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ABSTRACT

We consider a Master-Worker distributed system where a master processor assigns, over

the Internet, tasks to a collection of n workers, which are untrusted and might act
maliciously. In addition, a worker may not reply to the master, or its reply may not

reach the master, due to unavailabilities or failures of the worker or the network. Each

task returns a value, and the goal is for the master to accept only correct values with
high probability. Furthermore, we assume that the service provided by the workers is

not free; for each task that a worker is assigned, the master is charged with a work-

unit. Therefore, considering a single task assigned to several workers, our objective is to
have the master processor to accept the correct value of the task with high probability,

with the smallest possible amount of work (number of workers the master assigns the

task). We probabilistically bound the number of faulty processors by assuming a known
probability p < 1/2 of any processor to be faulty.

Our work demonstrates that it is possible to obtain, with provable analytical guar-
antees, high probability of correct acceptance with low work. In particular, we first show

lower bounds on the minimum amount of (expected) work required, so that any algo-
rithm accepts the correct value with probability of success 1−ε, where ε � 1 (e.g., 1/n).
Then we develop and analyze two algorithms, each using a different decision strategy,
and show that both algorithms obtain the same probability of success 1− ε, and in do-

ing so, they require similar upper bounds on the (expected) work. Furthermore, under
certain conditions, these upper bounds are asymptotically optimal with respect to our

lower bounds.
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1. Introduction
Problem and Motivation. The demand for processing large amounts of data has
increased over the last decade. As traditional one-processor machines have limited
computational power, distributed systems consisting of hundreds of thousands of
cooperating processing units are used instead. An example of such a massive dis-
tributed, Internet-based, cooperative computation is the SETI@home project [21],
which was the first instance of volunteer computing. As the search for extraterrestrial
intelligence involves the analysis of gigabytes of raw data that a fixed-size collection
of machines would not be able to effectively carry out, the data are distributed to
millions of voluntary machines around the world. A machine acts as a server and
sends data (aka tasks) to these client computers, which they process and report
back the result of the task computation. However, these client computers are not
trustworthy and might act maliciously (or simply be faulty). This gives rise to a
crucial problem: how can we prevent malicious clients from damaging the outcome
of the overall computation?

In this work we abstract this problem in the form of a distributed system consist-
ing of a master fail-free processor M and a collection of n processors, called workers,
that can execute tasks. Worker processors might act maliciously, that is, they are
Byzantine [24]. Since each task returns a value, we want the master to accept only
correct values with high probability. Namely, given ε� 1, we want a probability of
success of at least 1 − ε (e.g., 1 − 1/n). However, we assume that the service pro-
vided by the workers is not free (as opposed to the SETI@home project). For each
task that a worker is assigned, the master computer is charged with a work-unit.
Furthermore, workers can be slow or fail during the computation of a task, and
messages can get lost or arrive late; in order to introduce these assumptions in the
model, we consider that there is a known probability d (which may depend on n) of
M receiving the reply from a given worker on time. We also consider that the num-
ber of malicious workers is bounded probabilistically: there is a known probability
p < 1/2 of any processor to be faulty (p may depend on n). Given the above model,
and considering a single task assigned to several workers, our goal is to have the
master computer to accept, with provable analytical guarantees, the correct value of
the task with probability of success at least 1 − ε, and with the smallest possible
amount of work (number of workers that M has assigned the task). (The problem
and model are presented in detail in Section 2.)
Prior/Related Work. A real system that is very related to the model presented in
this paper is the Berkeley Open Infrastructure for Network Computing (BOINC) [3,
4]. This system allows volunteers to provide free computational cycles to perform
intensive computation in a form similar to the one proposed in this paper. With
BOINC, an application can submit to the system a task to be executed. Then,
instances of the task are dispatched to several clients and a validation process is used
to decide which returned value to accept as correct output of the task. In BOINC the
number of instances of a task executed and the validation procedure is provided by
the application. Like in the original SETI@home system, and unlike in our model,
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applications in BOINC are not restricted on the number of instances of a task they
request and are not charged for the computational power they use. This could be
dangerous if applications act selfishly and start a large number of instances. On the
other hand, application programmers may not have enough information to be able
to appropriately tune up the number of instances and the validation mechanism.

An interesting model of volunteer computing was proposed by Sarmenta [28].
This work assumes that workers are malicious (he calls them saboteurs) with prob-
ability f , and that a malicious worker returns a wrong answer with probability s. It
considers a collection of tasks instead of a single one, and the objective is to bound
the expected number of wrong results accepted by the master, and the amount of
work performed. It compares several mechanisms to achieve this, namely, major-
ity for each task and spot-checking (giving workers tasks whose result is known to
identify malicious workers). This second mechanism can be combined with black-
listing or credibility techniques. Compared with the model in this paper, it assumes
that all workers reply, while we have a explicit parameter d to model the worker’s
unavailability and the network’s unreliability.

The mechanisms proposed by Sarmenta [28] are contrasted with real data by
Kondo et al. [19]. They analyze the errors of a volunteer computing system reach-
ing some interesting conclusions. For instance, they show little correlation between
simultaneous malicious workers. Additionally, there is a large variability of the set
of malicious workers over time, with the exception of a few frequent offenders. They
conclude that care has to be taken if blacklisting or credibility is used. They also
conclude that a large number of tasks and time are required to achieve low error
rates with spot-checking, and that, in general, to achieve low errors it is better to
use majority.

Motivated by the conference version of this work [12], Konwar et al. [20] have
studied an extension of our problem in which there are n workers and n tasks to be
performed. Their computational model is somewhat stronger than the one used here
(and more similar to that of Sarmenta [28]), since they assume a synchronous system
in which the result of a task assigned to a non-faulty worker is always received by the
master on time. This allows them to obtain efficient algorithms even if the failure
parameter p is unknown (they can efficiently estimate it).

As mentioned, the above papers assume that the replies from all the workers
are received by the master. However, the characteristics of volunteer computing
allows to make few guarantees on communication and computation reliability. For
instance, Heien at al. [17] have found that in BOINC only around 5% of the workers
are available more than 80% of the time, and that half of the workers are available
less than 40% of the time. This fact, combined with the length of the computation
incurred by a task, justifies the interest of considering in the model of volunteer
computing the possibility of workers not replying (as modeled by parameter d).
Additionally, the large typical times to run tasks justifies the use of single-round
mechanisms (as considered in this work).

In a related research direction, there is work (e.g., [30, 9]) that has considered
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similar master-worker frameworks, where the workers are not assumed to be destruc-
tively malicious (as assumed in this paper and in all previously mentioned models)
but instead are assumed to be rational [1] and simply try to maximize their benefit
(that is, workers act based on their own self-interest). This assumption leads to
game-theoretic approaches to the master-workers problem, in which the master has
to find ways to incentive workers to return the correct reply. This has been usually
done by having the master verifying/auditing the values returned with some prob-
ability, and punishing the workers caught lying. More recently, Fernández Anta et
al. [10] considered a master-worker framework with altruistic, malicious and rational
workers. For this purpose, an approach that combines voting strategies with game-
theoretic and mechanism design incentive-based techniques was deployed. Unlike
the present work, where the performance measure is the number of workers used
for performing the task, in [10] the measure to be optimized is the master’s utility
(a quantified metric that takes into consideration various system parameters and
reward/punishment schemes). Due to the very different objectives and mechanisms
deployed in [10], the results of [10] and of the present paper, cannot be compared,
even if no rational workers are assumed in [10]. The present work studies thoroughly
the case of malicious workers having as a goal to minimize the number of workers
while obtaining the desired success probability without relying on any incentive-
based mechanisms.

The problem we consider in this work is clearly related to the voting problems
(e.g., [5, 26, 22]). In these problems there is a set of entities or “voters,” some
of which can be faulty. Each voter proposes a value (usually obtained from some
computation) to a deciding agent, such that non-faulty voters always propose the
correct value, while faulty voters can have different behaviors. From the set of
proposed values, the agent uses a strategy to choose a value that it believes to be
the correct one. The purpose of a good strategy is to maximize the probability of
choosing the correct value. The main difference of these problems with the problem
studied in this paper is that they usually assume that all the entities in the system
propose a value, that these values are received by the deciding agent, and only the
probability of a bad choice has to be minimized.

A related reference from voting to the present work is that of Paquette and
Pelc [26]. There, the authors consider a voting system in which voters can lie with
different and known probabilities. In this general framework, synchronous and asyn-
chronous models are considered. The main difference between [26] and the present
paper has to do with the problem statement. While they want to maximize the prob-
ability of a correct decision, in this paper the target is to minimize the cost (i.e.,
the number of selected workers), while maintaining a certain level of confidence.
A second difference has to do with the modeling and analysis of asynchrony. In
their model they assume that the message latencies are controlled by an adversary.
Consequently, the decision can be arbitrarily delayed. Additionally, the decision
considers a fixed number of values (with a default value if the node/s response has
not been received). In the model considered here, the latency is modeled with a
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probability of late arrival d, and the decision is taken after a fixed amount of time
with only the values received are considered to make it.

Another problem related to the problem we consider in this work is the Do-All

problem, in which a collection of k message-passing processors need to coopera-
tively perform t independent tasks in the presence of failures (e.g., [6, 15]). The
work in [11] has considered this problem under Byzantine processors. Several deter-
ministic lower and upper bound results were introduced on the complexity of solving
the Do-All problem in a synchronous distributed system where up to f nodes might
behave maliciously. Although the idea of reliably executing tasks in the presence of
malicious processors is the same, both the model and the problem we consider here
are different. For example, in [11], processors attempt to collectively decide whether
a task has been correctly performed without in fact having to learn the result of the
task, as opposed to our problem where a single processor must decide the validity
of a task result (and of course obtain that value).

There is an interesting connection between the problem considered in this work
and the problems of reliably computing Boolean k-variable functions with noisy
Boolean circuits (e.g., [27, 13]), noisy Boolean decisions trees (e.g., [27, 18, 8, 7]),
and noisy broadcast (e.g., [14, 16, 23]). Also, the fact that the master has to decide
upfront the number of queries connects our model with the model of static noisy
Boolean decision trees. In particular, our problem can be viewed as the problem of
reliably computing the identity function of one variable (F (x) = x) with a noisy
static Boolean decision tree. However, we have identified several differences between
our model and the models considered in the literature for these problems. For exam-
ple, in their models, a query of a bit always returns an answer (0 or 1) as opposed
to our model in which it is possible not to get a reply for a query (either a malicious
worker chooses not to reply or a message is not received on time). Recent work [29]
investigated the reliable computation of Boolean k-variable functions assuming that
` p-faulty copies of each input bit are received. However, it is assumed that ` is fixed
as opposed to our model where the number of received replies is not fixed.

Differences exist also in the complexity measures considered. In noisy circuits
and decision trees, upper and lower bounds are usually given as functions of either
(a) the sensitivity s (or the critical number) of a function (number of bits that
are critical for the correct computation of the function), or (b) simply the number
of variables k of the function. Moreover, it is assumed that the probability p of
a bit to be given incorrectly and the probability ε that the function is computed
incorrectly are constants (we do not impose this restriction in our model). Therefore,
the asymptotic bounds presented, especially the lower bounds (e.g., Ω(s lg s) or
Ω(k lg k)) are meaningless in our model, since s = k = 1 (it is worth mentioning
that their analytical results leading to the asymptotic expressions are usually not
dependent on p and ε). In fact, in this work, we present a new lower bound on the
depth required by noisy static Boolean decision trees for the reliable computation
of the identity function that depends on p and ε. In the noisy broadcast model,
bounds are given as functions of the number of broadcasts needed to compute a
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given function. Again, these bounds do not apply to our model, since in our model
we have a single convergecast (from the workers to the Master) and not multiple
broadcasts between the workers.

Contributions. Our work demonstrates, with provable analytical guarantees, that
it is possible to execute tasks reliably with high probability and with low cost in the
presence of malicious processors and processors whose reply may never be received.
In particular:

• We present lower bounds on work. Specifically, we identify lower bounds on the
minimum amount of (expected) work required, so that any algorithm accepts the
correct value with probability of success 1−ε. Furthermore, we derive a new lower
bound on the depth of noisy static Boolean decision trees [27] required for the
reliable computation of the 1-variable identity function (F (x) = x); the bound is
expressed as a function of p and ε.

• We develop two algorithms: (a) the Majority Based Algorithm (MBA) and (b) the
Threshold Based Algorithm (TBA). MBA is a simple and natural algorithm that
uses a standard technique of having M randomly choosing a subset of the workers
and taking the majority of the returned values as the correct answers. However
TBA does not follow this pattern, since it is designed to decide as early as possible.
In TBA, if M receives a certain number of responses with equal value (threshold)
it makes a decision, otherwise it decides on the majority of the received responses.
Algorithm TBA is early-terminating as opposed to MBA that always waits for a
time T and then makes a decision on the value to accept.

• We analyze the algorithms using Chernoff bounds. Both algorithms obtain the
same probability of success 1 − ε and we derive similar upper bounds on the
(expected) work required in doing so, expressed as functions of ε, d, and p. Fur-
thermore, for the cases where p is a constant, both algorithms achieve the same
asymptotic upper bounds on (expected) work, which are asymptotically optimal
with respect to our lower bounds; in this case the work complexity is Θ((− lg ε)/d).

Paper Organization. In Section 2 we present the model and definitions. In Sec-
tion 3 we present lower bounds on work in order to achieve high probability of
correct decision in the model we consider. In Section 4 we present algorithms MBA
and TBA and we show that they achieve the desired probability of correct decision
while maintaining low work. We also compare our two algorithms and the lower
bounds. We conclude in Section 5.

2. Model and Definitions

We study execution of tasks in a system in which the processors can behave ma-
liciously, i.e., are Byzantine [24]. We assume there is a fail-free master processor
M which has a task to be executed. This task returns a value, which M wants to
reliably obtain. Following the typical Master-Worker volunteer computing frame-
work, a set P of n processors, P = {1, ..., n}, that can execute the task, is made
available to processor M . We refer to these processors as workers. The workers are
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continuously waiting for M to assign them a task to execute, they execute a task if
they are assigned one, and return the computed value (as depicted in Figure 1).

Processor i ∈ P , does:
1 Wait to receive from M a task to be executed
2 Execute the task
3 Send to M the computed value v

Fig. 1. Algorithm executed by any worker processor.

Workers are not considered to be trustworthy and in fact, they might act ma-
liciously (e.g., they might send an incorrect value, send no value, etc.). However,
we assume that a malicious processor, that is a faulty processor, cannot imperson-
ate another processor and cannot modify nor remove other processors’ messages
(including M). Clearly, in order to be able to do anything useful, the number of
processors that may fail has to be bounded. We consider a probabilistic bound on
the number of malicious processors: there is a probability p < 1/2 of any processor
to be faulty (each processor is faulty with probability p, independently of the rest
of processors). We assume that the set of faulty processors is fixed before M assigns
the task to the workers and it does not change during the execution. We also assume
that M knows a priori the corresponding value p, but has no a priori knowledge of
which processor can be faulty.

We further assume that processors are asynchronous with respect to each other
and the communication between them is not reliable. Therefore, processors can
be slow, and messages can get lost or arrive late. In order to incorporate these
assumptions in the model, we consider that there is a known probability d of M
receiving the reply from a given worker (that is willing to reply) on time. This
probability is identically distributed and independent for each worker. The reply
may not arrive on time due to several reasons: the worker never receives the message
from M , M never receives the reply from the worker, or the whole process takes too
much time and the reply is simply late. Note that we do not differentiate whether
the worker is faulty or not.

Then, under this model we assume that M is given a task, whose correct output
value is v, and a probability ε � 1 (e.g., 1/n), and M must accept v with success
probability of at least 1− ε and low cost. By success probability we mean the prob-
ability of M deciding the correct value that the task returns. To attempt to decide
the correct value, M must assign the execution of the task to a set of workers (not
necessarily all of them), wait for replies from them, and decide from the replies
obtained. We refer to the above procedure as a round. Note that we do not allow
a second round to take place; M must accept a value at the end of the first (and
only) round. This guarantees fast termination of algorithms. Note also that once M
accepts a value, it is not allowed to change its decision and choose a different value.
For each worker M assigned the task, M is charged with one work-unit. Given a
task assignment, its cost, or work, is defined as the total number of work-units that
M is charged for, that is, the total number of workers that M assigned the task.
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Then, the objective is to minimize the (expected) work of the assignment while
obtaining a success probability of at least 1− ε.

Finally, we assume that M has no a priori knowledge of the correct value to be
computed by the task. Let V be the set of possible values returned by the task to
be executed. This means that M has no information on the probability that each
of the values in V has to be the solution of the task. Only one of these values is
the correct value, which all correct workers return. A faulty worker can decide not
to reply, or reply with any value in V (correct or incorrect). In order to analyze
worst case scenarios, it is assumed full collusion among faulty workers, i.e., they
coordinate their behavior in order to maximize the probability that M accepts an
incorrect value (for example, faulty workers arrange to send the same incorrect value
to M).

3. Lower Bounds on Work

In this section we give lower bounds on the (expected) work of any algorithm with
success probability no less than 1−ε. To do so, we lower bound the minimum number
of replies M must have in order to decide with the desired success probability.

To simplify the analysis, it is considered that the set of possible returned values
is V = {0, 1}. This assumption does not affect the model because M decides in one
round. Then, to maximize the probability of M accepting an incorrect value, all
faulty workers must reply to M with the same incorrect value, rather than choosing
not to reply at all or to reply with the correct value (of course their message might
be lost or delayed). Then, we assume that if v ∈ {0, 1} is the result, they respond
with 1− v.

We begin with the following lemma, which states that the algorithms that accept
the most received value among the replies have the maximum success probability.

Lemma 3.1. If an algorithm A has success probability 1 − ε, then there is an
algorithm A′ with success probability no less than 1− ε that always accepts the most
frequent value among the received replies, such that A′ does not use more workers
than A.

The proof of the above lemma follows from a result proved in [26] which states
that if p < 1/2 then in voting, optimal reliability is obtained by the majority
strategy. Then, for the lower bounds we only need to consider algorithms that accept
the most replied value. The following theorem shows that any algorithm must have
runs in which the same task is assigned to a minimum number of workers.

Theorem 1. If workers fail with probability p, for any d, any algorithm must have
runs in which it assigns the task to at least 2 lg ε

lg p −2 workers in order to decide with
probability of success at least 1− ε.

Proof. Suppose that the algorithm uses majority to decide and always assigns the
task to less than 2 lg ε

lg p−2 workers. This implies that in each runM gets r < 2 lg ε
lg p−2 =

2 logp ε− 2 replies. Then, the probability that a majority of them come from faulty
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)
≥
(d r2 e−1

s

)
, for s ∈ [0, d r

2e− 1]; the
last inequality follows from the above bound on r.

If this happens, a majority of replies come from faulty processors which return
the same incorrect value 1 − v, and M will decide incorrectly. Then, the success
probability of the execution is below 1 − ε. Since this happens for all runs, the
success probability of the majority algorithm is below 1 − ε. This and Lemma 3.1
complete the proof.

The above Theorem leads to a new non-trivial lower bound result on the depth
of noisy static Boolean decision trees [27].

Corollary 3.1. Any noisy static Boolean decision tree for the function F (x) = x

when the error probability is p and the probability of a correct answer is at least
1− ε has depth at least 2 lg ε

lg p − 2.

The above bounds show the existence of runs with a minimum number of pro-
cessors assigned to a task, but do not give conditions on the distribution of these
assignments. (The expected number of workers a task is assigned could be much
lower.) The following results give lower bounds on the expected number of workers
to which any algorithm assigns a task. These bounds are very close to the above
bounds.

Theorem 2. If ε ≤ 1/2, workers fail with probability p, and worker replies are
delivered on time with probability d, then the expected number of workers to which
any algorithm assigns a task must be more than 1

d ( lg(2ε)
lg p − 1) in order to decide

with probability of success at least 1− ε.

Proof. Suppose that the algorithm uses majority to decide and assigns on average
the tasks to no more than 1

d ( lg(2ε)
lg p −1) workers. This implies that M gets on average

R ≤ d( 1
d ( lg(2ε)

lg p −1)) = logp(2ε)−1 replies. LetR be the random variable of number of
replies obtained by M , using Markov’s inequality we have that Pr

[
R ≥ 2R

]
≤ 1/2.

Then, we can lower bound the probability that in any run M gets less than 2R
replies and a majority of then return the same incorrect value 1− v as follows. Let
X be the number of incorrect replies. Then, Pr

[
(R < 2R)

]
Pr
[
X > R/2|R < 2R

]
≥

1
2 Pr

[
X = bR/2c+ 1|R < 2R

]
≥ 1

2p
bR/2c+1 > 1

2p
R+1 ≥ ε.

M will decide incorrectly only in this case, and hence the success probability
of the majority algorithm is smaller than 1− ε. This and Lemma 3.1 complete the
proof.

4. Proposed Algorithms

In this section we present two algorithms that the master processor M can run in
order to solve the proposed problem. The first algorithm, called Majority Based Al-
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gorithm (MBA) is a simple and natural algorithm where M decides on the majority
of received responses. In the second algorithm, called Threshold Based Algorithm
(TBA), if M receives a certain number of responses with equal value (threshold) it
makes a decision, otherwise it decides on the majority of the received responses.

Both algorithms operate under a time restriction, that is, M needs to decide
by some time T . More precisely, the value T determines how long M will wait for
replies from the worker processors. Algorithm TBA might terminate before time
T , that is, the algorithm is early-terminating. Following the definitions given in
Section 2, d denotes the probability of M receiving a reply from a worker (that is
willing to reply) within time T . Clearly, M can choose this parameter T to tune the
probability d. Like in the previous section, to simplify the analysis, it is considered
that the set of possible returned values is V = {0, 1}, and that all faulty workers
return the incorrect value. This leads to worst case analyses.

4.1. Algorithms Description

4.1.1. The Majority Based Algorithm

We first present the Majority Based Algorithm (MBA). In this algorithm, processor
M first chooses among the workers in set P a subset S and assigns the task to
be executed to them. Then it waits for replies for a fixed time T . After that, it
decides the value by simple voting (breaking ties at random). The workers in S are
chosen uniformly at random from those in P . We consider two ways of choosing
the subset S: either (i) M fixes the size s of S and chooses s processors uniformly
at random from P , or (ii) M fixes a probability q and chooses each processor in
P independently with probability q. Hence, M can choose either the size s or the
probability q. The formulation of the MBA algorithm is shown in Figure 2.

Processor M does:
1 Choose a set S ⊆ P uniformly at random
2 Send the task to be executed to the workers in S
3 Wait T time for replies from the workers in S
4 Accept v, where v is the most frequently returned value

Fig. 2. Majority based algorithm executed by master processor M .

4.1.2. The Threshold Based Algorithm

We now present the Threshold Based Algorithm. This early-terminating algorithm
is described in pseudocode in Figure 3.

As in algorithm MBA, processor M chooses subset S ⊆ P uniformly at random
and either by fixing the size s of by fixing the probability q of a processor being
chosen (see previous subsection). The threshold value τ is the number of equal
replies (coming from workers in S) that will be needed to accept a given value
v, before or on time T . The value of τ has to be large in order to prevent faulty
processors to drive M to make a wrong decision. On the other hand, the value of
τ should not be too large, because otherwise M will not get enough replies from
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Processor M does:
1 Choose a set S ⊆ P uniformly at random
2 Send the task to be executed to the workers in S
3 Wait for replies from the workers in S
4 If there are τ replies with the same value v on or before time T
5 Accept v
6 Else
7 Accept v, where v is the most frequently returned value

Fig. 3. Threshold based algorithm executed by processor M .

correct processors to accept the correct value quickly. If by time T , M does not
receive τ replies, then it follows the strategy of algorithm MBA and accepts the
most frequently returned value v (breaking ties at random).

4.2. Analyses

In this section we bound the probability of failure for both algorithms. We have
derived exact bounds for this probability, which give exact values for the probabil-
ity of success. However, the expressions found are hard to handle in order to find
the most appropriate parameters of the algorithms that M can use in each case.
Even attempts for computing and plotting these values failed, as the computations
require a big degree of floating point accuracy and range of arithmetic values. There-
fore, we perform looser analyses with Chernoff bounds. These analyses allow us to
obtain much simpler expressions to find suitable values for the parameters of the
algorithms, and are easy to compute.

In the rest of the section we denote by X the random variable that accounts
for the number of replies that the master M gets from faulty workers (that is,
replies with the incorrect value) and by Y the random variable that accounts for
the number of replies that M gets from non-faulty workers (that is, replies with the
correct value by the end of period T ). Hence, for the Majority Based Algorithm our
target is to bound the probability Pr [X ≥ Y ].

Additionally, to simplify the analyses of the Threshold Based Algorithm algo-
rithm we assume that, if M would have gotten τ replies from malicious workers by
time T , it decides the incorrect value (this is like assuming that bad replies always
reach M before the good ones). Moreover, even if M does not get τ bad replies,
we assume that it decides the incorrect value unless it gets at least τ good replies
(that is, in Line 7 of Figure 3 the incorrect value is always accepted). All these
assumptions lead to a correct but pessimistic analysis. Hence, for the Threshold
Based Algorithm, our target is to bound the probability Pr [(X ≥ τ) ∨ (Y < τ)].

4.3. Analysis of the Majority Based Algorithm

We now show that algorithm MBA achieves high probability of success while re-
stricting the amount of work.
Theorem 3. Algorithm MBA guarantees a success probability of at least 1 − ε
with (for p < 1/4 the values for p = 1/4 are used),
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(a) Expected Work E[|S|] = nq = 18(ln 2−ln ε)p
(1−2p)2d when parameter q is considered.

(b) Work |S| = s = d 18(ln 2−ln ε)p
(1−2p)2d e when parameter s is considered.

Proof. As previously defined, X is the random variable that accounts for the num-
ber of replies that M gets from faulty workers and Y the random variable that
accounts for the number of replies that M gets from non-faulty workers. Define
R = X + Y , and let R = E[R] be its expectation. Then the probability of the al-
gorithm MBA making an incorrect decision (that is, accepting the incorrect value)
can be bounded as follows.

Pr [X ≥ Y ] =
∑

c<2R/3

Pr [R = c] Pr [X ≥ c/2|R = c] +
∑

c≥2R/3

Pr [R = c] Pr [X ≥ c/2|R = c]

≤
∑

c<2R/3

Pr [R = c] +
∑

c≥2R/3

Pr [R = c] Pr [X ≥ c/2|R = c] .

We now treat each term separately. The first term can be bounded with a Cher-
noff bound, like Theorem 4.5 of [25] with δ = 1/3, as

∑
c<2R/3 Pr [R = c] =

Pr
[
R < 2R/3

]
≤ e−R/18.

To bound the second term, we use the following property, which triv-
ially follows from p < 1/2. Let c and c′ be two non-negative integers; if
c ≤ c′ then Pr [X ≥ c/2|R = c] ≥ Pr [X ≥ c′/2|R = c′]. This implies that∑

c≥2R/3 Pr [R = c] Pr [X ≥ c/2|R = c] ≤ Pr
[
X ≥ R/3|R = 2R/3

]∑
c≥2R/3 Pr [R = c]

≤ Pr
[
X ≥ R/3|R = 2R/3

]
.

We now use a Chernoff bound to bound this probability. Assume R = 2R/3 and
let R be the set of chosen processors whose reply arrives on time. We define, for each
i ∈ R, the Bernoulli random variable Xi = 1 if and only if processor i is faulty. Then
it is easy to verify that X =

∑
i∈RXi and that these variables are independent.

Clearly, since R = 2R/3 then the expected value of X is X = E[X] = 2pR/3. Then,
we can apply Theorem 4.4 of [25] with δ = 1

2p − 1 as long as 1/4 ≤ p < 1/2 (to

guarantee 0 < δ ≤ 1), and obtain that Pr
[
X ≥ R/3|R = 2R/3

]
≤ e−

(1−2p)2R
18p .

Now, since (1−2p)2R
18p ≤ R/18, we can add both bounds, and obtain that

Pr [X ≥ Y ] ≤ 2e−
(1−2p)2R

18p . In order to keep this value no larger than ε, it is enough
to guarantee that R ≥ 18p(ln 2−ln ε)

(1−2p)2 . Since either R = sd or R = nqd, the two cases
of the statement of the theorem hold.

4.4. Analysis of the Threshold Based Algorithm

We now show that algorithm TBA achieves high probability of correct acceptance
with low (expected) work.

Theorem 4. Algorithm TBA guarantees a success probability of at least 1 − ε

with (for p < 1/6 the values for p = 1/6 are used)

(a) τ = 2nqdp(1− p) and Expected Work E[|S|] = nq = 3(ln 2−ln ε)
(1−2p)2pd when parameter

q is considered.
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(b) τ = 2sdp(1−p) and Work |S| = s = d 3(ln 2−ln ε)
(1−2p)2pd e when parameter s is considered.

Proof. We first present a general analysis that is independent of the specific pa-
rameters considered (q or s) and then we derive the results for each case follow-
ing the general analysis. We define the random variables X and Y as before. Our
pessimistic view leads to the following non-success property for algorithm TBA:
Pr [(X ≥ τ) ∨ (Y < τ)] ≤ ε.

To proceed we use Chernoff bounds. We define the appropriate Bernoulli vari-
ables later (when we consider each specific case). Denote X = E[X] and Y = E[Y ].
We set τ = (1 + δ)X = (1 − δ)Y , where 0 < δ ≤ 1. From this, we obtain that
δ = Y−X

Y +X
and τ = 2XY

Y +X
. Note that Y > X, and hence 0 < δ ≤ 1. Then we

can use Theorem 4.4 of [25] and obtain that Pr [(X ≥ τ) ∨ (Y < τ)] ≤ Pr [X ≥ τ ] +

Pr [Y < τ ] = Pr
[
X ≥ (1 + δ)X

]
+ Pr

[
Y < (1− δ)Y

]
≤ e

−Xδ2
3 + e

−Y δ2
2 ≤ 2e

−Xδ2
3 ,

where the last inequality also follows from the fact that Y > X.
Then, to bound the probability of non-success by ε, we force 2e

−Xδ2
3 ≤ ε, which

yields (
Y −X
Y +X

)2

X ≥ 3(ln 2− ln ε). (1)

We now show the results for case (a) and (b) by defining appropriate Bernoulli
variables and replacing the values of X and Y on Eq. (1). We need to define a
different set of Bernoulli random variables for each case in order to ensure their
independence.

Case (a): parameter q. We define the following Bernoulli random variables. For
each i ∈ P , the Bernoulli random variable X(a)

i = 1 if and only if, simultaneously,
processor i is faulty, chosen (i.e., i ∈ S), and its (incorrect) reply reaches M on
time. Similarly, for each j ∈ P , Y (a)

j = 1 if and only if, simultaneously, processor j
is correct, chosen, and its (correct) reply reaches M on time. It is easy to verify that
X =

∑
i∈P X

(a)
i and Y =

∑
j∈P Y

(a)
j , for the random variables X and Y , defined

above. In this case we have that Pr[X(a)
i = 1] = pqd and Pr[Y (a)

j = 1] = (1− p)qd,
for any i and j. Then, X = npqd and Y = n(1 − p)qd. Plugging these values in
Eq. (1), we obtain the stated result for case (a).

Case (b): parameter s. For this case, we only define Bernoulli random variables for
the processors in S. Then, for each i ∈ S, the variable X(c)

i = 1 if and only if,
simultaneously, processor i is faulty and its reply reaches M on time. Similarly, for
each j ∈ S, the variable Y (c)

j = 1 if and only if, simultaneously, processor j is correct

and its reply reaches M on time. Again, it is easy to verify that X =
∑

i∈S X
(c)
i and

Y =
∑

j∈S Y
(c)
j . In this case we have that Pr[X(c)

i = 1] = pd and Pr[Y (c)
j = 1] =

(1− p)d, for any i, j ∈ S. Then, X = spd and Y = s(1− p)d. Plugging these values
in Eq. (1), we obtain the stated result for case (b).

Finally, using basic calculus (derivatives) it is easily shown that the equations
for (expected) work are minimized when p = 1/6. This completes the proof.
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4.5. Comparison of the Algorithms

Both algorithms obtain the same probability of success 1− ε and we derive similar
upper bounds on the work required in doing so. In particular, the bounds for both
algorithms only differ on a factor of 6 · p2, that is, algorithm MBA requires less
work than algorithm TBA if p < 1/

√
6 (≈ 0.4). Therefore, for the cases where p is

a constant, both algorithms achieve the same asymptotic upper bounds on work,
which are asymptotically optimal with respect to the lower bounds obtained in this
work; in this case the work complexity is Θ((− lg ε)/d).

Additionally, note that when using the parameter s in the algorithm MBA, it is
enough to receive bs/2c + 1 equal replies to safely decide the corresponding value.
Otherwise, majority is used to decide. Since this behavior is exactly the same that
would be observed if the TBA algorithm is used with the same value of s and
defining τ = bs/2c + 1, we can safely use TBA instead of MBA with the same
parameter s and obtain the bound of work of case (b) of Theorem 3.

Given the above discussion, and based on the analysis we obtained, we consider
more preferable to use parameter s instead of q, since the former allows to know
the exact value of work that will be incurred. Additionally, from an implementation
point of view, the use of s only requires to make s random choices to obtain the set
of chosen workers, while using q implies making a linear number of random choices
(one per worker). Having chosen to use parameter s, we consider algorithm TBA to
be more preferable than algorithm MBA, since TBA is early-terminating (discussed
in the introduction of Section 4) as opposed to MBA that always waits for time T
and then makes a decision on the value to accept. As we previously argued, even
when our analyses yield that TBA requires more work than MBA, we can still use
TBA with the parameter s of MBA and τ = bs/2c+ 1, and reach the smaller work
bound.

Figure 4 shows graphical comparisons of the two algorithms and the lower
bounds we obtain by plugging certain values on the analytical expression we have
derived. Additionally, it presents the minimum value of s that would satisfy the
desired success probability for MBA, obtained by simulation (called optimal in the
figure). These simulations have been carried out by generating 100 million random
instances for each value of s and each value of p, and counting, in each case, the
proportion (probability) of cases with a majority of incorrect answers. With this,
the evaluation of the optimal s for each p is straightforward. From the left plot it
can be observed how the work of MBA is below that of TBA when p is smaller than
1/
√

6 (≈ 0.4), that they match at this point, and it is above that of TBA for larger
values of p. From the right plot it can be observed the similar behavior of our upper
and lower bound results as ε changes.

5. Future Work

Several research directions emanate from our work. First, it would be interesting to
investigate whether the gap (that exists in some cases) between our lower and upper
bounds could be decreased; to this respect it seems that both the lower bound and
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Fig. 4. Comparison of the bounds obtained when parameters p and s are considered. The
plot on the left depicts the work s (y-axis) over p (x-axis), for n = 106, d = 0.9 and
ε = 1/n. The plot on the right depicts (in log scale) the work s (y-axis) over ε (x-axis),
for d = 0.9 and p = 1/4.

the algorithm analyses could improve. Especially for the algorithms’ analyses, we
believe that if we are able to use less pessimistic assumptions or to avoid the use of
Chernoff bounds (or perhaps use/devise a more appropriate Chernoff bound for our
problem) then we should be able to improve the bounds on work while maintaining
the same probability of success.

One important contribution of this work is the introduction of the parameter d,
that models the probability of a worker not replying. Studying a model in which
these events are not stochastic, but controlled by an adversary (like, e.g., in [26]),
seems interesting. Another interesting research direction is to relax the one-round
assumption of our model (which was used to guarantee fast termination of algo-
rithms) and allow for M to decide in more than one round. For instance, M could
start a second round if it did not receive enough replies in the first round. Intu-
itively, in such a case, M should be able to obtain better probability of success or
perhaps less expected work. This gives rise to the following question: By how much
is the probability of success increased and how are algorithm termination and the
bounds on work affected?

Another direction to explore further is to consider the more general problem
in which there is a sequence of tasks whose values M must reliably obtain, while
maintaining the overall work low, as done in [28] and [20]. To this respect, possibly
a mechanism for identifying or suspecting workers as malicious needs to be devised.
Care has to be taken when choosing this mechanism since, as shown by Kodo et
al. [19], very often workers may return incorrect results without being frequent
offenders.

Finally, recall that in order to analyze worst case scenarios we considered full
collusion among faulty workers. It would be also interesting to study what hap-
pens in the case where faulty workers do not collaborate or their collaboration is
restricted.
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