

KYNPIAKH AHMOKPATI

Part II

Evgenia Christoforou

Dept. of Computer Science University of Cyprus

October 30th, 2012

Nicosia, Cyprus

This work is supported by the Cyprus Research Promotion Foundation grant TΠE/ΠΛΗΡΟ/0609(BE)/05

MOTIVATION AND PRELIMINARIES

Outline

- Motivation and preliminaries
- Framework and contributions
- Evolutionary mechanism
 - Rational workers
 - Malicious workers
 - Communication failures

Conclusions

30 Oct., 2012

Evgenia Christoforou ©

2

Prior Work

• Rational workers: act upon their best interest, i.e., choose the strategy that maximizes their own benefit

[Shneidman Parkers 03]

- In Internet-based master-worker task computation
 - Honest: compute and report correct result
 - Cheat: fabricate and return a bogus result
- Mechanisms with reward/punish schemes that provide incentives to workers to be honest
 - One shot: in each round a task is performed and no knowledge is forwarded to the next round

[Yurkewych et al 2005, Fernandez et al 2008]

Can the repeated interaction between the master and the workers be exploited effectively?

Our Approach

- We introduce the concept of *evolutionary dynamics* under the biological and social perspective and relate them to Internet-based master-worker task computing
- Employ reinforcement learning both on Master and Workers

[Camerer 03.Szepesvari 10]

• Objective: Develop a reliable computation platform where the master obtains the correct task results

30 Oct.,	2012
----------	------

Evgenia Christoforou ©

Background: Evolutionary Stable Strategy

Evolutionary Game Theory

In biological terms: the application of game theory to evolving populations of life forms

Our aim: Evolutionary Stable Strategy

A strategy is called evolutionary stable if, when the whole population is using this strategy, any group of invaders (mutants) using a different strategy will eventually die over multiple generations (evolutionary rounds).

7

5

Background: Evolutionary Dynamics

- Evolutionary dynamics applied first in biology
 - □ Tool to study the mathematical principles according to which life is evolving
 - □ Inspiration for many fields: sociology, economics, artificial intelligence (multi-agent systems) etc.

 Inspired by dynamics of evolution as a mean to model workers adaptation to a truthful behavior

30 Oct., 2012

Evgenia Christoforou ©

Background: Reinforcement Learning

Mackg	round: Notion of Aspirat	ion	
 Bush and based 	Mosteller's model, <mark>aspir</mark>	ation	
player's adapt by comparing their experience with an aspiration level [Bush Mosteller 55]			FRAMEWORK AND CONTRIBUTIONS
an aspira	ation a_i for player <i>i</i>		
➤ the minimizer between the minimizer between the	nimum benefit it expects to obt ion	ain in an	
30 Oct., 2012	Evgenia Christoforou ©	9	
	Contributions (i)		Contributions (ii)
Initiate the stu	dy of the evolutionary dyna	amics of	 Show necessary and sufficient conditions under which the mechanism ensures eventual correctness (EC)

- Convergence time: The number of rounds to achieve eventual correctness
 - We show, both in expectation and with high probability, that our mechanism reaches convergence time quickly
 - Complement our analysis with simulations
- Add reputation to deal with malicious workers
- Choose the n out of N most reputable workers

Internet-based master-worker computations

• Develop and analyze a mechanism based on

reinforcement learning to be used by the

through reinforcement learning :

master and the workers

11

Framework

EVOLUTIONARY MECHANISM [RATIONAL WORKERS]

WP _C	Worker's punishment for being caught cheating
WC_T	Worker's cost for computing a task
WB_y	Worker's benefit from master's acceptance

30 Oct., 2012

Evgenia Christoforou ©

14

Master's Protocol

Set initial p_A (e.g., 0.5)

Repeat

Send a task to all *n* workers

Upon receiving all answers do

Audit the answers with probability p_A

If the answers were not audited then

Accept the value returned by the majority

Else

Give appropriate payoff Π_i to each worker *i*

 α_m : learning rate (tunes the extent of change)

 $\tau: \underset{_{30\,Oct.,\,2012}}{\text{tolerance}} \text{ (tolerable fraction of cheaters, e.g., 0.5)}_{_{Evgenia} \text{ Christoforou } @}$

Protocol for Worker i

Set initial p_{C_i} (e.g., 0.5)

Repeat

Receive a task from the master

Set $S_i = -1$ *with* probability p_{C_i} , $S_i = 1$ otherwise **If** $S_i = 1$ then **compute** the task and **send** the result

Else send an arbitrary result

Get payoff Π_i

$$p_{C_i} \leftarrow p_{C_i} - \alpha_w \cdot (\Pi_i - a_i) \cdot S_i$$

a : learning rate (tunes the extent of change) 30 Oct., 2012 Evgenia Christoforou ©

17

Master-Worker System as Markov Chain

Conditions for Eventual Correctness

• We analyze the evolution of the master-worker system as a *Markov chain* and we show:

For the system to achieve eventual correctness, it is necessary and sufficient to set

 $WB_y \ge a_i + WC_T, \ \forall i \in \mathbb{Z}, \ |\mathbb{Z}| > n/2$

Given that $p_{\mathcal{A}} > 0$

Terminology

- Covered worker is one that receives at least its aspiration a_i and the computing WC_T cost
- In any given round r, honest worker is one for which $p_C^{r-1} = 0$
- Honest state is one where the majority of workers are honest
- Honest set is any set of honest states
- Opposite cases: uncovered worker, cheater worker, cheat state, and cheat set respectively
- Let a set of states *S* be called **closed** if, once the chain is in any state $s \in S$, it will not move to any state $s' \notin S$ ^{30 Oct., 2012}
 Evgenia Christoforou ©

- To show eventual correctness, we must show eventual convergence to a closed honest set
- We need to show
 - that there exists at least one such closed honest set
 - □ that all closed sets are honest
 - that one honest closed set is reachable from any initial state

```
30 Oct., 2012
```

21

23

Evgenia Christoforou ©

22

Eventual Correctness Proof Roadmap

Lemma 1. Consider any set of workers $Z \subseteq W$ such that $\forall i \in Z : WB_{\mathcal{Y}} \geq a_i$. If |Z| > n/2, then the set of states

```
S = \{(p_{\mathcal{A}}, p_{C1}, \dots, p_{Cn}) | (p_{\mathcal{A}} = 0) \land (\forall w \in Z : p_{Cw} = 1)\},\
```

is a closed cheat set.

Lemma 1: Motivates the necessity of $p_A > 0$

Lemma 2. If there exists a set of workers $Z \subseteq W$ such that |Z| > n/2 and $\forall i \in Z$: $WB_{\mathcal{Y}} < a_i + WC_{\mathcal{T}}$ and $\forall i \in W : \alpha(a_i + WP_{\mathcal{C}}) < 1$, then no honest set is closed.

Lemma 2: Motivates the necessity of a covered majority

Lemma 3. Consider any set of workers $Z \subseteq W$ such that $\forall i \in Z : WB_{\mathcal{Y}} \geq a_i + WC_{\mathcal{T}}$ and $\forall j \notin Z : WB_{\mathcal{Y}} < a_j + WC_{\mathcal{T}}$. If |Z| > n/2, then the set of states

$$S = \{ (p_{\mathcal{A}}, p_{C1}, \dots, p_{Cn}) | \forall w \in Z : p_{Cw} = 0 \},\$$

is a closed set.

Lemma 3: Proves that there exists at least one honest closed set Evgenia Christoforou ©

Eventual Correctness Proof Roadmap

Lemma 4. Consider any set of workers $Z \subseteq W$ such that $\forall i \in Z : WB_{\mathcal{Y}} \geq a_i + WC_{\mathcal{T}}$ and $\forall j \notin Z : WB_{\mathcal{Y}} < a_j + WC_{\mathcal{T}}$. Then, for any set of states

 $S = \{ (p_{\mathcal{A}}, p_{C1}, \dots, p_{Cn}) | \exists Y \subseteq W : (|Y| > n/2) \land (\forall w \in Y : p_{Cw} = 0) \land (Z \not\subseteq Y) \},\$

S is not a closed set.

Lemma 5. Consider any set of workers $Z \subseteq W$ such that $\forall i \in Z : WB_{\mathcal{Y}} \geq a_i + WC_{\mathcal{T}}$ and $\forall j \notin Z : WB_{\mathcal{Y}} < a_j + WC_{\mathcal{T}}$. If |Z| > n/2 and $p_{\mathcal{A}} > 0$, then for any set of states

 $S = \{ (p_{\mathcal{A}}, p_{C1}, \dots, p_{Cn}) | \exists Y \subseteq W : (|Y| > n/2) \land (\forall w \in Y : p_{Cw} > 0) \},\$

S is not a closed set.

Eventual Correctness Proof Roadmap

Theorem 1. If $p_{\mathcal{A}} > 0$ and for all $i \in W : \alpha(a_i + WP_{\mathcal{C}}) < 1$ then, in order to guarantee with positive probability that, after some finite number of rounds, the system achieves eventual correctness, it is **necessary** and **sufficient** to set $WB_{\mathcal{Y}} \ge a_i + WC_{\mathcal{T}}$ for all $i \in Z' \subseteq Z$ such that $|Z'| = \lfloor n/2 \rfloor + 1$.

Examples of Convergence

• Under certain conditions, the expected convergence time is

$$\left(\alpha_w \cdot (WB_y - WC_T - \max_i \{a_i\}) \cdot \varepsilon\right)^{-1}$$

where

$$\varepsilon \in (0, 1 - (WC_T + \max_i \{a_i\})/WB_y).$$

Simulations

Simulations

Cheating probability for the workers as a function of evolutionary rounds

EVOLUTIONARY MECHANISM [MALICIOUS WORKERS]

Workers with Predefined Behavior

Reputation

- Master maintains a reputation for each worker
- Workers are ignorant towards the reputation scheme
- Update when master audits
- O Calculated based on:
 - number of audits up to round r: audit(r)
 - □ number of times worker *i* was honest when master audited up to round *r*: $correct_audit_i(r)$
- Reputation types:

Type 1: $\rho_i = \frac{correct_audit_i(r) + 1}{audit(r) + 2}$ [based on Sonnek et al. 2007]

□ Type 2:
$$\rho_i = \varepsilon^{audit(r) - correct_audit_i(r)}$$

where $\varepsilon \in (0, 1)$

35

<u>Å</u>

Background: Reputation

- Accumulated information about an entity
- Induce learning by signaling the true abilities of involved entities
- Computer science:
 - On-line community exchange, eBay
 - > Buyers, sellers: positive, negative and neutral rating
 - □ P2P systems
 - >bitTorrent: increase reputation by uploading => increase download speed (tit for tat)

34

- ≻Gnutella (who to download from?)
- A reputation system can be:

Centralized	[Sonnek et al. 2007]	
Decentralized	[Damiani et al. 2002]	
30 Oct., 2012	Evgenia Christoforou ©	

Master's Protocol

Simulations

- Choose parameters likely to be encountered:
 - □ 9 workers (e.g. SETI@home 3 workers)
 - \square initial $p_{C_i} = \{0.5, 1\}$
 - \square initial $p_A = 0.5$
 - \Box τ = 0.5 (master does not tolerate a majority of cheaters)
 - \Box aspiration $a_i = 0.1$ for each worker

$$\square \ \alpha = \alpha_m = \alpha_w \ \alpha = 0.1$$

 \square WB_V = 1 set as our normalizing $\Box WC_{\tau} = 0.1$

$$\square WP_{\mathcal{C}} = 0$$

30 Oct., 2012

Evgenia Christoforou ©

37

Simulations **Only Rational Workers**

Auditing probability of the master as a function of time

Simulations Malicious and Altruistic Workers

EVOLUTIONARY MECHANISM [n CHOOSE N]

Choosing from a Pool

- There is a pool of N workers available to the master
- In each round the master selects *n* out of these workers, the most reputable ones
- In a round
 - □ If the master audits
 - >updates the reputation of the workers
 - > updates the set of the n most reputable workers to be used in the next round
 - Otherwise, it uses the same set of workers for the next round
- In our simulations: Take 5 most reputable workers out of 9

A Contraction of the second second

Simulations

Dealing with communication uncertainty

- Reputation is based both on auditing and responsiveness
- Master's protocol outline:
 - □ Send task to the *n* most reputable workers

□ Wait for time T:

- For workers that do not reply reduce their reputation (using reputation type)
- Then proceed as usual on the workers that have replied

30 Oct., 2012	Evgenia Christoforou ©

Summary

Initiate the study of the *evolutionary dynamics* of Internet-based master-worker computations through *reinforcement learning*:

- Develop and analyze our mechanism
- Under necessary and sufficient conditions the master reaches eventual convergence
- Our analysis shows that eventual convergence can be reached quickly
 - Complement our analysis with simulations

CONCLUSIONS

Summary

- Use reputation mechanism to deal with malicious workers
 - Reputation not efficient in the presence of only rational workers
 - Reputation type 2 more efficient than type 1
- Considering only replies from the most reputable workers
 - Deal with network's unreliability
 - Decreases master's cost

45

TΠΕ/ΠΛΗΡΟ/0609(BE)/05 www.cs.ucy.ac.cy/ric

University of Cyprus

Universidad Rey Juan Carlos

University of Connecticut