

Algorithmic Mechanisms for Reliably Executing Tasks on Master-Worker Internet-based Platforms

Antonio Fernández Anta^{2,3} Evgenia Christoforou¹ Miguel A. Mosteiro^{3,4} Chryssis Georgiou¹

¹Dept. of Computer Science, University of Cyprus

²Institute IMDEA Networks

³LADyR, GSyC, Universidad Rey Juan Carlos

⁴Dept. of Computer Science, Rutgers University

This work is supported in part by the Cyprus Research Promotion Foundation grand $T\Pi E/\Pi \Lambda HPO/0609(BE)/05$

Motivation

- Internet emerges as a viable platform for supercomputing
 - Chome systems, volunteering computing (e.g., SETI@home [Korpela et al 01])
 - P2P and Grid computing [Foster, lamnitchi 03]
- Problem: Great potentials of Internet-based computing limited by untrustworthy platforms components

Motivation

Amazon's Mechanical Turk

- Master and worker humans
- Master processor
 - Has a problem to solve
 - Hires worker processors through the platform to compute it
- Worker processors
 - Contribute time in exchange to economic rewards

Motivation

Redundant task-allocation recent approaches

- "Classical" distributed computing (pre-defined worker behavior)
 [Fernández et al 06; Konwar et al 06]
 - malicious workers always report incorrect result (sw/hw errors, Byzantine, etc.)
 - altruistic workers always compute and truthfully report result (the "correct" nodes)

Malicious-tolerant voting protocols are designed

- Game-theoretic (no pre-defined worker behavior)
 [Yurkewych et al 05; Babaioff et al 06; Fernández Anta et al 08]
 - rational workers act selfishly maximizing own benefit Incentives are provided to induce a desired behavior
- BUT realistically, the three types of workers may coexist!

Algorithmic Mechanisms for Internet-based Platforms

5/4

Introduction
Algorithmic Mechanism

Our approach

In this work: combine all

- Communication:
 - Reliable network, all workers reply
 - Unreliable network, workers may not reply
- Types of workers:
 - malicious: always report incorrect result
 - altruistic: always compute and report correct result
 - rational: selfishly choose to be honest, cheat or abstain Known probability distribution over types Each worker is malicious, altruistic or rational with probs p_{μ} , p_{α} , p_{ρ} , s.t. $p_{\mu}+p_{\alpha}+p_{\rho}=1$
- Game-theoretic approach:
 - Computations modeled as strategic games
 - Provide incentives to induce desired rationals behavior
 - Deploy reward/punishment schemes
 - Master chooses whether to audit the returned result or not
- Classical distributed computing approach:
 - Design malice/altruism-aware voting protocols

Introduction
Algorithmic Mechanisms

Motivation Communication Issues

- Communication uncertainty
 - Messages exchanged may get lost or arrive late
- Possibility of workers not replying
 - Around 5% of the workers are available more than 80% of the time Half of the workers are available less than 40% of the time [Heien, Anderson and Hagihara 09]
 - Long computational length is incur by a task [Kondo et al. 07]
- Allowing workers to abstain from the computation (low network reliability)

Algorithmic Mechanisms
Applying the Mechanisms

General Framework

Correct task result
WHILE, max {Benefit}

Background

Definition

"A game consists of a set of players, a set of moves (or strategies) available to those players, and a specification of payoffs for each combination of strategies." [Wikipedia]

- Game Theory:
 - Players (processors) act on their self-interest
 - Rational behavior: seek to increase own utility choosing strategy according to payoffs
 - Protocol is given as a game
 - Design objective is to achieve equilibrium among players

Algorithmic Mechanisms for Internet-based Platforms

9/4

Introduction
Algorithmic Mechanism
Applying the Mechanism

Background

Definition

Nash Equilibrium (NE): players do not increase their expected utility by changing strategy, if other players do not change [Nash 50]

- Algorithmic Mechanism Design [Nisan, Ronen 01]
 Games designed to provide incentives s.t. players act "correctly"
 - Behave well: reward
 - Otherwise: penalize

The design objective is to induce a desired behavior (e.g. unique NE)

Algorithmic Mechanisms for Internet-based Platforms

10

Introduc Algorithmic Mechan Applying the Mechan

Contributions

- Develop and analyze realistic game-theoretic mechanisms
 - Master-worker communication reliable
 - Unreliable communication, workers unavailable or choose to abstain
- Mechanisms provide, when necessary, incentives for rational workers to truthfully compute and return the task result, despite:
 - Malicious workers actions
 - Network unreliability
- Apply the mechanisms to two realistic settings:
 - SETI-like volunteer computing applications
 - Contractor-based applications(e.g. Amazon's mechanical turk)

Develop plots that illustrate the trade-off between reliability and cost, under different system parameters

Reliable Communication

Payoff parameters

$WP_{\mathcal{C}}$	worker's punishment for being caught cheating	
$WC_{\mathcal{T}}$	worker's cost for computing the task	
$WB_{\mathcal{Y}}$	worker's benefit from master's acceptance	
$MP_{\mathcal{W}}$	master's punishment for accepting a wrong answer	
$MC_{\mathcal{Y}}$	master's cost for accepting the worker's answer	
$MC_{\mathcal{A}}$	master's cost for auditing worker's answers	
$MB_{\mathcal{R}}$	master's benefit from accepting the right answer	

Note: it is possible that $WB_{\mathcal{V}} \neq MC_{\mathcal{V}}$

General protocol

- ullet Master assigns a task to n workers
- Rational worker cheats with probability $p_{\mathcal{C}}$ (seeking a NE)
- Master audits the responses with probability p_A
- If master audits
 - rewards honest workers and
 - penalizes the cheaters
- If master does not audit
 - Accepts value returned by majority of workers
 - Rewards/penalizes according to one of four models

\mathcal{R}_{m}	the master rewards the majority only		
\mathcal{R}_{a}	the master rewards all workers		
\mathcal{R}_{\emptyset}	the master does not reward any worker		
\mathcal{R}_{\pm}	the master rewards the majority and penalizes the minority		

Note: reward models may be fixed exogenously or chosen by the master

Algorithmic Mechanisms

Conditions for mixed-strategy NE (MSNE)

Definition

For a finite game, a mixed strategy profile σ^* is a MSNE iff, for each player i

$$U_i(s_i, \sigma_{-i}) = U_i(s_i', \sigma_{-i}), \forall s_i, s_i' \in supp(\sigma_i)$$

$$U_i(s_i, \sigma_{-i}) \ge U_i(s_i', \sigma_{-i}), \forall s_i, s_i' : s_i \in supp(\sigma_i), s_i' \notin supp(\sigma_i)$$

[Osborne 2003]

 s_i : strategy of player i in strategy profile s

 σ_i : probability distribution over pure strategies of player i in σ

 $U_i(s_i, \sigma_{-i})$: expected utility of player i using strategy s_i in σ

 $supp(\sigma_i)$: set of positive-probability strategies in σ

Strategic payoffs

	\mathcal{R}_{\pm}	\mathcal{R}_{m}	\mathcal{R}_{a}	\mathcal{R}_{\emptyset}
$w_{\mathcal{C}}^{\mathcal{A}}$	$-WP_{\mathcal{C}}$	$-WP_{\mathcal{C}}$	$-\mathit{WP}_\mathcal{C}$	$-\mathit{WP}_\mathcal{C}$
$w^{\mathcal{A}}_{\overline{\mathcal{C}}}$	$WB_{\mathcal{Y}} - WC_{\mathcal{T}}$	$WB_{\mathcal{Y}} - WC_{\mathcal{T}}$	$WB_{\mathcal{Y}} - WC_{\mathcal{T}}$	$WB_{\mathcal{Y}} - WC_{\mathcal{T}}$
$w_{\mathcal{C}}^{\mathcal{C}}$	$WB_{\mathcal{Y}}$	$WB_{\mathcal{Y}}$	$WB_{\mathcal{Y}}$	0
$w^{\mathcal{C}}_{\overline{\mathcal{C}}}$	$-WP_{\mathcal{C}}-WC_{\mathcal{T}}$	$-WC_{\mathcal{T}}$	$WB_{\mathcal{Y}} - WC_{\mathcal{T}}$	$-WC_{\mathcal{T}}$
$w_{\mathcal{C}}^{\overline{\mathcal{C}}}$	$-WP_{\mathcal{C}}$	0	$WB_{\mathcal{Y}}$	0
$w^{\overline{\mathcal{C}}}_{\overline{\mathcal{C}}}$	$WB_{\mathcal{Y}} - WC_{\mathcal{T}}$	$WB_{\mathcal{Y}} - WC_{\mathcal{T}}$	$WB_{\mathcal{Y}} - WC_{\mathcal{T}}$	$-WC_{\mathcal{T}}$

 $w_{s_i}^{\mathcal{X}}$ payoff of player i using strategy $s_i \in \{\mathcal{C}, \overline{\mathcal{C}}\}$ if

$$\int \mathcal{A}$$
 master audits

 $\mathcal{X} = \left\{ \begin{array}{ll} \mathcal{A} & \text{master audits} \\ \mathcal{C} & \text{majority of workers cheat and master does not audit} \\ \overline{\mathcal{C}} & \text{majority of workers does not cheat and master does not audit} \end{array} \right.$

Conditions for mixed-strategy NE (MSNE)

Guaranteeing: $P_{wrong} \leq \varepsilon$ While maximizing U_M

Pr(master obtains wrong answer):

$$P_{wronq} = (1 - p_{\mathcal{A}}) \mathbf{P}_q^{(n)}(\lceil n/2 \rceil, n)$$

E(utility of master):

$$U_{M} = p_{\mathcal{A}} \left(MB_{\mathcal{R}} - MC_{\mathcal{A}} - n(1-q)MC_{\mathcal{Y}} \right) +$$

$$(1 - p_{\mathcal{A}}) \left(MB_{\mathcal{R}} \mathbf{P}_{\mathbf{a}}^{(n)}(0, \lfloor n/2 \rfloor) - MP_{\mathcal{W}} \mathbf{P}_{\mathbf{a}}^{(n)}(\lceil n/2 \rceil, n) + \gamma \right)$$

where

$$\gamma = \begin{cases} -MC_{\mathcal{Y}}(\mathbf{E}_{1-q}^{(n)}(\lceil n/2 \rceil, n) + \mathbf{E}_{q}^{(n)}(\lceil n/2 \rceil, n)) & \mathcal{R}_{\mathbf{m}} \text{ and } \mathcal{R}_{\pm} \text{ models} \\ -nMC_{\mathcal{Y}} & \mathcal{R}_{\mathbf{a}} \text{ model} \\ 0 & \mathcal{R}_{\emptyset} \text{ model} \end{cases}$$

$$\mathbf{E}_{p}^{(n)}(a,b) = \sum_{i=a}^{b} {n \choose i} i p^{i} (1-p)^{n-i}, p \in [0,1]$$

Conditions for mixed-strategy NE (MSNE)

For each player i and each reward model, enforce unique NE in

$$\Delta U = U_i(s_i = \mathcal{C}, \sigma_{-i}) - U_i(s_i = \overline{\mathcal{C}}, \sigma_{-i})$$

$$\Delta U = (w_{\mathcal{C}}^{\mathcal{A}} - w_{\overline{\mathcal{C}}}^{\mathcal{A}})p_{\mathcal{A}} + (1 - p_{\mathcal{A}}) \left((w_{\mathcal{C}}^{\mathcal{C}} - w_{\overline{\mathcal{C}}}^{\mathcal{C}}) \mathbf{P}_{q}^{(n-1)} (\lceil n/2 \rceil, n-1) + (w_{\mathcal{C}}^{\overline{\mathcal{C}}} - w_{\overline{\mathcal{C}}}^{\overline{\mathcal{C}}}) \mathbf{P}_{q}^{(n-1)} (0, \lfloor n/2 \rfloor - 1) + (w_{\mathcal{C}}^{\mathcal{C}} - w_{\overline{\mathcal{C}}}^{\overline{\mathcal{C}}}) \binom{n-1}{\lfloor n/2 \rfloor} q^{\lfloor n/2 \rfloor} (1 - q)^{\lfloor n/2 \rfloor} \right)$$
where $q = p_{u} + p_{o} p_{\mathcal{C}}$, $\mathbf{P}_{q}^{(n)}(a, b) = \sum_{i=0}^{b} \binom{n}{i} q^{i} (1 - q)^{n-i}$

Computational issues: together with the task, the master sends a "certificate" $(p_A, payoffs, n)$ of the uniqueness of the desired NE to the worker

Mechanism design

Master protocol to choose p_A

- Free rationals (master does not rely on rational workers)
 - Case 1: probability of malicious workers p_{μ} very large, high $p_{\mathcal{A}}$

$$p_{\mathcal{A}} \leftarrow 1 - \varepsilon/\mathbf{P}_{p_{\mathcal{U}}+p_{\mathcal{O}}}^{(n)}(\lceil n/2 \rceil, n)$$

• Case 2: probability of altruistic workers p_{α} big

$$p_A \leftarrow 0$$

• Case 3: rationals probability of being honest $p_{\mathcal{H}}$ is 1, even if $p_{\mathcal{A}} = 0$

$$p_A \leftarrow 0$$

• Guided rationals (enforce the behavior of rational workers $p_{\mathcal{C}} = 0$)

$$p_{\mathcal{A}} \leftarrow \begin{cases} 1 - \frac{WP_{\mathcal{C}} + WB_{\mathcal{Y}} - WC_{\mathcal{T}}}{WP_{\mathcal{C}} + WB_{\mathcal{Y}}(\mathbf{P}_{p_{\mu} + p_{\rho}}^{(n-1)}(\lfloor n/2 \rfloor, n-1) + \mathbf{P}_{p_{\mu} + p_{\rho}}^{(n-1)}(\lceil n/2 \rceil, n-1))} & \mathcal{R}_{\mathbf{m}} \\ \frac{WC_{\mathcal{T}}}{WP_{\mathcal{C}} + WB_{\mathcal{Y}}} + \psi, \text{ for any } \psi > 0 & \mathcal{R}_{\mathbf{a}} \& \mathcal{R}_{\emptyset} \\ 1 - \frac{WP_{\mathcal{C}} + WB_{\mathcal{Y}}(\mathbf{P}_{p_{\mu} + p_{\rho}}^{(n-1)}(\lfloor n/2 \rfloor, n-1) + \mathbf{P}_{p_{\mu} + p_{\rho}}^{(n-1)}(\lceil n/2 \rceil, n-1))} & \mathcal{R}_{\pm} \end{cases}$$

• if $U_M(\mathbf{p}_A, \mathbf{q}) < U_M(1 - \varepsilon, p_\mu + p_\rho)$ then $p_A \leftarrow 1 - \varepsilon$

Mechanism design Optimality

Only feasible approach for $P_{wrong} \leq \varepsilon$

Theorem

In order to achieve $P_{wrong} \leq \varepsilon$, the only feasible approaches are either to enforce a NE where $p_{\mathcal{C}} = 0$ or to choose $p_{\mathcal{A}}$ so that $P_{wrong} \leq \varepsilon$ even if all rationals cheat.

Proof.

 $\begin{array}{c} \Delta U \text{ is increasing in } q \text{ } \big(\Delta U(p_{\mathcal{C}} < 1) \leq \Delta U(p_{\mathcal{C}} = 1)\big) \\ & \to \text{ the only unique NE corresponds to } p_{\mathcal{C}} = 0. \\ \text{For any other NE where } p_{\mathcal{C}} > 0, \ p_{\mathcal{C}} = 1 \text{ is also a NE} \\ & \to P_{wrong} \text{ worst case when all players} \\ \text{cheat.} \end{array}$

Algorithmic Mechanisms for Internet-based Platforn

21

Algorithmic Mechanisms
Applying the Mechanisms

Framework

MASTER

OBJECTIVE:
Correct result
while, max(Utility)
MASTER

WORKER

WORKER

WORKER

WORKER

ALTRUISTIC

NETWORK

ALTRUISTIC

Algorithmic Mechanisms
Applying the Mechanisms

Unreliable Communication

Algorithmic Mechanisms for internet based 11

22,

Algorithmic Mechanisms Applying the Mechanisms

General Protocol

- \bullet Master assigns a task to n workers
- Rational worker cheats with probability $p_{\mathcal{C}}$ (seeking a NE)
- ullet Master audits the responses with probability $p_{\mathcal{A}}$
- If master audits (computes the task itself)
 - rewards honest workers and
 - penalizes the cheaters
- If master does not audit
 - Accepts value returned by majority of workers
 - Rewards/penalizes according to one of three models

\mathcal{R}_{m}	the master rewards the majority only		
\mathcal{R}_{a}	a the master rewards all workers whose reply was received		
\mathcal{R}_{\emptyset}	the master rewards no worker		

Note: reward models may be fixed exogenously or chosen by the master

Algorithms

- Time-based protocol
 - Master fixes a time T, once it is reached gathers all received replies
 - Ties are broken at random
- Reply-based protocol
 - Master fixes k, minimum estimated number of replies, by choosing n
 - If at least k replies are received, audit with p_A
 - Else it does nothing, and incurs penalty MC_S
- Note: When d=1 both protocols fall into the communicationreliable protocol

Algorithmic Mechanisms for Internet-based Platforms

Payoff Parameters

$WP_{\mathcal{C}}$	worker's punishment for being caught cheating	
$WC_{\mathcal{T}}$	$VC_{\mathcal{T}}$ worker's cost for computing the task	
$WB_{\mathcal{Y}}$	$WB_{\mathcal{Y}}$ worker's benefit from master's acceptance	
$MP_{\mathcal{W}}$	$MP_{\mathcal{W}}$ master's punishment for accepting a wrong answer	
$MC_{\mathcal{Y}}$	$MC_{\mathcal{Y}}$ master's cost for accepting the worker's answer	
$MC_{\mathcal{A}}$	$C_{\mathcal{A}}$ master's cost for auditing worker's answers	
$MC_{\mathcal{S}}$	$MC_{\mathcal{S}}$ master's cost for not getting any reply	
$MB_{\mathcal{R}}$	$B_{\mathcal{R}}$ master's benefit from accepting the right answer	

Note: it is possible that $WB_{\mathcal{Y}} \neq MC_{\mathcal{Y}}$

Algorithms

 d_2 is the probability value that master achieves by

- Waiting T time, time-based mechanism
- Hiring n workers, reply-based mechanism

Why two protocols?

- Master may have knowledge to only one of two settings
 - For example based on statistics
 - Uses the mechanism designed for that setting
- Time-based mechanism, more likely to use auditing
- Reply-based mechanism may not receive enough replies
- Consequently
 - Time-based mechanism preferred when auditing cost low
 - Reply-based mechanism preferred when auditing cost high and MC_S

Algorithmic Mechanisms for Internet-based Platforms

Strategic payoffs

		\mathcal{R}_{m}	\mathcal{R}_{a}	\mathcal{R}_{\emptyset}
	$w_{\mathcal{C}}^{\mathcal{AR}}$	$-WP_{\mathcal{C}}$	$-WP_{\mathcal{C}}$	$-WP_{\mathcal{C}}$
$oldsymbol{w}_{\mathcal{C}}$	$w_{\mathcal{C}}^{\mathcal{CR}}$	$WB_{\mathcal{Y}}$	$WB_{\mathcal{Y}}$	0
	$w_{\mathcal{C}}^{\mathcal{HR}}$	0	$WB_{\mathcal{Y}}$	0
	$w_{\mathcal{C}}^{\mathcal{X}\overline{\mathcal{R}}}$	0	0	0
	$w_{\mathcal{H}}^{\mathcal{AR}}$	$WB_{\mathcal{Y}} - WC_{\mathcal{T}}$	$WB_{\mathcal{Y}} - WC_{\mathcal{T}}$	$WB_{\mathcal{Y}} - WC_{\mathcal{T}}$
$w_{\mathcal{H}}$	$w_{\mathcal{H}}^{\mathcal{CR}}$	$-WC_{\mathcal{T}}$	$WB_{\mathcal{Y}} - WC_{\mathcal{T}}$	$-WC_{\mathcal{T}}$
	$w_{\mathcal{H}}^{\mathcal{HR}}$	$WB_{\mathcal{Y}} - WC_{\mathcal{T}}$	$WB_{\mathcal{Y}} - WC_{\mathcal{T}}$	$-WC_{\mathcal{T}}$
	$w_{\mathcal{H}}^{\mathcal{X}\overline{\mathcal{R}}}$	$-WC_{\mathcal{T}}$	$-WC_{\mathcal{T}}$	$-WC_{\mathcal{T}}$
$oldsymbol{w}_{\mathcal{N}}$	$w_{\mathcal{N}}^{\mathcal{X}\mathcal{X}}$	0	0	0

Conditions for mixed-strategy NE (MSNE)

Desired condition for enforcing a unique NE at $p_{\mathcal{C}} = 0$ and $p_{\mathcal{N}} = 0$

$$\Delta U_{\mathcal{HC}} = \boldsymbol{\pi}_{\mathcal{H}} \cdot \boldsymbol{w}_{\mathcal{H}} \quad \boldsymbol{\pi}_{\mathcal{C}} \cdot \boldsymbol{w}_{\mathcal{C}} \ge 0$$
$$\Delta U_{\mathcal{HN}} = \boldsymbol{\pi}_{\mathcal{H}} \cdot \boldsymbol{w}_{\mathcal{H}} - \boldsymbol{\pi}_{\mathcal{N}} \cdot \boldsymbol{w}_{\mathcal{N}} \ge 0$$

 $\Delta U_{S_1S_2}$: difference on the expected utilities of a rational worker when choosing strategy S_1 over strategy S_2

 w_X : vector corresponding to different payoffs received by the given worker for each event when choosing strategy X

 π_X : vector corresponding to possibility that of the events occurring when the given worker choses strategy X

Equilibria Conditions

Guaranteeing: $P_{succ} \ge 1 - \varepsilon$ While maximizing U_M

Pr(master obtains correct answer):

$$P_{succ} = \sum_{i=k}^{n} r_i \left(p_{\mathcal{A}} + (1 - p_{\mathcal{A}}) h_i \right)$$

E(utility of master):

master's utility
$$U_M = -\sum_{i=0}^{k-1} r_i M C_S + \sum_{i=k}^n r_i (p_A \alpha_i + (1-p_A)\beta_i)$$

where,

$$\alpha_i = MB_{\mathcal{R}} - MC_{\mathcal{A}} - nd(p_{\alpha} + p_{\rho}p_{\mathcal{H}})MC_{\mathcal{Y}}$$
$$\beta_i = MB_{\mathcal{R}}h_i - MP_{\mathcal{W}}c_i - MC_{\mathcal{Y}}\gamma_i$$

and where, $\gamma_i = 0$ for \mathcal{R}_{\emptyset} , $\gamma_i = i$ for \mathcal{R}_{a} , and for \mathcal{R}_{m} is expected number of worker's majority (as calculated in the paper),

Analysis and Notations

Pr(worker cheats|worker replies): $q = \frac{p_{\mu} + p_{\rho} p_{C}}{1 - p_{\alpha} p_{N}}$

Pr(worker does not cheat|worker replies): $\overline{q} = \frac{p_{\alpha} + p_{\rho} p_{\mathcal{H}}}{1 - p_{\alpha} p_{\mathcal{M}}} = 1 - q$

Pr(reply received): $r = d(1 - p_o p_N)$

Pr(reply not received): $\overline{r} = 1 - r$

Then, $r(q + \overline{q}) + \overline{r} = 1$.

 $\Pr(i \text{ out of } n \text{ replies received}): r_i = \binom{n}{i} r^i \overline{r}^{n-i}$

Pr(majority honest | i replies received): h_i $Pr(majority cheats | i replies received): c_i$

Mechanism Design

Master protocol to chose p_A

- Free rationals (master does not rely on rational workers)
 - Case 1: probability of malicious workers p_{μ} very large, high $p_{\mathcal{A}}$

$$p_{\mathcal{A}} \leftarrow 1 - \varepsilon / \sum_{i=k}^{n} r_i c_i$$

• Case 2: probability of altruistic workers p_{α} big

$$p_A \leftarrow 0$$

• Case 3: rationals probability of being honest $p_{\mathcal{H}}$ is 1, even if $p_{\mathcal{A}} = 0$

$$p_A \leftarrow 0$$

- Guided rationals(force the behavior of rational workers)
 - Rationals enforced to reply correctly $(p_{\mathcal{C}} = 0 \text{ and } p_{\mathcal{N}} = 0)$
 - p_A is set according to worker's equilibria conditions depending on the reward model

SETI-like Scenario Volunteering Computing

- each worker
 - incurs in no cost to perform the task ($WC_T = 0$)
 - obtains a benefit ($WB_V > WC_T = 0$) (recognition, prestige)
- master
 - incurs in a (possibly small) cost to reward a worker $(MC_{\nu} > 0)$ (advertise participation)
 - may audit results at a cost $(MC_A > 0)$
 - obtains a benefit for correct result $(MB_R > MC_V)$
 - suffers a cost for wrong result $(MP_W > MC_A)$
- d > 0, as it is considered in the analysis as well
- Master can choose p_A and n so that U_M is maximized for $P_{wrong} < \varepsilon / P_{succ} > 1 - \varepsilon$ for any given worker-type distribution, reward model, and set of payoff parameters in the SETI scenario

4□ > 4□ > 4□ > 4□ > 4□ > 900

SETI-like Scenario

Reliable Network (d = 1)

- \mathcal{R}_{\emptyset} , n=15
- Upper plane $MB_{\mathcal{R}} = 4$, lower plane $MB_{\mathcal{R}} = 1$, red plane $U_M = 0$
- Master audits around $p_{\mu} = 0.2$

- \mathcal{R}_{\emptyset} , n=75
- Upper plane $MB_{\mathcal{R}}=4$, lower plane $MB_{\mathcal{R}} = 1$, red plane $U_M=0$
- Master audits around $p_{\mu} = 0.4$

SETI-like Scenario

Reliable Network (d = 1)

- Plots illustrating trade-off between reliability and cost
- Parameters' value:
 - $MC_A = 1$, normalizing parameter
 - $MP_{W} = 100$
 - Different values, don't change qualitatively the results
- 3D plots: Graphical characterization of the master's utility
 - $p_{\mu} \in [0, 0.5]$ ($p_{\mu} < 0.1$ in empirical evaluations on SETI-like system, Einstein@home, Estrada, Taufer and Anderson 09.)
 - $MC_{\mathcal{V}} \in [0, 0.1]$, small maintenance cost of contribution list

SETI-like Scenario

Unreliable Network (d > 0)

Time-based Mechanism

- d = 0.9. n = 75
- Upper plane \mathcal{R}_{\emptyset} , middle \mathcal{R}_{m} and lower plane \mathcal{R}_a
- Master audits around $p_{\mu} = 0.35$

- Reward model \mathcal{R}_{m} , d=0.9
- Upper plane n=15, middle n=55, lower plane n=75
- For n=15, earlier change to auditing strategy

SETI-like Scenario Unreliable Network (d > 0)

Reply-based Mechanism

- k > 1
- ullet Chernoff bounds for calculating k

$$k = \mathbf{E} - \sqrt{2\mathbf{E}\ln(1/\zeta)}$$

with probability at least $1-\zeta$, $0<\zeta<1$, where $\boldsymbol{E}=nd(p_{\alpha}+p_{\mu})$

• $\zeta = 1/n$ (used in plot)

- $n \in [65, 95], p_{\rho} \in [0, 1]$
- $\bullet \ \, \text{Appropriate value of} \ \, n \ \, \text{to get} \\ \text{at least} \ \, k \ \, \text{replies}$
- ullet $p_{
 ho}$ increase, k decrease

Algorithmic Mechanisms for Internet-based Platforms

37/4

Introduction Algorithmic Mechanisms

Contractor scenario

Reliable Network (d = 1)

- Plots illustrating trade-off between reliability and cost
- Parameters' value:
 - ullet $MC_{\mathcal{A}}=1$, normalizing parameter
 - $MP_{W} = 100$
 - S = 0.8
 - Different values, don't change qualitatively the results
- 3D plots : Graphical characterization of the master's utility
 - $p_{\mu} \in [0, 0.5]$ ($p_{\mu} < 0.1$ in empirical evaluations on SETI-like system, Einstein@home, Estrada, Taufer and Anderson 09.)
 - $WC_{\mathcal{T}} \in [0, S]$

Introduction Algorithmic Mechanisms

Contractor scenario

- master
 - pays each worker an amount $(MC_{\mathcal{Y}} > 0)$
 - receives a benefit (from consumers for the provided service) $(MB_R > MC_Y)$
 - may audit and has a cost for wrong result $(MP_W > MC_A > 0)$
- each worker
 - receives payment for computing the task (not volunteers) $(S = WB_{\mathcal{V}} = MC_{\mathcal{V}})$
 - incurs in a cost for computing $(WC_T > 0)$
 - must have economic incentive (U > 0)
- d > 0, as it is considered in the analysis as well
- Master can choose $p_{\mathcal{A}}$ and n so that U_M is maximized for $P_{wrong} \leq \varepsilon \ / \ P_{succ} \geq 1 \varepsilon$ for any given worker-type distribution, reward model, and set of payoff parameters in the contractor scenario

Algorithmic Mechanisms for Internet-based Platforms

38/4

Algorithmic Mechan Applying the Mechan

Contractor scenario Reliable Network (d = 1)

- \mathcal{R}_{\emptyset} , n=15
- Upper plane $MB_{\mathcal{R}}=4$, lower plane $MB_{\mathcal{R}}=1$, red plane $U_M=0$
- Master audits around $p_{\mu}=0.35$

- \mathcal{R}_{\emptyset} , n=75
- Upper plane $MB_{\mathcal{R}}=4$, lower plane $MB_{\mathcal{R}}=1$, red plane $U_M=0$
- Master audits around $p_{\mu} = 0.48$

Introduction Algorithmic Mechanisms Applying the Mechanisms

Conclusions

- Combined classical distributed computing approach with game-theoretic to obtain reliability on Master-Worker Internet-based Platforms that executes tasks
- We presented mechanisms for reliable computation
- Different types of workers
- Reliable and Unreliable network
- Applied developed mechanisms to volunteering and contractor-based computing
- Illustrate the trade-off between reliability and cost in depicted plots

Algorithmic Mechanisms for Internet-based Platfor

41,

Gracias!

Introductio
Algorithmic Mechanism

Future Work

- We plan to explore systems with a continuous flow of tasks over multiple rounds
- View the computations in the Master-Worker model as an *Evolutionary Game*
- Master use previous knowledge gained in past rounds to:
 - Increase its utility
 - Decrease its probability of error in future rounds.
- Workers aspiration level, issue that must be taken into account.

Algorithmic Mechanisms for Internet-based Platforms

Presentation available at: http://www.cs.ucy.ac.cy/ric/dissemination.html

For further questions: christoforou.evgenia@ucy.ac.cy

