
Efficient Mechanisms for Single-task Reliable-communication
Master-Worker Computing with Malicious and Rational Workers ∗

Evgenia Christoforou
University of Cyprus

evgenia.christoforou@gmail.com

Antonio Fernández Anta
Inst. IMDEA Networks and URJC

antonio.fernandez@imdea.org

Chryssis Georgiou
University of Cyprus

chryssis@cs.ucy.ac.cy

Miguel A. Mosteiro
Rutgers University and URJC

mosteiro@cs.rutgers.edu

Abstract

We consider Internet-based master-worker computations, where a master processor assigns,
across the Internet, a computational task to a set of untrusted worker processors, and collects their
responses; examples of such computations are the “@home” projects such as SETI. Prior work deal-
ing with Internet-based task computations has either considered only rational, or only malicious and
altruistic workers. Altruistic workers always return the correct result of the task, malicious work-
ers always return an incorrect result, and rational (selfish) workers act based on their self-interest.
However, in a massive computation platform, such as the Internet, it is expected that all three type
of workers coexist. Therefore, in this work we study Internet-based master-worker computations in
the presence of Malicious, Altruistic, and Rational workers. A stochastic distribution of the workers
over the three types is assumed. Considering all the three types of workers renders a combination of
game-theoretic and classical distributed computing approaches to the design of mechanisms for reli-
able Internet-based computing. Indeed, in this work such an algorithmic mechanism that makes use
of realistic incentives to obtain the correct task result with a parametrized probability is designed.
Only when necessary, the incentives are used to force the rational players to a certain equilibrium
(which forces the workers to be truthful) that overcomes the attempt of the malicious workers to
deceive the master. Finally, the mechanism is analyzed in two realistic Internet-based master-worker
applications.

Technical Report TR-11-04
Department of Computer Science

University of Cyprus
May 2011

∗This work is supported in part by the Cyprus Research Promotion Foundation grant TΠE/ΠΛHPO/0609(BE)/05, Comu-
nidad de Madrid grant S2009TIC-1692, Spanish MICINN grant TIN2008–06735-C02-01, and NSF grant 0937829.

1

1 Introduction

Motivation and Prior Work. In recent years, the Internet has become an alternative (to expensive
supercomputing parallel machines) computational platform for processing complex computational jobs.
Examples of such Internet-based processing are the “@home” projects [5], such as SETI [29] (a clas-
sical example of volunteer computing) and Grid computing [12]. However, Internet-based computing
(referred sometimes as P2P computing–P2PC [17, 47]) has not reached its full potential due to the un-
trustworthiness nature of the platform’s components [5,20]. Typically, in Internet-based computing (e.g,
in SETI) the following Master-Worker approach is employed: A master computer sends jobs (or tasks),
across the Internet, to worker computers that are willing to execute them. These workers execute and
report back the result of the task computation. However, these workers are unavoidably non-trustworthy,
and hence might report incorrect results. Naturally, the master attempts to minimize the impact of these
bogus results (and increase its chance of obtaining the correct task result) by assigning the same task to
several workers and comparing their outcomes (that is, redundant task allocation is employed [5]).

This problem has recently been studied under two different views: from a “classical” distributed
computing view [15, 28, 43] and from a game-theoretic view [16, 47]. Under the first view, the workers
are classified as either malicious (Byzantine) or altruistic, based on a predefined behavior. The mali-
cious workers have a “bad” behavior which results in reporting an incorrect result to the master. This
behavior is, for example, due to a hardware or a software error or due to an ill-state of the worker (it
behaves maliciously intentionally). Altruistic workers exhibit a “good” behavior, that is, they compute
and truthfully return the correct task result (they are essentially the “correct” nodes). Under this view,
“classical” distributed computing models are defined (e.g., a fixed bound on the probability of malicious
nodes is assumed) and typical malicious-tolerant voting protocols are designed.

Under the game-theoretic view, workers act on their own self-interest and they do not have an a priori
established behavior, that is, they are assumed to be rational [2, 20]. In other words, the workers decide
on whether they will be honest (and hence compute and truthfully report the correct task result) or cheat
(and hence report a bogus result) depending on which strategy increases their benefit (utility). Under
this view, Algorithmic Mechanisms [2, 10, 38] are employed, where games are designed to provide the
necessary incentives so that processors’ interests are best served by acting “correctly.” In particular,
the master provides some reward (resp. penalty) should a worker be honest (resp. cheat). The design
objective is for the master to force a desired unique Nash equilibrium (NE) [37], i.e., a strategy choice
by each worker such that none of them has incentive to change it. That Nash equilibrium is the one in
which the master achieves a desired probability of obtaining the correct task result.

The above views could complement one another, if a certain computation includes only malicious
and altruistic workers, or only rational workers. However, the pragmatic situation on the Internet is
different: all three type of workers might co-exist in a given computation. One could assume that all
workers are rational, but what, for example, if a software bug occurs that makes a worker deviate from
its protocol, and hence compute and return an incorrect result? This worker is no longer exhibiting a
rational behavior, but rather an erroneous or irrational one (that from the master’s point of view it can be
seen as malicious).

Contributions. In this work we consider Internet-based master-worker computations where Mali-
cious, Altruistic and Rational workers co-exist. To the best of our knowledge, this is the first work
that considers such co-existence in Internet-based master-worker (P2PC) computing. Considering all
the three types of workers renders a combination of game-theoretic and classical distributed computing
approaches to the design of mechanisms for reliable Internet-based computing. In particular

• A collection of realistic payoff parameters and reward models are identified (Section 2) and the
above Internet-based master-worker computation problem is formalized as a Bayesian game [24]
(Section 3). There is a probability distribution of workers among the worker types. The master and

2

the workers do not know the type of other workers, only the probability distribution. The rational
workers play a game looking for a Nash Equilibrium, while the malicious and altruistic workers
have a predefined strategy to cheat or be honest, respectively. The master does not participate in
the game, it designs the game to be played.

• We design a general voting algorithm that the master runs to implement the abovementioned
game (Section 3). The algorithm is parametrized in terms of a probability of auditing pA (defined
in Section 3). Under a general type probability distribution, we analyze the master’s utility and
probability of error (probability of obtaining the incorrect task result) and identify the conditions
under which the game has Nash Equilibria.

• Based on specific type probability distributions, an algorithmic mechanism in which the master
chooses the values of pA to guarantee a parametrized bound on the probability of error is designed
(Section 4). Once this is achieved, the master also attempts to maximize its utility. Note that
the mechanism designed (and its analysis) is general in that reward models can either be fixed
exogenously or be chosen by the master. It is also shown that this mechanism is the only feasible
approach for the master to achieve a given bound on the probability of error.

• Finally, under the constrain of the bounded probability of error, it is shown how to maximize
the master utility in two realistic scenarios (Section 5). The first scenario abstracts a system of
volunteering computing like SETI, and the second, a company that buys computing cycles from
Internet computers and sells them to its customers in the form of a task-computation service, such
as Amazon’s Mechanical Turk [4].

Related work. Prior examples of game theory in distributed computing include work on Internet rout-
ing [19,30,34,41], resource/facility location and sharing [18,21], containment of viruses spreading [36],
secret sharing [2, 23], P2P services [3, 31, 32] and task computations [16, 47]. For more discussion on
the connection between game theory and computing we refer the reader to the survey by Halpern [22]
and the book by Nisan et al [39].

Distributed computation in presence of selfishness was also studied within the scope of Combina-
torial Agencies in Economics [6]. The computation is carried out as a game of complete information
where only rational players are considered. The goal in that work is to study how the utility of the mas-
ter is affected if the equilibria space is limited to pure strategies. To that extent, the computation of a
few Boolean functions is evaluated. If the parameters of the problem yield multiple mixed equilibrium
points, it is assumed that workers accept one “suggested” by the master.

Eliaz [13] seems to be the first to formally study the co-existence of Byzantine (malicious) and
rational players. He introduces the notion of k-fault-tolerant Nash Equilibrium as a state in which no
player benefits from unilaterally deviating despite up to k players acting maliciously. He demonstrates
this concept by designing simple mechanisms that implement the constrained Walrasian function and a
choice rule for the efficient allocation of an indivisible good (e.g., in auctions). Abraham et al [2] extend
Eliaz’s concept to accommodate colluding rational players. In particular they design a secret sharing
protocol and prove that it is (k, t)-robust, that is, it is correct despite up to k colluding rational players
and t Byzantine ones.

Aiyer et al. [3] introduce the BAR model to reason about systems with Byzantine (malicious), Al-
truistic, and Rational participants. They also introduce the notion of a protocol being BAR-tolerant, that
is, the protocol is resilient to both Byzantine faults and rational manipulation. (With this respect, one
might say that our algorithmic mechanism designed in this work is BAR-tolerant.) As an application,
they designed a cooperative backup service for P2P systems, based on a BAR-tolerant replicated state
machine. Li et al [32] also considered the BAR model to design a P2P live streaming application based
on a BAR-tolerant gossip protocol. Both works employ incentive-based game theoretic techniques (to

3

remove the selfish behavior), but the emphasis is on building a reasonably practical system (hence, for-
mal analysis is traded for practicality). Recently, Li et al [31] developed a P2P streaming application,
called FlightPath, that provides a highly reliable data stream to a dynamic set of peers. FlightPath, as
opposed to the abovementioned BAR-based works, is based on mechanisms for approximate equilib-
ria [9], rather than strict equilibria. In particular, ε-Nash equilibria are considered, in which rational
players deviate if and only if they expect to benefit by more than a factor of ε. As the authors claim,
the less restrictive nature of these equilibria enables the design of incentives to limit selfish behavior
rigorously, while it provides sufficient flexibility to build practical systems.

Recently, Gairing [19], introduced and studied malicious Bayesian congestion games. These games
extend congestion games [42] by allowing players to act in a malicious way. In particular, each player
can either be rational or, with a certain probability, be malicious (with the sole goal of disturbing the other
players). As in our work, players are not aware of each other’s type, and this uncertainty is described
by a probability distribution. Among other results, Gairing shows that, unlike congestion games, these
games do not in general possess a Nash Equilibrium in pure strategies. Also he studies the impact of
malicious types on the social cost (the overall performance of the system) by measuring the so-called
Price of Malice. This measure was first introduced by Moscibroda et al [36] to measure the influence of
malicious behavior for a virus inoculation game involving both rational (selfish) and malicious nodes.

2 Definitions and Notation

System model. The assumed distributed system is formed by a master processor M and a set W of
n = |W | workers. We assume that the master chooses n to be odd. The master has a task that wants
to compute. For some reason, the master does not compute the task itself, but chooses to send it to all
the workers, wait for their answers, and decide on a value that it believes to be the correct output of the
task. The tasks considered in this work are assumed to have a unique solution although such limitation
reduces the scope of application of the presented mechanisms, there are plenty of computations where
the correct solution is unique: e.g., any mathematical function.

Each of the n workers has one of the following types, rational, malicious, or altruistic. The exact
number of workers of each type is unknown. However, it is known that each worker is independently of
one of the three types with probabilities pρ, pµ, pα, respectively, where pρ + pµ + pα = 1. Malicious
and altruistic workers always cheat and are honest, respectively, independently of how such a behavior
impacts their utilities. In the context of this paper, being honest means returning the correct value, and
cheating means returning some incorrect value. On the other hand, rational workers are assumed to be
selfish in a game-theoretic sense, i.e., their aim is to maximize their benefit (utility) under the assumption
that other workers do the same. Hence, they will be honest or cheat depending on which strategy
maximizes their utility. While it is assumed that rational players make their decision individually, it is
assumed that all the (malicious and rational) workers that cheat return the same incorrect value. This
yields a worst case scenario (and hence analysis) [43] for the master with respect to its probability of
obtaining the correct result. (In some sense, this can be seen as a cost-free, weak form of collusion).
Finally, it is assumed that all workers reply (abstention is not allowed) and that all their answers reach
the master.

In order to model the individuality of the non-monetary part of each rational worker benefit/penalty,
the distribution over types could be generalized to different types of rational workers instead of one.
More precisely, define a probability distribution over each possible combination of payoffs in R4, re-
stricting signs appropriately, so that each rational worker draws independently its strategic normal form
from this distribution. However, the analysis presented here would be the same but using expected
payoffs, the expectation taken over such distribution. Thus, for the sake of clarity and without loss of
generality, we assume that the strategic normal form is unique for all players, i.e., all rational workers
are of the same type.

4

The objective of the master is twofold. First, the master has to guarantee that the decided value is
correct with probability at least 1 − ε, for a known constant 0 ≤ ε < 1. Then, having achieved this,
the master wants to maximize its own benefit (utility). To achieve this it has two weapons. On the one
hand, it can audit the response of the workers (at a cost). In particular, the master computes the task by
itself, and checks which workers have been truthful or not. (From the assumptions that cheaters return
the same incorrect answer and tasks have unique solutions, it follows that there can only be two kind of
replies – a correct and an incorrect one.) On the other hand, the master can punish and reward workers,
which can be used (possibly combined with audit) to encourage rational workers to be honest. When the
master audits, it can accurately punish and reward workers. However, when the replies are not audited,
rewards and penalties can be applied following different models.

The reward models considered in this paper are presented in Table 1. Two of the models reward
or penalize a worker depending on whether its reply is equal to the majority of replies (observe that at
most two replies are possible, and since n is odd, one reply has majority). These reward models are
sensible when the probability of a majority of honest replies is reasonably large. Observe as well that
three models do not punish (some even reward) the workers whose reply is in the minority. This tries
to avoid punishing honest workers that are outnumbered by cheaters. The payoff parameters used are
detailed in Table 2. All these parameters are non-negative. Observe that there are different parameters
for the reward WBY to a worker and the cost MCY of this reward to the master. This models the fact
that the cost to the master might be different from the benefit for a worker. In fact, in some applications
they may be completely unrelated, as for example in the SETI-like scenario presented in Section 5.1. It
is assumed that WBY and WPC are chosen by the master whereas the other payoff parameters and the
reward models can be fixed exogenously.

R± the master rewards the majority and penalizes
the minority

Rm the master rewards the majority only
Ra the master rewards all workers
R∅ the master does not reward any worker

Table 1: Reward models

Game Theory concepts. We study the problem under the assumption that the rational workers, or
players, will play a game looking for an equilibrium (malicious and altruistic workers have a predefined
strategy to cheat or be honest, respectively). The master does not play the game, it only defines the
protocol and the parameters to be followed (i.e., it designs the game or mechanism). The master and
the workers do not know the type of other workers, only the probability distribution. Hence, the game
played is a so-called game with imperfect information or Bayesian game [24]. The action space is the set
of pure strategies {C, C}, and the belief of a player is the probability distribution over types. Each player
knows in advance the distribution over types, the total number of workers, and its normal strategic form,
which is assumed to be unique. The game formulation is given in the next section.

WPC worker’s punishment for being caught cheating
WCT worker’s cost for computing the task
WBY worker’s benefit from master’s acceptance
MPW master’s punishment for accepting a wrong answer
MCY master’s cost for accepting the worker’s answer
MCA master’s cost for auditing worker’s answers
MBR master’s benefit from accepting the right answer

Table 2: Payoffs

Recall from [40], that for any finite game, a mixed strategy profile σ is a mixed-strategy Nash equi-

5

librium (MSNE) if, and only if, for each player i,

Ui(si, σ−i) = Ui(s
′
i, σ−i), ∀si, s′i ∈ supp(σi),

Ui(si, σ−i) ≥ Ui(s′i, σ−i),
∀si, s′i : si ∈ supp(σi), s′i /∈ supp(σi),

where si is the strategy used by player i in the strategy profile s, σi is the probability distribution over
pure strategies used by player i in σ, σ−i is the probability distribution over pure strategies used by each
player but i in σ, Ui(si, σ−i) is the expected utility of player iwhen using strategy si with mixed strategy
profile σ, and supp(σi) is the set of strategies in σ with positive probability.

In words, given a MSNE with mixed-strategy profile σ, for each player i, the expected utility, as-
suming that all other players do not change their choice, is the same for each pure strategy that the player
can choose with positive probability in σ, and it is not less than the expected utility of any pure strategy
with probability zero of being chosen in σ. Then, in order to find conditions for equilibria, we want to
study for each player i

∆Ui , Ui(si = C, σ−i)− Ui(si = C, σ−i).

If we show conditions such that ∆U = 0, then we have a MSNE.1 If we denote by pC the probability
that player i cheats, then in the MSNE 0 6= pC 6= 1. On the other hand, if we show conditions that make
∆U < 0 for each player i, we know that there is a pure strategies NE where all players choose to be
honest, i.e. pC = 0. (There is no NE where some players choose a pure strategy and others do not
because the game is symmetric for all rational players. If a distribution over many types of rational
players is defined, then we would have to consider such a NE.)

The following notation will be used throughout.

P(n)
q (a, b) ,

b∑
i=a

(
n

i

)
qi(1− q)n−i

The notation used throughout the paper is summarized in Table 3.

3 Game Definition and Analysis

In this section we present the protocol that the master uses to obtain the result of the task. The protocol
essentially implements the game to be played by the (rational) workers, which we also define in this
section. Finally we analyze the game under a general type probability distribution.

3.1 Protocol Description

The basic protocol used by the master to accept the task result can be described as follows. After
receiving the replies from all workers, and independently of the distribution of the answers, the master
processor chooses to audit the answers with some probability pA. If the answers were not audited it
accepts the result of the majority. Then, it applies the corresponding reward model. The protocol is
detailed in Algorithm 1. The specific values of pA are chosen in the next sections according with the
known type distribution of workers and payoffs.

For computational reasons, besides pA and the task to be computed, the master also sends a certifi-
cate. The certificate includes the strategy that if the rational workers play will lead them to the unique

6

W = {1, 2, . . . , n} set of n workers
M master processor
pρ probability of a worker to be of rational type
pµ probability of a worker to be of malicious type
pa probability of a worker to be of altruistic type
pA probability that the master audits (computes task and checks worker answers)

Pwrong probability that the master obtains a wrong value
ε desired bound on the probability of error (master not accepting correct answer)

{C, C} action space of a worker
pC probability of a worker to cheat
s strategy profile (a mapping from players to pure strategies)
si strategy used by player i in the strategy profile s
s−i strategy used by each player but i in the strategy profile s
σ mixed strategy profile (mapping from players to prob. distrib. over pure strat.)
σi probability distribution over pure strategies used by player i in σ
σ−i probability distribution over pure strategies used by each player but i in σ

Ui(si, σ−i) expected utility of player i with mixed strategy profile σ
supp(σi) set of strategies of player i with probability > 0 in σ

∆Ui or ∆U or ∆U(·) Ui(si = C, σ−i)− Ui(si = C, σ−i)
P

(n)
q (a, b)

∑b
i=a

(
n
i

)
qi(1− q)n−i

Table 3: Summary of Symbols

Algorithm 1: Master algorithm
send (task, pA, certificate) to all the workers in W ;
upon receiving all answers do

audit the answers with probability pA;
if the answers were not audited then accept the majority;
apply the reward model;

endupon

NE, together with the appropriate data to demonstrate this fact. More details for the use of the certificate
are given in Section 4.5.

Notice that the protocol is one-shot, in the sense that it terminates after one round of communication
between the master and the workers. This enables fast termination and avoids using complex cheater
detection and worker reputation mechanisms. The benefit of one-round protocols is also partially sup-
ported by the work of Kondo et al. [27] that have demonstrated experimentally that tasks may take much
more than one day of CPU time to complete.

As discussed in Section 2, there are only two values returned to the master – the correct value and
a unique incorrect one. Together with the fact that the master chooses n to be odd, in line 4 it is not
possible to have relative majority. Considering relative majority could be made possible by making
appropriate changes to the model and to the mechanism analysis. However, the analysis becomes more
involved while not giving more insight to the problem under study.

3.2 Game Definition

Putting together the game-related discussion in Section 2 and the above protocol, we formulate the
Internet-based Master Worker computation considered in this works as the following Bayesian game

G(W, ε,D, A, pA,R, pfs),

1Given that the utility is the same for all players, we refer to ∆Ui as ∆U .

7

whereW is the set of n workers, 0 ≤ ε < 1 is the error probability,D is the type probability distribution
(pρ, pµ, pα), A = {C, C} is the workers’ actions space (recall that only rational players have a prob-
abilistic choice over pure strategies, malicious workers always cheat and altruistic workers are always
honest), pA is as described in Algorithm 1, R is one of the reward models given in Table 1, and pfs
are the payoffs as described in Table 2. Recall that the master and the workers do not know the other
workers types, but D is known.

As mentioned before, the master does not participate in the game, but it designs the game to be
played. In particular, the master runs Algorithm 1 after using a mechanism designed in Section 4. In
order to obtain a mechanism that is useful for any scenario we do not restrict ourselves to a particular
instance of payoffs or reward models. Instead, we leave those variables as parameters and focus our
study on how to choose pA to have the probability of error bounded by ε. Were payoffs and reward
models a choice of the master, its utility can be maximized choosing those parameters conveniently in
Equation 2 (given below). Two realistic examples are given in Section 5.

3.3 Game Analysis

We now analyze the game under a general type probability distribution. In the next section we design a
mechanism for specific families of type probability distributions.

Error Probability and Master Utility. Recall that n is assumed to be odd. Letting q = pµ + pρpC ,
where pC is the probability that a rational player chooses strategy C, the probability that the master
obtains the wrong answer is

Pwrong = (1− pA)P(n)
q (dn/2e, n). (1)

On the other hand, the expected utility of the master is

UM = pA
(
MBR −MCA − n(1− q)MCY

)
+ (1− pA)

(
MBRP

(n)
q (0, bn/2c)

−MPWP(n)
q (dn/2e, n) + γ

)
. (2)

Where,

γ =

−MCY(E
(n)
1−q(dn/2e, n) + E

(n)
q (dn/2e, n))

for theRm andR± models.
−nMCY

for theRa model.
0

for theR∅ model.

and E
(n)
p (a, b) ,

∑b
i=a

(
n
i

)
ipi(1− p)n−i, p ∈ [0, 1].

Equilibria Conditions. For any player i, let wCsi be the payoff of player i when using strategy si in
the strategy profile s if the majority of workers cheat and the master does not audit, wCsi if the minority
of workers cheat and the master does not audit, and wAsi otherwise.

Using this notation, the payoffs for each reward model, are detailed in Table 4.

8

R± Rm Ra R∅

wAC −WPC −WPC −WPC −WPC

wAC WBY −WCT WBY −WCT WBY −WCT WBY −WCT

wCC WBY WBY WBY 0

wCC −WPC −WCT −WCT WBY −WCT −WCT

wCC −WPC 0 WBY 0

wCC WBY −WCT WBY −WCT WBY −WCT −WCT

Table 4: Payoffs for each reward model.

Then, for each player i,

∆U = (wAC − wAC)pA + (1− pA)(
(wCC − wCC)P

(n−1)
q (dn/2e, n− 1)

+ (wCC − wCC)P
(n−1)
q (0, bn/2c − 1)

+ (wCC − wCC)
(
n− 1

bn/2c

)
qbn/2c(1− q)bn/2c

)
.

Notice in Table 4 that wAC − wAC = WCT −WPC −WBY for all models. Also notice from Table 4

that, for any reward model, wCC = wCC −WCT and wCC = wCC −WCT . Replacing,

∆U = WCT − pA(WPC + WBY) + (1− pA)

(wCC(P
(n−1)
q (bn/2c, n− 1)−P(n−1)

q (0, bn/2c))

+ wCC(P
(n−1)
q (0, bn/2c − 1)−P(n−1)

q (dn/2e, n− 1))). (3)

In the remainder of the paper, in some cases, we will be using the notation ∆U(parameter) to
denote the evaluation of ∆U under a certain value of parameter.

The following observationwill be useful.

Lemma 1. For any i ∈W , ∆U(pC) is a non-decreasing function in pC ∈ [0, 1].

Proof. In order to prove this lemma, it is enough to replace the payoffs from Table 4 in Equation 3 for
each model as follows.
Rm model.

∆U = WCT −WPC −WBY + (1− pA)(
(WPC + WBY)P(n−1)

q (bn/2c, n− 1)

+ WPCP
(n−1)
q (0, bn/2c − 1) + WBYP

(n−1)
q (dn/2e, n− 1)

)
.

∆U = WCT −WPC −WBY + (1− pA)(
WPC + WBY(P(n−1)

q (bn/2c, n− 1) + P(n−1)
q (dn/2e, n− 1))

)
.

9

It can be seen that ∆U is an increasing function in the interval q ∈ [0, 1] hence the claim follows for this
model.
Ra andR∅ models.

For theRa model,

∆U = WCT −WPC −WBY + (1− pA)

(WPC + WBY)(P(n−1)
q (bn/2c, n− 1) + P(n−1)

q (0, bn/2c − 1)).

∆U = WCT −WPC −WBY + (1− pA)(WPC + WBY).

And for theR∅ model,

∆U = WCT −WPC −WBY + (1− pA)(
WPCP

(n−1)
q (bn/2c, n− 1) + WBYP

(n−1)
q (0, bn/2c)

+ WPCP
(n−1)
q (0, bn/2c − 1) + WBYP

(n−1)
q (dn/2e, n− 1)

)
.

∆U = WCT −WPC −WBY + (1− pA)(WPC + WBY).

Thus, ∆U is a constant with respect to pC hence it is non-decreasing for this model.
R± model.

∆U = WCT −WPC −WBY + (1− pA)(WPC + WBY)(
P(n−1)
q (bn/2c, n− 1) + P(n−1)

q (dn/2e, n− 1)
)
.

Again, it can be seen that ∆U is an increasing function in the interval q ∈ [0, 1] hence the claim
follows for this model.

4 Algorithmic Mechanism

Appropriate strategies to carry out the computation with the desired probability of error under various
scenarios are considered in this section. It is important to stress again that, in order to obtain a mechanism
that is useful for any of those scenarios we do not restrict ourselves to a particular instance of payoffs
or reward models leaving those variables as parameters. Thus, we focus our study here on how to
choose pA to have the probability of error bounded by ε for each of the reward models assuming that the
payoffs have already been chosen by the master or are fixed exogenously. For settings where payoffs and
reward models are a choice of the master, its utility can be easily maximized choosing those parameters
conveniently in Equation 2, as demonstrated in Section 5.

In order to design an efficient mechanism, the following issues must be taken into account. Although
known, the worker-type distribution is assumed to be arbitrary. Likewise, the particular value of ε is
arbitrary given that it is an input of the problem. Finally, although the priority is to obtain Pwrong ≤ ε, it
is desirable to maximize the utility of the master under such restriction. Thus, the mechanism to choose
pA is designed taking into account two scenarios that we name: guided rationals – when a specific
behavior of rational workers (pC) has to be enforced – and free rationals – otherwise. We analyze these
scenarios in the following sections. An explicit protocol implementing this mechanism, is detailed in
Algorithm 2.

10

Algorithm 2: Master protocol to choose pA. Ri is a Boolean variable indicating if model Ri is
used.

Free rationals:;

if P(n)
pµ (dn/2e, n) > ε then /* even if pC = 0, Pwrong is big */

pA ← 1− ε/P(n)
pµ+pρ(dn/2e, n); q ← pµ + pρ;

end
else if P(n)

pµ+pρ(dn/2e, n) ≤ ε then /* even if pC = 1, Pwrong is low */

pA ← 0 ; q ← pµ + pρ;
end
else if ∆U(pC = 1, pA = 0) ≤ 0 and (Rm ∨R±) then /* pC = 0, even if pA = 0 */

pA ← 0 ; q ← pµ;

Guided rationals:;
else /* pC = 0 enforced */

q ← pµ;
caseRm

pA ← 1− WPC+WBY−WCT

WPC+WBY (P
(n−1)
pµ+pρ

(bn/2c,n−1)+P
(n−1)
pµ+pρ

(dn/2e,n−1))
;

endsw
caseRa ∨R∅

pA ← WCT
WPC+WBY

+ ψ /* ψ > 0 is an arbitrarily small constant.

*/;
endsw
caseR±

pA ← 1− WPC+WBY−WCT

(WPC+WBY)(P
(n−1)
pµ+pρ

(bn/2c,n−1)+P
(n−1)
pµ+pρ

(dn/2e,n−1))
;

endsw
end

end

if UM (pA, q) < UM (1− ε, pµ + pρ) then pA ← 1− ε;

11

4.1 Free Rationals

We study in this section the various cases where the behavior of rational workers does not need to be
enforced. As mentioned before the main goal is to carry out the computation obtaining the correct output
with probability at least 1− ε. Provided that this goal is achieved, it is desirable to maximize the utility
of the master. Hence if, for a given instance of the problem, the expected utility of the master utilizing
the mechanism described below is smaller than the utility of setting pA = 1 − ε, the latter is used,
because this value trivially guarantees the desired probability of error while yielding better utility.

Lemma 2. In order to guarantee Pwrong ≤ ε, it is enough to set pA = 1− ε.

First, we consider pesimistic worker-type distributions, i.e., distributions where pµ is so large that
the probability of having a majority of bad answers is above the desired upper bound, more precisely,
when P

(n)
pµ (dn/2e, n) > ε. Thus, even if all rationals choose to be honest, the probability of error is too

large. Hence, in order to lower Pwrong, the master has to audit with a probability big enough, perhaps
bigger than the minimum needed to ensure that all rationals are honest. Rational workers still might use
some pC < 1 corresponding to some NE. However, as argued later in Theorem 7, the only unique NE
that can be obtained in this game is pC = 0 and, if the parameters of the game are such that there is some
NE such that pC > 0 there is also another NE in pC = 1. Therefore, to give error-probability guarantees
it has to be assumed that all rational workers cheat. Thus, in this case pA is set from Equation 1 to
1− ε/P(n)

pµ+pρ(dn/2e, n).

Lemma 3. In order to guarantee Pwrong ≤ ε, it is enough to set pA = 1− ε/P(n)
pµ+pρ(dn/2e, n).

Now, we consider cases where no audit is needed to achieve the desired bound on the probability of
error. The first case occurs when the type-distribution is such that, even if all rational workers cheat, the
probability of having a majority of bad answers is at most ε. More precisely, if P(n)

pµ+pρ(dn/2e, n) ≤ ε,
then pA is set to 0. A second case happens when the particular instance of the parameters of the game
force a unique NE such that rationals do not cheat even if they know that the result will not be audited.
More precisely, if P(n)

pµ (dn/2e, n) ≤ ε and there is a unique NE in pC = 0 if pA = 0, then pA can
be set to 0. To decide under which parameter conditions this case occurs, we observe the following.
Replacing in Eq. 3 the value pA = 0 and the payoffs for each reward model (Table 4), it can be shown
that ∆U(pC , pA = 0) is increasing in the interval pC ∈ [0, 1] for theRm andR± models, and a positive
constant for the Ra and R∅ models. Thus, if ∆U(pC = 1, pA = 0) ≤ 0 and one of the Rm and R±
models are used, the rate of growth of ∆U implies a single pure NE at pC = 0. In this case, no rational
worker cheats and if P(n)

pµ (dn/2e, n) ≤ ε then pA is set to 0.

Lemma 4. In order to guarantee Pwrong ≤ ε, if P(n)
pµ+pρ(dn/2e, n) ≤ ε, or if P(n)

pµ (dn/2e, n) ≤ ε and
there is a unique NE in pC = 0 when pA = 0, it is enough to set pA = 0.

4.2 Guided Rationals

We study in this section worker-type distributions such that the master can take advantage of a specific
NE to achieve the desired bound on the probability of error. Given that the scenario where all players
cheat was considered in Section 4.1, in this section it is enough to study Equation 3 for each reward
model conditioning ∆U(pC = 1) ≤ 0 to obtain appropriate values for pA. As proved in the following
lemma, the specific value pA assigned depends on the reward model and it is set so that, simultaneously, a
unique pure NE is forced at pC = 0 (rendering the rationals truthful) and the error bound is achieved. The
reason for uniqueness is to force all workers to the same strategy; this is similar to strong implementation
in Mechanism Design, cf., [6]. (Multiple equilibria could be considered that could perhaps favor the
utility of the master. However, in this work, correctness is the priority which, as shown later, our
mechanisms guarantee.)

12

Lemma 5. In order to guarantee Pwrong ≤ ε, if P(n)
pµ+pρ(dn/2e, n) > ε and P

(n)
pµ (dn/2e, n) ≤ ε, it is

enough to set pA as follows.
ForRm,

pA = 1− (WPC + WBY −WCT)/

(WPC + WBY

(P
(n−1)
pµ+pρ (bn/2c, n− 1) + P

(n−1)
pµ+pρ (dn/2e, n− 1)))

ForRa andR∅,

pA >
WCT

WPC + WBY

ForR±,

pA = 1− (WPC + WBY −WCT)/

((WPC + WBY)

(P
(n−1)
pµ+pρ (bn/2c, n− 1) + P

(n−1)
pµ+pρ (dn/2e, n− 1)))

Proof. It was shown in Lemma 1 that, for any of the reward models, ∆U(pC) is an increasing function
in the interval pC ∈ [0, 1]. Then, in order to enforce a unique NE, it is enough to condition ∆U(pC =
1) ≤ 0 while minimizing the cost of verification. Thus, replacing the payoffs from Table 4 making
Equation 3 ∆U(pC = 1) ≤ 0 for each model the claimed values of pA are obtained.

4.3 Correctness

The following theorem summarizes the previous analyses and proves the correctness of the mechanism
designed. Its proof is the simple aggegation of the results presented.

Theorem 6. The game obtained by combining the parameters of the system with the values of pA
obtained in Sections 4.1 and 4.2 satisfy that Pwrong ≤ ε.

4.4 Optimality

In this section we show that only two approaches are feasible to bound the probability of accepting an
incorrect value. In this respect, the strategy enforced by the mechanism designed is optimal.

Theorem 7. In order to achieve Pwrong ≤ ε, the only feasible approaches are either to enforce a NE
where pC = 0 or to use a pA such that (1− pA)P

(n)
pµ+pρ(dn/2e, n) ≤ ε.

Proof. It can be shown as in Lemma 5 that ∆U is increasing for all q, so ∆U(pC < 1) ≤ ∆U(pC = 1).
Then, the only NE that can be made unique corresponds to pC = 0 (recall the NE conditions). Consider
any other NE where pC > 0 which is not unique. Then pC = 1 is one of these NE. In face of more than
one equilibrium to choose from, different players might choose different pC’s. Thus, for the purpose of
a worst case analysis with respect to the probability of error, it has to be assumed that all players cheat.
But then pA has to be chosen so that (1− pA)P

(n)
pµ+pρ(dn/2e, n) ≤ ε.

13

4.5 Computational Issues

In previous sections, a mechanism for the master to choose appropriate values of pA for different sce-
narios was designed. A natural question is what is the computational cost of using such mechanism.
In addition to simple arithmetical calculations, there are two kinds of relevant computations required:
binomial probabilities and verification of conditions for Nash equilibria. Both computations are n-th
degree polynomial evaluations and can be carried out using any of the well-known numerical tools [26]
with polynomial asymptotic cost. These numerical methods yield only approximations, but all these
calculations are performed either to decide in which case the parameters fit in, or to assign a value to
pA, or to compare utilities. Given that these evaluations and assignments were obtained in the design
as inequalities or restricted only to lower bounds, it is enough to choose the appropriate side of the
approximation in each case.

Regarding the computational resources that rational workers require to carry out these calculations,
notice that the choice of pA in the mechanism either yields a unique NE in pC = 0 or does not take
advantage of the behavior of rational workers. Furthermore, pC = 1 was assumed as a worst case.
Notice from Table 4 and Equation 3 that setting WPC = WBY = 0 for the later cases we have a
dominant strategy in pC = 1. (Recall that WBY and WPC can be chosen by the master.) Thus, the
mechanism is enriched so that rational workers are enforced to use always a unique NE, either pC = 0 or
pC = 1. Then, in order to make the computation feasible to the workers, the master sends together with
the task a “certificate” proving such equilibrium. Such a certificate is the value of pA and the payoff
values, which is enough to verify uniqueness (recall the analysis in Section 4).

5 Putting the Mechanism into Action

In this section two realistic scenarios in which the master-worker model considered could be naturally
applicable are proposed. For these scenarios, we determine how to choose pA and n in the case where
the behavior of rational workers is enforced, i.e., under the conditions of Lemma 5.

5.1 SETI-like Scenario

The first scenario considered is a volunteering computing system such as SETI@home, where users
accept to donate part of their processors idle time to collaborate in the computation of large tasks. In
this case, we assume that workers incur in no cost to perform the task, but they obtain a benefit by being
recognized as having performed it (possibly in the form of prestige, e.g., by being included on SETI’s
top contributors list). Hence, we assume that WBY > WCT = 0. The master incurs in a (possibly
small) cost MCY when rewarding a worker (e.g., by advertising its participation in the project). As
assumed in the general model, in this model the master may audit the values returned by the workers,
at a cost MCA > 0. We also assume that the master obtains a benefit MBR > MCY if it accepts the
correct result of the task, and suffers a cost MPW > MCA if it accepts an incorrect value.

Plugging WCT = 0 in the lower bounds of Lemma 5 it can be seen that, for this scenario and
conditions, in order to achieve the desired bound on Pwrong, it is enough to set pA to 0 for the Rm and
R± models and arbitrarily close to 0 for the Ra and R∅ models. So, we want to choose δ ≤ pA ≤
1, δ → 0, so that the utility of the master is maximized. However, using calculus, it can be seen that UM
is monotonic in such range. Nevertheless, the growth of such function depends on the specific instance
of the master-payoff parameters. Thus, it is enough to choose one of the extreme values of pA. I.e.,

UM ≈ max{MBR −MCA − n(1− pµ)MCY ,

MBRP
(n)
pµ (0, bn/2c)−MPWP(n)

pµ (dn/2e, n) + γ} (4)

Where,

14

γ =

−MCY(E
(n)
1−pµ(dn/2e, n) + E

(n)
pµ (dn/2e, n))

for theRm andR± models.
−nMCY

for theRa model.
0

for theR∅ model.

The approximation given in Equation 4 provides a mechanism to choose pA and n so that UM is maxi-
mized for Pwrong ≤ ε for any given worker-type distribution, reward model, and set of payoff parameters
in the SETI scenario. For example, given that E(n)

1−pµ(dn/2e, n) + E
(n)
pµ (dn/2e, n) ≥ n(1− pµ), if Rm

or R± is used and MPWP
(n)
pµ (dn/2e, n) > MCA for some n, the best choice is pA = 1. On the other

hand, if R∅ is used, pµ < 1/2, and MBR + MPW ≤ 2MCA + nMCY , pA = 0 is the best choice.
Hence, if the master were to choose the reward model, it is clear that in the above case it would choose
R∅. Similar examples can be given for each combination.

5.2 Contractor Scenario

The second scenario considered is a company that buys computational power from Internet users and
sells it to computation-hungry costumers, such as Amazon’s mechanical turk [4]. In this case the com-
pany pays the users an amount S = WBY = MCY for using their computing capabilities, and charges
the consumers another amount MBR > MCY for the provided service. Since the users are not volun-
teers in this scenario, we assume that computing a task is not free for them (i.e., WCT > 0), and that
rational workers must have incentives to participate (i.e., U > 0). As in the previous case, we assume
that the master verifies and has a cost for accepting a wrong value, such that MPW > MCA > 0.

As mentioned before, using calculus it can be seen that UM is monotonic on pA but the growth
depends on the specific instance of master-payoff parameters. Thus, the maximum expected utility can
be obtained for one of the extreme values. Naturally, pA = 1 is the upper bound. For the lower bound,
pA must be appropriately bounded so that the utility of rational workers is positive and Pwrong ≤ ε. For
example, for theR∅ model, using Lemma 5 and conditioning U > 0, we get,

UM ≈ max

{
MBR −MCA − n(1− pµ)S,

WCT
S

(
MBR −MCA − n(1− pµ)S

)
+

(
1− WCT

S

)
(
MBRP

(n)
pµ (0, bn/2c)−MPWP(n)

pµ (dn/2e, n)
)}

(5)

As in the previous section, the approximation given in Equation 5, and similar equations for the
other reward models which are omitted for clarity, provide a mechanism to choose pA and n so that UM
is maximized for Pwrong ≤ ε for any given worker-type distribution, reward model, and set of payoff
parameters in the contractor scenario. Specific examples can be given for each combination of these
parameters either if they are fixed exogenously or by the master.

5.3 Graphical Characterization of Master’s Utility

In this section, in order to provide a better insight of our work, we provide a graphical characterization of
the master’s utility. Specifically we present and analyze scenarios for our mechanism on the two realistic
settings considered before. We consider MCA = 1 as our normalizing parameter and MPW = 100

15

(a) (b) (c)

Figure 1: Plots of the SETI-like scenario. The upper plane corresponds to MBR = 4 the lower plane to
MBR = 1 and the red flat plane to UM = 0. (a) Fix n = 5. (b) Fix n = 15. (c) Fix n = 75.

a realistic large enough value, using other values for this parameter will not change qualitatively the
results. Recall that, by plotting on the parameters, the best strategy of the master is pA = 0 or pA = 1.
We choose pµ ∈ [0, 0.5] as we believe this is a reasonable interval. As it can be seen from the empirical
evaluations of SETI-like systems reported in [1] and [11], pµ is less than 0.1. So we took a larger range
pµ to examine its general impact on the utility of the master. We choose [0, 0.1] as the range of MCY , to
reflect the small cost incurred by the master for maintaining a workers contribution list.

We consider three plots for the SETI-like scenario applying the R∅ model were we vary pµ and
MCY as discussed above: (a) We fix n=5 and compute the utility of the master for MBR = {1, 4}, the
results are depicted in Figure 1(a). (b) We fix n=15 and compute utility of the master for MBR = {1, 4},
the results are shown in Figure 1(b). (c) We fix n=75 for both values of MBR mentioned earlier and in
Figure 1(c) are the corresponding results. All plots include a reference surface plane UM = 0.

In all plots we can notice a threshold where the behavior of the utility changes. The threshold depicts
the transition point in which the master changes its strategy from non auditing to auditing. For all three
plots in Figure 1, we generally observe small values of the utility of the master when the master audits
and much higher when it does not. Remember that we apply theR∅ model when the master follows a non
auditing strategy; thus the master rewards the honest workers only when it audits and this decreases its
own utility proportionally to the value of payment to the workers MCY . Another interesting observation
about the plots in Figure 1, is the sharp declining curve before the threshold where the master follows a
non auditing strategy; this curve is due to the fact that the probability of the master getting an incorrect
reply increases with pµ increasing and the utility of the master decreases when it accepts an incorrect
reply. Notice that this declining curve is much sharper in Figure 1(c), since the probability of the master
getting an incorrect reply decreases as the number of workers increases.

We can observe that a significant difference between the plots of Figure 1 is the threshold value
where the master changes its strategy to auditing; the larger the number of workers the bigger the value
of the transition point pµ. This behavior is due to the fact that when auditing is applied the master has to
reward the honest workers, thus the larger the number of workers the larger the number of honest ones
and the total payment by the master. So the master together with the fact that the larger the number of
workers the higher the probability of getting the correct reply audits for higher values of pµ when the
number of workers is large.

In Figure 1 we also notice that the UM increases slightly as pµ increase after the threshold value
where the master audits; all though not expected this indicates the fact that since the master follows an
auditing strategy and thus always gets the correct reply it is in the master’s best interest to reward as few
workers as possible. A natural and expected observation in Figure 1, is that the higher the value of MBR
the higher the utility of the master without this affecting the shape of the plot.

In the SETI-like setting we only considered the case of R∅ model because is the simplest one. For
the other reward models the plots will have the same behavior, but before the threshold point (the master

16

(a) (b) (c)

Figure 2: Contractor Scenario plots for fixed WCT .The upper plane corresponds to MBR = 4 the lower
plane to MBR = 1 and the red flat plane to UM = 0. (a) Fix n = 7. (b) Fix n = 15. (c) Fix n = 35.

(a) (b) (c)

Figure 3: Contractor Scenario plots for fixed S.The upper plane corresponds to MBR = 4 the lower
plane to MBR = 1 and the red flat plane to UM = 0. (a) Fix n = 7. (b) Fix n = 15. (c) Fix n = 75.

does not audits) the utility of the master will also depend on MCY .
For the Contractor setting we consider again in Figure 2 plots for the R∅ model and since WCT is

now a non-zero value we fix this value to WCT = 0.01, this we believe is a reasonable assignment.
In Figure 2, we depict the utility of the master were we vary pµ ∈ [0, 0.5] and S ∈ [WCT , 1]. As for
the SETI-like setting we give three different plots in Figure 2, (a) fix n=7 in Figure 2(a), (b) fix n=15 in
Figure 2(b) and (c) fix n=35 in Figure 2(c). Again for each of these plots we have two planes one for
each value of MBR = {1, 4} and a reference surface plane UM = 0.

The plots in Figure 2 have the same general behavior as the ones in the SETI-like setting respectively
for similar reasons to those explained above.

In Figure 3 a second set of plots for the Contractor setting depicts the utility of the master for the R∅
and for a fix value of S = 0.8 were we vary pµ ∈ [0, 0.5] and WCT ∈ [0, S]. In Figure 2(a) we fix n=7,
in Figure 2(b) we fix n=15 and in Figure 2(c) we fix n=75. For each of these plots we have two planes
one for each value of MBR = {1, 4} and a reference surface plane UM = 0.

In Figure 3 we observe as in the previous figures that a threshold point exists where the master
changes its strategy from auditing with some probability, that guaranties the utility of the rational work-
ers is positive, to auditing. We generally observe that (not surprisingly) for values of pµ and MCY close
to zero we get the highest utility.

For all plot in Figure 3 we can notice that when the master audits with some probability as WCT
increases the utility of the master decreases for every pµ; this is due to the increment of the auditing
probability pA as WCT increases, since the cost of auditing and accepting a workers answer has a
decreasing impact on the utility of the master.

Another observation made in Figure 3 when the master audits with some probability is that as pµ
increases the utility of the master slightly increases and then decreases for every value of WCT (except
when close to WCT = 0 and WCT = S). When pµ is increasing the number of truthful workers

17

decreases thus the master has to reward less honest workers and so its utility increase; remember that the
master will audit the answers with some probability. But on the other hand when the value of pµ increase
even more the probability of having a majority of incorrect answers is very large; so it is possible since
the master audits with some probability to get an incorrect result and thus its utility decreases.

Naturally when the master audits for every value of WCT as pµ increases, so does the utility of the
master; this is a consequence of the increase in pµ that implies a lower probability of honest workers and
thus the master has to reward less workers having a positive impact on its own utility. As in the SETI-
like setting having larger MBR does not affect the shape of the plots and it only increases uniformly
the utility of the master. Again for similar reasons as in the SETI-like setting the threshold value pµ
increases for larger number of workers. Finally we could conclude for the plots in Figure 3 that having a
large number of workers decrease the utility of the master since the reward to the workers will be higher
and so it will affect the utility of the master.

Concluding we see that by having the distribution on the type of worker; for a given pµ the master
is able to determine if it will audit, not audit or audit with some known probability. Also the master can
maximize its utility by choosing the correct value for MCY . For all the scenarios considered above if
the value of pµ is beyond the threshold value i.e. the master follows an auditing strategy, MCY should
be set as close to zero as possible for the master to maximize its utility.

6 Discussion

In this paper we have combined a classical distributed computing approach (voting) with a game-
theoretic one (cost-based incentives and payoffs) that lead to an algorithm that enables a master to
reliably obtain a task result despite the co-existence of malicious, altruistic and rational workers. To the
best of our knowledge, this is the first work to consider such Internet-based master-worker computations
under these assumptions.

Several future directions emanate from this work. For example, in this work we have considered a
cost-free, weak version of worker collusion (all rational cheaters and malicious workers return the same
incorrect task result). It would be interesting to study more involved collusions, as the ones studied
in [2] or [8]. Another interesting extension of our work would be to consider the case in which the
network is unreliable, and hence the replies of some workers might not reach the master. This should
greatly affect the decision policy and the reward scheme of the master. Finally, in this work, we have
considered a single-task one-shot protocol, in which the master decides which task result to accept in
one round of message exchange with the workers. It would be interesting to consider several task waves
over multiple rounds, that is, view the computation as an Evolutionary Game [25,46]. The master could
use the knowledge gained in the previous rounds to increase its utility and decrease its probability of
error in future rounds. Issues such as worker aspiration level [7] could be taken into account.

Acknowledgments. We thank Luis López Fernández and Marios Mavronicolas for helpful discus-
sions.

References

[1] T. Estrada, M. Taufer and D. P. Anderson. Performance Prediction and Analysis of BOINC Projects:
An Empirical Study with EmBOINC. In J Grid Computing, Springer, 2009.

[2] I. Abraham, D. Dolev, R. Goden, and J.Y. Halpern. Distributed computing meets game theory:
Robust mechanisms for rational secret sharing and multiparty computation. In proc. of PODC 2006,
pp. 53–62, 2006.

18

[3] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J. Martin, and C. Porth. BAR fault tolerance for
cooperative services. In proc. of SOSP 2005, pp. 45–58, 2005.

[4] Amazon’s Mechanical Turk, https://www.mturk.com.

[5] D. Anderson. BOINC: A system for public-resource computing and storage. In proc. of GRID 2004,
pp. 4–10, 2004.

[6] M. Babaioff, M. Feldman, and N. Nisan. Mixed Strategies in Combinatorial Agency. In proc. of
WINE 2006, pp. 353–364, 2006.

[7] J. Bendor, D. Mookherjee and D. Ray. Aspiration-based reinforcement learning in repeated interac-
tion games: An overview. International Game Theory Review, Vol. 3 2001, pp. 159174.

[8] J. R. Douceur. The Sybil attack. In proc. of IPTPS 2002, pp. 251–260, 2002.

[9] S. Chien and A. Sinclair. Convergence to approximate Nash equilibria in congestion games. In proc.
of SODA 2007, pp. 169–178, 2007.

[10] G. Christodoulou and E. Koutsoupias. Mechanism design for scheduling. Bulletin of the EATCS,
97:39–59, 2009.

[11] “Einstein@home”, http://einstein.phys.uwm.edu.

[12] “Enabling Grids for E-sciencE”, http://www.eu-egee.org.

[13] K. Eliaz. Fault tolerant implementation. Review of Economic Studies, 69:589–610, 2002.

[14] W. Feller. An Introduction to Probability Theory and Its Applications. John Wiley & Sons, 3rd
edition, 1968.

[15] A. Fernández, Ch. Georgiou, L. Lopez, and A. Santos. Reliably executing tasks in the presence of
untrusted processors. In proc. of SRDS 2006, pp. 39–50, 2006.

[16] A. Fernández Anta, Ch. Georgiou, and M. A. Mosteiro. Designing mechanisms for reliable
Internet-based computing. In proc. of NCA 2008, pp. 315–324, 2008.

[17] I.T. Foster and A. Iamnitchi. On death, taxes, and the convergence of P2P and grid computing. In
proc. of IPTPS 2003, pp. 118–128, 2003.

[18] D. Fotakis. Memoryless facility location in one pass. In proc. of STACS 2006, pp. 608–620, 2006.

[19] M. Gairing. Malicious Bayesian congestion games. In proc. of WAOA 2008, pp. 119–132, 2008.

[20] P. Golle and I. Mironov. Uncheatable distributed computations. In proc. of CT-RSA 2001, pp.
425–440, 2001.

[21] M. Halldorsson, J.Y. Halpern, L. Li, and V. Mirrokni. On spectrum sharing games. In proc. of
PODC 2004, pp. 107—114, 2004.

[22] J.Y. Halpern. Computer science and game theory: A brief survey. Palgrave Dictionary of Eco-
nomics, 2007.

[23] J.Y. Halpern and V. Teague. Rational secret sharing and multiparty computation. In proc. of STOC
2004, pp. 623–632, 2004.

[24] J. C. Harsanyi. Games with incomplete information played by Bayesian players, I, II, III. Man-
agement Science, 14:159182, 320332, 468502, 1967.

19

[25] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics. Cambridge Univer-
sity Press, 1998.

[26] W. G. Horner. A new method of solving numerical equations of all orders by continuous approxi-
mation. Philos. Trans. Roy. Soc. London 109:308–335, 1819.

[27] D. Kondo, F. Araujo, P. Malecot, P. Domingues, L. Silva, G. Fedak, and F. Cappello. Characterizing
result errors in Internet desktop grids. In proc. of Euro-Par 2007, pp. 361–371.

[28] K.M. Konwar, S. Rajasekaran, and A.A. Shvartsman. Robust network supercomputing with mali-
cious processes. In proc. of DISC 2006, pp. 474–488, 2006.

[29] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky. SETI@home: Massively
distributed computing for SETI. Computing in Science and Engineering, 3(1):78–83, 2001.

[30] E. Koutsoupias and Ch. Papadimitriou. Worst-case equilibria. In proc. of STACS 1999, pp. 404–
413, 1999.

[31] H. C. Li, A. Clement, M. Marchetti, M. Kapritsos, L. Robison, L. Alvisi, and M. Dahlin. Flight-
Path: Obedience vs Choice in Cooperative Services. In proc. of USENIX OSDI 2008, pp. 355–368,
2008.

[32] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi, and M. Dahlin. BAR gossip. In
proc. of OSDI 2006, pp. 191–204, 2006.

[33] G. Mailath and L. Samuelson. Repeated Games and Reputations: Long-run Relationships, Oxford
University Press, 2006.

[34] M. Mavronicolas and P. Spirakis. The price of selfish routing. Algorithmica, 48(1):91–126, 2007.

[35] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and Proba-
bilistic Analysis. Cambridge University Press, 2005.

[36] T. Moscibroda, S. Schmid, and R. Wattenhofer. When selfish meets evil: byzantine players in a
virus inoculation game. In proc. of PODC 2006, pp. 35–44, 2006.

[37] J.F. Nash. Equilibrium points in n-person games. National Academy of Sciences, 36(1):48–49,
1950.

[38] N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic Behavior, 35:166–
196, 2001.

[39] N. Nisan, T. Roughgarden, E. Tardos, and V.V. Vazirani, editors. Algorithmic Game Theory. Cam-
bridge University Press, 2007.

[40] M. J. Osborne. An Introduction to Game Theory. Oxford University Press, 2003.

[41] T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of ACM, 49(2):236–259, 2002.

[42] R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. International Journal
of Game Theory, 2:65-67, 1973.

[43] L. Sarmenta. Sabotage-tolerance mechanisms for volunteer computing systems. Future Generation
Computer Systems, 18(4):561–572, 2002.

[44] J. Shneidman and D.C. Parkes. Rationality and self-interest in P2P networks. In proc. of IPTPS
2003, pp. 139–148, 2003.

20

[45] Tables of Probability Functions, Volume = 2, National Bureau of Standards, 1942.

[46] J.W. Weibull, Evolutionary Game Theory. , MIT Press, Cambridge (1995).

[47] M. Yurkewych, B.N. Levine, and A.L. Rosenberg. On the cost-ineffectiveness of redundancy in
commercial P2P computing. In proc. of CCS 2005, pp. 280–288, 2005.

21

