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Abstract

We consider Internet-based master-worker computations, where a master processor assigns,
across the Internet, a computational task to a set of untrusted worker processors, and collects their
responses. Examples of such computations are the “@home” projects such as SETI. Prior work deal-
ing with Internet-based task computations has either considered only rational, or only malicious and
altruistic workers. Altruistic workers always return the correct result of the task, malicious workers
always return an incorrect result, and rational workers act based on their self-interest. However, in
a massive computation platform, such as the Internet, it is expected that all three type of workers
coexist. Therefore, in this work we study Internet-based master-worker computations in the pres-
ence of malicious, altruistic, and rational workers. A stochastic distribution of the workers over the
three types is assumed. In addition, we consider the possibility that the communication between
the master and the workers is not reliable, and that workers could be unavailable. Considering all
the three types of workers renders a combination of game-theoretic and classical distributed com-
puting approaches to the design of mechanisms for reliable Internet-based computing. Indeed, in
this work we design and analyze two algorithmic mechanisms to provide appropriate incentives to
rational workers to act correctly, despite the malicious’ workers actions and the unreliability of the
network. Only when necessary, the incentives are used to force the rational players to a certain
equilibrium (which forces the workers to be truthful) that overcomes the attempt of the malicious
workers to deceive the master. Finally, the mechanisms are analyzed in two realistic Internet-based
master-worker settings, a SETI-like one and a contractor-based one, such as Amazon’s Mechanical
Turk. We also present plots that illustrate the trade-offs between reliability and cost, under different
system parameters.
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1 Introduction

1.1 Motivation and Prior Work

As an alternative to expensive supercomputing parallel machines, the Internet has recently become fea-
sible as a computational platform for processing complex computational jobs. Several Internet-oriented
systems and protocols have been designed to operate on top of this global computation infrastructure;
examples include Grid systems [16, 55], the “@home” projects [5], such as SETI [36], Amazon’s Me-
chanical Turk [4], and peer-to-peer computing–P2PC [22,58]. Although the potential is great, the use of
Internet-based computing is limited by the untrustworthy nature of the platform’s components [5,25,30].
Let us take SETI as an example. In SETI, data is distributed for processing to millions of voluntary ma-
chines around the world. At a conceptual level, in SETI there is a machine, call it the master, that sends
jobs, across the Internet, to these computers, call them the workers. These workers execute and report
back the result of the task computation. However, these workers are not trustworthy, and hence might
report incorrect results. In SETI, the master attempts to minimize the impact of these bogus results
by assigning the same task to several workers and comparing their outcomes (that is, redundant task
allocation is employed [5]), but there are also other methods [13, 34, 57].

This problem has recently been studied under two different views: from a “classical” distributed
computing view [20, 35, 51] and from a game-theoretic view [21, 58]. Under the first view, the workers
are classified as either malicious (Byzantine) or altruistic, based on a predefined behavior. The malicious
workers have a “bad” behavior which results in reporting an incorrect result to the master. This behavior
is, for example, due to a hardware or a software error or due to an ill-state of the worker such as being
a wrongdoer intentionally. Altruistic workers exhibit a “good” behavior, that is, they compute and
return the correct task result. From the perspective of the master, the altruistic workers are the “correct”
ones. Under this view, “classical” distributed computing models are defined (e.g., a fixed bound on the
probability of a worker being malicious is assumed) and typical malicious-tolerant voting protocols are
designed.

Under the game-theoretic view, workers act on their own self-interest and they do not have an a
priori established behavior, that is, they are assumed to be rational [2, 25, 52]. In other words, the
workers decide on whether they will be honest and report the correct task result, or cheat and report a
bogus result, depending on which strategy increases their benefit or utility. Under this view, Algorithmic
Mechanisms [2, 11, 46] are employed, where games are designed to provide the necessary incentives so
that processors’ interests are best served by acting “correctly.” In particular, the master provides some
reward (resp. penalty) should a worker be honest (resp. cheat). The design objective is for the master
to force a desired unique Nash equilibrium (NE) [45], i.e., a strategy choice by each worker such that
none of them has incentive to change it. That Nash equilibrium is the one in which the master achieves
a desired probability of obtaining the correct task result. (It is known that Nash Equilibria do not always
lead to optimal solutions for rational players, but as argued in [47, Chapter 1], it is a “safe” way for the
players to obtain high utility satisfaction, and more importantly, a Nash Equilibrium is stable, that is,
once proposed, the players do not want to individually deviate.)

The above views could complement one another, if a certain computation includes only malicious
and altruistic workers, or only rational workers. However, the pragmatic situation on the Internet is
different: all three type of workers might co-exist in a given computation. One could assume that all
workers are rational, but what, for example, if a software bug occurs that makes a worker deviate from
its protocol, and hence compute and return an incorrect result? This worker is no longer exhibiting
a rational behavior, but rather an erroneous or irrational one. From the master’s point of view such
behavior can be seen as malicious.

In this paper we consider the possibility that all three types of workers co-exist. Furthermore we
consider the possibility that the communication between the master and workers is not reliable. This
communication uncertainty can either be due to communication-related failures or due to workers being
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slow in processing messages (or even crashing while doing so). For instance, Heien at al. [30] have
found that in BOINC only around 5% of the workers are available more than 80% of the time, and that
half of the workers are available less than 40% of the time. This fact, combined with the length of the
computation [33], justifies the interest of considering in the Internet-based master-worker framework the
possibility of workers not replying. In order to introduce this possibility in our model, we assume that
there is some positive probability that the master does not receive a reply from a given worker. Since
it is possible for a worker’s reply not to reach the master, we also allow workers to abstain from the
computation. Imagine the situation where a rational worker decides to compute and truthfully return
the task result but its reply is not received by the master. As we explain later (Section 2), in this case
the master provides no reward to the worker, while the worker has incurred the cost of performing the
task. Hence, it is only natural to provide to the workers the choice of not replying (especially when the
reliability of the network is low). This issue makes the task of the master even more challenging, as it
needs to provide the necessary incentives to encourage rational workers to reply and do so truthfully,
even in the presence of low network reliability.

1.2 Contributions

We study Internet-based master-worker computations under the assumption that each worker’s behavior
is either malicious, altruistic or rational. Furthermore, we also assume that a worker’s output may never
be received. The presence of all three types of workers, naturally renders a combination of game-
theoretic and classical approaches to the design of algorithmic mechanisms for distributed computing.
Our model captures the hardest shortcomings of an Internet-based platform, yielding mechanisms that
are resilient to undesired worker behavior and uncertainty of reply. In particular our contributions are as
follows:

• A collection of realistic payoff parameters and reward models are identified and the considered
Internet-based master-worker computation problem is formulated as a Bayesian game [29] (Sec-
tion 2). We assume a probability distribution of workers among the worker types. The master
and the workers do not know the type of other workers, only the probability distribution. The
rational workers play a game looking for a Nash Equilibrium, choosing to be honest, cheat or
abstain while the malicious and altruistic workers have a predefined strategy to cheat or be honest,
respectively. The master does not participate in the game, it designs the game to be played. The
network unreliability is modeled by a parametric probability.

• We develop and analyze two algorithms (a time-based algorithm and a reply-based one) that pro-
vide the necessary incentives for the rational workers to truthfully compute and return the task
result, despite the malicious workers’ actions and the network unreliability (Section 3). The al-
gorithms are parametrized in terms of a probability of auditing pA (defined in Section 2) and d,
a parametric probability modeling networks unreliability. Each of the algorithms implements an
instance of the Bayesian game. Under a general type probability distribution, we analyze the mas-
ter’s utility and probability of success (probability of obtaining the correct task result) and identify
the conditions under which the game has Nash Equilibria.

Under specific type probability distributions, a protocol in which the master chooses the values of
pA to guarantee a parametrized bound on the probability of success is also designed (Section 3).
Once this is achieved, the master also attempts to maximize its utility. This protocol together
with each of the above-mentioned algorithms comprise a mechanism. Note that the mechanisms
designed (and their analyses) are general in that reward models can either be fixed exogenously
or be chosen by the master. It is also shown that our mechanisms are the only feasible approaches
for the master to achieve a given bound on the probability of success.
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• Under the constrain of the bounded probability of success, it is shown how to maximize the master
utility in two real-world scenarios (Section 4). The first scenario abstracts a system of volunteer-
ing computing like SETI [36]. The second scenario abstracts a contractor-based application where
a company buys computational power from Internet users and sells it to computation-hungry con-
sumers. One such application is Amazon’s Mechanical Turk [4] where the master and the workers
can be in fact humans that contribute time for solving problems in exchange of economic rewards.

• Finally, to provide a better insight on the usability of our mechanisms, and to illustrate the trade-
offs between reliability and cost, we have characterized the utility of the master for the above-
mentioned scenarios via plots by choosing system parameters as derived by empirical evaluations
of master-worker Internet-based systems in [15] and [18].

1.3 Related work

Prior examples of game theory in distributed computing include work on Internet routing [24,37,42,49],
resource/facility location and sharing [23, 26], containment of viruses spreading [44], secret sharing [2,
28], P2P services [3, 38, 39] and task computations [21, 58]. For more discussion on the connection
between game theory and distributed computing we refer the reader to the surveys by Halpern [27] and
by Abraham, Alvisi and Halpern [1], and the book by Nisan et al [47].

Eliaz [17] seems to be the first to formally study the co-existence of Byzantine (malicious) and
rational players. He introduces the notion of k-fault-tolerant Nash Equilibrium as a state in which no
player benefits from unilaterally deviating despite up to k players acting maliciously. He demonstrates
this concept by designing simple mechanisms that implement the constrained Walrasian function and a
choice rule for the efficient allocation of an indivisible good (e.g., in auctions). Abraham et al [2] extend
Eliaz’s concept to accommodate colluding rational players. In particular they design a secret sharing
protocol and prove that it is (k, t)-robust, that is, it is correct despite up to k colluding rational players
and t Byzantine ones.

Aiyer et al. [3] introduce the BAR model to reason about systems with Byzantine (malicious), Al-
truistic, and Rational participants. They also introduce the notion of a protocol being BAR-tolerant, that
is, the protocol is resilient to both Byzantine faults and rational manipulation. (With this respect, one
might say that our algorithmic mechanisms designed in this work is BAR-tolerant.) As an application,
they designed a cooperative backup service for P2P systems, based on a BAR-tolerant replicated state
machine. Li et al [39] also considered the BAR model to design a P2P live streaming application based
on a BAR-tolerant gossip protocol. Both works employ incentive-based game theoretic techniques (to
remove the selfish behavior), but the emphasis is on building a reasonably practical system (hence, for-
mal analysis is traded for practicality). Recently, Li et al [38] developed a P2P streaming application,
called FlightPath, that provides a highly reliable data stream to a dynamic set of peers. FlightPath, as
opposed to the abovementioned BAR-based works, is based on mechanisms for approximate equilib-
ria [10], rather than strict equilibria. In particular, ε-Nash equilibria are considered, in which rational
players deviate if and only if they expect to benefit by more than a factor of ε. As the authors claim,
the less restrictive nature of these equilibria enables the design of incentives to limit selfish behavior
rigorously, while it provides sufficient flexibility to build practical systems.

Gairing [24] introduced and studied malicious Bayesian congestion games. These games extend
congestion games [50] by allowing players to act in a malicious way. In particular, each player can
either be rational or, with a certain probability, be malicious (with the sole goal of disturbing the other
players). As in our work, players are not aware of each other’s type, and this uncertainty is described
by a probability distribution. Among other results, Gairing shows that, unlike congestion games, these
games do not in general possess a Nash Equilibrium in pure strategies. Also he studies the impact of
malicious types on the social cost (the overall performance of the system) by measuring the so-called
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Price of Malice. This measure was first introduced by Moscibroda et al [44] to measure the influence of
malicious behavior for a virus inoculation game involving both rational (selfish) and malicious nodes.

Distributed computation in presence of selfishness was studied within the scope of combinatorial
agencies in Economics [6–8, 14]. The basic model considered is a combinatorial variant of the classical
principal-agent problem [41]: A master (principal) must motivate a collection of workers (agents) to
exert costly effort on the masters behalf, but the workers actions are hidden from the master. Instead of
focusing on each worker’s actions, the focus is on complex combinations of the efforts of the workers
that influence the outcome. In [6], where the problem was first introduced, the goal was to study how
the utility of the master is affected if the equilibria space is limited to pure strategies. To that extent,
the computation of a few Boolean functions is evaluated. In [8] mixed strategies were considered: if the
parameters of the problem yield multiple mixed equilibrium points, it is assumed that workers accept
one suggested by the master. This is contrasted with our work as we require the master to enforce a
single equilibrium point (referred as strong implementation in [6]). The work in [14] investigates the
effect of auditing by allowing the master to audit some workers (by random sampling) and verify their
work. In our work, the master decides probabilistically whether to verify all workers or none.

In general, the spirit of the framework considered in combinatorial agency is similar to the one
we consider in the present work in the sense that there is a master wishing a specific outcome and
it must provide necessary incentives to rational workers so to reach that outcome (exerting effort can
be considered as the worker performing the task, and not, as the worker not performing the task and
reporting a bogus result). However, there are several differences. First of all, we consider the co-
existence of selfish, malicious and altruistic workers (we are not aware of any work in combinatorial
agency that considers all these three types). Furthermore, we consider network unreliability (again,
we are not aware of any work in Combinatorial agency with such assumption). Even if we consider a
special case of our framework where we have a type distribution with only rational/selfish workers and
communication is reliable, there are still many differences. One difference is that in our framework, the
worker’s actions cannot really be viewed as hidden. The master receives a response by each worker and it
is aware that either the worker has truthfully performed the task or not. The outcome is affected by each
workers action in the case that no verification is performed (in a similar fashion as the majority boolean
technology in Combinatorial agency) but via verification the master can determine the exact strategy
used by each worker and apply a specific reward/punishment scheme. In the framework considered in
combinatorial agency, the master witnesses the outcome of the computation, but it has no knowledge of
the possible actions that the worker might take. For this purpose, the master needs to devise contracts
for each worker based on the observed outcome of the computation and not on each workers possible
action (as in our framework). Another important difference includes the fact that our scheme considers
worker punishment, as opposed to the schemes in combinatorial agency where workers cannot be fined
(limited liability constraint); this is possible in our framework as worker’s actions are contractible (either
it performs a task or not).

2 Model and Definitions

2.1 Master-workers Framework and Worker Types

We consider a distributed system consisting of a master processor that assigns, over the Internet, a
computational task to a set of n workers to compute and return the task result. The master, based on
the received replies, must decide on the value it believes is the correct outcome of the task. The tasks
considered in this work are assumed to have a unique solution; although such limitation reduces the
scope of application of the presented mechanisms [54], there are plenty of computations where the
correct solution is unique: e.g., any mathematical function.

Each of the n workers has one of the following types, rational, malicious, or altruistic. The exact
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number of workers of each type is unknown. However, it is known that each worker is independently of
one of the three types with probabilities pρ, pµ, pα, respectively, where pρ + pµ + pα = 1. Malicious
and altruistic workers always cheat and are honest, respectively, independently of how such a behavior
impacts their utilities. In the context of this paper, being honest means truthfully compute and return
the correct task result, and cheating means returning some incorrect value. On the other hand, rational
workers are assumed to be selfish in a game-theoretic sense, that is, their aim is to maximize their
benefit (utility) under the assumption that other workers do the same. So, a rational worker decides to
be honest, cheat or not reply to the master (workers can abstain and choose not to reply) depending on
which strategy maximizes its utility. As a result, each rational worker cheats with probability pC , it is
honest with probability pH, and does not reply with probability pN , such that pC + pH + pN = 1. It is
understood that if a worker decides not to reply, then it does not perform the task.

In order to model the individuality of the non-monetary part of each rational worker benefit/penalty,
the distribution over types could be generalized to different types of rational workers instead of one.
More precisely, define a probability distribution over each possible combination of payoffs in R4, re-
stricting signs appropriately, so that each rational worker draws independently its strategic normal form
from this distribution. However, the analysis presented here would be the same but using expected
payoffs, the expectation taken over such distribution. Thus, for the sake of clarity and without loss of
generality, we assume that the strategic normal form is unique for all players, i.e., all rational workers
are of the same type.

2.2 Network Unreliability

The communication network is considered to be unreliable, and workers could be unavailable, which are
very realistic assumptions for Internet-based master-worker computations, as suggested, for example, by
the work of Heien at al. [30]. We model this shortcoming by assuming that the communication with each
worker fails stochastically and independently of other workers.

Furthermore, we assume two settings, one where the probability of communication failure depends
on time (the more the master waits for replies the larger the probability of obtaining more replies), and a
second one where the probability of communication failure is fixed (hence, the more workers the master
hires the larger the number of replies). As we will see in Section 3, the first setting leads to a time-based
mechanism and the second one to a reply-based mechanism.

In our analysis, we let d1 be the probability of any worker being available and receiving the task
assignment message by the master, d2 be the probability of the master receiving the worker’s response
(has the worker chosen to reply), and d = d1 ·d2 be the probability of a round trip, that is, the probability
that the master receives the reply from a given worker. Hence, d2 is the probability value that the master
achieves by waiting T time (for the time-based mechanism) or hiring n workers (for the reply-based
mechanism). We also assume that there is some chance of a message being delivered to its destination,
i.e. d > 0, a realistic assumption for today’s Internet’s infrastructure.

2.3 Master’s Objectives, Auditing, Payoffs and Reward Models

The objective of the master is twofold. First, the master has to guarantee that the decided value is correct
with probability at least 1 − ε, for a known constant 0 ≤ ε < 1. Then, having achieved this, the
master wants to maximize its own benefit (utility). As, for example, in [51], [20] and [21], while it is
assumed that workers make their decision individually and with no coordination, it is assumed that all
the (malicious and rational) workers that cheat return the same incorrect value. This yields a worst case
scenario (and hence analysis) for the master with respect to its probability of obtaining the correct result;
it subsumes models where cheaters do not necessarily return the same answer. (In some sense, this can
be seen as a cost-free, weak form of collusion.)
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To achieve its objectives, the master employs, if necessary, auditing and reward/penalizing schemes.
The master might decide to audit the response of the workers (at a cost). In this work, auditing means
that the master computes the task by itself, and checks which workers have been truthful or not. We
denote by pA the probability of the master auditing the responses of the workers.

Furthermore, the master can reward and punish workers, which can be used (possibly combined
with auditing) to encourage rational workers to be honest (altruistic workers need no encouragement,
and malicious workers do not care about their utility). When the master audits, it can accurately reward
and punish workers. When the master does not audit, it decides on the majority of the received replies,
and may apply different reward/penalizing schemes. In this work we consider three reward models
shown in Table 1. Each reward model is essentially different from the others and can be used depending
on the specifics of the application considered.

Rm the master rewards the majority only
Ra the master rewards all workers
R∅ the master does not reward any worker

Table 1: Reward models

Auditing or not, the master neither rewards nor punishes a worker from whom it did not receive its
response. Due to the unreliability of the network, when the master does not receive a reply from a worker
it can not distinguish whether the worker decided to abstain, or there was a communication failure in
the round trip (it could be the case that the worker did not even receive the task assignment message).
Hence, it would be unfair to punish a worker for not getting its response; imagine the case where the
worker received the request, performed the task and replied to the master, but this last message got lost!
On the other hand, if it is indeed the case that a worker received the task assignment message but decided
to abstain, then it gets no reward. If the reward is much bigger than the worker’s cost for computing the
task, this alone can be a counter incentive to such a strategy.

The payoff parameters considered in this work are detailed in Table 2. All these parameters are non-
negative. Note that the first letter of the parameter’s name identifies whose parameter it is. M stands for
master and W for worker. Then, the second letter gives the type of parameter. P stands for punishment,
C for cost, and B for benefit.

WPC worker’s punishment for being caught cheating
WCT worker’s cost for computing the task
WBY worker’s benefit from master’s acceptance
MPW master’s punishment for accepting a wrong answer
MCY master’s cost for accepting the worker’s answer
MCA master’s cost for auditing worker’s answers
MCS master’s cost for not getting any reply
MBR master’s benefit from accepting the right answer

Table 2: Payoffs

Observe that there are different parameters for the reward WBY to a worker and the cost MCY of
this reward to the master. This models the fact that the cost to the master might be different from the
benefit for a worker. In fact, in some applications they may be completely unrelated, as for example in
the SETI-like scenario presented in Section 4.1. Although workers are not penalized for not replying,
our model allows the possibility for the master to be penalized for not getting any replies (parameter
MCS). This provides an incentive for the master to choose (when it can) more workers to assign the
task (especially if d is small) or to increase their incentives for replying; if convenient, MCS could be
set to zero. Among the parameters involved, we assume that the master has the freedom of choosing
WBY and WPC ; by tuning these parameters and choosing n, the master can achieve the desired trade-
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offs between correctness and cost. All other parameters can either be fixed because they are system
parameters or may also be chosen by the master.

2.4 Game Theory Concepts and Problem Formulation

We study the problem under the assumption that the rational workers, or players, will play a game
looking for an equilibrium (recall that malicious and altruistic workers have a predefined strategy to
cheat or be honest, respectively). The master does not play the game, it only defines the protocol and the
parameters to be followed (i.e., it designs the game or mechanism). The master and the workers do not
know the type of other workers, only the probability distribution. Hence, the game played is a so-called
game with imperfect information or Bayesian game [29]. The action space is the set of pure strategies
{C,H,N}, and the belief of a player is the probability distribution over types.

More formally, the Internet-based Master-Worker computation considered in this work is formulated
as the following Bayesian game

G(W, ε,D, A, pA, d1, d2,R, pfs),

where W is the set of n workers, 1− ε ∈ [0, 1] is the desired success probability of the master obtaining
the correct task result, D is the type probability distribution (pρ, pµ, pα), A = {C,H,N} is the workers’
actions space, pA is the probability of the master auditing the workers’ responses, d1 and d2 are the
probabilities characterizing the unreliability of the network (d = d1 · d2),R is one of the reward models
given in Table 1, and pfs are the payoffs as described in Table 2. Each player knows in advance the
distribution over types D, the total number of workers (n), the probability characterizing the networks
unreliability (d1, d2) and its normal strategic form, which is assumed to be unique.

The core of the mechanisms we develop is the computation of pA. Based on the type distribution,
the master must choose a value of pA that would yield a Nash Equilibrium that best serves its purposes.
Recall from [48], that for any finite game, a mixed strategy profile σ is a mixed-strategy Nash equilibrium
(MSNE) if, and only if, for each player i,

Ui(si, σ−i) = Ui(s
′
i, σ−i), ∀si, s′i ∈ supp(σi),

Ui(si, σ−i) ≥ Ui(s′i, σ−i),
∀si, s′i : si ∈ supp(σi), s′i /∈ supp(σi),

where si is the strategy used by player i in the strategy profile s, σi is the probability distribution over
pure strategies used by player i in σ, σ−i is the probability distribution over pure strategies used by each
player but i in σ, Ui(si, σ−i) is the expected utility of player iwhen using strategy si with mixed strategy
profile σ, and supp(σi) is the set of strategies in σ with positive probability.

In words, given a MSNE with mixed-strategy profile σ, for each player i, the expected utility, as-
suming that all other players do not change their choice, is the same for each pure strategy that the player
can choose with positive probability in σ, and it is not less than the expected utility of any pure strategy
with probability zero of being chosen in σ. We denote by ∆US1S2 the difference on the expected utilities
of a rational worker when choosing strategy S1 over strategy S2.

Then, for the purposes of the game we consider, in order to find conditions for equilibria, we want
to study for each player i

{
∆UHC = πH ·wH − πC ·wC

∆UHN = πH ·wH − πN ·wN
(1)

The expression · π• ·w• denotes the utility of the worker when choosing strategy •; we present the
components of the expression in detail in Section 3. If we show conditions such that ∆UHC = 0 and
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W = {1, 2, . . . , n} set of n workers
M master processor
d1 probability of a worker being available and receiving the task assignment message by the master
d2 probability of the master receiving the worker’s response (has the worker chosen to reply)
d d = d1 · d2, probability that the master receives a reply from a given worker
pρ probability of a worker to be of rational type
pµ probability of a worker to be of malicious type
pa probability of a worker to be of altruistic type
pA probability that the master audits (computes task and checks worker answers)
Psucc probability that the master obtains correct answer
ε known constant ε ∈ [0, 1], 1− ε desired bound on the probability of success

{C,H,N} action space of a worker
pC probability of a worker to cheat
pH probability of a worker to be honest
pN probability of a worker not replying
s strategy profile (a mapping from players to pure strategies)
si strategy used by player i in the strategy profile s
s−i strategy used by each player but i in the strategy profile s
σ mixed strategy profile (mapping from players to prob. distrib. over pure strat.)
σi probability distribution over pure strategies used by player i in σ
σ−i probability distribution over pure strategies used by each player but i in σ

Ui(si, σ−i) expected utility of player i with mixed strategy profile σ
supp(σi) set of strategies of player i with probability > 0 in σ
∆US1S2 difference on the expected utilities of a rational worker when choosing

strategy S1 over strategy S2

P
(n)
q (a, b)

∑b
i=a

(
n
i

)
qi(1− q)n−i

Table 3: Summary of Symbols

∆UHN = 0 , then we have a MSNE 0 6= pC 6= 1. On the other hand, if we show conditions that make
∆UHC ≥ 0 and ∆UHN ≥ 0 for each player i, we know that there is a pure strategies NE where all
players choose to be honest, i.e. pH = 1. (There is no NE where some players choose a pure strategy
and others do not because the game is symmetric for all rational players. If a distribution over many
types of rational players is defined, then we would have to consider such a NE.)

The following notation will be used throughout.

P(n)
q (a, b) ,

b∑
i=a

(
n

i

)
qi(1− q)n−i

The notation used throughout the paper is summarized in Table 3.

3 Algorithmic Mechanisms

In this section we present the mechanisms we design and show their analysis. In particular, we show
two different algorithms that the master runs in order to obtain the result of the task. Each of these
algorithms is essentially an instance of the game we defined in the previous section. Before running one
of the algorithms, the master must chose an appropriate value of pA; it does so by running a protocol we
also present in this section. This protocol, together with each of the algorithms the master runs to obtain
the tasks, comprises a mechanism.
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1 send(task, pA, certificate) to n workers
2 wait time T for replies
3 upon expire of time T do
4 audit the answers with probability pA
5 if the answers were not audited then
6 accept the majority
7 end if
8 apply the reward model

Figure 1: Master Algorithm for the Time-based Mechanism

1 send(task, pA, certificate) to n workers
2 if at least k replies are received then
3 audit the answers with probability pA
4 if the answers were not audited then
5 accept the majority
6 end if
7 apply the reward model
8 end if

Figure 2: Master Algorithm for the Reply-based Mechanism

3.1 Algorithms

As discussed in Section 2.2, we consider two different settings for modeling network unreliability, which
yield two different algorithms.

Figure 1 presents the time-based algorithm. Based on how the probability of communication failure
depends on time, the master fixes a time T , it sends the specification of the task to be computed to
n workers, and waits for replies. Once time T is reached, the master gathers all received replies, and
chooses to audit the answers with probability pA. If the answers were not audited, it accepts the result
of the majority (ties are broken at random). Then, it applies the corresponding reward model.

Figure 2 presents the reply-based algorithm. Here the master, by appropriately choosing n, fixes k,
an estimate of the minimum number of replies that wants to receive with high probability. (We discuss
in the next subsection how k is computed and what is the probability of not receiving at least that many
answers). The master sends the task specification to the n workers and gets replies. If at least k replies
are received, then the master chooses to audit the answers with probability pA and proceeds as the other
protocol. In case that less than k replies are received, then the master does nothing and it incurs penalty
MCS .

Notice that both algorithms are one-shot, in the sense that they terminate after one round of commu-
nication between the master and the workers. This enables fast termination and avoids using complex
cheater detection and worker reputation mechanisms. The benefit of one-round protocols is also partially
supported by the work of Kondo et al. [33] that have demonstrated experimentally that tasks may take
much more than one day of CPU time to complete.

Each of the above algorithms basically implements an instance of the game we presented in Sec-
tion 2.4. The master designs the game and the rational workers play looking for a Nash Equilibrium
(NE) in an effort to maximize their benefit. Therefore, based on the type distribution, the master must
choose the value of pA that would yield a unique NE that best serves its purposes. The reason for
uniqueness is to force all workers to the same strategy; this is similar to strong implementation in Mech-
anism Design, cf., [6, 46]. (Multiple equilibria could be considered that could perhaps favor the utility
of the master. However, in this work, correctness is the priority which, as shown later, our mechanisms
guarantee.) For computational reasons, along with the task specification and the chosen value of pA, and
the task to be computed, the master also sends a certificate to the workers. The certificate includes the

10



1 if Pr[majority honest | all rationals honest] < 1− ε then /* Psucc is small, even if pH = 1 */
2 pC ← 1; pN ← 0; pA ← 1− ε

/∑n
i=k rici; /* cf. Lemma 2 */

3 elseif Pr[majority honest | all rationals cheat] ≥ 1− ε then /* Psucc is big, even if pC = 1 */
4 pC ← 1; pN ← 0; pA ← 0; /* cf. Lemma 3 */
5 elseif Pr[majority honest | all rationals honest] ≥ 1− ε and
6 ∆UHC(pH = 1, pA = 0) ≥ 0 and ∆UHN (pH = 1, pA = 0) ≥ 0 then /* pH = 1, even if pA = 0 */
7 pC ← 0; pN ← 0; pA ← 0; /* cf. Lemma 3 */
8 else /* pC = 0 and pN = 0 enforced */
9 pC ← 0; pN ← 0; set pA as in Lemma 4; /* cf. Lemma 4 */

10 if UM (pA, pN , pC) < UM
(
pA = (1− ε)

/∑n
i=k ri, pN = 1, pC = 0

)
then

11 pN ← 1; pA ← (1− ε)
/∑n

i=k ri; /* cf. Lemma 1 */

Figure 3: Master protocol to choose pA. The expressions of k, ri, and ci are defined in Section 3.2

strategy that if the rational workers play will lead them to the unique NE, together with the appropriate
data (system parameters/payoff values and reward model) to demonstrate this fact. More details for the
use of the certificate are given in Section 3.4.

Recall that the main objective of the master is to achieve probability of accepting the correct task
result of at least 1− ε. Once this is achieved, then it seeks to maximize its utility as well. Based on the
type distribution, it could be the case that the master may achieve this without relying on actions of the
rational workers (e.g., the vast majority of workers are altruistic). Such cases fall into what we call the
free rationals scenario. The cases in which the master needs to enforce the behavior of rational workers
(pH) fall into what we call the guided rationals scenario. In this scenario, the master must choose pA
such that the benefit of the rational workers is maximized when pC = pN = 0; in other words, rational
workers choose to be honest (pH = 1) and hence they compute and truthfully return the correct task
result. The protocol ran by the master for choosing pA is presented in Figure 3. Together with each of
the algorithms in Figures 1 and 2 comprise our mechanisms. The analysis of the mechanisms and the
lemmas referenced in Figure 3 are given in the next subsection.

Note that both designed mechanisms are useful and can be used depending on the setting. For
example:
(a) As discussed in Section 2.2, the probability of the communication failure could depend on time, or
be fixed. The master could have knowledge (e.g., based on statistics) of only one of the two settings. In
such a case, it has no choice other than using the mechanism designed for that setting.
(b) It is not difficult to see that the time-based mechanism is more likely to use auditing than the other
one, on the other hand, the reply-based mechanism runs the risk of not receiving enough replies. Hence,
the time-based mechanism would be more preferable in case the cost of auditing is low, and the reply-
based mechanism in case the cost of auditing is high and the value of parameter MCS is small.

Also observe that in the case of reliable communication (d = 1), the two mechanisms converge, that
is, they become the same. Since the master enforces rational workers to be honest (and hence reply),
altruistic and malicious always reply, and communication is reliable, the master can wait until it receives
messages from all workers and then proceed. Furthermore, as it can be observed in the next section, the
analysis of the two mechanisms in the case of reliable communication is identical.

3.2 Equilibria Conditions and Analysis

We begin the analysis of our mechanisms by elucidating the following probabilities, expected utilities,
and equilibria conditions. For succinctness, the analysis of both mechanisms is presented for a mini-
mum number of replies k, where k = 1 for the time-based mechanism and k ≥ 1 for the reply-based
mechanism. For the latter, for a given worker type distribution, the choice of n workers, and d, even
if all rational workers choose not to reply, the master will receive at least E = nd(pα + pµ) replies
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in expectation. Thus, using Chernoff bounds, it can be shown that the master will receive at least
k = E −

√
2E ln(1/ζ) replies with probability at least 1 − ζ, for 0 < ζ < 1 and big enough n (e.g.,

ζ = 1/n).

3.2.1 Probabilities and expected utilities.

Given the description of the mechanisms and the system parameters, it is not difficult to compute the
following:

Pr(worker cheats|worker replies): q =
pµ+pρpC
1−pρpN

Pr(worker does not cheat|worker replies): q =
pα+pρpH
1−pρpN = 1− q

Pr(reply received from worker): r = d(1− pρpN )

Pr(reply not received from worker): r = 1− r
Then, r(q + q) + r = 1.

Pr(i out of n replies received): ri =

(
n

i

)
rirn−i

Pr(majority honest | i replies received):

hi =

bi/2c−1∑
j=0

(
i

j

)
qjqi−j + (1 + di/2e − bi/2c)1

2

(
i

bi/2c

)
qbi/2cqdi/2e.

Pr(majority cheats | i replies received):

ci =

i∑
j=di/2e+1

(
i

j

)
qjqi−j + (1 + di/2e − bi/2c)1

2

(
i

di/2e

)
qdi/2eqbi/2c.

Pr(master obtains correct answer):

Psucc =

n∑
i=k

ri (pA + (1− pA)hi) (2)

E(utility of master):

UM = −
k−1∑
i=0

ri ·MCS +
n∑
i=k

ri
(
pAαi + (1− pA)βi

)
(3)

where,

αi = MBR −MCA − nd(pα + pρpH)MCY

βi = MBRhi −MPWci −MCYγi

and where, γi = 0 forR∅, γi = i forRa, and forRm is,

γi =

i∑
j=di/2e+1

(
i

j

)
j(qjqi−j + qjqi−j)

+ (1 + di/2e − bi/2c)1

2

(
i

di/2e

)
di/2e(qdi/2eqbi/2c + qdi/2eqbi/2c).
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3.2.2 General Equilibria Conditions

Recall from Section 2.4 that Equation (1) states the conditions we want to study for each player i. In
particular, as discussed there, we want ∆UHC ≥ 0 and ∆UHN ≥ 0.

The components of the vectors denoted byw• in (1) correspond to the different payoffs received by
the given worker for each of the various events that may outcome from the game when the worker has
chosen strategy •, and the components of the vectors denoted by π• correspond to the probabilities that
those events occur. Their detail values are given in Tables 4, 5, and 6; Table 7 lists the used notation.
These conditions are defined so that a pure NE where pH = 0 is precluded.

3.2.3 Analysis Based on the Worker-type Distribution

Appropriate strategies to carry out the computation with the desired probability of success under the
free rationals and guided rationals scenarios are considered in this section. It is important to stress again
that, in order to obtain a mechanism that is useful for any of those scenarios we do not restrict ourselves
to a particular instance of payoffs or reward models leaving those variables as parameters. Thus, we
focus our study here on how to choose pA to have the probability of success bounded by 1− ε for each
of the reward models assuming that the payoffs have already been chosen by the master or are fixed
exogenously. For settings where payoffs and reward models are a choice of the master, its utility can be
easily maximized choosing those parameters conveniently in Equation 3, as demonstrated in Section 4.

Although known, the worker-type distribution is assumed to be arbitrary. Likewise, the particular
value of ε is arbitrary given that it is an input of the problem. Finally, although the priority is to obtain
Psucc ≥ 1− ε, it is desirable to maximize the utility of the master under such restriction. Therefore, as
it can be seen in Figure 3, the protocol the master runs for choosing pA takes into account both the free
rationals and guided rationals scenarios as discussed in Section 3.1.

We now proceed to analyze the different cases, first considering the free rationals scenario and then
the guided rationals one.

Free Rationals

Here we study the various cases where the behavior of rational workers does not need to be enforced.
As mentioned before, the main goal is to carry out the computation obtaining the correct output with
probability at least 1 − ε. Provided that this goal is achieved, it is desirable to maximize the utility of
the master. Hence if, for a given instance of the problem, the expected utility of the master utilizing the
mechanism presented is smaller than the utility of just setting pA big enough to guarantee the desired
probability of correctness, independently of the outcome of the game, the latter is used. We establish
this observation in the following lemma.

Lemma 1. In order to guarantee Psucc ≥ 1 − ε, it is enough to set pA = (1 − ε)
/∑n

i=k ri, making
pN = 1.

Proof. Conditioning Equation 2 to be≥ 1− ε, it is enough to make pA ≥
1− ε∑n
i=k ri

. Given that
∑n

i=k ri

is the probability that k or more replies are received, it is minimized when pN = 1. Therefore, the claim
follows.

We consider now pessimistic worker-type distributions, i.e., distributions where pµ is so large that,
even if all rationals choose to be honest, the probability of obtaining the correct answer is too small.
Hence, the master has to audit with a probability big enough, perhaps bigger than the minimum needed
to ensure that all rationals are honest. Nevertheless, for such pA, rational workers still might use some
NE where pH < 1. Thus, the worst case for Psucc has to be assumed. Formally,
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Rm Ra R∅

wARC −WPC −WPC −WPC

wC wCRC WBY WBY 0

wHRC 0 WBY 0

wXRC 0 0 0

wARH WBY −WCT WBY −WCT WBY −WCT

wH −WPC −WCT −WCT WBY −WCT −WCT

wHRH WBY −WCT WBY −WCT −WCT

wXRH −WCT −WCT −WCT

wN wXXN 0 0 0

Table 4: Payoff vectors. Refer to Table 7 for notation.

πARC dpA

πC πCRC

d(1− pA)
∑n−1

i=0

(
n−1
i

)
rirn−1−i(∑i

j=di/2e
(
i
j

)
qjqi−j +

(
di/2e − bi/2c

)
1
2

(
i
bi/2c

)
qbi/2cqdi/2e

)

πHRC

d(1− pA)
∑n−1

i=0

(
n−1
i

)
rirn−1−i(∑bi/2c−1

j=0

(
i
j

)
qjqi−j +

(
di/2e − bi/2c

)
1
2

(
i
bi/2c

)
qbi/2cqdi/2e

)

πXRC d1(1− d2)

πARH dpA

πH πCRH

d(1− pA)
∑n−1

i=0

(
n−1
i

)
rirn−1−i(∑i

j=di/2e+1

(
i
j

)
qjqi−j +

(
di/2e − bi/2c

)
1
2

(
i
bi/2c

)
qdi/2eqbi/2c

)

πHRH

d(1− pA)
∑n−1

i=0

(
n−1
i

)
rirn−1−i(∑bi/2c

j=0

(
i
j

)
qjqi−j +

(
di/2e − bi/2c

)
1
2

(
i
di/2e

)
qdi/2eqbi/2c

)

πXRH d1(1− d2)

πN πXXN d1

Table 5: Probability vectors for the time-based mechanism. Refer to Table 7 for notation.
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πARC dpA
∑n−1

i=k−1
(
n−1
i

)
rirn−1−i

πC πCRC

d(1− pA)
∑n−1

i=k−1
(
n−1
i

)
rirn−1−i(∑i

j=di/2e
(
i
j

)
qjqi−j +

(
di/2e − bi/2c

)
1
2

(
i
bi/2c

)
qbi/2cqdi/2e

)

πHRC

d(1− pA)
∑n−1

i=k−1
(
n−1
i

)
rirn−1−i(∑bi/2c−1

j=0

(
i
j

)
qjqi−j +

(
di/2e − bi/2c

)
1
2

(
i
bi/2c

)
qbi/2cqdi/2e

)

πXRC d1(1− d2) + d
∑k−2

i=0

(
n−1
i

)
rirn−1−i

πARH dpA
∑n−1

i=k−1
(
n−1
i

)
rirn−1−i

πH πCRH

d(1− pA)
∑n−1

i=k−1
(
n−1
i

)
rirn−1−i(∑i

j=di/2e+1

(
i
j

)
qjqi−j +

(
di/2e − bi/2c

)
1
2

(
i
bi/2c

)
qdi/2eqbi/2c

)

πHRH

d(1− pA)
∑n−1

i=k−1
(
n−1
i

)
rirn−1−i(∑bi/2c

j=0

(
i
j

)
qjqi−j +

(
di/2e − bi/2c

)
1
2

(
i
di/2e

)
qdi/2eqbi/2c

)

πXRH d1(1− d2) + d
∑k−2

i=0

(
n−1
i

)
rirn−1−i

πN πXXN d1

Table 6: Probability vectors for the reply-based mechanism. Refer to Table 7 for notation.

w••• payoff of event • ∧ • ∧ •
π••◦ probability of event • ∧ •, conditioned on the event ◦
`••j the worker has choosen strategy j ∈ {C,H,N}
`A•• the master audits
`C•• the master does not audit and the majority cheats
`H•• the master does not audit and the majority does not cheat
`•R• the communication is successful and the master receives enough replies
`•R• the communication fails or the master does not receive enough replies
X true (equivalent to “any value”)

Table 7: Notation for Tables 4, 5, and 6; ` ∈ {w, π}.
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Lemma 2. In order to guarantee Psucc ≥ 1 − ε, it is enough to set pA = 1 − ε
/∑n

i=k rici, making
pC = 1 and pN = 0.

Proof. Conditioning Equation 2 to be ≥ 1 − ε, pA ≥ 1 − ε
/ n∑
i=k

rici. Given that
∑n

i=k rici is the

probability that k or more replies are received and the majority of them cheat, it is maximized when
pC = 1 (hence, pN = 0). Therefore, the claim follows.

Now, we consider cases where no audit is needed to achieve the desired probability of correctness.
I.e., we study conditions under the assumption that pA = 0. The first case occurs when the type-
distribution is such that, even if all rational workers cheat, the probability of having a majority of correct
answers is at least 1 − ε. A second case happens when the particular instance of the parameters of the
game force a unique NE such that rationals are honest, even if they know that the result will not be
audited. We establish those cases in the following lemma.

Lemma 3. If any of the following holds:

•
∑n

i=k rihi ≥ 1− ε making pC = 1 and pN = 0; or

•
∑n

i=k rihi ≥ 1− ε making pC = 0 and pN = 0 and there is a unique NE for pH = 1 and pA = 0,

then, in order to guarantee Psucc ≥ 1− ε, it is enough to set pA = 0.

Proof. Conditioning Equation 2 to be ≥ 1− ε under the assumption that pA = 0, it is enough

n∑
i=k

rihi ≥ 1− ε. (4)

To find the condition for the case where even if all rationals cheat the probability of success is big
enough, we replace pC = 1 and pN = 0 in Eq.(4). For the condition when the NE corresponds to some
pC < 1, we observe the following. Replacing in ∆UHC and ∆UHN for each reward model the value
pA = 0, it can be shown that ∆UHC(pC , pA = 0) is non-increasing in the interval pC ∈ [0, 1] for all
three reward models, and ∆UHN (pN , pA = 0) is non-increasing in the interval pN ∈ [0, 1] for all three
reward models as well. Thus, if ∆UHC(pC = 1, pA = 0) ≥ 0 and ∆UHN=1(pN = 1, pA = 0) ≥ 0, the
rate of growth of ∆UHC and ∆UHN implies a single pure NE at pH = 1. Then, replacing pC = 0 and
pN = 0 in Eq.(4) the claim follows.

Guided Rationals

We now study worker-type distributions such that the master can take advantage of a specific NE to
achieve the desired bound on the probability of success. Given that the scenario where all players cheat
was considered in the free rationals scenario, here it is enough to study ∆UHC and ∆UHN for each
reward model, conditioning ∆UHC(pC = 1) ≥ 0 and ∆UHN (pN = 1) ≥ 0 to obtain appropriate values
for pA. As proved in the following lemma, the specific value pA assigned depends on the reward model,
and it is set so that a unique pure NE is forced at pH = 1 (rendering the rationals truthful), and the
correctness probability is achieved.

Lemma 4. If
∑n

i=k rihi < 1− ε making pC = 1 and pN = 0, and
∑n

i=k rihi ≥ 1− ε making pC = 0
and pN = 0 then, in order to guarantee Psucc ≥ 1− ε, it is enough to set pA as follows.

ForR∅,
pA =

WCT

d2WBY
∑n−1

i=k−1 r
′
i

(5)
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ForRa,

pA =
WCT

d2(WBY + WPC)
∑n−1

i=k−1 r
′
i

(6)

d2WBY

n−1∑
i=k−1

r′i ≥WCT (7)

ForRm,

pA =
WCT /d2 −WBY

∑n−1
i=k−1 r

′
i(h
′
i − c′i)

(WBY + WPC)
∑n−1

i=k−1 r
′
i −WBY

∑n−1
i=k−1 r

′
i(h
′
i − c′i)

(8)

pA =
WCT /d2 −WBY

∑n−1
i=k−1 r

′
ih
′
i

WBY
∑n−1

i=k−1 r
′
i −WBY

∑n−1
i=k−1 r

′
ih
′
i

(9)

Where
r′i =

(
n−1
i

)
rirn−1−i,

h′i =
∑bi/2c

j=0

(
i
j

)
qjqi−j +

(
di/2e − bi/2c

)
1
2

(
i
di/2e

)
qdi/2eqbi/2c,

c′i =
∑i

j=di/2e
(
i
j

)
qjqi−j +

(
di/2e − bi/2c

)
1
2

(
i
bi/2c

)
qbi/2cqdi/2e,

for pC = 1 in conditions (6) and (8), and for pN = 1 in conditions (5), (7) and (9).

Proof. We compute the general conditions for each reward model from Equations (1). (Refer to Ta-
bles 4, 5, and 6 for details.) Recall that, for succinctness, the analysis of both mechanisms is pre-
sented for a number of replies k, where k = 1 for the time-based mechanism and k = nd(pα +

pµ)
(

1−
√

2 ln(1/ζ)
nd(pα+pµ)

)
for the reply-based mechanism.

Conditions for reward modelR∅:

∆UHC = dpA(WBY + WPC)
n−1∑
i=k−1

r′i −WCT d1 ≥ 0

∆UHN = dpAWBY

n−1∑
i=k−1

r′i −WCT d1 ≥ 0

Thus, it is enough to use the latter condition only.
Conditions for the reward modelRa:

∆UHC = dpA(WBY + WPC)

n−1∑
i=k−1

r′i −WCT d1 ≥ 0

∆UHN = dWBY

n−1∑
i=k−1

r′i −WCT d1 ≥ 0

Conditions for the reward modelRm:

∆UHC = dpA(WBY + WPC)
n−1∑
i=k−1

r′i − d1WCT + d(1− pA)WBY

n−1∑
i=k−1

r′i(h
′
i − c′i) ≥ 0 (10)

∆UHN = dpAWBY

n−1∑
i=k−1

r′i − d1WCT + d(1− pA)WBY

n−1∑
i=k−1

r′ih
′
i ≥ 0 (11)
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Notice that
∑n−1

i=k−1 r
′
ih
′
i is the probability that at least k − 1 other workers reply, and the majority

of them is honest and
∑n−1

i=k−1 r
′
ic
′
i is the probability that at least k − 1 other workers reply, and the

majority of them cheat. It can be seen that, when pN is fixed, the equilibria condition 10 for this model
is non-increasing on pC ∈ [0, 1 − pN ] as follows. Only

∑n−1
i=k−1 r

′
i(h
′
i − c′i) depends on pC in this

condition. When pC increases and pN is fixed, the probability that the majority of repliers is honest
decreases. On the other hand, the probability that the majority cheats increases with pC , but given
that it is negated the slope is negative. Likewise, it can be seen that, when pC is fixed, the equilibria
condition 11 for this model is non-increasing on pN ∈ [0, 1 − pC ] as follows. Only

∑n−1
i=k−1 r

′
ih
′
i

depends on pN in this condition. When pN increases and pC is fixed, the probability that the majority of
repliers is honest decreases. Therefore, replacing in the above conditions for ∆UHC(pC = 1) ≥ 0 and
∆UHN (pN = 1) ≥ 0 the claim follows.

3.3 Correctness and Optimality

The following theorem proves the correctness of the mechanisms presented in Section 3.1. Its proof is
the simple aggregation of the results presented in Section 3.2.

Theorem 5. For any given system parameters, the values of pA chosen after running the protocol
depicted in Figure 3 satisfy that Psucc ≥ 1− ε.

We now argue that only two approaches are feasible to bound the probability of accepting an incor-
rect value. In this respect, the strategy enforced by the mechanisms we designed is optimal.

Theorem 6. In order to achieve Psucc ≥ 1− ε, the only feasible approaches are either to enforce a NE
where pH = 1 or to use a pA as shown in Lemma 2.

Proof. It can be seen as in Lemma 4 that ∆UHC is non-increasing for pC ∈ [0, 1 − pN ] and ∆UHN is
non-increasing for pN ∈ [0, 1−pC ]. Then, the only NE that can be made unique corresponds to pH = 1.
Consider any other NE where pH < 1 (which is not unique). Then pC = 1 and pN = 1 are also both
NE. In face of more than one equilibrium to choose from, different players might choose different ones.
Thus, for the purpose of a worst case analysis with respect to the probability of correctness, it has to be
assumed the worst case, i.e. pA has to be set as in Lemma 2.

3.4 Computational Issues

In Sections 3.1 and 3.2.3 we discussed a protocol for the master to choose appropriate values of pA for
different scenarios. A natural question is what is the computational cost of this protocol. In addition to
simple arithmetical calculations, there are two kinds of relevant computations required: binomial proba-
bilities and verification of conditions for Nash equilibria. Both computations are n-th degree polynomial
evaluations and can be carried out using any of the well-known numerical tools [32] with polynomial
asymptotic cost. These numerical methods yield only approximations, but all these calculations are per-
formed either to decide in which case the parameters fit in, or to assign a value to pA, or to compare
utilities. Given that these evaluations and assignments were obtained in the design as inequalities or
restricted only to lower bounds, it is enough to choose the appropriate side of the approximation in each
case.

Regarding the computational resources that rational workers require to carry out these calculations,
notice that the choice of pA in the mechanisms either yields a unique NE in pH = 1 or does not take
advantage of the behavior of rational workers (Theorem 6). Furthermore, pC = 1 was assumed as a
worst case (wrt probability of success). Notice from Tables 4–7 and the equilibrium conditions (eq. (1))
that setting WPC = WBY = 0 for the cases where we do not use the behavior of the rational workers,
pC = 1 is a dominant strategy. (Recall that WBY and WPC can be chosen by the master.) Thus, the
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mechanisms are enriched so that rational workers are enforced to use always a unique NE, either pC = 0
or pC = 1. In order to make the computation feasible to the workers, the master sends together with the
task a certificate proving such equilibrium. The certificate includes the strategy that the workers must
play to achieve the unique NE together with the appropriate data to demonstrate this fact. These data
include the system parameters/payoff values, the reward model and the values of pA, which is enough
to verify uniqueness (recall the analysis in Section 3.2.3).

4 Putting the Mechanisms into Action

In this section two realistic scenarios in which the master-worker model considered could be naturally
applicable are proposed. For these scenarios, we determine how to choose pA and n in the case where the
behavior of rational workers is enforced, i.e., under the conditions of Lemma 4. Again, for succinctness,
the analysis of both mechanisms is presented for a number of replies k.

4.1 SETI-like Scenario

The first scenario considered is a volunteering computing system such as SETI@home, where users
accept to donate part of their processors idle time to collaborate in the computation of large tasks. In
this case, we assume that workers incur in no cost to perform the task, but they obtain a benefit by being
recognized as having performed it (possibly in the form of prestige, e.g., by being included on SETI’s
top contributors list). Hence, we assume that WBY > WCT = 0. The master incurs in a (possibly
small) cost MCY when rewarding a worker (e.g., by advertising its participation in the project). As
assumed in the general model, in this model the master may audit the values returned by the workers,
at a cost MCA > 0. We also assume that the master obtains a benefit MBR > MCY if it accepts the
correct result of the task, and suffers a cost MPW > MCA if it accepts an incorrect value. Also it is
assumed, as stressed before, that d > 0 (there is always a chance that the master will receive a reply
from the worker).

Plugging WCT = 0 in the lower bounds of Lemma 4 it can be seen that, for this scenario and
conditions, in order to achieve the desired Psucc, it is enough to set pA arbitrarily close to 0 for all three
models. So, we want to choose δ ≤ pA ≤ 1, with δ → 0, so that the utility of the master is maximized.
Using calculus, it can be seen that UM is monotonic in such range, but the growth of such function
depends on the specific instance of the master-payoff parameters. Thus, it is enough to choose one of
the extreme values of pA. Replacing in Equation 3, we get

UM ≈ −
k−1∑
i=0

riMCS +
n∑
i=k

ri max{αi, βi} (12)

where pN = 0 and αi, βi as in Equation (3). The approximation given in Equation (12) provides a
mechanism to choose pA and n so that UM is maximized for Psucc ≥ 1 − ε for any given worker-type
distribution, reward model, and set of payoff parameters in the SETI scenario.

4.2 Contractor Scenario

The second scenario considered is a company that buys computational power from Internet users and
sells it to computation-hungry costumers, such as Amazon’s Mechanical Turk [4]. In this case the
company pays the users an amount S = WBY = MCY for using their computing capabilities, and
charges the consumers another amount MBR > MCY for the provided service. Since the users are
not volunteers in this scenario, we assume that computing a task is not free for them (i.e., WCT > 0),
and that rational workers must have incentives to participate (i.e., U > 0). As in the previous case, we
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assume that the master verifies and has a cost for accepting a wrong value, such that MPW > MCA > 0.
Also as before we assume that d > 0 and pN = 0.

As mentioned before, using calculus it can be seen that UM is monotonic on pA but the growth
depends on the specific instance of master-payoff parameters. Thus, the maximum expected utility can
be obtained for one of the extreme values. Trivially, 1 is an upper bound for pA. For the lower bound,
pA must be appropriately bounded so that the utility of rational workers is positive and Psucc ≥ 1 − ε.
For example, for theR∅ model, using Lemma 4 and conditioning U > 0, we get,

UM = −
k−1∑
i=0

riMCS +

n∑
i=k

ri max

{
αi, βi + (αi − βi)

WCT

d2WBY
∑n−1

i=k−1 r
′
i

}
(13)

As in the previous section, the approximation given in Equation (13), and similar equations for the
other reward models which are omitted for clarity, provide a mechanism to choose pA and n so that UM
is maximized for Psucc ≥ 1− ε for any given worker-type distribution, reward model, and set of payoff
parameters in the contractor scenario.

4.3 Graphical Characterization of Master’s Utility

In this section, in order to provide a better insight of the usability of our mechanisms, and to illustrate
interesting trade-offs between reliability and cost, we provide a graphical characterization of the mas-
ter’s utility. Specifically we present and analyze various scenarios for the time-based and reply-based
mechanisms, including the special case of reliable network (recall that in this case the two mechanisms
converge), both in the SETI-like and the Contractor settings.

4.3.1 SETI-like Scenario

We begin by considering the timed-based mechanism, then the reply-based one, and then the special
case of reliable communication where the two mechanisms converge (cf., Section 3.1).

Timed-based Mechanism. For this mechanism, we consider MCA = 1 as our normalizing parameter
and we take MPW = 100, MCS = 10 and MBR = 4 as realistically large enough values (with respect
to MCA = 1). Using other values for these parameters will not change qualitatively the results. We
choose pµ ∈ [0, 0.5] as we believe this is a reasonable interval. As it can be seen from the empirical
evaluations of SETI-like systems reported in [15] and [18], pµ is less than 0.1. So we took a larger range
on pµ to examine its general impact on the utility of the master. We choose [0, 0.1] as the range of MCY ,
to reflect the small cost incurred by the master for maintaining a workers contribution list.

We consider three plot scenarios were we vary pµ and MCY as discussed above:
(a) We fix d = 0.9 and n = 75 and compute the master’s utility for all three reward models. The results
are depicted in Figure 4(a).
(b) We fix n = 75, we consider the Rm model and compute the master’s utility over d = 0.5, 0.9, 0.99.
See Figure 4(b).
(c) We fix d = 0.9, we consider theRm model and we compute the master’s utility over n = 15, 55, 75.
The results are depicted in Figure 4(c).

In all plots we can notice a threshold where the behavior of the utility changes. The threshold depicts
the transition point in which the master changes its strategy from non-auditing to auditing.

In Figure 4(a) we can notice that for all the reward models, the master does not audit until pµ gets
around 0.35. This behavior is reasonable, since in the presence of more malicious workers the master
must audit to ensure correctness. Once auditing, the utility of the master becomes the same in all three
reward model, since now the same reward/penalize scheme is deployed. As expected, when the master
does not audit, it gets its higher utility from R∅ and its lower utility from Ra. The utility of the master
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(a) (b) (c)
Figure 4: Time-based Mechanism in the SETI-like scenario: Master’s utility for the three plot scenarios:
(a) The upper plane corresponds to R∅, the middle to Rm, and the third to Ra. (b) The upper plane
corresponds to d = 0.5, the middle to d = 0.9, and the third to d = 0.99. (c) The upper plane
corresponds to n = 15, the middle to n = 55, and the third to n = 75.

(a) (b)
Figure 5: Plots of the SETI-like Scenario for the Reply-based Mechanism

for theRm seems to balance nicely between the other two reward models. This perhaps suggests that the
Rm reward model is the most stable among the three. A final observation is that as MCY gets bigger,
for Rm and Ra models, the utility of the master gets smaller; this is natural, since by increasing the
payment to the workers the master is decreasing is own benefit.

In Fig 4(b) we can notice that for smaller values of d we get a higher utility for the master. This
is due to fact that the master receives fewer replies, and hence it rewards a smaller number of workers.
As with the previous plot scenario, for any d, as MCY is increasing, UM is dropping. An important
observation is that for d = {0.9, 0.99} and for large values of MCY , the utility of the master is higher
as it audits. This is because the cost of rewarding the workers increases so much, that it is better for the
master to audit.

In Figure 4(c) we notice that the utility of the master decreases as the number of workers increases;
this is again due to the reward it must provide to the workers. Observer that for n = 15, the master
chooses to change it’s strategy to auditing for a smaller value of pµ; this is due to the fact that as the
master gets fewer replies, the probability of having a majority of incorrect replies gets bigger for smaller
values of pµ.

Reply-based Mechanism. We now provide a graphical characterization of the master’s utility for the
reply-based mechanism. Our aim is to observe how the minimum number of replies k will be affected by
the number of workers selected by the master n, and by the probability distribution of rational workers
pρ. Furthermore, we depict how k is affecting the utility of the master. As with the previous mechanism,
we set MCA = 1, MPW = 100, MCS = 10 and MBR = 4.

We consider two plot scenarios:
(a) We vary n from 65 to 95, pρ for 0 to 1, and we compute the appropriate k that the master should
choose for each n. The results are depicted in Figure 5(a).
(b) We use the Rm, we fix pρ = 0.6, d = 0.9, MCY = 0.05, we vary k and we compute the utility of
the master. See Figure 5(b).
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(a) (b) (c)

Figure 6: Plots of the SETI-like scenario for d = 1. The upper plane corresponds to MBR = 4 the lower
plane to MBR = 1 and the red flat plane to UM = 0. (a) n = 5. (b) n = 15. (c) n = 75.

In Figure 5(a) we observe that as n increases, naturally, k increases as well. An interesting ob-
servation is that as pρ increases, k decreases. This is explained as follows: k is computed based on
the number of malicious and altruistic workers that exist (since they always reply). Therefore, as these
become fewer, k is naturally reduced.

In Figure 5(b) we observe how the utility of the master is affected by k; as k increases, the utility
of the master decreases. This follows from the fact that as the master gets more replies, it has to reward
more workers.

Reliable Network (Convergence of Mechanisms). We also provide the graphical characterization
for the master’s utility for the case that a reliable network exists (d = 1). From this simple case we
can better study the trade-offs between reliability and cost without the complications of an unreliable
network and workers not replying. By setting d = 1 we have the analysis for the SETI-like scenario
for a reliable network; time-based and reply-based mechanisms converge to a single mechanisms where
the master receives all replies from the workers. As before we set MCA = 1 and MPW = 100. Notice
that in the reliable network case MCS is not applicable and the probability of having this value is zero.
We plot for values pµ ∈ [0, 0.5] and MCY ∈ [0, 0.1]. Recall that by plotting on the parameters the best
strategy of the master is pA = 0 or pA = 1.

We consider three scenarios, applying the R∅ model and varying pµ and MCY as discussed above.
In particular:
(a) We fix n=5 and compute the utility of the master for MBR = {1, 4}; the results are depicted in
Figure 6(a).
(b) We fix n=15 and compute the utility of the master for MBR = {1, 4}; the results are shown in
Figure 6(b).
(c) We fix n=75 for both values of MBR mentioned earlier; in Figure 6(c) are depicted the corresponding
results.

All plots include a reference surface plane UM = 0. Here we have only presented the R∅ model
because it is the simplest one. However, for the other reward models the plots depict more or less the
same behavior, with the difference that before the threshold point (where the master does not audit) the
utility of the master also depends on MCY (e.g. Figure 4(c)).

A natural and expected observation in Figure 6, is the fact that the higher the value of MBR the
higher the utility of the master without this affecting the shape of the plot. In all plots we can notice
a threshold where the behavior of the utility changes. The threshold depicts the transition point in
which the master changes its strategy from non-auditing to auditing. For all three plots in Figure 6,
we generally observe a smaller utility when the master audits than when it does not. Recall that we
apply the R∅ model when the master follows a non-auditing strategy; thus the master rewards the honest
workers only when it audits and this decreases its own utility proportionally to the value of payment to
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the workers (MCY ). Another interesting observation about the plots in Figure 6 is the sharp declining
curve before the threshold (the master follows a non-auditing strategy). This curve is due to the fact that
as pµ increases the probability of the master getting an incorrect reply increases, and thus the utility of
the master decreases accepting an incorrect reply. Notice that this declining curve is much sharper in
Figure 6(c), since the larger the number of workers the more acute the impact of a high pµ.

A significant difference between the number of chosen workers, is the threshold value of pµ where
the master changes its strategy to auditing. The larger the number of workers, the bigger the transition
value (pµ value) that the master starts to audit. This is due to the large reward it must provide when it
audits, combined with the fact that having more workers increases the probability of getting the correct
reply. We also notice that UM increases slightly after the threshold, as pµ increases. Although this
behavior is not expected, we believe it is due to the fact that the master has resolved to auditing in order
to guarantee getting the correct value, and thus the fewer honest workers it has to reward, the greater its
benefit.

4.3.2 Contractor Scenario

We now consider the contractor scenario (e.g., Amazon’s Mechanical Turk). Recall that in this set-
ting WCT > 0, and the workers are willing to participate only if their utility if positive (they are not
volunteers as in the SETI-like setting). For this scenario we focus on the special case of reliable commu-
nication (where the two mechanisms converge) to illustrate how the cost for computing the task (WCT )
affects the trade-offs between reliability and cost (which we could not study in the SETI-like setting).

Figure 7 illustrates the utility of the master for the R∅ model and for a fix value of S = 0.8; we vary
pµ ∈ [0, 0.5] and WCT ∈ [0, S]. In Figure 7(a) we fix n=7, in Figure 7(b) we fix n=15 and in Figure 7(c)
we fix n=75. For each of these plots we have two planes, one for each value of MBR = {1, 4} and a
reference surface plane UM = 0 (similarly to the plots for the reliable communication case in the SETI-
like setting).

Observe that a threshold point exists where the master changes its strategy from auditing with some
probability (that guaranties the utility of the rational workers is positive) to auditing. We generally
observe that (not surprisingly) for values of pµ and WCT close to zero we get the highest utility.

In all plot in Figure 7 when the master audits with some probability (before the threshold point)
observe that as WCT increases, the utility of the master decreases for every pµ. This is a classical
example of the trade-off between reliability and cost. The larger WCT is, the higher the probability of
pA should be to guarantee correctness, thus the utility of the master decreases.

Another observation (especially in Figure 7(c)), is that before the threshold value, as pµ increases,
the utility of the master increases, and then decreases for every value of WCT (except when close to
WCT = 0 and WCT = S)! When pµ is increasing, the number of truthful workers decreases thus
the master has to reward less honest workers and so its utility increases; recall that the master audits
the answers with some probability. On the other hand, when the value of pµ increases even more, the
probability of having a majority of incorrect answers is very large. So it is quite probable since the
master audits with some probability to get an incorrect result; thus its utility decreases.

Naturally when the master audits, for every value of WCT , as pµ increases so does the utility of the
master. The higher the pµ, fewer the honest workers, and thus the smaller the total payment of the master
to the workers. Notice again that having larger MBR does not affect the shape of the plots; the utility
of the master increases uniformly. For similar reasons as in the reliable network SETI-like setting, the
threshold value (pµ value) increases for larger number of workers. Finally, observe the big decrease in
the master’s utility as the number of workers grows. This is due to the large payments that the master
has to give to large groups of workers to guarantee reliability.
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(a) (b) (c)

Figure 7: Contractor Scenario plots for fixed S and d = 1. The upper plane corresponds to MBR = 4
the lower plane to MBR = 1 and the red flat plane to UM = 0. (a) n = 7. (b) n = 15. (c) n = 75.

5 Discussion

In this paper we have combined a classical distributed computing approach (voting) with a game-
theoretic one (cost-based incentives and payoffs). This has lead to designing and analyzing two mecha-
nisms that enable a master process to reliably obtain a task result despite the co-existence of malicious,
altruistic and rational workers, and the underlying network’s unreliability.

Several future directions emanate from this work. For example, in this work we have considered a
cost-free, weak version of worker collusion (all rational cheaters and malicious workers return the same
incorrect task result). It would be interesting to study more involved collusions, as the ones studied in [2]
or [12]. In this work, we have considered a single-task one-shot protocol, in which the master decides
which task result to accept in one round of message exchange with the workers. It would be interesting
to consider several task waves over multiple rounds, that is, view the computation as an Evolutionary
Game [31, 56]. The master could use the knowledge gained in the previous rounds to increase its utility
and its probability of success in future rounds. Issues such as worker aspiration level [9] could be taken
into account.

Acknowledgments. We thank Alexander A. Shvartsman for insightful discussions.
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