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Abstract —We consider Internet-based master-worker computations, where a master processor assigns, across the Internet, a
computational task to a set of untrusted worker processors, and collects their responses. Examples of such computations are the
“@home” projects such as SETI. In this work various worker behaviors are considered. Altruistic workers always return the correct
result of the task, malicious workers always return an incorrect result, and rational workers act based on their self interest. In a massive
computation platform, such as the Internet, it is expected that all three type of workers coexist. Therefore, in this work we study Internet-
based master-worker computations in the presence of malicious, altruistic, and rational workers. A stochastic distribution of the workers
over the three types is assumed. In addition, we consider the possibility that the communication between the master and the workers is
not reliable, and that workers could be unavailable. Considering all the three types of workers renders a combination of game-theoretic
and classical distributed computing approaches to the design of mechanisms for reliable Internet-based computing. Indeed, in this
work we design and analyze two algorithmic mechanisms to provide appropriate incentives to rational workers to act correctly, despite
the malicious workers’ actions and the unreliability of the communication. Only when necessary, the incentives are used to force the
rational players to a certain equilibrium (which forces the workers to be truthful) that overcomes the attempt of the malicious workers to
deceive the master. Finally, the mechanisms are analyzed in two realistic Internet-based master-worker settings, a SETI-like one and
a contractor-based one, such as Amazon’s Mechanical Turk. We also present plots that illustrate the trade-offs between reliability and
cost, under different system parameters.

Index Terms —Algorithmic Mechanism design, Internet-based Computing, Reliability and Fault-tolerance, Untrusted workers, Unreli-
able communication.
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1 INTRODUCTION SETI, the master attempts to minimize the impact of these
1.1 Motivation and Prior Work bogus r_esults b_y assigning the same task to several Wonkérs.a
} . ) comparing their outcomes (that is, redundant task allonati
As an alternative to expensive supercomputing parallel ma-employed [6]), but there are also other methods [14],,[36]
chines, the Internet has recently become feasible as a cqgy],
putational platform for processing complex computational This problem has recently been studied under two different
jobs. Several Internet-oriented systems and protocol® hafews: from a “classical” distributed computing view [20],
been designed to operate on top of this global computati[gy]’ [40], [54] and from a game-theoretic view [21], [60].
infrastructure; examples include Grid systems [17], [$fi6 ynder the first view, the workers are classified as either
“@home” projects [6], such as SETI [38], Amazon's Memgjicious (Byzantine) oraltruistic, based on a predefined
chanical Turk [5], and peer-to-peer computing—-P2PC [23]ehavior. The malicious workers have a “bad” behavior which
[60]. Although the potential is great, the use of Internefesyits in reporting an incorrect result to the master. This
based computing is limited by the untrustworthy nature @fenavior is, for example, due to a hardware or a software erro
the platform’s components [6], [26], [31]. Let us take SEThr que to an ill-state of the worker such as being a wrongdoer
as an example. In SETI, data is distributed for processiq}gemiona“y Altruistic workers exhibit a “good” behai
to millions of voluntary machines around the world. At gnat is, they compute and return the correct task resulegtal
conceptual level, in SETI there is a machine, call it tinaster simply “result” throughout the paper). From the perspect
that sends jobs, across the Internet, to these computés, g& master, the altruistic workers are the “correct” onesdés
them theworkers These workers execute and report back thfjs view, “classical” distributed computing models ardiuied
result of the task computation. However, these workers #&€g., a fixed bound on the probability of a worker being
not trustworthy, and hence might report incorrect resufts. malicious is assumed) and typical malicious-tolerant ngpti
protocols or distributed verification mechanisms are desig
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the necessary incentives so that processors’ interestiseste platform, yielding mechanisms that are resilient to uneesi
served by acting “correctly”. In particular, the masterpdes worker behavior and uncertainty of reply. In particular our
some reward (resp. penalty) should a worker be honest (respntributions are as follows:

cheat). The design objective is for the master to force aelsi
unigueNash equilibrium(NE) [48], i.e., a strategy choice by
each worker such that none of them has incentive to change ite
That Nash equilibrium is the one in which the master achieves
a desired probability of obtaining the correct result.

The above views could complement one another, if a certain
computation includes only malicious and altruistic woskear
only rational workers. However, the pragmatic situatiorttos
Internet is different: all three types of workers might casé
in a given computation. One could assume that all workers
are rational but, for example, what if a software bug occurs
that makes a worker deviate from its protocol, and hence
compute and return an incorrect result? This worker is no
longer exhibiting a rational behavior, but rather an eroarssor
irrational one. From the master’s point of view such behavio
can be seen as malicious.

In this paper we consider the possibility that all three s/pe
of workers co-exist. Furthermore, we consider the possibil
that the communication between the master and workers is not
reliable. This communication uncertainty can either be gue
communication-related failures or due to workers beingvslo
in processing messages (or even crashing while doing so).
For instance, Heien at al. [31] have found that in BOINC
only around 5% of the workers are available more than 80%
of the time, and that half of the workers are available less
than 40% of the time. This fact, combined with the length
of the computation [35], justifies the interest of considgri
in the Internet-based master-worker framework the pdggibi
of workers not replying. We introduce the unreliability of
communication in our model assuming that a worker’s reply
is received by the master with some probability smaller than
1.

Since it is possible that a worker’s reply does not reach the
master, we also allow workers to abstain from the computatio
Imagine the situation where a rational worker returns the
correct result but its reply is not received by the mastemwas
explain in Section 2, in this case the master does not revaard t
worker, but the worker has incurred the cost of performireg th
task. Hence, it is natural to allow the workers to abstaimfro
replying, specially when the communication reliabilityldsv.

This strategy choice makes the task of the master even more
challenging, as it needs to provide the necessary incentive
encourage rational workers to reply and to do so truthfully,
even in the presence of low communication reliability.

1.2 Contributions

We study Internet-based master-worker computations under
the assumption that each worker’s behavior is either nualii
altruistic or rational. Furthermore, we also assume that a
worker’s output may never be received. The presence of
all three types of workers, naturally renders a combination
of game-theoretic and classical approaches to the design
of algorithmic mechanisms for distributed computing. Our
model captures the hardest shortcomings of an Internetbas
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We identify a collection of realistic payoff parame-
ters and reward models and we formulate the Internet-
based master-worker computation problem &agesian
game[30] (Section 2). We assume a probability distribu-
tion of workers among the worker types. The master and
the workers do not know the type of other workers, only
the probability distribution. The rational workers play a
game looking for a Nash Equilibrium, choosing to be
honest, cheat or abstain while the malicious and altruistic
workers have a predefined strategy, malicious cheat and
altruistic are honest. The master does not participate in
the game, it only designs the game to be played. The
communication reliability is modeled by a parametric
probability.

We develop and analyze two algorithms (a time-based
algorithm and a reply-based one) that provide incentives
to the rational workers to return the correct result, despit
the malicious workers’ actions and the communication
unreliability (Section 3). The algorithms are paramettize

in terms of a probability of auditingp4 (defined in
Section 2), and a parametric probability modeling

the communication reliability. Each of the algorithms
implements an instance of the Bayesian game. Under a
general worker-type probability distribution, we analyze
the master’s utility and probability of success (probapili

of obtaining the correct result) and identify the condison
under which the game has a unique NE.

The reason to enforceuniqueNE is to achieve correct-
ness taking advantage of the presence of rational players.
As we show in the proof of Theorem 6, if multiple NE
were allowed, choosing deterministically to cheat would
be also an equilibrium strategy. Thus, for the purpose
of a worst-case analysis with respect to the probability
of success, it would have to be assumed that rational
players choose to cheat, yielding the presence of rationals
irrelevant. The reason to aim for a NE at all is that,
although it is known that equilibria do not always yield
optimal solutions, it is a “safe” way for the rational
players to obtain high utility satisfaction [50, Chapter 1]
More importantly, a NE istable that is, once proposed,

it is against the interest of the players to individually
deviate.

Under specific worker-type probability distributions, we
design a protocol in which the master chooses the values
of p4 to guarantee a parametrized bound on the proba-
bility of success (Section 3). Once this is achieved, the
master also attempts to maximize its utility. This protocol
together with each of the above-mentioned algorithms
comprise a mechanism. Note that the mechanisms de-
signed (and their analyses) are general in that reward
models can either be fixed exogenously or be chosen by
the master. It is also shown that our mechanisms are the
only feasible approaches for the master to achieve a given



bound on the probability of success. for practicality). Recently, Li et al [42] developed a P2P
« Under the constraint of the bounded probability o$treaming application, called FlightPath, that providéggaly
success, we show how to maximize the master utilingliable data stream to a dynamic set of peers. FlightPath, a
in two real-world scenarios (Section 4). The first scespposed to the above-mentioned BAR-based works, is based
nario abstracts a system of volunteering computing liken mechanisms foapproximate equilibria[11], rather than
SETI [38]. The second scenario abstracts a contractstrict equilibria. In particularg-Nash equilibria are considered,
based application where a company buys computatiomalwhich rational players deviate if and only if they expezt t
power from Internet users and sells it to computatiodenefit by more than a factor ef As the authors claim, the
hungry consumers. One such application is Amazonisss restrictive nature of these equilibria enables theydesf
Mechanical Turk [5] where the master and the workeiacentives to limit selfish behavior rigorously, while itguides
can be in fact humans that contribute time for solvingufficient flexibility to build practical systems.
problems for profit. Gairing [25] introduced and studiethalicious Bayesian
« Finally, to provide a better insight on the usability ottongestion game3hese games extend congestion games [53]
our mechanisms, and to illustrate the trade-offs betweby allowing players to act in a malicious way. In particular,
reliability and cost, we have characterized the utility ofach player can either be rational or, with a certain prdibgbi
the master for the above-mentioned scenarios via plots by malicious (with the sole goal of disturbing the other
choosing system parameters as derived by empirical evalayers). As in our work, players are not aware of each
uations of master-worker Internet-based systems in [16fher’s type, and this uncertainty is described by a prditgbi
and [19]. distribution. Among other results, Gairing shows that,ikel
congestion games, these games do not in general possess
a Nash Equilibrium in pure strategies. Also he studies the
1.3 Related work impact of malicious types on the social cost (the overall
Prior examples of game theory in distributed computing irperformance of the system) by measuring the so-catécke
clude work on Internet routing [25], [39], [45], [52], reswe/- of Malice. This measure was first introduced by Moscibroda
facility location and sharing [24], [27], containment ofwses et al [47] to measure the influence of malicious behavior for
spreading [47], secret sharing [2], [29], P2P services[f&]], a virus inoculation game involving both rational (selfisimda
[43] and task computations [21], [60]. For more discussion analicious nodes. Alon et al. [4] studied the implications of
the connection between game theory and distributed compBtyesian ignorance.
ing we refer the reader to the surveys by Halpern [28] and byBesides investigating the co-existence of malicious and
Abraham, Alvisi and Halpern [1], and the book by Nisan afational players, also the co-existence of altruistic atibnal
al [50]. players has been considered. Hoefer and Skopalik [32] study
Eliaz [18] seems to be the first to formally study the cosongestion games with altruist players, assuming a level of
existence of Byzantine (malicious) and rational players. Haltruism 3; for each playeti: 5; = 0 being a pure selfish and
introduces the notion of-fault-tolerant Nash Equilibriunas 3; = 1 being a pure altruist player. The work of Kuznetsov and
a state in which no player benefits from unilaterally dewigti Schmid [41] describes arbitrary social relationships leetw
despite up tok players acting maliciously. He demonstrateplayers through a social range matrix. Their work considers
this concept by designing simple mechanisms that implemehe existence of different degrees of rationality or atnuj and
the constrained Walrasian function and a choice rule for thige existence of malicious players as well. Their definitidn
efficient allocation of an indivisible good (e.g., in auct®). maliciousness and altruism is with respect to the whole &et o
Abraham et al [2] extend Eliaz's concept to accommodafdayers. (I.e., malicious players aim at reducing the tytidif
colluding rational players. In particular they design arsec the rest of players, while altruistic players aim at inchegs
sharing protocol and prove that it {&,¢)-robust, that is, it these utilities.) Instead, in the context of master-worteesk
is correct despite up t@& colluding rational players and computing, we assume that maliciousness and altruism s wit
Byzantine ones. respect to the master. At the end of Section 2.1 we discuss the
Aiyer et al. [3] introduce the BAR model to reason aboytossibility of considering different levels (or types) ational
systems with Byzantine (malicious), Altruistic, and Ratb players in our work, as they do.
participants. They also introduce the notion of a protocol Monderer and Tennenholtz [46] consider computations
being BAR-tolerant, that is, the protocol is resilient totlbo where an interested party wishes to influence the behavior of
Byzantine faults and rational manipulation. (In this regpe rational agents in a game, without having control of the game
one might say that our algorithmic mechanisms designed Imour work the master designs the game (and the protocol) to
this work is BAR-tolerant.) As an application, they desidnebe played by the workers. Hence, the work in [46], in some
a cooperative backup service for P2P systems, based omease, complements our work, as it is applicable to sitnatio
BAR-tolerant replicated state machine. Li et al [43] alswhere it is not possible for the central authority to modie t
considered the BAR model to design a P2P live streamiggme rules.
application based on a BAR-tolerant gossip protocol. Both In our work we have the master process auditing, when
works employ incentive-based game theoretic techniques (teeded, and verifying the workers’ answers. The work in [40]
remove the selfish behavior), but the emphasis is on buildipgoposes a distributed verification mechanism in which the
a reasonably practical system (hence, formal analysiadett rational workers verify each other’s tasks. This can paadint



disburden the master, especially in multi-round compaoiteti value it believes is the correct outcome of the task. Thestask
The focus in our work is to design a mechanism in suatonsidered in this work are assumed to have a unique sojution
a way, that auditing is applied only when necessary, rathathough such limitation reduces the scope of applicatfadhe
than designing a verification mechanism. However, it woultdkesented mechanisms [56], there are plenty of computation
be interesting to investigate whether our mechanism coeld Wwhere the correct solution is unique: e.g., any mathemlatica
combined with a distributed verification mechanism as théanction.
one presented in [40]. Each of then workers has one of the following types,
Distributed computation in presence of selfishness weational, malicious or altruistic. The type of any workeww
studied within the scope of combinatorial agencies in Ecs known only byw. That is, neither the master nor the
nomics [7]-[9], [15]. The basic model considered is a combother workers know the type of workes. Furthermore, the
natorial variant of the classical principal-agent problg]: number of workers of each type is unknown to everyone. With
A master (principal) must motivate a collection of workergespect to the worker types, the only knowledge available
(agents) to exert costly effort on the master's behalf, big a probability distribution over those types. Specifigait
the workers’ actions are hidden from the master. Instead isf known that each worker is independently of one of the
focusing on each worker’s actions, the focus is on compléixree types with probabilitiep,, p,., p., respectively, where
combinations of the efforts of the workers that influence thg,+p,,+p. = 1. The knowledge of the distribution over types
outcome. Based on these complex dependencies betweencthdd be obtained, for example, statistically from exigtin
workers’ actions, atechnology functionis defined by the master-worker applications. If such information is inaeta
master. In [7], where the problem was first introduced, thieis enough to overestimatg, and underestimatg, (as we
goal was to study how the utility of the master is affected o in Section 4.3.1 from SETI-like systems [16], [19]) to
the equilibria space is limited to pure strategies. To thétr®, achieve correctness, although at a bigger expense. Madicio
the computation of a few Boolean functions is evaluated. morkers always cheat and altruistic workers are always $tone
[9] mixed strategies were considered: if the parameters ioflependently of how such behavior impacts their utilities
the problem yield multiple mixed equilibrium points, it isin the context of this paper, being honest means to compute
assumed that workers accept one suggested by the master.aritk return the correct result, and cheating means returning
work in [15] investigates the effect of auditing by allowingsome incorrect value. On the other hand, rational workegs ar
the master to audit some workers (by random sampling) aagsumed to be selfish in a game-theoretic sense, that is, thei
verify their work. In our work, we do not use any technologyaim is to maximize their benefit (utility) under the assuropti
instead we implement our own algorithm. Furthermore, thhat other workers do the same. So, a rational worker decides
master decides probabilistically whether to audit all vevsk to be honest, cheat or not reply to the master (workers may
or none, and the master assumes no dependencies betvebeose not to reply) depending on which strategy maximizes
the workers. Another important difference is that in ouits utility. As a result, each rational worker cheats with
framework, the worker’s actions are nbidden The master probability pc, it is honest with probability;;, and does not
receives a response by each worker and it is aware theply with probabilitypss, such thatpe + px +py = 1. It is
either the worker has truthfully performed the task or noassumed that if a worker decides not to reply, then it does not
The outcome is affected by each worker’s action in the caperform the task.
that no auditing is performed, but via auditing the master The above model implies that all rational workers share
can determine the exact strategy used by each worker ahd same probability distribution over the possible stiae
apply a specific reward/punishment scheme. In the framewdquheat, be honest, abstain), i.e., all rational workers afre
considered in combinatorial agency, the master witnedses the same type. Otherwise, in order to model the individyalit
outcome of the computation, but it has no knowledge of thf the non-monetary part of each rational worker's bene-
possible actions that the worker might take. For this pugpodit/penalty, the distribution over types could be genegliz
the master needs to devise contracts for each worker bagedlifferent types of rational workers instead of one. More
on the observed outcome of the computation and not @recisely, define a probability distribution over each fiuss
each worker’s possible action (as in our framework). Finallcombination of payoffs irfR*, restricting signs appropriately,
our scheme considers worker punishment, as opposed to $bethat each rational worker draws independently its gjiate
schemes in combinatorial agency where workers cannot termal form from this distribution. However, the analysis
fined (limited liability constraint); this is possible in pu presented here would be the same but using expected payoffs,
framework as worker’s actions are contractible and vetiiabthe expectation taken over such distribution. Thus, forstie
(either it performs a task or not). of clarity and without loss of generality, we assume that the
strategic normal form is unique for all players.

2 MODEL AND DEFINITIONS
2.1 Master-workers Framework and Worker Types 2.2 Communication Unreliability

We consider a distributed system consisting of a masfBhe communication network is considered to be unreliable,
processor that assigns, over the Internet, a computatiasial and workers could be unavailable. These are very realistic
to a set ofn workers to compute and return the result. Thassumptions for Internet-based master-worker compusts

master, based on the received replies, must decide on $ggested, for example, by the work of Heien at al. [31]. We



Rm | the master rewards the majority only
Ra. | the master rewards all workers

model this shortcoming by assuming that the communication

with each worker fails stochastically and independently of R, | the master does not reward any worker
other workers.
Furthermore, we assume two settings, one where the proba- TABLE 1: Reward models

bility of communication failure depends on time (the more th

master waits for replies the larger the probability of otvitag

more replies), and a second one where the probability Wereliability of the communication, when the master does no

communication failure is fixed (hence, the more workers tHgC€ive a reply from a worker it can not distinguish whether

master hires the larger the number of replies). As we will sdige worker decided to abstain, or there was a communication

in Section 3, the first setting leads tdime-basednechanism failure in the round trip (it could be the case that the worker
and the second one toraply-basednechanism. did not even receive the task assignment message). Hence,

In our analysis, we letl, > 0 be the probability of any it would be unfair to punish a worker for not getting its

worker being available and receiving the task assignmdffSPONSe; imagine the case where the worker received the
message by the mastes, > 0 be the probability of the master 'eauest, performed the task and replied to the master, st th
receiving the worker’s response (has the worker chosen Igst message got lost! . N .
reply), andd — d, -ds be the probability of a round trip, that s, The payoff parameters considered in this work are detailed

the probability that the master receives the reply from amgiv!n Ta_b_le 2. Note that the f|r_st_letter of the parameter's name
identifies whose parameter it i3/ stands for master and’

worker; that is,d represents the communication reliability. ker. Th h dl , h ;
Hence, ds is the probability value that the master achieve®" Worker. Then, the second letter gives the type of paramet

by waiting T' time (for the time-based mechanism) or hiringp stands for punishmeng/ for cost, andB for benefit.
n workers (for the reply-based mechanism). WPe

worker’s punishment for being caught cheating
WCr | worker’s cost for computing the task

, P . ) WBy | worker’s benefit from master’s acceptance
2.3 Masters Objectives, Auditing, Payoffs and Re MPyy | master’s punishment for accepting a wrong ansiver

ward Models MC, | masters cost for accepting the worker's answer
The objective of the master is twofold. First, the master hag MCa | masters cost for auditing worker's answers _
to guarantee that the decided value is correct with proipabil | Cs | masters cost for not getting a "sufficient” replies
at leastl — ¢, for a known constant < ¢ < 1. Then, having MBgr | master’s benefit from accepting the right answer
achieved this, the master wants to maximize its own benefiTABLE 2: Payoffs. All these parameters are non-negative.
(utility). As, for example, in [54], [20] and [21], while itsi

assumed that workers make their decision individually and Observe that there are different parameters for the reward
with no coordination, it is assumed that all the (maliciond a WBy, to a worker and the cost/Cy of this reward to the
rational) workers that cheat return the same incorrectevalunaster. This models the fact that the cost to the master might
This yields a worst-case scenario (and hence analysishér be different from the benefit for a worker. In fact, in some
master with respect to its probability of obtaining the eatr applications they may be completely unrelated. For example
result; it subsumes models where cheaters do not necgssarilscenarios such as SETI, workers carry out the computation
return the same answer. (In some sense, this can be seen f@$ dree. Nevertheless, the master may still incur in some
cost-free, weak form of collusion.) costs for processing the replies, posting a list of pardiatp,

To achieve its objectives, the master employs, if necessagic. Although workers are not penalized for not replying; ou
auditing and reward/penalizingschemes. The master mightmodel allows the possibility for the master to be penalized
decide to audit the response of the workers (at a cost). #n tifior not getting enough replies (paramet&fCs); the actual
work, auditing means that the master computes the task fymber of “enough” replies is quantified in Section 3. This
itself, and checks which workers have been truthful or ngsrovides an incentive for the master to choose (when it can)
We denote byp 4 the probability of the master auditing themore workers to assign the task (especiallyl ifs small) or
responses of the workers. to increase their incentives for replying; if conveniehf(C's

Furthermore, the master can reward and punish workecsuld be set to zero. As usual in algorithmic mechanism
which can be used (possibly combined with auditing) tdesign, we include a punishment in addition to the incentive
encourage rational workers to be honest (altruistic warkeThis is an implementation of a “carrot and stick” incentive-
need no encouragement, and malicious workers do not chesed mechanism when dealing with rational workers. Such
about their utility). When the master audits, it can acalyat mechanism is possible when the workers’ actions are con-
reward and punish workers. When the master does not auttiictible and verifiable as in our model (unlike the case of
it decides on the majority of the received replies, and mapmbinatorial agencies). Nevertheless, observe thagdtlad,
apply different reward/penalizing schemes. In this work wee punishment may be disabled settiigP: = 0 (as some
consider three reward models shown in Table 1. Each rewandtances here). Among the parameters involved, we assume
model is essentially different from the others and can bel usthat the master has the freedom of choosiigy and WPg;
depending on the specifics of the application considered. by tuning these parameters and choosingthe master can

Auditing or not, the master neither rewards nor punishesaghieve the desired trade-offs between correctness artd cos
worker from whom it did not receive its response. Due to th&ll other parameters can either be fixed because they are




system parameters or may also be chosen by the master. and it is not less than the expected utility of a pure strategy
with probability zero of being chosen (if there is any). Oe th

2.4 Game Theory Concepts and Problem Formula- other hand, if only pure strategies are included in a NE (that
tion there is only one strategy that can be chosen), that means tha

We study the problem under the assumption that the ratiof3§ €xPected utility of a worker is not less than the expected

workers, orplayers will play a game looking for an equi- utility on the remaining pure strategies. Let us illustrati¢h

librium (recall that malicious and altruistic workers hage " €xample. lfpe = 1/2,pn = 1/2,py = 0 is a NE, that

predefined strategy: malicious cheat, and altruistic areest). means tha_\t the expecteq ‘!t"'ty of a worker is th,e, same if it

The master does not play the game, it only defines the protoGBFatS or is honest, and it is n_ot less than the utility "T iesio

and the parameters to be followed (i.e., it designs the galrﬁ%t reply. On the other ha}r_1d, fle = 0,pn = L, py =0isa

or mechanism). The master and the workers do not kndy then the expected utility of an honest worker is not less

the type of other workers, only the probability distributio 1"an the expected utility of cheating or not replying.

Hence, the game played is a so-called game with imperfect//e denote byAUs,s, the difference on the expected

information or Bayesian gamé30]. The action space is the utilities of a rational worker when choosing stratefly over

set of pure strategie&C, H, '}, and the belief of a player is St/ategyss. Then, for the purposes of the game we consider,

the probability distribution over types. in order to find conditions for equilibria, we want to study fo
More formally, the Internet-based Master-Worker comp(®2ch player

tation considered in this work is formulated as the Bayesian AUpe = T3 - Wy — ¢ - We

gameG(W,e, D, A,pa,di1,ds, R, pfs), whereW is the set of

n workers,1 — e € [0,1] is the desired success probability

of the master obtaining the correct resul?, is the type

probability distribution f,,p,,p.), A = {C,H,N} is the

workers’ actions spacey4 is the probability of the master

auditing the workers’ responsed; and d; are the prob-

AUpn =Ty - Wy — TN - WN @
The expression 7, - w, denotes the utility of the worker
when choosing strategy;, we present the components of the
expression in detail in Section 3.
The following notation will be used throughout:

abilities characterizing the reliability of the commurtioa b _ _
(d = dy - dy), R is one of the reward models given in P (a,b) & Z()ql(l —q)""
Table 1, andpfs are the payoffs as described in Table 2. i=a

Each player knows in advance the distribution over types  The notation used throughout the paper is summarized in
the total number of workersufj, the probability characterizing Taple 3.

the communication reliabilityd;, d2) and its normal strategic
form, which is assumed to be unique.

The core of the mechanisms we develop is the computatign ALGORITHMIC MECHANISMS
of p4. Based on the type distribution, the master must chookg this section we present the mechanisms we design and
a value ofp4 that would yield aNash Equilibriumthat best analyze them. In particular, we show two different algarith
serves its purposes. Recall from [51], that for any finite ganthat the master runs in order to obtain the result of the task.
a mixed strategy profile is amixed-strategy Nash equilibrium Each of these algorithms is essentially an instance of theega

(MSNE) if, and only if, for each playei, we defined in the previous section. Before running one of the
, , algorithms, the master must chose an appropriate valpg of
Ui(si,0-i) = Ui(si, 0-4), Vsi, 57 € supp(oi), it does so by running a protocol we also present in this sectio
Ui(si,o—i) > Ui(s},0-4), This protocol, together with each of the algorithms the mrast
Vs;, s 1 s € supp(0y), s, & supp(o;), runs to obtain the tasks, comprises a mechanism.

wheres; is the strategy used by playém the strategy profile ,
s, o; is the probability distribution over pure strategies usegl Algorithms
by playeri in o, o_; is the probability distribution over pure As discussed in Section 2.2, we consider two differentragsti
strategies used by each player bun o, U;(s;,0_;) is the for modeling communication unreliability, which yield two
expected utility of playe# when using strategy; with mixed different algorithms.
strategy profiles, and supp(o;) is the set of strategies ia Figure 1 presents théme-basedalgorithm. Based on how
with positive probability. the probability of communication failure depends on tinfre t
The above definition applies to our setting as follows. Firghaster fixes a timé&’, it sends the specification of the task to
notice that there is no NE where some players choose a pheecomputed ta workers, and waits for replies. Once tirfie
strategy and others do not, because the game is symmetricifoeached, the master gathers all received replies, armkseko
all rational players. (Should many types of rational playeto audit the answers with probabilify,. If the answers were
be considered, then we would have to consider such a NEOQt audited, it accepts the result of the majority (ties aokéen
Assume first that there is a NE with mixed-strategies (that iat random). Then, it applies the corresponding reward model
a NE where no strategy is chosen with probabilijy Then, Figure 2 presents theply-basedalgorithm. Here the mas-
the expected utility of a worker is the same for each puter, by appropriately choosing, fixes k£, an estimate of the
strategy that such worker can choose with positive proligbil minimum number of replies that wants to receive with high



W =1{1,2,...,n} | set ofn workers
M master processor
di probability of a worker being available and receiving thektassignment message by the master
d2 probability of the master receiving the worker’s resportsas(the worker chosen to reply)
d d = di - d2, probability that the master receives a reply from a givemken
Dp probability of a worker to be of rational type
Du probability of a worker to be of malicious type
Pa probability of a worker to be of altruistic type
DA probability that the master audits (computes task and cheaitker answers)
Pyce probability that the master obtains correct answer
€ known constant € [0, 1], 1 — ¢ desired bound on the probability of success
{C,H,N} action space of a worker
pc probability of a worker to cheat
PH probability of a worker to be honest
DA probability of a worker not replying
s strategy profile (a mapping from players to pure strategies)
Si strategy used by playerin the strategy profiles
S_; strategy used by each player huin the strategy profiles
o mixed strategy profile (mapping from players to prob. dstaver pure strat.)
oi probability distribution over pure strategies used by ptayin o
o_; probability distribution over pure strategies used by eplelyer but: in ¢
Ui(si,0-3) expected utility of playei with mixed strategy profiler
supp(o;) set of strategies of playerwith probability > 0 in o
AUs, s, difference on the expected utilities of a rational workerewlchoosing
strategyS; over strategySs
B (a,b) Y, (d -

TABLE 3: Summary of Symbols

probability. (We discuss in the next subsection haéwis In order to make the computation feasible to the workers,
computed and what is the probability of not receiving attleathe master sends together with the task and the chosen value
that many answers). The master sends the task specificationftp 4 a certificatepointing out the only possible equilibrium.
then workers and gets replies. If at ledsteplies are received, The certificate includes the strategy that the workers must
then the master chooses to audit the answers with prolyabififay to achieve the unique NE together with the appropriate
p.4 and proceeds as the other protocol. In case that lessithagiata to demonstrate this fact. These data include the system
replies are received, then the master does nothing anduitincparameters/payoff values and the reward model; togethar wi
penalty M Cs. the value o 4 is enough to verify uniqueness (see the analysis
Notice that both algorithms are one-shot, in the sense thiatSection 3.2.3).
they terminate after one round of communication betweenRecall that the main objective of the master is to achieve
the master and the workers. This enables fast terminatiprobability of accepting the correct result of at ledst .
and avoids using complex cheater detection and worker ré&pace this is achieved, then it seeks to maximize its utility
utation mechanisms. The benefit of one-round protocols as well. Based on the type distribution, it could be the case
also partially supported by the work of Kondo et al. [35that the master may achieve this without relying on actions
that have demonstrated experimentally that there are comnus the rational workers (e.g., the vast majority of workers a
tasks that may take much more than one day of CPU timé#ruistic). Such cases fall into what we call tiee rationals
to complete. Having said that we do note that a multi-rourstenario The cases in which the master needs to enforce
computation could be analyzed by computing the expectaticthe behavior of rational workerg4) fall into what we call
and probabilities in our analysis along all rounds. We lghi® the guided rationals scenarioln this scenario, the master
as subject of future work. must choosep4 so that the benefit of the rational workers
Each of the above algorithms basically implements @& maximized wherpe = py = 0; in other words, rational
instance of the game we presented in Section 2.4. The masterkers choose to be honegt{ = 1) and hence they compute
designs the game and the rational workers play looking foraad truthfully return the correct result. The protocol ran b
Nash Equilibrium (NE) in an effort to maximize their benefitthe master for choosing, is presented in Figure 3. Together
Therefore, based on the type distribution, the master muwgth each of the algorithms in Figures 1 and 2 comprise our
choose the value o4 that would yield aunique NE that mechanisms. The analysis of the mechanisms and the lemmas
best serves its purposes. The reason for uniqueness isc faeferenced in Figure 3 are given in the next subsection.
all workers to the same strategy; this is similar gtvong Note that both designed mechanisms are useful and can be
implementatiorin Mechanism Design, cf., [7], [49]. Multiple used depending on the setting. For example:
equilibria could be considered that could perhaps favor tii@) As discussed in Section 2.2, the probability of the commu
utility of the master. However, in this work, correctnesshis nication failure could depend on time, or be fixed. The master
priority which, as shown later, our mechanisms guarantee. could have knowledge (e.g., based on statistics) of only one



1 send(task p.4, certificatg to n workers 1 send(task p.4, certificatd to n workers

2 wait time T for replies 2 if at leastk replies arereceived then

3 upon expire of time Tdo 3 audit the answers with probability 4

4 audit the answers with probability 4 4 if the answers were not auditéten

5 if the answers were not auditeden 5 accept the majority

6 accept the majority 6 end if

7 endif 7 apply the reward model

8 apply the reward model 8 endif

Fig. 1: Master’s Time-based Algorithm Fig. 2: Master’'s Reply-based Algorithm

1 if Prmajority honest all rationals honest < 1 — ¢ then [* Pgycc is small, even ifpyy =1 %/

2 pe—1ipn —0;pa—1—¢/>0 , rici; [* cf. Lemma 2 */

3 dsaf Pr[majority honest all rationals cheal > 1 — ¢ then [* Pgycc is big, even ifpc =1 */

4 pe — 1; pn < 0; pa «— 0; /* cf. Lemma 3 */

5 esaf Pr[majority honest all rationals honegt > 1 — ¢ and

6 AUnc(pr =1,pa =0) >0 and AUnn (pr = 1,pa =0) > 0then /* pyy =1, evenifpa=0*

7 pe — 0; pnv «— 0; pa < 0; /* cf. Lemma 3 */

8 ¢dse [* pc =0 andpn = 0 enforced */
9 pe «— 0; par < 0; setpa as inLemma 4; /* cf. Lemma 4 */
10 if Un (pa,parspe) <Unm (pa=(1—e)/ >0, mi,pxy = 1,pc = 0) then
11 pnv = Lipa—(1—e)/>0 i [* cf. Lemma 1 */

Fig. 3: Master protocol to choogg4. The expressions df, r;, andc; are defined in Section 3.2

of the two settings. In such a case, it has no choice other tharPr(reply not received from workerf;=1—r
using the mechanism designed for that setting.

(b) It is not difficult to see that the time-based mechanism is
more likely to use auditing than the other one, on the otherpr(i out of n replies received)r; — (n) pipn—i
hand, the reply-based mechanism runs the risk of not rexgivi }
enough replies. Hence, the time-based mechanism would b@rmajority honest i replies received):

more preferable in case the cost of auditing is low, and the

Then,r(¢+q) +7 = 1.

reply-based mechanism in case the cost of auditing is high L2l i\ i
and the value of parametdf Cs is small. hi = Z 749
§=0
. o0\ ey
3.2 Equilibria Conditions and Analysis + (1 +[i/2] = W2J)§ (U/QJ) Lif2lgti21,

We begin the analysis of our mechanisms by elucidating

the following probabilities, expected utilities, and diria Pr(majority cheats ¢ replies received):
conditions. For succinctness, the analysis of both meshasi i _

is presented for a minimum number of repliesvherek = 1 c; = Z <Z) ¢qI

for the time-based mechanism amid > 1 for the reply- i=fij2)+1

based mechanism. For the latter, for a given worker type 1 i . ‘
distribution, the choice of, workers, andi, even if all rational + (1 +[i/2] — W2J)—( , )q“m qti/2l,
workers choose not to reply, the master will receive at least 2\[i/2]

E = nd(p.+p,) replies in expectation. Thus, using Chernoff Pr(master obtains correct answer):
bounds, it can be shown that the master will receive at least

k= E—\/2EIn(1/) replies with probability at least — ¢, b anr_ (pa + (1 — pa)hi) @
for 0 < ¢ < 1 and big enough (e.g.,¢ = 1/n). ses = L pa PA)
3.2.1 Probabilities and expected utilities. E(utility of master):
Given the description of the mechanisms and the system k1 n
parameters, it is not difficult to compute the following: Uy = — Z” -MCs + Z” (paci +(1—pa)B;) (3)

Pr(worker cheatsvorker replies),q = % =0 —r

Pr(worker does not cheatorker replies):

where,
Z]\: Pa + PpPH —1-g¢
1 — PpPN a; = MBr — MCy — nd(pa —l—pppH)MCy

Pr(reply received from worker): = d(1 — p,px) Bi = MBrhi — MPyyc; — MCy~;



and where;y; = 0 for Ry, v; =i for R,, and forR,, is, latter is used. We establish this observation in the folhmi
lemma.

1 Z "
Vi = Z ( )](q ¢ +¢q7) Lemma 1. In order to guaranteeP,,.. > 1 — ¢, it is enough
g=li/2]+1 to setps = (1—¢)/ > ", ri, makingpy = 1.

+(1+[i/2] = [i/2])= ([ /21) [i/21(q"/*1ql/2) 4 ¢/21G1/2)) - proof: Conditioning Equation 2 to be 1—¢, it is enough

to makep 4 > % Given that) """ , r; is the probability

3.2.2 General Equilibria Conditions thatk or more ref)ﬁ]éslare received, it is minimized whep =
Recall from Section 2.4 that Equation (1) states the comuliti 1. Therefore, the claim follows. O
we want to study for each playerIn particular, as discussed We consider now pessimistic worker-type distributions,, i.
there, we wantAUyc > 0 and AUz > 0. distributions wherep,, is so large that, even if all rationals

The components of the vectors denoted @y in (1) choose to be honest, the probability of obtaining the correc
correspond to the different payoffs received by the giveinswer is too small. Hence, the master has to audit with a
worker for each of the various events that may outcome fropaobability big enough, perhaps bigger than the minimum
the game when the worker has chosen strategwnd the needed to ensure that all rationals are honest. Nevertheles
components of the vectors denoted by correspond to the for suchp 4, rational workers still might use some NE where
probabilities that those events occur. Their detail valaes p,, < 1. Thus, the worst case faP,,.. has to be assumed.
given in Tables 4, 5, and 6; Table 7 lists the used notatioRormally,
These conditions are defined so that a pure NE whgre- 0

is precluded. Lemma 2. In order to guaranteeP,,.. > 1 — ¢, it is enough

to setps =1—¢/>. ", ric;, makingpe = 1 andpy = 0.
3.2.3 Analysis Based on the Worker-type Distribution Proof Conditioning Equation 2 to be> 1 — ¢, pg >

Appropriate strategies to carry out the computation with t

depslrez IOrobab|I|t)§J of succes)s/ under the frpee rationals and a/zrlcz Given that} i ric: is the probability thals
guided rationals scenarios are considered in this sedtié®. or more rephes are received and the majority of them cheat,
important to stress again that, in order to obtain a mechanig is maximized wherpe = 1 (hencepx = 0). Therefore, the
that is useful for any of those scenarios we do not restrighaim follows. O
ourselves to a particular instance of payoffs or reward rsode Now, we consider cases where no audit is needed to achieve
leaving those variables as parameters. Thus, we focus e desired probability of correctness. l.e., we study d@rts
study here on how to chooges to have the probability of under the assumption thay = 0. The first case occurs when
success bounded by — ¢ for each of the reward modelsthe type-distribution is such that, even if all rational wenrs
assuming that the payoffs have already been chosen by gheat, the probability of having a majority of correct ansse
master or are fixed exogenously. For settings where payoffsat leastl — . A second case happens when the particular
and reward models are a choice of the master, its utility cagstance of the parameters of the game force a unique NE
be easily maximized choosing those parameters conveyierflich that rationals are honest, even if they know that thetres

in Equation 3, as demonstrated in Section 4. will not be audited. We establish those cases in the follgwin
Although known, the worker-type distribution is assumegmma.

to be arbitrary. Likewise, the particular value ©fs arbitrary
given that it is an input of the problem. Finally, althouglaathl-emmal 3. If any of the following holds:
priority is to obtainP,,.. > 1 —¢, it is desirable to maximize ¢ >, rihi > 1 —e makingpe = 1 and pyr = 0; or
the utility of the master under such restriction. Therefa®e  « >, 7ih: > 1—c makingpe = 0 andpy = 0 and there
it can be seen in Figure 3, the protocol the master runs for is a unique NE fomp;, =1 andp4 = 0,
choosingp 4 takes into account both the free rationals anghen, in order to guarante®,,.. > 1 — ¢, it is enough to set
guided rationals scenarios as discussed in Section 3.1.  p, = 0.
We now proceed to analyze the different cases, first consid-

ering the free rationals scenario and then the guided r@ton Proof: Conditioning Equation 2 to be 1 — < under the

assumption thap 4 = 0, it is enough

one.

3.2.3.1 Free Rationals.: Here we study the various cases n
where the behavior of rational workers does not need to be Zrihi >1—e. (4)
enforced. As mentioned before, the main goal is to carry out =k

the computation obtaining the correct output with proligbil To find the condition for the case where even if all rationals
at leastl — . Provided that this goal is achieved, it is desirableheat the probability of success is big enough, we replace
to maximize the utility of the master. Hence if, for a givemwe = 1 andpy = 0 in Eq.(4). For the condition when the
instance of the problem, the expected utility of the mast&lE corresponds to somg: < 1, we observe the following.
utilizing the mechanism presented is smaller than thetyitili Replacing inAUxc and AUy for each reward model the
just settingp 4 big enough to guarantee the desired probabilityalue p 4, = 0, it can be shown thalAUpc(pc,pa = 0) is

of correctness, independently of the outcome of the ganee, tion-increasing in the intervail: € [0, 1] for all three reward



Ran Ra Ry
wiR ~ WP — WP, — WP
we | wgk WBy WBy 0
wht® 0 WBy 0
wXR 0 0 0
wiR | WBy — WCr | WBy — WCr | WBy — WCr
wy | w§R —WCr WBy — WCr —WCr
wiR | WBy — WCr | WBy — WCr —WCr
wi® | —Wer —~Wer —~WCr
w N wj\(/X 0 0 0

TABLE 4: Payoff vectors. Refer to Table 7 for notation.
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TABLE 5: Probability vectors for the time-based mechanistefer to Table 7 for notation.
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er | d1-p) T, <"f>ri?ﬂ-1-i(z;_w T + ([i/2] - [1/21) 3 (3 )0t/ awﬂ)

c Urs]

am | A0 =P X () (Z“m FO@T I+ (/2] = 1/20)3 (o) )a L%/2JAW21)
Wé(ﬁ dy (1—d2)+dz (nil)ri?"_l_i
”ﬁR dpAz:Z ) (nzfl),r.i?nflfi

cr | A1 —pa) i, ("zl)rm-l-i(zé_mm (@7 + ([1/2] = 13/2]) 5 (i o)) a7 aW?J)

TH Ur;

| A0 X (1) (ZW (Dea 7 + ([i/2] = 1i/2])5 (1)) WW/%)
iR (1 — do) +dYE2 (V)i
TN WﬁX d1

TABLE 6: Probability vectors for the reply-based mechanigtefer to Table 7 for notation.

we® payoff of evente A e A e

e probability of evente A o, conditioned on the event

02° the worker has choosen strateg¢ {C, H, N}

4 the master audits

< the master does not audit and the majority cheats

e the master does not audit and the majority does not cheat
(2% | the communication is successful and the master receivasganeplies
(2% | the communication fails or the master does not receive emoeiglies
X true (equivalent to “any value”)

TABLE 7: Notation for Tables 4, 5, and &, {w,}.

models, andAUxn (pa,p4 = 0) is non-increasing in the py, = 1 (rendering the rationals truthful), and the correctness
intervalps € [0, 1] for all three reward models as well. Thusprobability is achieved.
if AUpc(pe =1,p4=0) >0 and AUxpn—1(px = 1,pa =
0) > 0, the rate of growth ofAUy and AUy implies a
single pure NE apy; = 1. Then, replacingge = 0 andpy = 0
in Eq.(4) the claim follows. ]
Lemmad. If 31", r;h; < 1—c makingpe = 1 andpy = 0,

3.2.3.2 Guided Rationals.. We now study worker-typand >_;" , r;h; > 1 — ¢ makingpec = 0 and py- = 0 then, in
distributions such that the master can take advantage oP'/@er to guaranteePs,.. > 1 — ¢, it is enough to sep4 as
specific NE to achieve the desired bound on the probability tfllows.
success. Given that the scenario where all players cheat was
considered in the free rationals scenario, here it is endagh
study AUy and AUy n for each reward model, conditioning
AUpc(pe = 1) > 0 and AUpn(py = 1) > 0 to For Ry,
obtain appropriate values fary. As proved in the following we

o . T

lemma, the specific valug, assigned depends on the reward pA = (5)
model, and it is set so that a unique pure NE is forced at d2 WBy Zz k=171




C

For R.,
wc
pa= L - (6)
da (Mﬂgy<+ Wq%ﬂ k 175
n—1
dyWBy > rj> WCr 7)
i=k—1
For R,
) WCr /da — WByzl f—1 z(h'—C)
A =

(WBy + WPe) 7 kl 17

WCT/dz — WBy Yo, 17%’12
WByzl k1T — WByZz k1Tl

ba=

Where

= ()
=YW (g + ([ /21 L/2J)
/i 27 g (@ + ([i/ [i/2]

for pc = 1 in conditions (6) and (8), and fopy = 1
conditions (5), (7) and (9).

Proof: We compute the general conditions for each r

WByZZ w1 TR — )

(8)
9)

L () a2,
(a2

in

12

n—1
AA[A%N’::dpflwqu 2{: ré—-dlvVC&
i=k—1
n—1
+d(1—paA)WBy > 1ihi>0
i=k—1

(11)

Notice that} ", k L rih; is the probability that at least
k — 1 other workers reply, and the majority of them is honest
and Y7, | /¢, is the probability that at least — 1 other
workers reply, and the majority of them cheat. It can be seen
that, whenp, is fixed, the equilibria condition 10 for this
model is non increasing opc € [0,1 — py] as follows.
only 7! | #/(h} — ¢,) depends omp in this condition.
When pe increases ang s is fixed, the probability that the
majority of repliers is honest decreases. On the other hand,
the probability that the majority cheats increases with but
given that it is negated the slope is negative. Likewiseait ¢
be seen that, whepy is fixed, the equilibria condition 11 for
this model is non-increasing any € [0, 1 — pc] as follows.
Only >"77, k L rih; depends om, in this condition. Whem
increases ang¢ is fixed, the probability that the majority of

» repliers is honest decreases. Therefore, replacing inkbeea

conditions forAUsyc(pc = 1) > 0 and AUypn(pyr = 1) >0
the claim follows. O

e’j’_.3 Correctness and Optimality

ward model from Equations (1). (Refer to Tables 4, 5, and ®e following theorem proves the correctness of the mech-

for details.) Recall that, for succinctness, the analysisath
mechanisms is presented for a number of repkesvhere

k = 1 for the time-based mechanism amd = nd(p, +

Pp) (1 — 1/%) for the reply-based mechanism.

Conditions for reward modeR:

n—1
AUpc = dpa(WBy + WP) > 1} — WCrdy >0
i=h—1
n—1
AUy = dpa WBy Z ri— WCrdy >0
i=h—1

Thus, it is enough to use the latter condition only.

Conditions for the reward mod&®.,:

n—1
AUpc = dpa(WBy + WPe) > 1 — WCrdy >0
i=k—1
n—1
AUpy =dWBy > 1 — WCrdy >0
i=k—1

Conditions for the reward mod&®,,,:

n—1
AUpc = dpa(WBy + WPe) Y v —di WCr
i=k—1
n—1
+d(1—pa)WBy > ri(hi—¢}) >0
i=k—1

(10)

anisms presented in Section 3.1. Its proof is the simple
aggregation of the results presented in Section 3.2.

Theorem 5. For any given system parameters, the values of
pa chosen after running the protocol depicted in Figure 3
satisfy thatPs,.. > 1 —e.

We now argue that only two approaches are feasible to
bound the probability of accepting an incorrect value. lis th
respect, the strategy enforced by the mechanisms we designe
is optimal.

Theorem 6. In order to achieveP,,.. > 1 — ¢, the only
feasible approaches are either to enforce a NE wheye= 1
or to use ap4 as shown in Lemma 2.

Proof: It can be seen as in Lemma 4 that/;,¢ is non-
increasing forpe € (0,1 — py] and AUy is non-increasing
for ppr € [0,1 — pc]. Then, the only NE that can be made
unigue corresponds t@;; = 1. Consider any other NE where
pr < 1 (which is not unique). Thepe = 1 andpy =1
are also both NE. In face of more than one equilibrium to
choose from, different players might choose different ones
Thus, for the purpose of a worst-case analysis with respect t
the probability of correctness, it has to be assumed thetwors
case, i.ep 4 has to be set as in Lemma 2. O

3.4 Computational Issues

In Sections 3.1 and 3.2.3 we discussed a protocol for the mas-
ter to choose appropriate valuesof for different scenarios.

A natural question is what is the computational cost of this
protocol. In addition to simple arithmetical calculatiptizere
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are two kinds of relevant computations required: binomialrbitrarily close to0 for all three models. So, we want to
probabilities and verification of conditions for Nash edurie.  choosed < p4 < 1, with § — 0, so that the utility of
Both computations are-th degree polynomial evaluations andhe master is maximized. Using calculus, it can be seen that
can be carried out using any of the well-known numericél,; is monotonic in such range, but the growth of such
tools [34] with polynomial asymptotic cost. These numdricdunction depends on the specific instance of the masterfpayo
methods yield only approximations, but all these calcateti parameters. Thus, it is enough to choose one of the extreme
are performed either to decide in which case the parameterwvélues ofp 4. Replacing in Equation 3, we get

in, or to assign a value tp 4, or to compare utilities. Given

that these evaluations and assignments were obtained in the k—1 n

design as inequalities or restricted only to lower bounds, i Uy~ — ZriMCS + Zm max{a;, i}, (12)
enough to choose the appropriate side of the approximation i i=0 i—k

each case.

wherepy = 0 anday, 8; as in Equation (3). The approxima-

Regarding the computational resources that rational werke,, | given in Equation (12) provides a mechanism to choose
require to carry out these calculations, notice that the'oehopA andn so thatl,, is maximized forP, .. > 1 — ¢ for
succ —

of p4 in the mechanisms either yields a unique NBip=1 51y given worker-type distribution, reward model, and et o
or does not take advantage of the behavior of rational Werk‘ifayoff parameters in the SETI scenario.
(Theorem 6). Furthermorg = 1 was assumed as a worst
case (with respect to probability of success). Notice frow2 c :
o " : . ontractor Scenario
Tables 4—7 and the equilibrium conditions (eq. (1)) thairsgt : i i
WPe = WBy = 0 for the cases where we do not use thehe second scenario considered is a company that buys

behavior of the rational workerge = 1 is a dominant strategy. COMPutational power from Internet users and' sells it to
(Recall that WBy, and WP. can be chosen by the master. omputation-hungry costumers, such as Amazon’s Mechlanica

Thus, the mechanisms are enriched so that rational workétK [5]- In this case the company pays the users an amount

are enforced to use always a unique NE, either= 0 or © = WBy = MCy for using their computing capabilities,
ve = 1. and charges the consumers another amddilz > MCy

for the provided service. Since the users are not voluniaers
this scenario, we assume that computing a task is not free for
4 PUTTING THE MECHANISMS INTO ACTION them (i.e., WCr > 0), and that rational workers must have

In this section two realistic scenarios in which the mastefcentives to participate (i.el] > 0). As in the previous case,
worker model considered could be naturally applicable ajge assume that the master verifies and has a cost for accepting
proposed. For these scenarios, we determine how to chogsgrong value, such that/P,, > MC4 > 0. Also as before

pa andn in the case where the behavior of rational workefge assume that > 0 andpy = 0.

is enforced, i.e., under the conditions of Lemma 4. Again, fo As mentioned before, using calculus it can be seenlthat
succinctness, the analysis of both mechanisms is prestarteds monotonic onp4 but the growth depends on the specific

a number of replieg. instance of master-payoff parameters. Thus, the maximum
expected utility can be obtained for one of the extreme &lue
4.1 SETI-like Scenario Trivially, 1 is an upper bound fas 4. For the lower boundy 4

The first scenario considered is a volunteering computifgSt Pe appropriately bounded so that the utility of rationa
8F{<ers is positive antPs,.. > 1 — . For example, for the

system such as SETI@home, where users accept to donate“g , e
of their processors idle time to collaborate in the compaitat <¢ M0del, using Lemma 4 and conditionisg > 0, we get,

of large tasks. In this case, we assume that workers incur in

no cost to perform the task, but they obtain a benefit by being k-1

recognized as having performed it (possibly in the form of/ M = —Z”MCS

prestige, e.g., by being included on SETI's top contribsitor ni:‘)

list). Hence, we assume tha¥’By > WCr = 0. The master _ A A WCr

incurs in a (possibly small) cost/Cy when rewarding a +;T1 max{a“ﬂl + (e ﬁl)dQ WBy S
worker (e.g., by advertising its participation in the puatje B (13)

As assumed in the general model, in this model the master . ) ) ) ) ) )
may audit the values returned by the workers, at a cost®S In the previous section, the approximation given in
MCy > 0. We also assume that the master obtains a ben&fiuation (13), and similar equations for the other reward
MBr > MGy if it accepts the correct result of the task, anghodels which are omitted fc_>r cIar|t_y, _prowde a mechanism to
suffers a costM Py, > MC,4 if it accepts an incorrect value, CN00S€p.4 andn so thatly, is maximized forPs,c. > 1 —e¢
Also it is assumed, as stressed before, that 0 (there is for any given Worker-t_ype distribution, reward _model, ard s
always a chance that the master will receive a reply from tlo& Payoff parameters in the contractor scenario.

worker). ) o -

it can be seen that, for this scenario and conditions, in this section, to provide a better insight of the usabitify
order to achieve the desireH;,.., it is enough to sep4 our mechanisms and to illustrate interesting trade-offaeen
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reliability and cost, we present a graphical charactdonadf
the master’s utility, both in the SETI-like and the Contract
settings.

4.3.1 SETl-like Scenario B
We begin by considering the timed-based mechanism, then
the reply-based one, and then the special case of reliable
communication. Recall that the only knowledge available on
the workers type is a probability distribution. Such knadge
could be obtained statistically from existing master-vesrk
applications such as [16], [19]. To err on the safe side, we
overestimatep,, and underestimatp, with respect to those
statistics.

4.3.1.1 Timed-based Mechanism.: For this mechanism,
we considerMCy4 = 1 as our normalizing parameter and
we take MPyy, = 100, MCs = 10 and MBr = 4 as
realistically large enough values (with respectM@’ 4 = 1).
Our experiments concluded that using other values for these
parameters do not change qualitatively the results. We sghoo
pu € [0,0.5] as we believe this is a reasonable interval. As
it can be seen from the empirical evaluations of SETI-like
systems reported in [16] and [19],, is less thar0.1. So we
took a larger range op,, to examine its general impact on the
utility of the master. We chooge, 0.1] as the range oM Cy,
to reflect the small cost incurred by the master for maintagni
a workers contribution list.

We consider three plot scenarios were we vanand MCy ) o _ )
as discussed above: Fig. 4: Time-based Mechanism in the SETI-like scenario:
(@) We fixd = 0.9 andn = 75 and compute the master'sMaster’s utility for the three plot scenarios: (a) The upper
utility for all three reward models. The results are depldte Plane corresponds tRy, the middle toR.,, and the third to
Figure 4(a). Ra. (b) The upper plane correspondsde= 0.5, the middle
(b) We fix n = 75, we consider theR,,, model and compute t0 @ = 0.9, and the third tod = 0.99. (c) The upper plane
the master's utility overl = 0.5,0.9,0.99. See Figure 4(b). ~Ccorresponds ta = 15, the middle ton = 55, and the third to
(c) We fix d = 0.9, we consider theR,, model and we " = 75
compute the master’s utility ovet = 15,55, 75. The results
are depicted in Figure 4(c).

In all plots we can notice a threshold where the behavior tsrge values ofi/Cy, the master’s utility is higher as it audits;
the utility changes; this depicts the transition point inisth the cost of rewarding the workers increases so much, that it
the master’s strategy changes from non-auditing to awgitin is better for the master to audit.

In Figure 4(a) we see that for all the reward models, the In Figure 4(c) we notice that the utility of the master
master does not audit until, gets around.35. This behavior decreases as the number of workers increases; again, this is
is reasonable, since in the presence of more malicious workdue to the reward it must provide to the workers. Observer
the master must audit to ensure correctness. Once auditifigit for n = 15, the master chooses to change its strategy
the utility of the master becomes the same in all three rewaa@ auditing for a smaller value af,; this is because as the
model, as the same reward/penalize scheme is deployed.master gets fewer replies, the probability of having a nigjor
expected, when the master does not audit, it gets its higledrincorrect replies gets bigger for smaller valuesppf
utility from Ry and its lower utility fromR,. The utility of 4.3.1.2 Reply-based Mechanism.: We now turn our
the master fofR,, seems to balance nicely between the othattention to the reply-based mechanism. Our aim is to olserv
two reward models. This may suggest that Rg model is how the minimum number of repliesc) is affected by the
the most stable among the three. A final observation is thatragnber of workers chosen by the maste) and the prob-
MCy gets bigger, forR,, and R,, the utility of the master ability distribution of rational workersp(,). Furthermore, we
gets smaller; this is natural, since by increasing the paymelepict howk is affecting the utility of the master. As with
to the workers the master decreases its own benefit. the previous mechanism, we sgfC4 = 1, MPy, = 100,

In Fig 4(b) we observe that for smaller values éfwe MCs = 10 and MBr = 4. In the second scenario plotted,
get a higher utility for the master. This is because the mastge choose a majority of rational workers to depict their efffe
receives fewer replies, and hence it rewards a smaller numbe the master’s utility.
of workers. As before, for any, asMCy increasesl/,, drops. We consider two plot scenarios:

An important observation is that fat = {0.9,0.99} and for (a) We varyn from 65 to 95,p, for O to 1, and we compute
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(b)

Fig. 5: Plots of the SETI-like Scenario for the Reply-based
Mechanism.

the appropriate: that the master should choose for each
The results are depicted in Figure 5(a).
(b) We use theR,,, we fix p, = 0.6, d = 0.9, MCy =
0.05, we varyk and we compute the utility of the master. See
Figure 5(b).

In Figure 5(a) we observe that asincreases, naturally,
k increases as well. An interesting observation is thapas
increases,k decreases. This is explaine_d_as follows:is _ Plane corresponds /By = 4 the lower plane taV/Bx — 1
computed based on the number of malicious and altruistic

: : and the red flat plane t6y; = 0. (&) n = 5. (b) n = 15. (c)
workers that exist (since they always reply). Therefore, as_ -«
these become fewek; is naturally reduced. In Figure 5(b) '
we observe how the utility of the master is affectedihyask
increases, the utility of the master decreases. This isuseca
as the master gets more replies, it has to reward more workéPr = {1, 4}; the results are shown in Figure 6(b).
4.3.1.3 Reliable Network.: We also provide the graphf€) We fix n=75 for both values oMBr mentioned earlier;

cal characterization for the master’s utility for the cabatt Figure 6(c) depicts the corresponding results.
the communication is reliable, that ig, = 1. From this  All plots include a reference surface plabige; = 0. Here
simpler case we can better study the trade-offs betwewg have only presented thigy model because it is the simplest
reliability and cost without the complications of unreliab one. However, for the other reward models the plots depict
communication and workers not replying. Since the mast&jore or less the same behavior, with the difference thatrbefo
receives all replies from the workers, the two mechanisriie threshold point (where the master does not audit) thigyuti
conceptually become the same (in other words, there is @bthe master also depends 8nCy (e.g. Figure 4(c)).
sense to study two mechanisms under the knowledge that alln Figure 6 we observe, as expected, that the higher the
messages are received). Notice that in this deR8s is not value of MBg, the higher the utility of the master is, without
applicable, hence its value is set to zero. As before, we skis affecting the shape of the plot. In all plots we see a
MC,4 =1 and MPy, = 100. We plot for valuegp,, € [0,0.5] threshold where the behavior of the utility changes; this is
and MCy € [0,0.1]. We consider three scenarios, applyinghe transition point where the master’s strategy changems fr
the Ry model and varying,, and MCy as discussed above.non-auditing to auditing. For all three plots in Figure 6, we

Fig. 6: Plots of the SETI-like scenario fafr= 1. The upper

In particular: generally observe a smaller utility when the master aubda t
(&) We fix n=5 and compute the utility of the master fowhen it does not. Recall that we apply tRg model when the
MByr = {1,4}; the results are depicted in Figure 6(a). master follows a non-auditing strategy; thus the mastearesv

(b) We fix n=15 and compute the utility of the master fothe honest workers only when it audits and this decreases



16

its own utility proportionally to the value of payment to the
workers (M Cy). Another interesting observation is the sharp
declining curve before the threshold (the master follows a
non-auditing strategy). This curve reflects the fact thap,as
increases the probability of the master getting an incorrec
reply increases, and thus the utility of the master decsease
accepting an incorrect reply. Notice that this decliningveu
is much sharper in Figure 6(c), since the larger the number of pm
workers the more acute the impact of a high (@)
A significant difference between the number of chosen
workers, is the threshold value pf where the master changes
its strategy to auditing. The larger the number of workedrs, t
bigger the transition valuep(, value) that the master starts to
audit. This is due to the large reward it must provide when
it audits, combined with the fact that having more workers
increases the probability of getting the correct reply. W a
notice thatU,, increases slightly after the threshold, gs
increases. Although this behavior is not expected, we Wlie
it is because the master has resolved to auditing in order to
guarantee getting the correct value, and thus the fewershone
workers it has to reward, the greater its benefit.

4.3.2 Contractor Scenario

We now consider the contractor scenario (e.g., Amazon’s
Mechanical Turk). Recall that in this setting’Cr > 0, and

the workers are willing to participate only if their utilitif
positive (they are not volunteers as in the SETI-like sgjtin
For this scenario we focus on the special case of reliable
communication to illustrate how the cost for computing the
task (WCr) affects the trade-offs between reliability and codtig. 7: Contractor Scenario plots for fixeflandd = 1. The
(which we could not study in the SETI-like setting). upper plane corresponds tBr = 4 the lower plane to

Figure 7 illustrates the utility of the master for tf&g model MBr = 1 and the red flat plane t&/y; = 0. () n = 7.
and for a fix value ofS = 0.8 (taken in analogy with/Bg); (0) n = 15. (c) n = 75.
we vary p, € [0,0.5] and WCr € [0,S]. Notice that the
workers’ cost for computing the task can not exceed their
payment. In Figure 7(a) we fix n=7, in Figure 7(b) we fisincreases; recall that the master audits the answers witle so
n=15 and in Figure 7(c) we fix n=75. For each of these ploggobability. On the other hand, when the valuepgfincreases
we have two planes, one for each valuelMBr = {1,4} and even more, the probability of having a majority of incorrect
a reference surface plarié,; = 0 (similarly to the plots for answers is very large. So it is quite probable since the maste
the reliable communication case in the SETI-like setting). audits with some probability to get an incorrect result;stita

Observe that a threshold point exists where the mastéility decreases.
changes its strategy from auditing with some probabilina{t ~ Naturally when the master audits, for every valueltr,
guaranties the utility of the rational workers is positite) asp, increases so does its utility. Notice again that having
auditing. We generally observe that (not surprisingly) fdarger MByz does not affect the shape of the plots; the utility
values ofp,, and WC7 close to zero we get the highest utility.of the master increases uniformly. For similar reasons &ésen

In all plots in Figure 7 when the master audits with som8ETI-like setting, the threshold valug,( value) increases for
probability (before the threshold point) observe thatld§'s larger number of workers. Finally, observe the big decréase
increases, the utility of the master decreases for eygry the master’s utility as the number of workers grows. This is
This is a classical example of the trade-off between rdligbi due to the large payments that the master has to give to large
and cost. The largeiVCr is, the higher the probability of groups of workers to guarantee reliability.
p4 should be to guarantee correctness, thus the utility of the
master decreases.

Another observation (especially in Figure 7(c)), is tha?
before the threshold value, ag increases, the utility of the In this paper we have combined a classical distributed com-
master increases, and then decreases for every valuétaf puting approach (voting) with a game-theoretic one (cost-
(except when close t&VCr = 0 and WCr = S). Whenp,, based incentives and payoffs). This has led to designing and
is increasing, the number of truthful workers decreases thanalyzing two mechanisms that enable a master process to
the master has to reward less honest workers and so ity utitiéeliably obtain a result despite the co-existence of malisj

©

DISCUSSION
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altruistic and rational workers, and the underlying commun23] I.T. Foster and A. lamnitchi. On death, taxes, and thevemence of
cation unreliability. P2P and grid computing. Iproc. of IPTPS 2003pp. 118-128.

Several future directions emanate from this work. For ef¢ 2865 ‘;tgk'gbs'\ﬁzg]gry'ess facility location in one pass proc. of STACS

ample, in this work we have considered a cost-free, wegl) m. Gairing. Malicious Bayesian congestion games.ptoc. of WAOA
version of worker collusion (all rational cheaters and wialis 2008 pp. 119-132.

; ; 6] P. Golle and I. Mironov. Uncheatable distributed corapions. Inproc.
workers return the same incorrect result). It would be intel? of CT-RSA 2001pp. 425440,

.eSt'ng to StUdy more '_nVOIVed collusions, as the ones md'ﬁﬂ M. Halldorsson, J.Y. Halpern, L. Li, and V. Mirrokni. Ospectrum

in [2] or [13]. A possible approach would be to analyze a sharing games. lproc. of PODC 2004pp. 107—114.

game among groups of colluders as in [22]. In this work28] J.Y. Halpem. Computer science and game theory: A bsiafvey.
have considered a single-task one-shot protocol, inhwhi Palgrave Dictionary of Economie007.

we ) ) 9 p_ ! fﬁg] J.Y. Halpern and V. Teague. Rational secret sharing rmandtiparty

the master decides which result to accept in one round of computation. Inproc. of STOC 2004pp. 623-632.

message exchange with the workers. It would be interestit3g] J. C. Harsanyi. Games with incomplete information pkayy Bayesian

to consider several task waves over multiple rounds asgumin PYers: I Il il Management Sciencd4.159-182, 320-332, 468-502,

. . . . 1967.
that the workers’ behavior changes over time, that is, Vi) E.M. Heien, D.P. Anderson, and K. Hagihara. Computiog latency

the computation as akvolutionary Game[33], [58]. The

master could use the knowledge gained in the previous rou

to increase its utility and its probability of success inufug
rounds. Issues such as worlaspiration level[10] could be
taken into account.
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