
are depicted in Figure 4(c).

In all plots we can notice a threshold where the behavior of
the utility changes; this depicts the transition point in which
the master’s strategy changes from non-auditing to auditing.

In Figure 4(a) we see that for all the reward models, the
master does not audit untilpµ gets around0.35. This behavior
is reasonable, since in the presence of more malicious workers
the master must audit to ensure correctness. Once auditing,
the utility of the master becomes the same in all three reward
model, as the same reward/penalize scheme is deployed. As
expected, when the master does not audit, it gets its higher
utility from R∅ and its lower utility fromRa. The utility of
the master forRm seems to balance nicely between the other
two reward models. This may suggest that theRm model is
the most stable among the three. A final observation is that as
MCY gets bigger, forRm andRa, the utility of the master
gets smaller; this is natural, since by increasing the payment
to the workers the master decreases its own benefit.

In Fig 4(b) we observe that for smaller values ofd we
get a higher utility for the master. This is because the master
receives fewer replies, and hence it rewards a smaller number
of workers. As before, for anyd, asMCY increases,UM drops.
An important observation is that ford = {0.9, 0.99} and for

(a)

(b)

(c)

Fig. 4: Time-based Mechanism in the SETI-like scenario:
Master’s utility for the three plot scenarios: (a) The upper
plane corresponds toR∅, the middle toRm, and the third to
Ra. (b) The upper plane corresponds tod = 0.5, the middle
to d = 0.9, and the third tod = 0.99. (c) The upper plane
corresponds ton = 15, the middle ton = 55, and the third to
n = 75.

large values ofMCY , the master’s utility is higher as it audits;
the cost of rewarding the workers increases so much, that it
is better for the master to audit.

In Figure 4(c) we notice that the utility of the master
decreases as the number of workers increases; again, this is
due to the reward it must provide to the workers. Observer
that for n = 15, the master chooses to change its strategy
to auditing for a smaller value ofpµ; this is because as the
master gets fewer replies, the probability of having a majority
of incorrect replies gets bigger for smaller values ofpµ.

4.3.1.2 Reply-based Mechanism.: We now turn our
attention to the reply-based mechanism. Our aim is to observe
how the minimum number of replies (k) is affected by the
number of workers chosen by the master (n) and the prob-
ability distribution of rational workers (pρ). Furthermore, we
depict howk is affecting the utility of the master. As with
the previous mechanism, we setMCA = 1, MPW = 100,
MCS = 10 and MBR = 4. In the second scenario plotted,
we choose a majority of rational workers to depict their effect
on the master’s utility.

We consider two plot scenarios:
(a) We varyn from 65 to 95,pρ for 0 to 1, and we compute
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(a)

(b)

Fig. 5: Plots of the SETI-like Scenario for the Reply-based
Mechanism.

the appropriatek that the master should choose for eachn.
The results are depicted in Figure 5(a).
(b) We use theRm, we fix pρ = 0.6, d = 0.9, MCY =
0.05, we varyk and we compute the utility of the master. See
Figure 5(b).

In Figure 5(a) we observe that asn increases, naturally,
k increases as well. An interesting observation is that aspρ

increases,k decreases. This is explained as follows:k is
computed based on the number of malicious and altruistic
workers that exist (since they always reply). Therefore, as
these become fewer,k is naturally reduced. In Figure 5(b)
we observe how the utility of the master is affected byk; ask
increases, the utility of the master decreases. This is because
as the master gets more replies, it has to reward more workers.

4.3.1.3 Reliable Network.: We also provide the graphi-
cal characterization for the master’s utility for the case that
the communication is reliable, that is,d = 1. From this
simpler case we can better study the trade-offs between
reliability and cost without the complications of unreliable
communication and workers not replying. Since the master
receives all replies from the workers, the two mechanisms
conceptually become the same (in other words, there is no
sense to study two mechanisms under the knowledge that all
messages are received). Notice that in this caseMCS is not
applicable, hence its value is set to zero. As before, we set
MCA = 1 andMPW = 100. We plot for valuespµ ∈ [0, 0.5]
and MCY ∈ [0, 0.1]. We consider three scenarios, applying
the R∅ model and varyingpµ andMCY as discussed above.
In particular:
(a) We fix n=5 and compute the utility of the master for
MBR = {1, 4}; the results are depicted in Figure 6(a).
(b) We fix n=15 and compute the utility of the master for

(a)

(b)

(c)

Fig. 6: Plots of the SETI-like scenario ford = 1. The upper
plane corresponds toMBR = 4 the lower plane toMBR = 1
and the red flat plane toUM = 0. (a) n = 5. (b) n = 15. (c)
n = 75.

MBR = {1, 4}; the results are shown in Figure 6(b).
(c) We fix n=75 for both values ofMBR mentioned earlier;
Figure 6(c) depicts the corresponding results.

All plots include a reference surface planeUM = 0. Here
we have only presented theR∅ model because it is the simplest
one. However, for the other reward models the plots depict
more or less the same behavior, with the difference that before
the threshold point (where the master does not audit) the utility
of the master also depends onMCY (e.g. Figure 4(c)).

In Figure 6 we observe, as expected, that the higher the
value ofMBR, the higher the utility of the master is, without
this affecting the shape of the plot. In all plots we see a
threshold where the behavior of the utility changes; this is
the transition point where the master’s strategy changes from
non-auditing to auditing. For all three plots in Figure 6, we
generally observe a smaller utility when the master audits than
when it does not. Recall that we apply theR∅ model when the
master follows a non-auditing strategy; thus the master rewards
the honest workers only when it audits and this decreases
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its own utility proportionally to the value of payment to the
workers (MCY ). Another interesting observation is the sharp
declining curve before the threshold (the master follows a
non-auditing strategy). This curve reflects the fact that aspµ

increases the probability of the master getting an incorrect
reply increases, and thus the utility of the master decreases
accepting an incorrect reply. Notice that this declining curve
is much sharper in Figure 6(c), since the larger the number of
workers the more acute the impact of a highpµ.

A significant difference between the number of chosen
workers, is the threshold value ofpµ where the master changes
its strategy to auditing. The larger the number of workers, the
bigger the transition value (pµ value) that the master starts to
audit. This is due to the large reward it must provide when
it audits, combined with the fact that having more workers
increases the probability of getting the correct reply. We also
notice thatUM increases slightly after the threshold, aspµ

increases. Although this behavior is not expected, we believe
it is because the master has resolved to auditing in order to
guarantee getting the correct value, and thus the fewer honest
workers it has to reward, the greater its benefit.

4.3.2 Contractor Scenario
We now consider the contractor scenario (e.g., Amazon’s
Mechanical Turk). Recall that in this settingWCT > 0, and
the workers are willing to participate only if their utilityif
positive (they are not volunteers as in the SETI-like setting).
For this scenario we focus on the special case of reliable
communication to illustrate how the cost for computing the
task (WCT ) affects the trade-offs between reliability and cost
(which we could not study in the SETI-like setting).

Figure 7 illustrates the utility of the master for theR∅ model
and for a fix value ofS = 0.8 (taken in analogy withMBR);
we vary pµ ∈ [0, 0.5] and WCT ∈ [0, S]. Notice that the
workers’ cost for computing the task can not exceed their
payment. In Figure 7(a) we fix n=7, in Figure 7(b) we fix
n=15 and in Figure 7(c) we fix n=75. For each of these plots
we have two planes, one for each value ofMBR = {1, 4} and
a reference surface planeUM = 0 (similarly to the plots for
the reliable communication case in the SETI-like setting).

Observe that a threshold point exists where the master
changes its strategy from auditing with some probability (that
guaranties the utility of the rational workers is positive)to
auditing. We generally observe that (not surprisingly) for
values ofpµ andWCT close to zero we get the highest utility.

In all plots in Figure 7 when the master audits with some
probability (before the threshold point) observe that asWCT

increases, the utility of the master decreases for everypµ.
This is a classical example of the trade-off between reliability
and cost. The largerWCT is, the higher the probability of
pA should be to guarantee correctness, thus the utility of the
master decreases.

Another observation (especially in Figure 7(c)), is that
before the threshold value, aspµ increases, the utility of the
master increases, and then decreases for every value ofWCT

(except when close toWCT = 0 andWCT = S). Whenpµ

is increasing, the number of truthful workers decreases thus
the master has to reward less honest workers and so its utility

(a)

(b)

(c)

Fig. 7: Contractor Scenario plots for fixedS andd = 1. The
upper plane corresponds toMBR = 4 the lower plane to
MBR = 1 and the red flat plane toUM = 0. (a) n = 7.
(b) n = 15. (c) n = 75.

increases; recall that the master audits the answers with some
probability. On the other hand, when the value ofpµ increases
even more, the probability of having a majority of incorrect
answers is very large. So it is quite probable since the master
audits with some probability to get an incorrect result; thus its
utility decreases.

Naturally when the master audits, for every value ofWCT ,
as pµ increases so does its utility. Notice again that having
largerMBR does not affect the shape of the plots; the utility
of the master increases uniformly. For similar reasons as inthe
SETI-like setting, the threshold value (pµ value) increases for
larger number of workers. Finally, observe the big decreasein
the master’s utility as the number of workers grows. This is
due to the large payments that the master has to give to large
groups of workers to guarantee reliability.

5 DISCUSSION

In this paper we have combined a classical distributed com-
puting approach (voting) with a game-theoretic one (cost-
based incentives and payoffs). This has led to designing and
analyzing two mechanisms that enable a master process to
reliably obtain a result despite the co-existence of malicious,
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altruistic and rational workers, and the underlying communi-
cation unreliability.

Several future directions emanate from this work. For ex-
ample, in this work we have considered a cost-free, weak
version of worker collusion (all rational cheaters and malicious
workers return the same incorrect result). It would be inter-
esting to study more involved collusions, as the ones studied
in [2] or [13]. A possible approach would be to analyze a
game among groups of colluders as in [22]. In this work,
we have considered a single-task one-shot protocol, in which
the master decides which result to accept in one round of
message exchange with the workers. It would be interesting
to consider several task waves over multiple rounds assuming
that the workers’ behavior changes over time, that is, view
the computation as anEvolutionary Game[33], [58]. The
master could use the knowledge gained in the previous rounds
to increase its utility and its probability of success in future
rounds. Issues such as workeraspiration level[10] could be
taken into account.
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