
Formal Methods for Specifying and Verifying Distributed Algorithms

Process Algebra vs I/O Automata ∗

Marina Gelastou, Chryssis Georgiou and Anna Philippou

Department of Computer Science, University of Cyprus,

75 Kallipoleos Str., CY-1678 Nicosia, Cyprus

{gelastoum, chryssis, annap}@cs.ucy.ac.cy

Abstract

This paper embarks on a comparative study between two well-developed theories for formally
specifying and verifying concurrent systems. Specifically, we consider the frameworks of Process
Algebra and I/O Automata and we apply both towards the verification of a distributed leader-
election algorithm. Based on the two experiences we contrast the approaches and draw initial
conclusions with respect to their relative capabilities and strengths.

1 Introduction

Modern distributed systems are intrinsically difficult to develop and reason about. The need for
formally verifying the correctness of distributed systems and algorithms has long been recognized
by the research community. In the last two decades, the field of formal methods for system design
and analysis has dramatically matured and has reported significant success in the development of
theoretical frameworks for formally describing and analyzing complex systems as well as for providing
methodologies and practical tools for these purposes. More specifically, during the last twenty years,
significant research efforts were geared towards the development of formal methodologies for system
modelling and verification. One such model is that of Process Algebra, PA [23, 4]. PAs constitute a
formal framework with well-defined semantics which allows the compositional modelling and analysis
of concurrent systems. They are equipped with precise semantics, thus providing a solid basis for
understanding system behavior and reasoning about their correctness. The first PAs were proposed in
the 1980s [23, 13, 3]. Since then, they have been the subject of extensive research and they have been
extended in various directions. The result is the creation of PAs capable of describing and analyzing
systems that include characteristics like time, constant or mobile topologies, probabilistic behavior,
multi-casting and locations (e.g. [12, 25, 14, 5]) as well as tools for automatically reasoning about
system behavior. They have been used in the literature for reasoning about a variety of algorithms
including [1, 28, 30].

The model of Input/Output Automata of Lynch and Tuttle [21] is another popular formal frame-
work for modelling distributed systems. Intensive research carried out during the last decade (e.g. [22,
15, 19, 20, 10]) has enriched this model with a number of mathematical tools and methodologies (e.g.
forward simulations, invariant-checking, etc) which allow carrying out correctness proofs and precise
analysis of complex static and dynamic distributed algorithms. IOA [8] is a modelling and programming

∗This work is supported in part by the Cyprus Research Foundation Grant “ΠPOO∆OΣ” and the University of

Cyprus.

1



language based on I/O automata. The Theory of Distributed Systems group at MIT has designed and
partially implemented an IOA toolkit to support the development and analysis of IOA programs. In
the last few years, various extension of the I/O automata formalism have been developed to deal with
different types of systems (e.g., Timed I/O Automata [15], Probabilistic I/O Automata [19], Hybrid
I/O Automata [20], and Dynamic I/O Automata [2]) and corresponding verification methodologies
have been proposed. Finally, it is worth noting that recently, the formalism has been employed for the
specification and verification of ad-hoc network algorithms (e.g., [6, 29]).

It is fair to say that these two formalisms are important, well-developed theories that have a lot
to offer towards understanding and reasoning about complex systems. However, to date, research
carried in each line of work has been quite distinct. At the same time, new variations and extensions
of verification formalisms keep cropping up while a thorough investigation into their applicability,
strengths and potentials is still missing. Indeed, recently, concerns are being raised with regards to
the potentials of formal methodologies towards the verification of today’s complex algorithms and
environments. Characteristically, [7] questions the suitability of process algebras for reasoning about
certain classes of distributed algorithms. In our opinion, the time is ripe for such evaluations, the
outcome of which will give significant feedback for directing future research efforts. This work aims to
embark on such a comparative study and assess the strengths and weaknesses of the two formalisms
of process algebra and I/O automata for reasoning about distributed systems based on hands-on
experience. Based on this study we would like to eventually be able to answer questions such as: Does
one formalism perform “better” than the other (for some type of problems)? Is there a characterization
of problems that are more amenable to verification by one of the two formalisms? Can ideas originating
in one of the formalisms be carried over to the other to improve the verification process?

We begin to consider these questions by verifying a typical distributed algorithm in both of the
formalisms. In particular we specify and verify a leader-election algorithm [36] with static membership
and fault-free components by applying each of the frameworks for its correctness. We observe the
limits/capabilities of each of the frameworks for modeling the algorithm. We apply the associated
proof techniques for proving the algorithm’s correctness and we evaluate them. We compare and
present the two experiences. To the best of our knowledge this is the first such hands-on evaluation
and comparison of the two formalisms.

Document Structure. In the following section we present the two formalisms, an introductory com-
parison between them as well as the algorithm to be verified. Sections 3 and 4 contain the specifications
and verifications of the algorithms in PA and I/O automata, respectively. In Section 5 we contrast
the two verification experiences and in Section 6 we conclude the paper with some final remarks and
a discussion of future work. Missing proofs and some useful background material can be found in the
Appendix.

2 Prelimilaries

In this section we present the two formalisms that will be used for the specification and verification of
our algorithm, an initial comparison between the two, as well as the description of the algorithm we
will consider.

2.1 The Calculus

The calculus employed in this work is the CCSv process calculus, which is a value-passing CCS calcu-
lus [23, 34] including a kind of conditional agents.

2



2.1.1 The syntax

We begin by describing the basic entities of the calculus. We assume a set of constants, ranged over
by u, v, including the positive integers and the boolean values and a set of functions, ranged over by
f , operating on these constants. Moreover, we assume a set of variables V, ranged over by x, y. Then,
the set of terms of CCSv, ranged over by e, is given by (1) the set of constants, (2) the set of variables,
and (3) function applications of the form f(e1, . . . en), where the ei are terms. We say that a term is
closed if it contains no variables. The evaluation relation ³ for closed terms is defined in the expected
manner.

Moreover, we assume a set of channels, L, ranged over by a, b. Channels provide the basic commu-
nication and synchronization mechanisms in the language. A channel a can be used in input position,
denoted by a, and in output position, denoted by a. This gives rise to the set of actions, Act, of the
calculus, ranged over by α, β, containing

• the set of input actions which have the form a(ṽ) representing the input along channel a of a
tuple ṽ, where we write r̃ for a tuple of syntactic entities r1, . . . , rn,

• the set of output actions which have the form a(ṽ) representing the output along channel a of a
tuple ṽ, and

• the internal action τ , which arises when an input action and an output action along the same
channel are executed in parallel.

We say that an input action and an output action on the same channel are complementary actions.
Further, given a non-internal action α we denote by `(α) the channel of action α.

Finally, we assume a set of process constants C, denoted by C. The syntax of CCSv is given by the
following BNF definition

P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | P\L | cond (e1 ¤ P1, . . . , en ¤ Pn) | C〈ṽ〉

Process 0 represents the inactive process. Process α.P describes the prefix process which first
engages in action α and then behaves as the continuation process P . Process P1 + P2 represents
the nondeterministic choice between processes P1 and P2. The process P‖Q describes the concurrent
composition of P and Q: the component processes may proceed independently or interact with one
another while executing complementary actions. The conditional process cond (e1 ¤ P1, . . . , en ¤ Pn)
presents the conditional choice between a set of processes: assuming that all ei are closed terms, it
behaves as Pi, where i is the smallest integer for which ei ³ true.

In P\F , where F ⊆ L, the scope of channels in F is restricted to process P : components of P may
use these channels to interact with one another but not with P ’s environment. This gives rise to the
free and bound channels of a process.

Finally, process constants provide a mechanism for including recursion in the process calculus. We
assume that each constant C has an associated definition of the form C〈x̃〉 def= P , where the process P

may contain occurrences of C, as well as other constants.

2.1.2 The Semantics

Each operator is given precise meaning via a set of rules which, given a process P , prescribe the possible
transitions of P , where a transition of P has the form P

α−→ P ′, specifying that process P can perform
action α and evolve into process P ′. The rules themselves have the form

T1, . . . , Tn
T φ

3



(In) a(x̃).P
a(ṽ)−→ P{ṽ/x̃} (Out) a(ṽ).P

a(ṽ)−→ P

(Sum) Pi
α−→ P ′i

P1 + P2
α−→ P ′i

i ∈ {1, 2} (Par1) P1
α−→ P ′1

P1‖P2
α−→ P ′1‖P2

(Par2) P2
α−→ P ′2

P1‖P2
α−→ P1‖P ′2

(Par3) P1
a(ṽ)−→ P ′1, P2

a(ṽ)−→ P ′2
P1‖P2

τ−→ P ′1‖P ′2

(Res) P
α−→ P ′

P\F α−→ P ′\F l(a) 6∈ F (Const) P{ṽ/x̃} α−→ P ′

C〈ṽ〉 α−→ P
C〈x̃〉 def= P

(Cond) Pi
α−→ P ′i

cond (e1 ¤ P1, . . . , en ¤ Pn) α−→ Pi

ei ³ true, ∀j < i, ej ³ false

Table 1: The operational semantics

which is interpreted as follows: if transitions T1, . . . , Tn, can be derived, and condition φ holds, then
we may conclude transition T . The semantics of the CCSv operators are given in Table 1.

We discuss some of the rules below:

• (IN). This axiom employs the notion of substitution, a partial function from variables to values.
We write {ṽ/x̃} for the substitution that maps variables x̃ to values ṽ. Thus, the input-prefixed
process can receive a tuple of values ṽ along channel a, and then continue as process P , with the

occurrences of the variables x̃ in P substituted by values ṽ. For example: a(x, y). b(x).0
a(2,5)−→

b(2).0.

• (Cond). This axiom formalizes the behavior of the conditional operator. An example of the rule

follows: cond (2 = 3 ¤ b(3).0, true ¤ c(4).0)
c(4)−→ 0.

• (Par1). This axiom (and its symmetric version (Par2)) expresses that a component in a parallel

composition of processes may execute actions independently: a(3).0 ‖a(v).b(c).0
a(3)−→ a(v).b(c).0.

• (Par3). This axiom expresses that two parallel processes executing complementary actions may
synchronize with each other producing the internal action τ : a(3).0 ‖a(v).b(v).0 τ−→ b(3).0.

• (Const). This axiom stipulates that, given a process constant and its associated definition C〈x̃〉 def=
P , its instantiation C〈ṽ〉 behaves as process P with variables x̃ substituted by ṽ. For example,

if C〈x, y〉 def= cond (x = y ¤ b(x).0, true ¤ c(y).0), then C(2, 2)
b(2)−→ 0.

We recall some useful definitions. We say that Q is a derivative of P , if there are α1, . . . , αn ∈ Act,
n ≥ 0, such that P

α1−→ . . .
αn−→ Q. Moreover, given α ∈ Act we write =⇒ for the reflexive and transitive

closure of τ , α=⇒ for the composition =⇒ α−→=⇒, and α̂=⇒ for =⇒ if α = τ and α=⇒ otherwise.
We conclude this section by presenting a notion of process equivalence in the calculus. Observa-

tional equivalence is based on the idea that two equivalent systems exhibit the same behavior at their
interfaces with the environment. This requirement was captured formally through the notion of bisim-
ulation [23, 26]. Bisimulation is a binary relation on states of systems. Two processes are bisimilar
if, for each step of one, there is a matching (possibly multiple) step of the other, leading to bisimilar
states. Below, we introduce a well-known such relation on which we base our study.

4



Definition 2.1 Bisimilarity is the largest symmetric relation, denoted by ≈, such that, if P ≈ Q and
P

α−→ P ′, there exists Q′ such that Q
α̂=⇒ Q′ and P ′ ≈ Q′.

Note that bisimilarity abstracts away from internal computation by focusing on weak transitions,
that is, transitions of the form â=⇒ and requires that bisimilar systems can match each other’s observable
behavior. Bisimilarity implies trace equivalence but the opposite does not hold.

Bisimulation relations have been studied widely in the literature. They have been used to establish
that a system satisfies its implementation by describing the two as process-calculus processes and dis-
covering a bisimulation that relates them. Their theory has been developed mainly into two directions.
On one hand, sound and complete axiom systems have been developed for establishing algebraically
the equivalence of processes. On the other hand, proof techniques that ease the task of showing two
processes to be equivalent have been proposed. The results reviewed in the next section belong to the
latter type.

2.1.3 Confluence

In this subsection we recall some useful results regarding the theory of confluence that are employed
in this study. For further information we refer the reader to [24, 34, 33, 11, 31].

In [23, 24], Milner introduced and studied a precise notion of determinacy of CCS processes. The
same notion carries over straightforwardly to the CCSv-calculus. It is expressed as follows:

Definition 2.2 P is determinate if, for every derivative Q of P and for all α ∈ Act, whenever
Q

α−→ Q′ and Q
α̂=⇒ Q′′ then Q′ ≈ Q′′.

This definition makes precise the requirement that, when an experiment is conducted on a process it
should always lead to the same state up to bisimulation. Determinacy has been extended into the
notion of confluence as follows:

Definition 2.3 P is confluent if it is determinate and, for each of its derivatives Q and distinct actions
α, β, where α and β are not input actions on the same channel, if Q

α−→ Q1 and Q
β

=⇒ Q2 then, there

are Q′
1 and Q′

2 such that Q2
α̂=⇒ Q′

2, Q1
β̂

=⇒ Q′
1 and Q′

1 ≈ Q′
2.

Its essence, to quote [24], is that “of any two possible actions, the occurrence of one will never
preclude the other”. As shown in [24, 23], for pure CCS processes confluence implies determinacy
and semantic-invariance under internal computation, and it is preserved by several system-building
operators. These facts make it possible to reason compositionally that a system is confluent and to
exploit this fact while reasoning about its behavior. These results were extended and generalized in
various other calculi (see, for example, [11, 34, 16, 27, 31, 32, 30]).

In this work, we will employ the following additional notion and result for aiding the verification
process [31].

Definition 2.4 P is o-determinate if, for every derivative Q of P and for all channels a, whenever

Q
a(x̃)−→ Q′ and Q

a(ỹ)
=⇒ Q′′, then x̃ = ỹ and Q′ ≈ Q′′.

Theorem 2.5 Suppose P = (P1 | . . . | Pn)\L, where each Pj is confluent and o-determinate and each
channel in L is used by at most two components of the composition. Then P is confluent.

2.2 I/O Automata

In this section we present the Input/Output Automata formalism of Lynch and Tuttle [21, 18].

5



2.2.1 Description

Actions, Signatures, Executions and Traces. An Input/Output Automaton (or I/O Automaton
or Automaton) is a labeled state transition system. It consists of three type of atomic transitions
which are named actions: input, output and internal. The input actions of an I/O Automaton are
generated by the environment and are transmitted instantaneously to the automaton. In contrast,
the automaton can generate the output and internal actions autonomously and can transmit output
actions instantaneously to its environment. Actions are described in a precondition-effect style. An
action π is enabled if its preconditions are satisfied. Input actions are required to be enabled in all
states. Thus automata are said to be input-enabled. In other words, the automaton is unable to block
its input (of course it can ignore it) a fundamental assumption of the I/O Automata framework.

A signature S of an I/O Automaton A denoted by sig(A), is a triple of disjoint set of the input
actions in(S), the output actions out(S), and the internal actions int(S) of that automaton. The set
of all actions is denoted by act(S). The external signature consists only of the sets of input and output
actions. We denote by local(S) = out(S) ∪ int(S) the set of locally-controlled actions, those actions
under the local control of any automaton having S as its action signature. Given an automaton A

with signature S we abuse notation and denote in(S) by in(A), etc.
Formally an I/O Automaton A consists of the following:

• an action signature sig(A),

• a set states(A) of states,

• a nonempty set start(A) ⊆ states(A) of start states,

• a transition relation trans(A) ⊆ states(A)×acts(A)×states(A) with the property that for every
state s and input action π there is a transition or step (s, π, s′), in trans(A), and

• an equivalence relation tasks(A) partitioning the set local(A) into at most a countable number
of equivalence classes.

The equivalence relation tasks(A) is tightly coupled with the notion of fairness, presented later.
It is used to identify the primitive components of the system being modeled by the automaton: each
class is thought of as the set of actions under the local control of one system component.

The operation of an I/O Automaton is described by its executions and traces. An execution fragment
of an automaton A is a finite sequence s0, π1, s1, π2, . . . , πn, sn or an infinite sequence s0, π1, . . . of
alternating states and actions of A such that (si, πi+1, si+1) ∈ trans(A), for every i ≥ 0. An execution
is an execution fragment that starts with a start state (i.e. s0 ∈ start(A)). We denote by exec(A) the
set of all executions of A. We say that a state is reachable if it is the final state of a finite execution of
A. A trace is an external behavior of an automaton A that consists of the sequence of input and output
actions occurring in an execution of A. We denote the set of all traces of A by traces(A). Finally,
we say that an automaton implements another automaton, if any trace of the former is a trace of the
latter.

Composition of I/O Automata. I/O Automata can be composed to create more complex I/O
Automata. The (parallel) composition operator essentially allows an output action of one automaton
to be identified with the input actions in other automata; this operator respects the trace semantics.
In more detail, during the composition of several I/O Automata to a more complex I/O Automaton
we identify the same-named actions of the different automata. Then if an automaton has some output

6



action π and one or more automata of the composition have as input that same action π, the first
automaton will generate the output action π and instantaneously transmit action to all automata that
have the input action π, while the rest of the automata in the composition do nothing.

Certain restrictions are imposed in order for the composition of a set of automata to be possible. In
particular, the automata need to be compatible. Automata are said to be compatible if their signatures
are compatible. Hence, the following definition: A countable collection {Si}i∈I of signatures is said to
be compatible if for all i, j ∈ I, i 6= j, we have

1. out(Si) ∩ out(Sj) = ∅,

2. int(Si) ∩ acts(Sj) = ∅, and

3. No action is contained in infinitely many sets acts(Si).

This leads to the definition of composition of signatures: The composition S =
∏

i∈I Si of a count-
able collection of compatible signatures {Si}i∈I is defined to be the signature

1. in(S) =
⋃

i∈I in(Si)−
⋃

i∈I out(Si),

2. out(S) =
⋃

i∈I out(Si), and

3. int(S) =
⋃

i∈I int(Si).

From this we obtain the formal definition of automata composition. The composition A =
∏

i∈I Ai

of a countable collection of compatible automata {Ai}i∈I is the automaton defined as follows:

1. sig(A) =
∏

i∈I sig(Ai),

2. states(A) =
∏

i∈I states(Ai),

3. start(A) =
∏

i∈I start(Ai),

4. trans(A) is the set of triples (~s1, π, ~s2) such that, for all i ∈ I, if π ∈ acts(Ai) then (~s1[i], π, ~s2[i]) ∈
steps(Ai), otherwise ~s1[i] = ~s2[i] (~s[i] denotes the the ith component of the state vector ~s), and

5. tasks(A) =
⋃

i∈I tasks(Ai).

It has been shown [18] that an execution (or trace) of a composition projects to yield executions
(or traces) or the component automata. Inversely, under certain conditions, executions (or traces) of
component automata can be pasted together to for an execution (or trace) if the composition.

Fairness. Since I/O Automata are input-enabled, the specification cannot prevent the occurrence
of an infinite sequence of input actions, which could prevent the automaton from performing locally-
controlled actions. This could result to executions that are not fair, and by fair we mean that the
automaton has the property that infinitely often is presented with the opportunity to perform one of
its local actions. Therefore, being fair to each system component means being fair to each equivalence
class of locally-controlled actions. More formally, a fair execution of an Automaton A is an execution
α of A such that the following conditions hold for each class C of tasks(A):

1. If α is finite, then no action of C is enabled in the final state of α.

2. if α is infinite, then α either contains infinitely many events from C, or infinitely many occurrences
of states in which no action of C is enabled.

7



In other words, a fair execution gives fair turns to each class C of tasks(A), and therefore to each
component for the system being modeled. In the next section we will relate fair executions with what
we will call liveness properties of an automaton specification.

It has been shown [18] that every finite execution (or trace) can be extended to a fair execution (or
trace).

2.2.2 Proof Methods

I/O Automata can be used not only to formally specify distributed and concurrent systems and algo-
rithms, but also to formulate and prove precise claims about what systems and algorithms do.

Safety and Liveness Properties. Given a problem specification, that is a set of allowable be-
haviors, we say that an automaton solves the specification if each of the automaton’s behaviors is
contained in this set. In other words, the automaton solves the problem in the sense that every be-
havior it exhibits is a behavior allowed by the problem specification. Recall that automaton behaviors
are characterized by the execution traces. Hence, within the I/O framework, the notion of proving
the correctness of an automaton (that it solves the problem) is usually deduced in showing safety and
liveness properties of the automaton.

Informally speaking, a safety property specifies a property that must hold in every state of an
execution. In particular, it is required that something “bad” never happens. Note that an infinite
execution satisfies a safety property if and only if every finite prefix of it does so. A liveness property
specifies events that must eventually be performed. In particular, it is required that something “good”
eventually happens, which in return means that no matter what has happened up to this point, there
is still the possibility that something good will happen. Clearly this is a property that can only be
satisfied by infinite execution, and more specifically by fair executions. Therefore, in the context of
liveness properties, only fair executions of an automaton are considered.

Taking safety and liveness properties together one can prove claims such as “Eventually the system
will exhibit some required behavior”.

Invariant Assertions. A fundamental technique for reasoning about the behavior of an automaton
is by associating the automaton with invariant assertions. An invariant is a property that is true in
all reachable states of an automaton. Invariants are typically proved by induction on the length of an
execution leading to the state in question. More generally, invariants are used to prove other invariants
which in turn are used when carrying out subsequent inductive proofs. Several invariants are usually
combined in proving (mainly) safety properties of a given automaton.

Modular Decomposition. A common technique for reasoning about the behavior of a composed
automaton is modular decomposition, in which we reason about the behavior of the composition by
reasoning about the behavior of the component automata of the composition. This is very useful,
especially when dealing with complex composed automata. First one proves less complex invariants
(or properties in general) for the automata of the composition, and then it uses the composition of
those invariants to reason about the composed automaton. It is sometimes the case that reasoning
about the behavior of only certain automata of the composition is enough to reason about the behavior
of the composed automaton.

Hierarchical Proofs. Another common technique for reasoning about the behavior of automata is
by hierarchical decomposition. A hierarchy represents a series of descriptions of a system or algorithm

8



at different levels of abstraction. We begin at the highest level of abstraction where we have the speci-
fication of an automaton, and through successive refinements we continue to lower levels of abstraction
by introducing more of the detail that exists in the final system or algorithm. Because of the extra
detail, lower levels of abstraction are usually harder to understand than higher levels. In order now
to prove properties of the lower level we try to relate these lower level automata to the higher level
automata.

In order to establish the correspondence between two different automata at different levels of
abstraction we use simulation techniques. A simulation between two automata A and B (with the
same external signature) involves establishing a correspondence (mapping) between A and B. The
existence of a simulation between A and B is used to show that any behavior that can be exhibit by A,
can also be exhibit by B. This means that if B solves a particular problem, so does A. In particular
we say that automaton A implements or simulates automaton B if any trace of A is a traces of B.
There are several simulation types [22].

2.3 Pre-Case-Study Comparison

One may observe that work in these frameworks was mostly carried out independently and that focus on
each of them has been quite distinct. Work on PAs has concentrated on enhancing the expressive power
of the associated languages and developing their semantic theories, providing solid understanding to
system features and constructing automated analysis tools. On the other hand, work on I/O automata
placed emphasis on application of the basic model and its proposed extensions to prove by hand the
correctness of algorithms. One of the few cross-points between the two lines of work was [35] where the
semantic relationship between the two formalisms was investigated. In that paper, I/O automata are
recasted as a De Simone calculus and it is shown that the quiescent trace equivalence (an adaptation
of the completed trace equivalence) and the fair trace equivalence are substitutive.

Despite this semantic closeness between the two formalisms, from a practical point of view, they
appear to have some significant differences. To begin with, at the specification level, the languages
of the two formalisms differ substantially. The main differences concern the language constructs,
the granularity of the actions, and the methodology used for describing flow of behavior. On the
one hand, process algebras are based on a set of primitives and a fairly large and expressive set of
constructs with the notions of communication and concurrency at the core of their languages. A
system is modeled as a process which itself is a composition of subprocesses representing the system’s
constituents components. Action granularity is very fine: actions can be input on channels, output on
channels and internal actions. As computation proceeds the possible behaviors a process may engage
in are explicitly encoded in the process’s description.

On the other hand, I/O automata feature a more “relaxed” type of language, quite close to im-
perative programming. It additionally enables a limited (in comparison to PAs) set of operators to
be applied at the automaton level: renaming and parallel composition which incorporates a notion
of action hiding. A system in this formalism is described as an I/O automaton. As with process
algebras, such an automaton is built compositionally as the parallel composition of the system’s sub-
components. However, in contrast to PAs, an I/O automaton possesses a state and its behavior is
prescribed by the set of actions the automaton may engage in. In contrast to PAs, input actions are
always enabled, and output and internal actions cannot be prevented from arising. The effect of an
action can be a complex behavior described as a sequence of simple instructions that involve operating
on the automaton’s state. This results in a less fine granularity of actions in comparison to PA’s. Flow
of execution is determined by the state of an automaton: any enabled action, that is, any action whose
precondition is satisfied, may take place.

9



Moving on to the semantics of the two frameworks, some essential differences can be observed. While
process algebras are typically given bisimulation or failure equivalence semantics, I/O automata are
given trace semantics. It turns out that to provide compositional theories for typical PAs, it is necessary
to consider the branching structure of processes as implemented, for example, by bisimulation. On the
other hand, trace semantics is compositional for I/O automata. As it was shown in [35], this fact is a
consequence of the input-enabledness of input actions and the non-blocking properties of the output
actions. A further point to note is that the specific semantics enables reasoning about fairness within
I/O automata models. Finally we point out that PAs have a rich algebraic structure and they are
associated with axioms systems which prescribe the relations between the various constructs which
can be used for reasoning algebraically/compositionally about system behavior.

Concluding with a comparison of verification methodologies, we observe that while PAs revolve
around the establishment of equivalences between processes and checking a system against logical
properties expressed in temporal logics, I/O automata mainly favor assertional proof techniques for
reasoning about trace properties, including the establishment of safety and liveness properties, simu-
lation relations and invariant assertions.

2.4 The Algorithm

The algorithm we consider for our case study, which we hereafter call LE, is the static version of a
distributed leader-election algorithm presented in [36]. It operates on an arbitrary topology of nodes
with distinct identifiers and it elects as the leader of the network the node with the maximum identifier.

In brief the algorithm operates as follows. In its initial state, a network node may initiate a leader-
election computation (note that more than one node may do this) or accept leader-election requests
from its neighbors. Once a node initiates a computation, it triggers communication between the net-
work nodes which results into the creation of a spanning tree of the graph: each node picks as its father
the node from which it received the first request, forwards the request to all of its remaining neighbors
and ignores all subsequent received requests, with an exception described below. Consequently, each
node awaits to receive from each of its children the maximum identifier of the subtrees at which they
are rooted and, then, it forwards to its father the maximum identifier of the subtree rooted at the node.
Naturally, this computation begins at the leaves of the tree and proceeds towards the root. Once this
information is received by the root all necessary information to elect the leader is available. Thus, the
root broadcast this information to its neighbors who in turn broadcast this to their neighbors, and so
on.

Note that if more than one node initiates a leader-election computation then only one computation
survives which is the one originating from the node with the maximum identifier. This is established
by associating each computation with a source identifier. Whenever a node already in a computation
receives a request for a computation with a greater source it abandons its original computation and it
restarts executing a computation with this new identifier.

In greater detail, each node i operates as follows:

• If i realizes that it has lost its leader, then it moves to computation mode in order to select a new
leader. It broadcasts an election message to all its neighbors which are considered its potential
children. This message contains the node’s identifier, id, which is considered to be the source
identifier of the computation, scrid, and denotes which node has started this procedure. In this
case source id is equal to i. Then it waits to receive acknowledgment messages, ack, from all its
neighbors.

• If i receives an election message from a neighbor j and it is not in computation mode then it

10



sets j to be its parent and enters computation mode. It then forwards the election message to
all its neighbors except its parent. All these neighbors are considered its potential children and
it waits to receive ack messages from them.

• If i receives an election message and it is already in computation mode with scrid smaller than
the source identifier contained in the message, then it abandons its current computation and
proceeds according to the previous step.

• If i receives an election message and it is already in computation mode with srcid equal to the
source identifier contained in the message, then it replies with an ack message informing the
sender that it is already in computation mode with a different parent node.

• If i receives an election message and it is already in computation mode with srcid larger than
the source id contained in the message, then it simply ignores the message.

• For any ack message that i receives, it removes the sender from its children list. The content
of the message can be distinguished in two categories. Either the sender is informing i that it
does not accept i as its parent, in which case i simply continues its computation. Otherwise, this
message contains an identifier which i compares with its known maximum value, initially set as
i’s identifier, and keeps as its known maximum value the largest of the two.

• When i receives ack messages from all its children or if it does not have any children, then it
sends an ack message to its parent. With this message it informs its parent about maximum
value/node identifier it is aware of. In the case that i has no children, then this identifier is i

itself.

• If i is the node that started the computation (thus node i is the root of the spanning tree that
was created) and it has received ack messages from all its children nodes, then it decides which
is the leader node (the one with the maximum value) and informs all its neighbors about the
new leader node through a leader message.

• If a leader message is received and i has not learned its leader yet, it adapts the leader contained
in the message and forwards the message to all its neighbors (except from the sender of this
message).

• If a leader message is received and i already has a leader then it simply ignores this message.

3 Specification and Verification in PA

3.1 Specification

In this section we give a description of the LE algorithm in the CCSv calculus. We assume a set K con-
sisting of the node unique identifiers and a set of channels F = {electioni,j , ack0i,j , ack1i,j , leaderi,j |
i, j ∈ K} where xi,j refers to the channel from node i to node j of type x. Furthermore, chan-
nels electioni,j are used for sending election messages, channels ack0i,j for acknowledging an election
message but notifying the sender that the receiver is already in computation, channels ack1i,j for ac-
knowledging an election message and notifying the sender that the receiver is accepting it as its father
and channels leaderi,j for sending leader messages. The system is described as the following parallel
composition of its constituent nodes:

P0
def= (

∏

k∈K

NoLeader〈uk, Nk〉)\F

11



Initially, all nodes are of type NoLeader〈i,N〉 but may evolve into processes InComp〈i, f, s, N, S,R, A, max〉,
LeaderMode〈i, s,N〉 and ElectedMode〈i, s,N, S, l〉, where i represents the identifier of the process, N

the set of its neighbors, and, once the node is in computation mode, f and s are the father of the
node and the source of the computation, respectively, S the set of election messages the node has still
to send, R the set of potential children of the node from which it is waiting to hear and A the set of
acknowledgement messages the process has still to send. The specification of these processes can be
found in Figure 1.

NoLeader〈i,N〉 def= τ. InComp〈i, i, i, N, N, N, ∅, i〉
+

∑
j∈N electionj,i(s). InComp〈i, j, s, N, N − {j}, N − {j}, ∅, i〉

InComp〈i, f, s, N, S,R, A, max〉 def=∑
j∈S electioni,j(s). InComp〈i, f, s, N, S − {j}, R,A, max〉

+
∑

j∈A ack0i,j(s). InComp〈i, f, s, N, S, R,A− {j},max〉
+

∑
j∈N ack0j,i(s′). cond ((s = s′) ¤ InComp〈i, f, s, N, S, R− {j}, A, max〉,

true ¤ InComp〈i, f, s, N, S, R, A, max〉)
+

∑
j∈N ack1j,i(s′, max′).

cond ((s = s′ ∧max′ > max) ¤ InComp〈i, f, s, N, S, R− {j}, A, max′〉,
(s = s′ ∧max′ ≤ max) ¤ InComp〈i, f, s, N, S, R− {j}, A, max〉,
true ¤ InComp〈i, f, s, N, S, R,A, max〉)

+
∑

j∈N electionj,i(s′). cond ((s′ > s) ¤ InComp〈i, j, s′, N,N − {j}, N − {j}, ∅, i〉,
(s′ = s) ¤ InComp〈i, f, s, N, S, R, A ∪ {j},max〉,
true ¤ InComp〈i, f, s, N, S, R, A, max〉)

InComp〈i, f, s, N, ∅, ∅, ∅,max〉 def= ack1i,f (s,max). LeaderMode〈i, s, N〉

InComp〈i, i, i, N, ∅, ∅, ∅,max〉 def= leader(max). ElectedMode〈i, i, N, N, max〉

LeaderMode〈i, s, N〉 def=∑
j∈N leaderj,i(s′,max′). cond ((s = s′) ¤ ElectedMode〈i, s, N, N − {j},max′〉,

true ¤ LeaderMode〈i, s,N〉)
+

∑
j∈N electionj,i(s′). cond ((s′ > s) ¤ InComp〈i, j, s′, N, N − {j}, N − {j}, ∅, i〉,

true ¤ LeaderMode〈i, s, N〉)

ElectedMode〈i, s, N, S, l〉 def=
∑

j∈S leaderi,j(s, l). ElectedMode〈i, s,N, S − {j}, l〉
+

∑
j∈N leaderj,i(s′, l′). ElectedMode〈i, s, N, S, l〉

Figure 1: The node process

3.2 Correctness Proof

The correctness criterion of our algorithm is expressed as the following bisimulation equivalence between
the system and its specification.

Theorem 3.1 P0 ≈ leader(max).0 where max = max{ui| i ∈ K}.
The proof is established in two phases. In the first phase we consider a simplification of P0 where
a single initiator begins computation and where the spanning tree on which the algorithm operates
is pre-determined. We show that this restricted system is capable of producing the required leader
message and terminate. Then we observe that this system is confluent and thus it is in fact bisimilar to

12



the process leader(max).0. It then remains to establish a correspondence between the general system
P0 and these restricted type of agents which leads to the desired result.

We begin the proof with a useful lemma.

Lemma 3.2 Let P be an arbitrary derivative of P0:

P
def= (

∏

m∈M1

NoLeader〈um, Nm〉 |
∏

m∈M2

InComp〈um, fm, sm, Nm, Sm, Rm, Am, maxm〉

|
∏

m∈M3

LeaderMode〈um, sm, Nm〉 |
∏

m∈M4

ElectedMode〈um, sm, Nm, Sm, lm〉)\F

and M = {m ∈ M2 ∪M3 ∪M4|sm = max(M2,M3,M4)}. Then {(um, fm)|m ∈ M} is a spanning tree
of the nodes in M .

Proof. The proof is by induction on the length, n, of the derivation P0 =⇒ P . For n = 0, M = ∅ and
the proof follows. Now suppose that the claim holds for n = k− 1 and consider a derivation P0 =⇒ P

of length n = k. It then holds that P0 =⇒ P ′ τ−→ P where the claim holds for P ′. Let us write

P ′ def= (
∏

m∈M ′
1

NoLeader〈um, Nm〉 |
∏

m∈M ′
2

InComp〈um, fm, sm, Nm, Sm, Rm, Am,maxm〉

|
∏

m∈M ′
3

LeaderMode〈um, sm, Nm〉 |
∏

m∈M ′
4

ElectedMode〈um, sm, Nm, Sm, lm〉)\F

mx = max(M ′
2,M

′
3,M

′
4) and M ′ = {m ∈ M ′

2 ∪M ′
3 ∪M ′

4|sm = mx}. Then {(um, fm)|m ∈ M ′} is a
spanning tree of the nodes in M ′. The proof is a case analysis on the transition P ′ α−→ P . We consider
the two most interesting cases:

• α = τ , where
NoLeader〈uk, Nk〉 τ−→ InComp〈uk, uk, uk, Nk, Nk, Nk, ∅, uk〉

and uk > mx. Then M = {uk} and the claim follows.

• α = τ and for some x ∈ M ′
2, y ∈ M ′

1 ∪M ′
3 ∪M ′

4,

InComp〈ux, fx,mx, Nx, Sx, Rx, Ax,maxx〉
electionux,uy (mx)−→ InComp〈. . . , Sx − {uy}, . . .〉

and
X

electionux,uy (max)−→ InComp〈uy, uy,mx, Ny, Ny − {ux}, Ny − {ux}, ∅, uy〉,
where X is one of NoLeader〈uy, Ny〉, InComp〈uy, fy, sy, Ny, Sy, Ry, Ay,maxy〉, LeaderMode〈uy, sy, ny〉,
where sy < mx. Then, M2 = M2∪{uy} and M1 = M1−{uy}, M3 = M3−{uy}, M4 = M4−{uy},
whereas M = {m ∈ M2 ∪M3 ∪M4|sm = mx} = M ′ ∪ {uy}. Furthermore, {(um, fm)|m ∈ M} =
{(um, fm)|m ∈ M ′} ∪ {(ux, uy)}. Note that since uy 6∈ M ′, this latter set forms a spanning tree
of the nodes in M . This completes the proof.

2

Returning to our proof, the restricted type of systems employed in the first phase of the proof use
the following processes:

NoLeader′〈i, f, N, l〉 def= electionf,i(s). InComp′〈i, f, s,N, N − {f}, N − {f}, ∅, i〉
InComp′〈i, f, s, N, S, R,A, max〉 def=

. . .

13



+
∑

j∈N electionj,i(s′). InComp′〈i, f, s, N, S, R, A ∪ {j},max〉,
. . .

LeaderMode′〈i, s,N〉 def=∑
j∈N leaderj,i(s′,max′). ElectedMode〈i, s,N, N − {j},max′〉

+
∑

j∈N electionj,i(s′).LeaderMode′〈i, s, N〉

Thus, NoLeader′ is similar to NoLeader except that it may only be activated by a signal from
a specified node, f . Similarly, InComp′ and LeaderMode′ are similar to InComp and LeaderMode,
respectively, except that they behave as if the source node of any election message is the same as that
possessed by the node.

Let T be the set of agents of the form

T0
def= (

∏
i∈K−{ν}NoLeader′〈i, fi, Ni, li〉 | InComp′〈ν, ν, ν, Nν , Nν , Nν , ∅, ν〉)\F

where {(i, fi)|i ∈ K − {ν}} is a spanning tree of the network rooted at node ν, for some ν ∈ K. We
show the following sequence of results:

Lemma 3.3 T0
leader(max)

=⇒ ≈ 0.

Proof. Let D be the maximum distance of a node from the root ν of the spanning tree. Fix sets
Md, 0 ≤ d ≤ D, such that:

Md =

{
{ν} d = 0
{i ∈ K|fi ∈ Md−1} d > 0

In other words, M1 contains the nodes that have ν as their father, M2 the nodes whose father is a
node of M1, and so on. Further, let us write Chi = {j | fj = i} and T d, 0 ≤ d ≤ D for the process

T d def= (
∏

i∈M0∪...∪Md−1

InComp′〈ui, fi, ν, Ni, Ni − Chi, Ni − {fi}, ∅, ui〉

|
∏

i∈Md

InComp′〈ui, fi, ν,Ni, Ni − {fi}, Ni − {fi}, ∅, ui〉

|
∏

i∈Md+1∪...∪MD

NoLeader′〈ui, fi, Ni〉)\F

We will show that
T0 = T 0 =⇒ T 1 =⇒ . . . =⇒ TD .

To begin with, note that Md+1 =
⋃

i∈Md
Chi. Furthermore, for any i ∈ Md, if Chi = {j1, . . . , ji}, we

have that

InComp′〈ui, . . .〉
electioni,j1

(ν)−→ . . .

electioni,ji
(ν)−→

∏

k∈N−Chi

InComp′〈ui, fi, ν,Ni, Ni − Chi, Ni − {fi}, ∅, ui〉

NoLeader′〈uj1 , ui, Nj1〉
electioni,j1

(s)−→ InComp′〈uj1 , ui, ν, Nj1 , Nj1 − {ui}, Nj1 − {ui}, ∅, lj1〉
...

NoLeader′〈uji , ui, Nji〉
electioni,ji

(s)−→ InComp′〈uji , ui, ν, Nji , Nji − {ui}, Nji − {ui}, ∅, lji〉

Consequently, we have that for any d, T d =⇒ T d+1.

14



At this point, all pending election messages can be emitted, and the corresponding ack0 acknowl-
edgements returned, yielding

TD =⇒ (
∏

i∈K−MD

InComp′〈ui, fi, ν, Ni, ∅, Ni − Chi, ∅, ui〉

|
∏

i∈MD

InComp′〈ui, fi, ν,Ni, ∅, ∅, ∅, ui〉)\F.

Now, let us write Rd, 0 ≤ d ≤ D, for the process

Rd def= (
∏

i∈M0∪...∪Md−1

InComp′〈ui, fi, ν, Ni, ∅, Ni − Chi, ∅, ui〉

|
∏

i∈Md

InComp′〈ui, fi, ν,Ni, ∅, ∅, ∅, ui〉

|
∏

i∈Md+1∪...∪MD

LeaderMode′〈ui, fi, ν,Ni,maxi〉)\F

where maxi is the maximum identifier of all nodes in the subtree rooted at node i. We will show that

TD = RD =⇒ . . . =⇒ R0 .

In particular, for any 0 ≤ d < D, and i ∈ Md−1, if Chi = {j1, . . . , ji} we have that

InComp′〈ui, fi, ν, Ni, ∅, Ni − Chi, ∅, ui〉
ack1i,j1

(maxj1
)−→ . . .

ack1i,ji
(maxji

)−→ InComp′〈ui, fi, ν, N, ∅, ∅, ∅,mi〉

InComp′〈uj1 , ui, ν, Nj1 , ∅, ∅, ∅,maxj1〉
ack1i,j1

(maxj1
)−→ LeaderMode′〈uj1 , ui, ν,Nj1〉

...

InComp′〈uji , ui, ν, Nji , ∅, ∅, ∅,maxji〉
ack1i,ji

(maxji
)−→ LeaderMode′〈uji , ui, ν,Nji〉

where mi = max{ui,maxj1 , . . . , maxji}. Consequently, we have that for any d, Rd =⇒ Rd−1. It is
now trivial to see that R0 can produce the required transition

R0 leader(max)−→ S0

where

S0
def= (ElectedMode〈ν, ν, ν, N, N,max〉 |

∏

i 6=ν

LeaderMode′〈ui, fi, ν, Ni〉)\F

It is now straightforward to verify that after a number of communications along channels leaderi,j ,
the system will evolve into state

(
∏

i∈K

ElectedMode〈ui, fi, ν, Ni, ∅,max〉)\F ≈ 0

which completes the proof. 2

Lemma 3.4 T0 is confluent.

15



Proof. We may check that processes NoLeader′, InComp′, LeaderMode′ and ElectedMode, are con-
fluent by construction and satisfy the remaining conditions of Theorem 2.5. Thus, the result follows.
2

From these two results we have that:

Corollary 3.5 T0 ≈ leader(max).0 where max = max{ui|i ∈ K}.

Having used confluence to analyze the behavior of T0, we can now relate it to that of P0. Let
P range over derivatives of P0 and T range over derivatives of T0. First, we introduce a notion of
similarity between derivatives of P0 and T0. We say that P and T are similar if the computation
initiator in T coincides with the maximum source node present in P and, additionally, the set of nodes
in P that have this source form a subtree of the spanning tree of T . All such nodes are in the same
state in both P and T whereas the remaining nodes are idle in T no matter their status in P . The
precise definition is as follows:

Definition 3.6 Let

P
def= (

∏

m∈M1

NoLeader〈um, Nm〉 |
∏

m∈M2

InComp〈um, fm, sm, Nm, Sm, Rm, Am, maxm〉

|
∏

m∈M3

LeaderMode〈um, sm, Nm〉 |
∏

m∈M4

ElectedMode〈um, sm, Nm, Sm, lm〉)\F

T
def= (

∏

m∈M ′
1

NoLeader′〈um, fm, Nm, lm〉 |
∏

m∈M ′
2

InComp′〈um, fm, ν,Nm, Sm, Rm, Am,maxm〉

|
∏

m∈M ′
3

LeaderMode′〈um, ν, Nm〉 |
∏

m∈M ′
4

ElectedMode〈um, ν, Nm, Sm, lm〉)\F

where, {M1,M2,M3, M4} and {M ′
1,M

′
2,M

′
3,M

′
4} are partitions of set K, {(um, fm) | m ∈ K} forms a

spanning tree of the network rooted at ν, and

ν = max(M2 ∪M3 ∪M4)

M ′
1 = M1 ∪ {u | u ∈ (M2 ∪M3 ∪M4), su 6= ν}

M ′
2 = {u ∈ M2 | su = ν}

M ′
3 = {u ∈ M3 | su = ν}

M ′
4 = {u ∈ M4 | su = ν}

Then we say that P and T are similar processes.

Lemma 3.7 R = {〈T, P 〉|P and T are similar} is a strong simulation.

Proof. Consider processes T and P as in Definition 3.6 with (T, P ) ∈ R and suppose that T
α−→ T ′.

We will show that P
α−→ P ′ and (T ′, P ′) ∈ R. This can be proved by a case analysis on the possible

actions of T .

• If α = τ and for x ∈ M ′
1, y ∈ M ′

2,

NoLeader′〈ux, uy, Nx〉
electionuy,ux (ν)−→ InComp′〈ux, uy, ν, Nx, Nx − {uy}, Nx − {uy}, ∅, ux〉,

16



InComp′〈uy, fy, ν,Ny, Sy, Ry, Ay,maxy〉
electionuy,ux(ν)−→ InComp′〈. . . , Sy − {ux}, . . .〉

and

T
τ−→ (

∏

m∈M ′
1−{ux}

NoLeader′〈um, fm, Nm〉

| InComp′〈ux, uy, ν,Nx, Nx − {uy}, Nx − {uy}, ∅, ux〉
| InComp′〈uy, fy, ν, Ny, Sy − {sx}, Ry, Ay,maxy〉
|

∏

m∈M ′
2−{uy}

InComp′〈um, fm, ν, Nm, Sm, Rm, Am,maxm〉

|
∏

m∈M ′
3

LeaderMode′〈um, fm, ν, Nm〉

|
∏

m∈M ′
4

ElectedMode〈um, fm, ν, Nm, Sm, lm〉)\F

By the definition of similar processes it must be that uy ∈ M2 and either ux ∈ M1 or ux ∈
M2 ∪M3 ∪M4 and sx 6= ν. Suppose that ux ∈ M3 (the remaining cases are similar). Then we
have:

InComp〈uy, fy, ν,Ny, Sy, Ry, Ay,maxy〉
electionuy,ux(ν)−→ InComp〈. . . , Sy − {ux}, . . .〉

and, since ν = max(M2 ∪M3 ∪M4), sx < ν and

LeaderMode〈ux, fx, sx, Nx〉
electionuy,ux(ν)−→ InComp〈ux, uy, ν, Nx, Nx − {uy}, Nx − {uy}, ∅, ux〉 .

Consequently,

P
τ−→ (

∏

m∈M1

NoLeader〈um, Nm〉

|
∏

m∈M2−{uy}
InComp′〈um, fm, sm, Nm, Sm, Rm, Am,maxm〉

| InComp〈uy, fy, ν,Ny, Sy − {ux}, Ry, Ay,maxy〉
| InComp〈ux, uy, ν,Nx, Nx − {uy}, Nx − {uy}, ∅, uy〉
|

∏

m∈M3−{ux}
LeaderMode〈um, fm, sm, Nm〉

|
∏

m∈M4

ElectedMode〈um, fm, sm, Nm, Sm, lm〉)\F

and T and P are similar to each other.

• If α = τ and for x ∈ M ′
3, y ∈ M ′

4,

LeaderMode′〈ux, uy, ν,Nx〉
leaderuy,ux(ν,ly)−→ ElectedMode〈ux, uy, ν, Nx, Nx − {uy}, ly〉,

ElectedMode〈uy, fy, ν, Ny, Sy, ly〉
leaderuy,ux (ν,ly)−→ ElectedMode〈. . . , Sy − {ux}, . . .〉

17



and

T
τ−→ (

∏

m∈M ′
1

NoLeader′〈um, fm, Nm〉

|
∏

m∈M ′
2

InComp′〈um, fm, ν, Nm, Sm, Rm, Am,maxm〉

|
∏

m∈M ′
3−{ux}

LeaderMode′〈um, fm, ν, Nm〉

| ElectedMode〈ux, uy, ν, Nx, Nx − {uy}, ly〉
| ElectedMode〈uy, fy, ν, Ny, Sy − {ux}, ly〉
|

∏

m∈M ′
4−{uy}

ElectedMode〈um, fm, ν,Nm, Sm, lm〉)\F

By the definition of similar processes it must be that uy ∈ M4 and ux ∈ M3 with sx = sy = ν,
and we have:

LeaderMode〈ux, uy, ν,Nx〉
leaderuy,ux(ν,maxy)−→ ElectedMode〈ux, uy, ν, Nx, Nx − {uy}, maxy〉.

Consequently,

P
τ−→ (

∏

m∈M1

NoLeader〈um, Nm〉

|
∏

m∈M2

InComp〈um, fm, sm, Nm, Sm, Rm, Am,maxm〉

|
∏

m∈M3−{ux}
LeaderMode〈um, fm, sm, Nm〉

| ElectedMode〈ux, uy, ν, Nx, Nx − {uy}, ly〉
| ElectedMode〈uy, fy, ν, Ny, Sy − {ux}, ly〉)
|

∏

m∈M4−{ux}
ElectedMode〈um, fm, sm, Nm, Sm, lm〉\F

and T and P are similar to each other.

• If α = τ and the action has arisen from a communication along a channel of type ack0 or ack1
then the proof follows similarly to the previous two cases.

• If α = leader(max) then there exists x ∈ M ′
2 such that

InComp′〈ux, ux, ux, Nx, ∅, ∅, ∅, max〉 leader(max)−→ ElectedMode〈ux, ux, ux, Nx, Nx,max〉
and

T
τ−→ (

∏

m∈M ′
1

NoLeader′〈um, fm, Nm〉

|
∏

m∈M ′
2−{ux}

InComp′〈um, fm, ν, Nm, Sm, Rm, Am, maxm〉

|
∏

m∈M ′
3

LeaderMode′〈um, fm, ν,Nm〉

|
∏

m∈M ′
4

ElectedMode〈um, fm, ν, Nm, Sm, lm〉

| ElectedMode〈ux, ux, ux, Nx, Nx,max〉)\F

18



By the definition of similar processes it must be that x = ν ∈ M2 and

InComp〈ν, ν, ν, Nx, ∅, ∅, ∅,max〉 leader(max)−→ ElectedMode〈ν, ν, ν, Nx, Nx,max〉

and

P
τ−→ (

∏

m∈M1

NoLeader〈um, Nm〉

|
∏

m∈M2−{ux}
InComp′〈um, fm, ν, Nm, Sm, Rm, Am,maxm〉

|
∏

m∈M3

LeaderMode〈um, fm, ν,Nm〉

|
∏

m∈M4

ElectedMode〈um, fm, ν,Nm, Sm, lm〉

| ElectedMode〈ν, ν, ν, Nx, Nx,max〉)\F

and T and P are similar to each other.

This completes the proof. 2

By Corollary 3.5 and Lemma 3.7 we have that P0
leader(max)

=⇒ 0. Our final result establishes a
correspondence between P0 and agents T0 ∈ T .

Lemma 3.8 If P0
w=⇒ P then there exists T0 such that, T0

w=⇒ T and P and T are similar.

Proof.
Given a computation P0

w=⇒ P , where P is as in the Definition 3.6 above, we say that T0 ∈ T , is
compatible with the computation, if

T0
def= (

∏

i∈K−{ν}
NoLeader′〈i, pi, Ni, li〉 | InComp′〈ν, ν, ν, Nν , Nν , Nν , ∅, ν〉)\F ,

where ν = max(M2 ∪M3 ∪M4) and, for all i ∈ M2 ∪M3 ∪M4 such that si = ν, pi = fi. Note that by
Lemma 3.2, {i, fi|i ∈ K, si = ν} is a spanning tree of the network, hence, there exists a compatible T0

process for every derivative P of P0.
We will prove the result by induction on the length, n, of the transition P0

w=⇒ P . The base case
n = 0 is trivially true for any T0 ∈ T . Suppose that the result holds for n = k − 1 and consider
P0

w=⇒ P ′ α−→ P a transition of length k. Let T0 be compatible with the computation. Then, T0 is
also compatible with the computation P0

w=⇒ P ′ and, by the induction hypothesis, T0
w=⇒ T ′ where

P ′ and T ′ are similar. Now, consider the transition P ′ α−→ P . The following cases exist:

• α = τ and the internal action took place on a channel in F with object s 6= ν. Then, we may see
that for T = T ′, T ′ ε=⇒ T ′ with P and T being similar.

• α = τ and the internal action took place on a channel in F with source s = ν. Then, using a
case analysis similar to the one found in the proof of Lemma 3.7, we may find appropriate T such
that T ′ τ−→ T and T , P similar.

• α = leader(m). Then there must exist a process InComp〈u, u, u, N, ∅, ∅, ∅,m〉 in P ′. Further, it
must be that the process has received a message along channel ack1v,u(u,mv) for all v ∈ N . In
turn, this implies that all v ∈ K received a message along channel ack1w,v(u,mw) for all w ∈ Nv,

19



and so on. Since the network is connected, this implies that all nodes except u have, at some
point in the past, entered state LeaderMode〈i, u, Ni〉. Once in such a mode, a node can either
maintain this state or evolve into a process of the form ElectedMode〈i, u, Ni, Si, l〉. Thus,

P ′ def= (InComp〈u, u, u, N, ∅, ∅, ∅,m〉 |
∏

m∈L1

LeaderMode〈um, u,Nm〉

|
∏

m∈L2

ElectedMode〈um, u, Nm, Sm, lm〉)\F

α−→ P = (ElectedMode〈u, u, N, N,m〉 |
∏

m∈L1

LeaderMode〈um, u, Nm〉

|
∏

m∈L2

ElectedMode〈um, u, Nm, Sm, lm〉)\F

and consequently,

T ′ def= (InComp′〈u, u, u, N, ∅, ∅, ∅,m〉 |
∏

m∈L1

LeaderMode′〈um, u, Nm〉

|
∏

m∈L2

ElectedMode〈um, u, Nm, Sm, lm〉)\F

α−→ T = (ElectedMode〈u, u,N, N, m〉 |
∏

m∈L1

LeaderMode′〈um, u, Nm〉

|
∏

m∈L2

ElectedMode〈um, u, Nm, Sm, lm〉)\F

and the result follows.

2

We can now prove our main theorem. We have seen that P0
leader(max)

=⇒ 0. Further, suppose that
P0

α=⇒ with α 6= leader(max). Then, there exists T0 such that T0
α=⇒. However, this is in conflict

with Corollary 3.5. Finally, for the same reason, it is not possible that P0 =⇒ P ′
1 6−→. This implies

that P0 ≈ T0, as required.

4 Specification and Verification in IOA

4.1 Specification

The specification of algorithm LE in I/O automata is the composition of the LENodei automata and
the Channel automata Ci,j , ∀ i, j ∈ I. The signature, state, and transitions of the LENodei automaton
are given in Figure 2. The specification of the Channel automaton Ci,j is the one typically used for
non-lossy channels and is given in Figure 3.

4.2 Correctness Proof

The correctness proof is divided into two main parts. We first show that a unique spanning tree is
built, and using this fact we show that a unique common node (the one with the highest id) is elected
as the leader. For each part safety and liveness properties are stated. The technique of modular
decomposition is used for the final conclusions.

20



Data Types and Identifiers:

I: total ordered set of processes’ identifiers

M: messages

m = 〈type, maxid, leaderid, srcid, mychild〉 ∈ M, where type ∈
{election, ack, leader}; maxid, leaderid, srcid ∈ I ∪ {⊥}; mychild:

Boolean

i, j ∈ I
Signature:

Input:

receive(m)j,i

Output:

send(m)i,j

Internal:

beginComputationi

setAcktoParenti

setLeaderi
States:

maxi ∈ I ∪ {⊥}, initially ⊥
srci ∈ I ∪ {⊥}, initially ⊥
leaderi ∈ I ∪ {⊥}, initially ⊥
parenti ∈ I ∪ {⊥}, initially ⊥
Nbrsi ∈ 2I : Neighbors of i

inElectioni : Boolean, initially false

sentAcktoParenti : Boolean, initially true

toBeAckedi ∈ 2I , initially ∅
tosendi , a vector of queues of messages, initially tosendi [j ] = null, ∀j ∈

I

Transitions:

input receive(m)j,i

Effect:

if m.type = election then

if (inElectioni=false ∨ (inElectioni=true ∧m.srcid>srci)) then

srci := m.srcid

for all k ∈ Nbrsi − {j} do

enque m to tosendi [k ]

od

toBeAckedi := Nbrsi − {j}
sentAcktoParenti := false

inElectioni := true

parenti := j

maxi := i

elseif (sentAcktoParenti = false ∧ srci = m.srcid) then

enque 〈ack,maxi , ∗, srci , false〉 to tosendi [j ]

fi

elseif m.type = ack then

if sentAcktoParenti = false ∧m.srcid = srci then

remove j from toBeAckedi

if m.mychild = true ∧m.maxid > maxi then

maxi := m.maxid

fi

fi

elseif m.type = leader then

if sentAcktoParenti = true ∧ inElectioni = true

∧m.srcid = scri then

leaderi := m.leaderid

inElectioni := false

for all k ∈ Nbrsi − {j} do

enque m to tosendi [k ]

od

fi

fi

output send(m)i,j

Precondition:

m first on tosendi [j ]

j ∈ Nbrsi
Effect:

deque m from tosendi [j ]

internal beginComputationi

Precondition:

inElectioni = false ∧ leaderi = ⊥
Effect:

scri = i

for all k ∈ Nbrsi do

enque 〈election, ∗, ∗, srci , ∗〉 to tosendi [k ]

do

toBeAckedi := Nbrsi
sendAcktoParent := false

inElectioni := true

parenti := i

maxi := i

internal setAcktoParenti

Precondition:

toBeAckedi = ∅ ∧ srci 6= i ∧ sentAcktoParenti = false

Effect:

sentAcktoParenti = true

enque 〈ack,maxi , ∗, srci , true〉 to tosendi [parenti ]

internal setLeaderi

Precondition:

toBeAckedi = ∅ ∧ srci = i ∧ sentAcktoParenti = false

Effect:

sentAcktoParenti = true

inElectioni = false

leaderi = maxi

for all k ∈ Nbrsi do

enque 〈leader, ∗, leaderi , srci , ∗〉 to tosendi [k ]

Figure 2: The LENodei automaton.

21



Signature:
Input:

send(m)j,i, where m ∈M and i, j ∈ I

Output:

receive(m)i,j , where m ∈M and i, j ∈ I

States:

MSG, a set of messages, initially ∅

Transitions:

input send(m)j,i

Effect:

put m in MSG

output receive(m)i,j

Precondition:

m ∈ MSG

Effect:

remove m from MSG

Figure 3: The Channel Automaton Ci,j

4.2.1 A Unique Spanning Tree is Built

We state and prove the safety and liveness properties that lead to the conclusion that algorithm LE

builds a unique spanning tree.

Safety Properties

The first invariant states that once a node enters a leader-election computation, it adapts a parent and
a source (root) of a potential spanning tree.

Invariant 1 Given any execution of LE, any state s, and any i ∈ I,

(a) if s.inElectioni = false and s.leaderi = ⊥ then s.srci = ⊥ and s.parenti = ⊥.

(b) if s.inElectioni = true then s.srci 6= ⊥ and s.parenti 6= ⊥.

Proof. We first prove part (a) of the invariant. The proof is by induction on the length of the execution.
The invariant holds in the base case since initially s0.inElectioni = false, s0.leaderi = ⊥, s0.srci = ⊥
and s0.parenti = ⊥. Let the invariant hold for state s and consider step (s, π, s′). If π = send(m)i,j

or setAcktoParenti then s′.inElectioni = s.inElectioni, s′.leaderi = s.leaderi, s′.srci = s.srci and
s′.parenti = s.parenti thus the statement holds by the inductive hypothesis. For the rest of the cases:

• If π = beginComputationi then, by the preconditions of π it holds that s.inElectioni = false and
s.leaderi = ⊥ and by the inductive hypothesis, s.srci = ⊥ and s.parenti = ⊥. From the effects
of π, we get that s′.inElectioni = true, s′.srci = i and s′.parenti = i thus the statement holds.

• If π = setLeaderi then by the effects of this action s′.inElectioni = false and s′.leaderi 6= ⊥
hence the statement holds.

• If π = receive(m)j,i and m.type = ack or m.type = leader then s′.srci = s.srci and s′.parenti =
s.parenti thus the statement holds by the inductive hypothesis.

• If π = receive(m)j,i and m.type = election and s.inElectioni = true then s′.inElectioni = true

thus the statement holds.

• If π = receive(m)j,i and m.type = election and s.inElectioni = false, then from the effects of
this action we have that s′.inElectioni = true, thus the statement holds.

22



We now prove part (b) of the invariant. The proof is by induction on the length of the execution.
Initially s0.inElectioni = false thus the statement trivially holds. Let the invariant hold for state s

and consider step (s, π, s′). If π = send(m)i,j or setAcktoParenti then s′.inElectioni = s.inElectioni,
s′.srci = s.srci and s′.parenti = s.parenti thus the statement holds by the inductive hypothesis. For
the rest of the cases:

• If π = beginComputationi then, by the preconditions of π it holds that s.inElectioni = false.
From the effects of π, we get that s′.inElectioni = true, s′.srci = i and s′.parenti = i thus the
invariant is re-established.

• If π = setLeaderi then by the effects of this action s′.inElectioni = false hence the statement
holds.

• If π = receive(m)j,i and m.type = ack or m.type = leader and s.inElectioni = false then
s′.inElectioni = s.inElectioni, s′.srci = s.srci and s′.parenti = s.parenti thus the statement
holds by the inductive hypothesis.

• If π = receive(m)j,i and m.type = leader and s.inElectioni = true, then s′.inElectioni = false

and hence the statement holds.

• If π = receive(m)j,i and m.type = election and s.inElectioni = true then by the inductive
hypothesis s.srci 6= ⊥ and s.parenti 6= ⊥. From the effects of π, s′.inElectioni = true and
s′.srci 6= ⊥ and s′.parenti 6= ⊥, thus the invariant is re-established.

• If π = receive(m)j,i and m.type = election and s.inElectioni = false, then by part (a) of this
invariant it holds that s.srci = ⊥ and s.parenti = ⊥. From the effects of π we have that
s′.inElectioni = true, s′.srci = m.srcid and s′.parenti = j, thus the invariant is re-established.

This completes the proof. 2

The next lemma states that source nodes do not appear “out of the blue”. The proof is by
investigation of the code and makes use of Invariant 1.

Lemma 4.1 In any given state s of an execution of LE, for any i, j ∈ I if s.srci = j, then there exists
a step (s1, π, s2), s1 < s, s2 ≤ s and π = beginComputationj.

Proof. The proof is by investigation of the code. Since the initial value of s0.srci = ⊥ we have to
check under which cases node i changes the value of srci. From the code there are two cases:

• In the internal action beginComputationi. By the preconditions of this action, for a state s1 < s,
s1.inElectioni = false and s1.leaderi = ⊥, thus from Invariant 1(a), s1.srci = ⊥. From the
effects of π we get s2.srci = j where i = j as required.

• In input action receive(m)k,i where m.type = election and m.srcid = j, i 6= j and for a state
s′ < s such that s′.inElectioni = false or s′.inElectioni = true ∧m.srcid > srci. This implies
a preceding send(m)k,i event such that m.type = election ∧m.srcid = j. From the code we find
two cases for such action to occur:

– In internal action beginComputationk where k = j, thus there exists a step (s1, π, s2), s1, s2 <

s′ such that π = beginComputationj as shown in the first bullet above.

– In input action receive(m)`,k where m.type = election, m.srcid = j, k 6= j and
inElectionk = false or inElectionk = true ∧ m.srcid > srck. The proof continues re-
cursively on `.

23



2

Let execi0 be any execution of LE where only a single node i0 begins computation. We call i0 the
initiator of the computation. The next invariant states that once a process enters a computation with
a unique initiator, it becomes part of the spanning tree rooted at the initiator.

Invariant 2 Given any execution execi0 of LE, any state s, and for all i ∈ I such that s.parenti 6= ⊥,
then the edges defined by all s.parenti variables form a spanning tree of the subgraph of G rooted at i0.

Proof. The proof is by induction on the length of the execution. The base case is trivial since
parenti = ⊥, ∀ i ∈ I. Let the invariant hold for state s and consider step (s, π, s′). If π = send(m)i,j ,
setAcktoParenti or setLeaderi then s′.parenti = s.parenti thus the statement holds by the inductive
hypothesis. For the rest of the cases we have:

• If π = beginComputationi then it must be that i = i0 by our assumption. Moreover from the
preconditions of π we have that s.inElectioni = false and s.leaderi = ⊥ and by Invariant 1(a)
we get that s.parenti = ⊥. Since no other beginComputationj occurred before state s, it holds
also that s.parentj = ⊥, ∀ j ∈ I. From the effects of π, s′.parenti0 = i0. Thus i0 is the only node
in the spanning tree and is considered to be the root of this spanning tree.

• If π = receive(m)j,i then there are the following cases:

– If m.type = ack or m.type = leader then s′.parenti = s.parenti thus the statement holds
by the inductive hypothesis.

– If m.type = election and s.inElectioni = false then, by the effects of this action we have
that s′.parenti = j and s′.srcid = m.srcid. This implies a preceding send(m)j,i event such
that m.type = election. From the code we have that such messages are sent by processes
that are in election and hence by Invariant 1(b) and Lemma 4.1 we have that parentj 6= ⊥
and m.srcid = i0. Thus j belongs to the spanning tree rooted at i0 according to the inductive
hypothesis. Since i is a neighbor of j (by the preconditions of the action send(m)j,i) then
the new edge defined by parenti extends the spanning tree to include node i. Moreover,
since s.inElectioni = false and by Invariant 1(a) it holds that s.parenti = ⊥ thus node
i did not belong to the spanning tree previously and in addition to the uniqueness of the
variable parenti we conclude that i cannot cause loops in the spanning tree.

– If m.type = election and s.inElectioni = true and m.srcid = s.srci then s′.parenti =
s.parenti thus the statement holds by the inductive hypothesis.

– If m.type = election and s.inElectioni = true and m.srcid > s.srci, from Lemma 4.1 we
have that there must have existed a step (s1, π

′, s2), s1, s2 < s where π′ = beginComputationm.srcid

and m.srcid 6= i0. But this contradicts the assumption of unique initiator and hence this
case is not possible.

This completes the proof. 2

The following invariant states that a node adapts a new source only if it is higher than its current
source.

Invariant 3 For any process i ∈ I and for any two states s, s′ s.t. s < s′ of any execution of LE, if
s′.srci 6= s.srci, then s′.srci > s.srci.

24



Proof. The proof is an induction on the length of the execution. The base case holds trivially, as
initially, ∀ i ∈ I, s0.srci = ⊥. We suppose that the invariant holds for state s and we examine step
(s, π, s′). If π = send(m)i,j , setAcktoParenti or setLeaderi then s′.srci = s.srci and the statement
holds. For the remaining cases we have:

• If π = beginComputationi then from the preconditions of π we have that s.inElectioni = false

and s.leaderi = ⊥ and by Invariant 1(a) we get that s.srci = ⊥. By the effects of π, s′.parenti = i

and hence the invariant is re-established (by convention, i > ⊥, ∀ i ∈ I).

• If π = receive(m)j,i then there are the following cases:

– If m.type = ack or m.type = leader then s′.srci = s.srci thus the statement holds.

– If m.type = election and s.inElectioni = false then by Invariant 1(a) we have that s.srci =
⊥ and by the effects of this action we get that s1.srcid = m.srcid. This implies a preceding
send(m)j,i event that by the inductive hypothesis, m.type = election and m.srcid > ⊥.
Hence the invariant is re-established.

– If m.type = election and s.inElectioni = true we notice that s′.srci = m.srcid only if
m.srcid > s.srci. Hence s′.srci > s.srci as required.

This completes the proof. 2

Liveness Properties

This lemma states that in executions with a single initiator a unique spanning tree is eventually built
rooted at the initiator.

Lemma 4.2 In any fair execution execi0, all nodes i ∈ I eventually belong to a unique spanning tree
rooted at i0.

Proof. For any node j ∈ I, we denote as Dj the length in hops of the maximum path among the set of
loop-free paths from i0 to j. We will prove that eventually j belongs in the spanning tree rooted at i0.
The proof is by induction on Dj . For Dj = 0, let s0 be an initial state and a step (s0, π, s1) such that
π = beginComputationi0 . Notice that π is the only action possible in execi0 . From the effects of action
π we get that s1.srci = i0, s1.inElectioni = true, s1.parenti = i0 and some messages m such that
m.type = election and m.srcid = i0 are prepared to be sent to the neighbors of i0. ¿From Invariant 2
i0 forms a spanning tree rooted at i0 thus the statement holds.

Assume that for any k, 0 < k < Dj , any node u such that Du ≤ k belongs to the spanning tree
rooted at i0. For k + 1 = Dj , we have two cases:

• j is a neighbor of i0, hence j has received or receives a message m from i0 such that m.type =
election and m.srcid = i0.

• j is a neighbor of a node v 6= i0 such that Dv ≤ k. By the induction hypothesis, v belongs to
the spanning tree rooted at i0. This implies a step (s, π, s′) such that π = receive(m)u,v where
m.type = election and inElectionv = false. From the effects of π, a set of messages m are sent
to the neighbors of v, including j such that m.type = election and m.srcid = i0.

Upon receiving m from v, that is π = receive(m)v,j there are two cases for process j:

25



• j is in election, that is, inElectionj = true. Then parentj 6= ⊥ and since only node i0 started
the computation, by Invariant 2 j already belongs to the spanning tree rooted at i0 and hence
the statement holds.

• j is not in election, that is, inElectionj = false. By the effects of π, srcj = i0 and parentj = v.
By the inductive hypothesis v belongs to the spanning tree and per Invariant 2, parentj forms an
edge of the spanning tree rooted at i0. Hence process j belongs to the spanning tree as desired.

Since j is an arbitrary node of the network, we conclude that every j ∈ I eventually belongs in the
spanning tree rooted at i0 in at most D = maxj∈I Dj hops. 2

If more than one beginComputationi actions occur, let ismax be the node with the maximum i value
among them. The following theorem, the core result of this section, shows that a unique spanning tree
is eventually built.

Theorem 4.3 Algorithm LE eventually builds a unique spanning tree rooted at ismax.

Proof. If only one process executes beginComputationi then i = ismax and by Lemma 4.2, eventually a
spanning tree covering all the network will be built rooted at i. Trivially, this spanning tree is unique.

Assume that exactly two processes i0, i1 begin computation and without loss of generality let
i0 > i1 thus i0 = ismax. By Lemma 4.2, each one of these computations tends to cover the whole
network. Hence at least one node receives election messages for both computations. Let s the first
state in which a process i that belongs to the one computation receives an election message to enter
the second computation. For each state s′ < s, we can find a partition of the network such that in
each part only one beginComputationi occurs. Thus, we can apply Lemma 4.2 in each subgraph of
the network, hence there will be two spanning trees under formation, covering different parts of the
network.

At state s there is a process i such that s.srci 6= ⊥ and receives a message m s.t. m.type = election

and m.srcid 6= s.srci. By Invariant 3, i will change the value of the srci variable only if m.srcid >

s.srci. In other words, if process i belongs to the spanning tree of i1 then by Invariant 3 it changes the
value of srci variable to i0, hence it enters the spanning tree of i0. If process i belongs to the spanning
tree of i0 then by Invariant 3 it will not change the value of srci variable to i1 since i1 < i0, hence i

remains in the spanning tree of i0. The same holds for every process j that receives election messages
for both computations, thus the spanning tree of ismax is never blocked by any other spanning tree in
the network. Thus, by Lemma 4.2 eventually every process in the network belongs in the spanning
tree of ismax and this spanning tree is unique.

The case of two starting processes can be easily generalized to any number of starting processes
and the result follows. 2

4.2.2 A Unique Common Leader is Elected

We now state and prove the safety and liveness properties that lead to the correctness of algorithm
LE.

Safety Properties

The following invariant states that a node adapts a new max value only if it is higher than its current
one.

26



Invariant 4 For any node i ∈ I and for any two states s, s′ s.t. s′ < s of any execution of LE, if
s.srci = s′.srci and s.maxi 6= s′.maxi, then s′.maxi > s.maxi.

Proof. The proof of this invariant is done in a similar manner to the proof of Invariant 3. The only
difference is that in the inductive step while considering action π = receive(m)j,i, we need to investigate
m.type = ack instead of m.type = election and specifically the case where m.srcid = srci. 2

The following lemma states that the each child propagates to its parent the maximum value of its
subtree. The proof is by code investigation and it makes use of Invariant 4.

Lemma 4.4 In any state s of an execution of LE, if s.toBeAckedi = ∅ and s.sentAcktoParenti =
false then s.maxi is the greatest value among i and the values that i has “seen” from its children.

Proof. The proof is by code investigation. Initially toBeAckedi = ∅ and sentAcktoParenti = true.
From the code we observe that variable sentAcktoParenti is set to false in two cases:

• In the internal action beginComputationi where toBeAckedi is set to Nbrsi and

• In the input action receive(m)j,i where m.type = election and inElectioni = false or inElectioni =
true ∧m.srcid > srci. In the second case toBeAckedi = Nbrsi − {j}.

In both cases above toBeAckedi 6= ∅ unless Nbrsi = ∅ or Nbrsi = {j} respectively. In such
cases, maxi = i and the lemma holds. In any other case, each k ∈ toBeAckedi has to be removed. A
process k is removed from toBeAckedi only if an input action receive(m)k,i occurs where m.type = ack,
sentAcktoParenti = false and m.srcid = srci. Moreover in the same action, if m.mychild = true

and m.maxid > maxi then maxi = m.maxid. As a result of these actions and by the Invariant 4,
when toBeAckedi = ∅ then maxi is the greatest value among i and the values that i has ”seen” from
its children. 2

Let imax denote the process with the maximum value i. The next theorem (which is actually an
invariant) states that if a node elects a leader, this can only be imax.

Theorem 4.5 For any node i and state s of any execution of LE, if s.leaderi 6= ⊥, then s.leaderi =
imax.

Proof. The proof is by induction on the length of the execution. The base case holds trivially, as
initially ∀i ∈ I, leaderi = ⊥. Assume that the statement holds for a state s and we examine step
(s, π, s′). If π = beginComputationi, send(m)i,j or setAcktoParenti then s′.leaderi = s.leaderi and the
statement holds. For the remaining cases:

• π = setLeaderi. One of the preconditions of this action requires that s.srci = i. This holds
only for the root of the spanning tree, which by Theorem 4.3 is unique. Furthermore, by the
preconditions it holds that s.toBeActedi = ∅ and s.sentAcktoParenti = false. By Lemma 4.4
we have that s.maxi is the greatest value among i and the values that i has ”seen” from its
children.

Since i is the root of the spanning tree, s.maxi is the maximum value of all nodes in the network,
hence s.maxi = imax. From the effects of π we have that s′.leaderi = s.maxi = imax, and the
statement holds.

• π = receive(m)j,i where m.type = leader, m.srcid = srcj , m.leaderid = leaderj and s.inElectioni =
true. Since s.inElectioni = true then this leader message is the first received by i thus
s′.leaderi = m.leaderid. Since m was sent by j at a prior state, by inductive hypothesis,
m.leaderid = imax, thus s′.leaderi = imax and the statement holds.

27



• π = receive(m)j,i where m.type 6= leader, then s′.leaderi = s.leaderi and the statement holds.

This completes the proof. 2

Liveness Properties

We now give the main result that states that algorithm LE indeed solves the Leader Election problem.

Theorem 4.6 Given a fair execution of LE there exists a state s where ∀ i ∈ I, s.leaderi = imax.

Proof. Starting from an initial state s0 the only possible action to occur is the beginComputationi ac-
tion. From Theorem 4.3 we have that eventually a unique spanning tree is built rooted at a node ismax.
Then, from the code it can be observed that ∀ i ∈ I, inElectioni = true and sentAcktoParenti =
false.

We denote as δj the depth of node j in the spanning tree and δtree the depth of the spanning
tree. Fix a node j 6= ismax. We prove that eventually j sends a message to its parent node such
that m.type = ack, m.mychild = true and m.maxid is the maximum value among j and the values
that j has ”seen” from its children. The proof is by induction on δtree. The base case is when
δj = δtree, that is j is a leaf of the spanning tree. In that case toBeAckedj = ∅. Since j 6= ismax

and sentAcktoParenti = false then the preconditions of setAcktoParentj are satisfied. By the effects
of this action a message m such that m.type = ack and m.mychild = true is sent to node parentj .
Trivially, m.maxid = j.

Assume that the statement holds for any δj < k < δtree. That is, every node u with δu > δj

eventually sends a message to its parent node such that m.type = ack, m.mychild = true and m.maxid

is the maximum value among j and the values that j has ”seen” from its children. Since each child
u of j has δu = k > δj , by the inductive hypothesis u eventually sends to j a message m such that
m.type = ack, m.mychild = true and m.maxid is the maximum value of the subtree of u. In the
worst case, k − 1 = δj , j has collected from all its children such messages m. Upon receiving such a
message m from u, j removes u from toBeAckedj and changes the value of maxj only if the maximum
value of the subtree of u is greater than maxj according to Invariant 4. Hence, at k − 1 = δj hops,
toBeAckedj = ∅ and per Lemma 4.4, maxj is the greatest value among j and the values that j has
”seen” from its children. Thus the preconditions of setAcktoParentj are satisfied and by the effects of
this action a message m such that m.type = ack, m.mychild = true and m.maxid = maxj is sent to
node parentj and the statement holds.

Since j is an arbitrary node of the network, we conclude that every j 6= ismax eventually sends a
message to their parent node such that m.type = ack, m.mychild = true and m.maxid is the maximum
value of their subtree. Hence, eventually, ismax receives these messages from all its children and
toBeAckedismax becomes empty. This enables the internal action setLeaderismax that sets leaderismax 6=
⊥, and particularly, per Theorem 4.5, leaderismax = imax.

Then, ismax broadcasts a message m s.t. m.type = leader and m.leaderid = imax to its neighbors.
Its neighbors, upon receiving a message m for the first time, that is, inElection = true, set leader =
m.leaderid = imax, inElection = false and forward the message to their neighbors. Given that the
graph is connected, this message is received by all nodes, in D hops in the worst case, where D is the
length of the maximum path among the sets of loop-free paths from ismax to any node i. 2

5 Post-Case-Study Comparison

Having presented the models and correctness proofs of the LE algorithm in the two formalisms, in this
section we contrast the two approaches and draw conclusions regarding their applicability and relative

28



strengths.

Specification. Beginning with the specifications developed in the two frameworks, we note that
they have many similarities as well as some points of distinction. For instance, they both consider the
system as the parallel composition of the constituent components described as processes/automata.
The nature of these processes/automata does not include any internal concurrency. Although this was
expected in the I/O automata model, in process algebra there was an alternative option of firing all
acknowledgement and election messages in processes concurrently to the main body of the process. It
turned out that the imposition of sequentiality and the maintenance of sets containing this information
enabled the trackability of the system derivatives and a smoother proof.

On the other hand, the models depart from each other in a number of ways. To begin with, as
already noted, the I/O automata model builds on the notion of a state. The state of an automaton
consists of a set of variables which can be accessed and updated by the automaton’s actions even if
these constitute a set of independent parallel threads. In the context of process algebras, the presence
of independent parallel threads sharing a common set of variables creates the need to build mechanisms
for state maintenance or resort to alternative means of structuring the model which can be quite taxing.
Moving on, we note that the CCS model imposes a sequential structure to a node that captures its
flow of execution: in the algorithm’s model, a node normally proceeds through the sequence of states
NoLeader, InComp, LeaderMode, ElectedMode with the possibility, under certain circumstances, to
flow from a LeaderMode to an InComp. The possible actions enabled from each state are specified in
the state’s definition. On the other hand, in the I/O automata model, the flow of execution has to
be captured via an appropriate use of state variables and management of their values. Thus, one has
to look into the code carefully to build the node’s behavior as a flow diagram which can increase the
effort required to debug the specification. Another interesting point, is that the two formalisms differ
in their adoption of channels: In CCS channels are a first-class entity and communication between
processes is carried out by a handshake mechanism over their connecting channels. If one needs to
employ a more involved type of a channel (e.g. buffer or lossy channel), then special processes need
to be described for connecting the original sender and receiver. In contrast, in the I/O automata
model, channels are modeled as automata which execute complementary actions with their source and
destination. For simple types of channels, this machinery is standard and becomes almost invisible to
the main body of an application but has as a consequence that in a proof one needs to assume the
proper delivery of messages, assuming of course that channels are intended to be reliable. Finally, we
note that the specifications were produced by a newcomer to both of these formalisms who reported the
I/O automata model to be easier to produce and understand. This is mainly due to the programming
style of I/O automata which does not place great demands on a newcomer to the formalism.

Verification. Moving on to the verification we again observe that the two proofs build on a number of
common ideas (e.g. both proofs consider the case that the algorithm contains a unique initiator before
moving on to the general case). However, the approaches taken are quite distinct. The process calculus
proof is based on the use of bisimulation for establishing the equivalence between the system and its
perceived intended behavior. This approach places the emphasis on the external behavior the system
may produce and involved adding an advertisement of the election of a leader in the specification of
the processes. On the other hand, the I/O approach concentrates on the internal state of the network’s
nodes and uses assertional techniques for the proof of a number of safety and liveness properties which
establish that in every execution, eventually, all processes will know a common leader.

In general, we observe that the process-calculus philosophy and proofs methods are geared towards

29



establishing properties of the external behavior of a system. This can be problematic when the cor-
rectness criterion concerns the internal state of the system. Similarly, it is less obvious how easily the
I/O automata model can prove a correctness criterion expressed as a complex sequence of external
communications. Furthermore, there appears to be a distinction between the two formalisms’ ability
to deal with global and local properties. On the one hand, using process calculi one tends to manage a
global view of the system, which can be convenient when dealing with global properties. On the other
hand, in I/O automata, modular decomposition allows to decompose global properties of a composi-
tion of automata into local properties of the automata and thus simplify the reasoning. However, this
approach assumes the decomposition of the global property into local statements which is not always
straightforward.

The above, however, does not imply that the two formalisms are incapable of each performing the
type of reasoning natural in the other. In particular, for the specific algorithm, the I/O automata
argumentation could be adopted in the process-algebraic setting: the various safety and liveness prop-
erties could be rewritten and proved correct by induction on the length of the derivation. On the other
hand, translating the process-calculus proof into the I/O automata framework would not be feasible
in its entirety. Specifically, the fact that the notion of confluence has not been developed in the setting
would preclude “copying” the first phase of the proof. Still the second part, consisting of the estab-
lishment of what is called in the I/O automata language a backward simulation [22], would be possible
to establish. However, it is questionable, whether such translations would result in easier-to-produce
or more comprehensible proofs. For the specific algorithm, it seems that it would not be natural to do
so.

Moving on to the application of the two methodologies, one may argue that the proof methodologies
of process calculi appear to be more technical. They offer a variety of results such as compositionality
results for facilitating the verification process but it may take some ingenuity for choosing and adopting
them. On the other hand, I/O automata proofs can be more intuitive, closer to the “way of thinking”
of the algorithm, thus easier to apply. The challenge being to identify the appropriate safety and
liveness properties (which for the specific algorithm were not difficult), the rest of the process is guided
by checking for missing information towards reaching the intended goal and subsequently expressing
it as additional lemmas and invariants. However, the descriptive language typically employed in I/O
automata liveness proofs (which of course can be made formal by the use of advanced techniques)
may allow a less mature prover to fall into pitfalls. In contrast, in the process-algebraic proof, safety
and liveness properties are paired together and their proof follows the formal language and semantics
(much in the same way as the proof of safety properties in I/O automata). This results in a continuous
rigidity in the proof as well as a higher awareness on the part of the prover when an argument is
becoming informal.

Finally, we point out that the process of carrying out the proof within the I/O automata framework
has been a lot more straightforward than in the PA framework. This is probably not surprising since the
I/O automata model has been especially developed for by-hand verification of distributed algorithms
and is associated with a bulk of work containing exactly this type of proofs [17]. In comparison, there
are relatively few similar exercises in the PA model, where more emphasis has been given on automatic
model-checking for process verification. The specific approach taken in the proof presented, although
certainly not the only viable solution, has also been used in [31, 30, 9].

30



6 Conclusions

The purpose of this work is the evaluation of two popular formalisms in the domain of reasoning about
distributed systems. On embarking on this study a number of choices had to be made with regards
to the case study and the tools to be used. Our choice of the algorithm was mostly influenced by
the motivation to begin this line of work with a fairly simple algorithm which both formalisms were
expected to handle well. (This is a fairly standard algorithm involving essentially the computation
of a function based on point-to-point communication.) As expected no surprises were met, a fact
that allowed us to focus on the juxtaposition of the two formalisms and the crystallization of some
initial conclusions. The choice of the specific instances of the formalisms to be used for our study
then followed straightforwardly. In the case of I/O automata the basic model was clearly the right
decision, whereas in the case of process algebra a basic calculus that included value-passing provided
the simplest formalism for the task.

In current work we are extending this study by considering the mobile version of the algorithm.
This algorithm assumes high mobility of the network nodes and applies broadcasting communication
between them. These facts place a challenge on the formalisms employed and especially, in the case
of process calculi, raises questions whether these features ought to be simulated in the basic CCSv

calculus or whether an alternative option should be used. The correctness proofs also appear to be
much harder in both formalisms and it is still uncertain how they will eventually compare with each
other. In future work, we plan to extend our study to other problems arising in distributed systems
and networks. Our choice of problems will be based upon our initial evaluation regarding the relative
strengths of PAs and I/O Automata to better handle global vs local correctness criteria, respectively.

References

[1] R. M. Amadio and S. Prasad. Modelling IP mobility. In Proceedings of CONCUR’98, LNCS 1466, pages
301–316, 1998.

[2] C. P. Attie and N. A. Lynch. Dynamic Input/Output Automata: a formal model for dynamic systems. In
Proceedings of CONCUR’01, LNCS 2154, pages 137–151, 2001.

[3] J. Baeten and W. P. Weijland. Process Algebra. Cambridge, 1990.

[4] J. A. Bergstra, A. Ponse, and S. A. Smolka. Handbook of Process Algebra. North-Holland, 2001.

[5] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science, 240:177–213, 2000.

[6] G. Chockler, N. A. Lynch, S. Mitra, and J. A. Tauber. Proving atomicity: An assertional approach. In
Proceedings of Proceedings of DISC’05, LNCS 3724, pages 152–168, 2005.

[7] R. Fuzzati and U. Nestmann. Much ado about nothing? Electronic Notes of Theoretical Computer Science,
162:167–171, 2005.

[8] S. J. Garland, N. A. Lynch, and M. Vaziri. IOA: A language for specifying, programming and validating
distributed systems, user and reference manual. Technical report, Massachusetts Institute of Technology,
2004.

[9] M. Gelastou. Formal methods for modeling and verifying an ad hoc network protocol. Master’s thesis,
University of Cyprus, 2007.

[10] Ch. Georgiou, N. A. Lynch, P. Mavrommatis, and J. A. Tauber. Automated implementation of complex
distributed algorithms specified in the IOA language. In Proceedings of PDCS’05, pages 128–134, 2005.

[11] J. F. Groote and M. P. A. Sellink. Confluence for process verification. In Proceedings of CONCUR’95,
LNCS 962, pages 152–168, 2005.

31



[12] C. Hanson. Time and Probability in Formal Design of Distributed Systems. PhD thesis, Uppsala University,
1991.

[13] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[14] M. Hennessy J. Riely. A typed language for distributed mobile processes. In Proceedings of POPL’98.

[15] D. K. Kaynar, N. A. Lynch, R. Segala, and F. W. Vaandrager. Timed I/O Automata: A mathematical
framework for modeling and analyzing real-time systems. In Proceedings of RTSS’03, pages 166–177. IEEE
Computer Society, 2003.

[16] X. Liu and D. Walker. Confluence of processes and systems of objects. In Proceedings of TAPSOFT’95,
LNCS 915, pages 217–231, 1995.

[17] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[18] N. A. Lynch, M. Merritt, W. E. Weihl, and A. Fekete. Atomic Transactions. Morgan Kaufmann, 1994.

[19] N. A. Lynch, R. Segala, and F. W. Vaandrager. Compositionality for probabilistic I/O Automata. In
Proceedings of CONCUR’03, LNCS 2761, pages 208–221, 2003.

[20] N. A. Lynch, R. Segala, and F. W. Vaandrager. Hybrid I/O Automata. Information and Computation,
185(1):105–157, 2003.

[21] N. A. Lynch and M. R. Tuttle. An introduction to Input/Output Automata. CWI-Quarterly, 2(3):219–246,
1989.

[22] N. A. Lynch and F. W. Vaandrager. Forward and backward simulations part I: Untimed systems. Infor-
mation and Computation, 121(2):214–233, 1995.

[23] R. Milner. A Calculus of Communicating Systems. Springer, 1980.

[24] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[25] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts 1 and 2. Information and
Computation, 100:1–77, 1992.

[26] S. Nanz and C. Hankin. Static analysis of routing protocols for ad hoc networks. In Proceedings of WITS’04,
pages 141–152, 2004.

[27] U. Nestmann. On Determinacy and Non-determinacy in Concurrent Programming. PhD thesis, University
of Erlangen, 1996.

[28] U. Nestmann, R. Fuzzati, and M. Merro. Modeling consensus in a process calculus. In Proceedings of
CONCUR’03, LNCS 2671, pages 393–407, 2003.

[29] C. Newport. Consensus and collision detectors in wireless ad hoc networks. Master’s thesis, Massachusetts
Institute of Technology, 2006.

[30] A. Philippou and G. Michael. Verification techniques for distributed algorithms. In Proceedings of
OPODIS’06, LNCS 4305, pages 172–186, 2006.

[31] A. Philippou and D. Walker. On confluence in the π-calculus. In Proceedings of ICALP’97, LNCS 1256,
pages 314–324, 1997.

[32] B. C. Pierce and D. N. Turner. Pict: A programming language based on the π-calculus. In Proof, Language
and Interaction: Essays in Honour of Robin Milner, pages 455–494. MIT Press, 2000.

[33] M. Sanderson. Proof Techniques for CCS. PhD thesis, University of Edinburgh, 1982.

[34] C. Tofts. Proof Methods and Pragmatics for Parallel Programming. PhD thesis, University of Edinburgh,
1990.

[35] F. W. Vaandrager. On the relationship between process algebra and input/output automata. In Proceedings
of LICS’91, pages 387–398. IEEE Computer Society, 1991.

[36] S. Vasudevan, J. Kurose, and D. Towsley. Design and analysis of a leader election algorithm for mobile ad
hoc networks. In Proceedings of ICNP’04, pages 350–360. IEEE Computer Society, 2004.

32


