
Formal Methods for Modeling and Verifying an

Ad hoc network protocol

Marina Gelastou

June 5, 2007

Acknowledgements

With this work I complete my graduate studies. Therefore I would like to ex-

press my gratitude to my thesis supervisors, Assistant Professor Anna Philippou

and Lecturer Chryssis Georgiou for their support during my studies and for the

things I’ve learned from both of them.

Special thanks to Mr. Theophanis Pavlides for our cooperation in the early

steps of this work and to Dr. Vicky Papadopoulou for her precious advice.

Finally, lots of thanks to my family and my friends for being next to me all

these years encouraging me and supporting me. Their patience and love helped me

overcome the difficulties of the graduate programme.

i

Abstract

This dissertation is an investigation into the application of two formal methods

in the area of ad hoc networks. In ad hoc networks, nodes are free to move,

changing in this way their topology dynamically. This dynamic nature increases

the complexity of the algorithms designed for ad hoc network and the verification

of such algorithms is a difficult error-prone task that requires much effort and

ingenuity. Thus, it is a field where formal verification has a lot to offer.

Even though the field of ad hoc networks received a lot of attention by the

research community, no formal method specialized for this kind of environments

was proposed until recently. This dissertation aims to study the characteristics of ad

hoc networks and employ two popular formal methods, I/O Automata and Process

Algebra, to model and analyze an algorithm of this area in order to investigate the

foundations of the modeling, development and analysis of ad hoc networks.

In this work, the two frameworks are reviewed, presenting their definition and

their verification methods. Moreover, a study of ad hoc networks specifies their

important features along with the problems arising in this area. An algorithm of

this field is identified to be used for specification and verification purposes. This

algorithm is named “Ad hoc On-demand Multipath Distance Vector Routing” and

it has not been verified previously. The algorithm is specified using the languages of

the process algebra CCS and the basic I/O Automata framework and its correctness

is proved using standard techniques originating from the formalisms.

Finally, the two formalisms are compared with respect to their applicability

in the area of ad hoc networks, according to the observations made during the

algorithm’s modeling and analysis.

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Related work . 3

1.3 Thesis Structure . 4

2 Formal Methods 5

2.1 I/O Automata . 5

2.1.1 Definition of I/O Automaton 5

2.1.2 Verification Methods used in I/O Automata 8

2.2 Process Algebra . 10

2.2.1 The Calculus of Communicating Systems 11

2.2.2 Analysis Techniques . 14

3 Ad hoc networks 18

3.1 Ad hoc network characteristics . 18

3.2 Problem list . 19

3.3 Criteria . 22

3.4 Selected Algorithm . 23

4 Specification and Verification of AOMDV using I/O Automata 33

4.1 Specification of AOMDV . 33

4.2 Correctness Proof . 39

4.2.1 Safety Properties . 39

4.2.2 Liveness Properties . 46

5 Specification and Verification of AOMDV using Process Algebra 51

5.1 Specification of AOMDV . 51

5.2 Correctness Proof . 57

iii

6 Conclusions 73

6.1 Comparison of I/O Automata and Process Algebras 74

6.2 Future work . 75

Bibliography 77

iv

Chapter 1

Introduction

1.1 Motivation

1.2 Related Work

1.3 Thesis Structure

1.1 Motivation

The widespread use of computer systems and networks in the last decades has

been accompanied by various problems regarding reliability, security and efficiency.

Problems caused by innocent errors in software, sometimes can have costly or even

catastrophic outcome. Characteristic problems that have arisen in the field of

networks include the security flaws detected in the 802.11 and Bluetooth proto-

cols. The demands for reliability from today’s computing systems, especially the

safety-critical ones, renders the need of scientific methodologies for the develop-

ment of reliable algorithmic solutions for these computational environments widely

acknowledged. In fact, it appears as one of the “Grand Challenges” in the pro-

ceedings of the “Grand Challenges in Computing Research” conference (Newcastle,

March 2004). This dissertation aims to investigate the foundations of the modeling,

development and analysis of ad hoc networks.

Ad-hoc networks [47] are a technology with many applications in the sectors

of health, business and communications in general. An ad-hoc network consists of

a set of hosts that constitute a self-configuring network in the absence of a fixed

infrastructure or central administration. Each host of an ad-hoc network acts as

a router forwarding packets to other nodes [20]. Such a network may operate in

a standalone fashion, or may be connected to the Internet. Minimal configuration

1

and quick deployment make ad hoc networks suitable for emergency situations like

natural or human-induced disasters, emergency medical situations, etc.

An important challenge in such networks is the development of algorithmic

solutions to problems arising therein which respond to the dynamicity of network

nodes while conserving the network resources. Until recently, the correctness of

these protocols was checked, in general, using informal algorithms and via testing.

In this way wide margins of errors were allowed, risking the existence of safety and

reliability problems.

In the last two decades, the field of formal methods for system design and

analysis has dramatically matured and has reported significant success in the de-

velopment of theoretical frameworks for formally describing and analyzing complex

systems. More specifically, significant research efforts were geared towards the de-

velopment of formal methodologies for system modeling and verification. One such

model is that of Process Algebra, PA [8, 18]. PAs constitute a formal framework

with well-defined semantics which allows the compositional modeling and analysis

of concurrent systems. They are equipped with precise semantics, providing a solid

basis for understanding system behavior and for reasoning about their correctness.

The model of Input/Output Automata of Lynch and Tuttle [33] is another popular

formal framework for modeling distributed systems. I/O Automata contain a num-

ber of mathematic tools and methodologies which allow carrying out correctness

proofs and precise analysis of complex static and dynamic distributed algorithms.

Recently some formal methods have been proposed for the field of ad hoc net-

works. The CBS] [43] calculus enriches the Calculus of Broadcasting Systems

(CBS) [16] with the notion of locations as they are modeled in Mobile Ambients

[10] and cryptographic primitives in order to model and analyze security issues. The

CMN [37] calculus has a two-level syntax, one for processes and one for networks.

The processes are accompanied with their physical location and their transmission

range which define their cell. There is no broadcasting channel and the processes

can communicate through channels in their cell. CMN also models node move-

ments. The CMAN [21] calculus also has a two level syntax, it contains the notion

of location (logical) and node movements but has no channels. A node commu-

nicates with other nodes only if they are in specific locations. In the area of I/O

Automata, the Dynamic I/O Automata [3] were proposed for dynamic systems in

general and can be applied in ad hoc networks. Each automaton can change be-

havior depending to their environment, modeling in this way the dynamic behavior

of a system.

These methods aim to model features of ad hoc networks like broadcast com-

2

munication and dynamic nature (Section 3.1) that simple methods like CCS [38]

and general I/O Automata [32] do not model directly. However, in this work we

choose to use simple methods for three main reasons. The first reason is that

both CCS and I/O Automata are mature methods with well established analysis

methods and techniques. The second reason is that we want to study how ad hoc

networks affect these formalisms. Studying them in the primitive forms of the two

formalisms we will get a deep understanding of the effects and needs that have to be

fulfilled by a new method for this area. And finally, the complexity of these models

is higher than the simple methods. Ad hoc networks themselves are systems with

high complexity, thus adding complexity from the model will make the analysis

of these systems more difficult. Using simple methods we keep the complexity of

these systems as low as possible.

This dissertation focuses on the specification and verification of a multipath

routing algorithm in ad hoc networks, named “Ad hoc On-demand Multipath Dis-

tance Vector Routing” [36] via both I/O Automata and Process Algebra formalisms

in order to illustrate how the dynamic nature of ad hoc networks affects the appli-

cation of the existing formal methods in this field. Finally a comparison of the two

methodologies with respect to their applicability in the field of ad hoc networks

aims to identify the strengths and weaknesses of the two frameworks in the field

under study.

1.2 Related work

The field of networks and especially the routing problem has received a lot of inter-

est because of their significance. Moreover, the need of providing higher assurance

in the execution of the proposed algorithms has prompted researchers to analyze

these algorithms with the aid of formal methods. [26] and [9] are two examples of

formal verification of routing protocols BGP and RIP respectively, routing proto-

cols of traditional networks. Moreover, in [9] and [11] formal methods are used for

analyzing the routing protocol AODV from the field of ad hoc networks while in

[42] the authors analyze another algorithm of ad hoc networks, the DSR protocol.

These works concern applications of variations of process algebras for each field.

I/O Automata have also been employed for the specification and verification of

ad-hoc network algorithms, like in [14, 13] and [15].

3

1.3 Thesis Structure

The rest of this dissertation is organized as follows. The second chapter, presents

a summary of the I/O-Automata and the process-algebraic frameworks which will

be used for the specification and verification of the ad hoc networks protocol.

Chapter 3 presents the characteristics and problems arising in ad hoc networks,

as well as the algorithm AOMDV which was selected for the specification and

verification purposes of this work. The next two chapters discuss the specification

and verification of AOMDV using the I/O Automata (Chapter 4) and the process-

algebraic (Chapter 5) frameworks. Chapter 6, which concludes this dissertation,

discuss the strengths and weaknesses of the two frameworks according to their

applicability in the field of ad hoc networks.

4

Chapter 2

Formal Methods

2.1 I/O Automata

2.1.1 Definition of I/O Automaton

2.1.2 Verification Methods used in I/O Automata

2.2 Process Algebra

2.2.1 The Calculus of Communicating Systems

2.2.2 Analysis Techniques

In this chapter we present the frameworks for specification and verification that

are used in this work. We first present I/O Automata, followed by the presentation

of Process Algebras.

2.1 I/O Automata

An Input/Output Automaton [32], or I/O Automaton, is a powerful tool for model-

ing asynchronous distributed systems and algorithms. This modeling can be used

as a formal basis tool for algorithm correctness proof, carrying out complexity

analysis, proving upper and lower bounds on the complexity of solving particular

problems, and proving impossibility results.

2.1.1 Definition of I/O Automaton

An I/O Automaton is a state machine which can be infinite and nondeterministic.

It has three types of transitions, its actions, which are classified as input, output

and internal. The input actions of an I/O Automaton are generated by the envi-

ronment and are transmitted instantaneously to the automaton. In contrast, the

5

automaton can generate the output and internal actions autonomously and can

transmit output actions instantaneously to its environment. A signature S of an

I/O Automaton A, denoted by sig(A), is a triple of the disjoint sets: Input actions

in(S), Output actions out(S) and Internal actions int(S) of the automaton. The

set of all actions is denoted by act(S). The set of the external actions of an I/O

Automaton given a signature S is denoted as ext(S) and it is the union of the

input and output actions of that signature S. In other words it is the set of the

actions that are visible to the environment. An external action signature is an

action signature S with no internal actions, and is denoted by extsig(S).

The actions of an I/O Automaton are given in a precondition-effect style, where

the preconditions give the conditions that must be satisfied in order to enable

the action. Since input actions are generated by the environment, they are not

controlled by the automaton, thus, they don’t have preconditions and they are

always enabled. This feature is the most important characteristic of I/O Automata.

The set of actions of an I/O Automaton that are controlled by that automaton

denoted by local(S), is the union of the internal and output actions of some given

signature S of that automaton.

Formally an I/O Automaton A consists of the following:

• an action signature sig(A),

• a set states(A) of states,

• a nonempty set start(A) ⊂ states(A) of start states,

• a transition relation trans(A) ⊂ states(A) × acts(A) × states(A) with the

property that for every state s and input action π there is a transition

(s, π, s′) ∈ trans(A) to some state s′, also called a step, and

• an equivalence relation tasks(A) partitioning the set local(A) into different

sets each one containing the local actions that are in control of one system

component.

Executions and traces of an I/O Automaton. An execution fragment of

an automaton A is a finite sequence s0, π1, s1, · · · πn, sn or an infinite sequence

s0, π1, · · · of alternating states and actions of A such that (si, πi+1, si+1) ∈ trans(A)

for all i ≥ 0. An execution is an execution fragment that starts with a start state

(i.e. s0 ∈ start(A)). We denote as trace(α) of some execution α the sequence that

is obtained by restricting α to the set of external actions of A. We denote the set

of all traces of A by traces(A).

6

Composition of I/O Automata. I/O Automata can be composed to create

more complex I/O Automata. During this composition the same-named actions of

the different automata are identified and if an automaton A has an output action π

and one or more automata have as input that same action π, then these automata

are composed together. In this way when A generates the output action π, it

instantaneously transmit this action to all automata that have the input action π,

while the rest of the automata in the composition do nothing.

The above suggests that in order for two automata A and B to be composed,

the internal actions of A must form a disjoint set with the actions of B since

automaton’s A internal actions can force actions from B to execute. Additionally,

since at most a single system component controls the performance of any given

action, there can not be a composition of two automata A and B unless the output

actions of A and B form disjoint sets. Finally since the composition is allowed to

take place in any countable collection of I/O Automata, an action of a composition

must be an action of only finitely many of the compositions components. This

restriction exists so the possibility that an action π that exists in infinitely many

automata, will require an infinite amount of work in order to be performed.

Fairness. Since the input of an I/O Automaton is not controlled by the automa-

ton itself but by its environment, an I/O Automaton can exhibit arbitrary behavior

due to “bad” input from the environment. The I/O Automaton specification does

not block the automaton to exhibit such arbitrary behavior but considers only the

rational executions of the automaton.

Such “bad” input of an I/O Automaton could result in executions that are

not fair. Fair is the property of an automaton that infinitely often it has the

opportunity to perform one of its local actions. Then a fair execution is an infinite

execution that all the system components are fair.

Extensions of I/O Automata. Over the I/O Automata there have been devel-

oped some variations of I/O Automata that concern different aspects of concurrent

systems, like time, probabilistic behavior and dynamic nature. These are:

1. The Timed I/O Automata [27] which are used mainly for describing and an-

alyzing real-time concurrent systems and time-dependent systems in general.

2. The Hybrid I/O Automata [31] that find applications in embedded systems.

3. The Probabilistic I/O Automata [30] that are appropriate for modeling and

analyzing probabilistic systems.

7

4. The Dynamic I/O Automata [3] where each automaton is able to change

its behavior (i.e. its signature S), making them appropriate for use in dy-

namic systems where the components change their behavior depending their

environment.

For this work’s purpose, we prefer the general model of I/O Automata because

none of these extensions can give more than the general model since ad hoc net-

works are not embedded systems, neither their components change their behavior.

Moreover, the algorithm that is described and verified in this work does not involve

time or probabilistic issues.

2.1.2 Verification Methods used in I/O Automata

I/O Automata can be used not only for precise description of asynchronous systems

but also to formulate and prove precise claims about what systems do.

Safety-Liveness Properties In I/O Automata the correctness proof of an au-

tomaton is usually deduced to showing safety and liveness properties of the au-

tomaton. Informally speaking, the former requires that some particular “bad”

thing never happen, which in return means that if something bad happens in a

trace, then it happens as a result of some particular event in the trace. The latter

requires that something “good” will eventually happen, which in return means that

no matter what has happened up to this point, there is still the possibility that

something good will happen. Liveness properties can only be satisfied by fair exe-

cutions. Taking these properties together one can prove claims such as “Eventually

the system will exhibit some required behavior”.

Invariants Another important property to show is an invariant assertion, or just

an invariant, of some automaton A. Invariant is a fundamental property that is

true in all reachable states of A. Invariants are typically proved by induction on the

number of steps in an execution leading to the state in question. More generally,

invariants are used to prove other invariants which in turn are used when carrying

out subsequent inductive proofs. By proving that an automaton A is described by

specific invariant I, it is proved that automaton A exhibits the same behavior as

that invariant. Several invariants are usually combined in proving safety properties

of a given automaton.

When dealing with composition of many automata to a more complex automa-

ton, it is often easier to reason about the automata individually. First, less complex

8

invariants for those automata are proved, and then the composition of those in-

variants is used to reason about the composed automaton.

Hierarchical Proofs. Automata are used to describe complex systems but prov-

ing the correctness of such systems is usually difficult. A good proof strategy is

based on hierarchy of automata. This hierarchy represents a series of descriptions

of a system or algorithm at different levels of abstraction. The proof begins at the

highest level of abstraction where there is the specification of an automaton, and

through successive refinement the proof continues to lower levels of abstraction by

introducing more of the detail that exists in the final system or algorithm. Because

of the extra detail, lower levels of abstraction are usually harder to understand

than higher levels. In order, now, to prove properties of the lower level, these lower

level automata are related to the higher level automata.

In order to establish the correspondence between two different automata at

different levels of abstraction some simulation techniques are used. A simulation

proof between two automata A and B that have the same external signature,

known as a simulation, involves establishing a correspondence between A and B.

The existence of a simulation between A and B is used to show that any behavior

that can be exhibit by A, can also be exhibit by B. This means that if B solves a

particular problem, so does A.

Now, if A is regarded as an automaton at a lower level of abstraction, and B

as an automaton at a higher level of abstraction, with the help of a simulation it

can be established that a more detail version of the problem, exhibits the same

behavior as the automaton at a higher level of abstraction. Since the behavior of

an automaton is its trace, thus A simulates B iff trace(A) ⊆ trace(B). Repeating

this process to even more abstract levels where it is easier to prove the correctness

of an automaton, it is established that the implementation of the problem does is

fact solves the specific problem.

There are six kinds of simulations: The simplest type of these simulations is the

refinement. A refinement is a simulation between two automata A and B where

the image of every start stage of A is a start stage of B, and every step of A has a

corresponding sequence of steps of B that begins and ends with the images of the

respective beginning and ending states of the given step, and has the same external

actions.

The second and third types of simulations are the forward simulations and

backward simulations respectively. A forward simulation between A and B is a

generalization of a refinement where in the image of every start state of A there is

9

a start state of B, and a forward step in A can be simulated from corresponding

states in B. This generalization of the refinements allows a set of B to correspond

to a single state of A.

A backward simulation which is another generalization of refinements is the

dual of a forward simulation. A backward simulation is a simulation between A

and B where every image of every start state of A must be a start state of B, and

every step of B is simulated from corresponding states of A.

The next type of simulations are the hybrid simulations which is a combination

of a forward and a backward simulation, where the order of the simulation can be

either a forward-backward, or a backward-forward.

The last two types of simulations are the history and prophecy simulations. A

history simulation is in fact a forward simulation between A and B which its inverse

is a refinement between B and A. Similarly a prophecy simulation is a backward

simulation from A to B which its inverse is a refinement from B to A.

I/O Automata toolkit. Work has been carried out in the production of au-

tomated verification of systems that can validate a given system as to where it

exhibits a certain behavior. Such tools take as input the specification of an au-

tomaton and they aid in the system development, testing, and verification.

Specifically the I/O Automata toolkit [1] mainly consists of two parts. The first

part is the front-end tool (semantic checker) that checks the syntax of the given

automaton if it complies with the I/O Automata language syntax and semantics.

The second part is the back-end tools that consists of a simulator for testing the

behavior of I/O Automata, the theorem provers for automated theorem proving of

invariants and other properties of automata, the model checkers and an automated

code generator which produces java code for actual implementations.

2.2 Process Algebra

Process algebras are a well-established class of modeling and analysis formalisms for

concurrent and distributed systems. They are high-level description languages that

contain operators for building processes including constructs for defining recursive

behaviors. They are accompanied by semantic theories which give precise meaning

to processes, translating each process into a mathematical object on which rigorous

analysis can be performed. In addition, they are associated with axiom systems

which prescribe the relations between the various constructs and can be used to

reason algebraically about processes. During the last two decades, they have been

10

extensively studied and they have been proved quite successful in modeling and

reasoning about system correctness. They have been extended to model a variety

of aspects of process behavior including value passing, distribution, mobility and

asynchronous communication.

2.2.1 The Calculus of Communicating Systems

The Calculus of Communicating Systems [38], or CCS for short, is one of the first

and most famous process algebras. It was developed by Robin Milner to model and

analyze process interaction in concurrent systems. In CCS computational entities

are defined by the notion of a process and communication between processes is

achieved by sending and receiving signals through common channels.

Specifically, CCS assumes a set of channels Λ, ranged over by a and b. Channels

provide the basic communication and synchronization mechanisms in the language.

A channel a can be used in input position, denoted by a or in output position,

denoted by ā. This gives rise to the set of actions Act of the calculus, ranged over

by α and β, containing the set of input actions, the set of output actions and the

internal action. An input action over a channel a is denoted as a, an output action

over the same channel is denoted as ā while the internal action is denoted as τ .

Let α ∈ Act be an action, L ⊂ Λ, f : L → Λ a relabeling function over channels

and C a set of processes. The syntax of CCS processes is given by the following

grammar:

P ::= 0 | a.P | P + Q | P |Q | P\L | P [f] | C

Process 0 is the inactive process, α.P represents the process that first executes

action α and then proceeds as P . P + Q is the choice operator, and P |Q is the

concurrent composition of P and Q. P\L represents the process P with the scope

of channels in L restricted within P . P [f] is the relabeling of the channels in P

according to the function f and C is a process constant. Each such constant is

associated with a definition of the form C
def
= P , where the process P may contain

occurrences of C as well as other process constants.

Each operator of CCS is associated with a set of rules which are presented in

Figure 2.1.

CCS is a very expressive process algebra. It models directly concurrent and

distributed systems. Moreover, CCS can be easily extended in order to express

many features of systems like value passing and conditional statements (if-then-

else).

11

Operational semantics of CCS

Action rule (Act): −
α.P

α−→P

Choice rule 1 (Sum1):
P

α−→P ′

P+Q
α−→P ′

Choice rule 2 (Sum2):
Q

α−→Q′

P+Q
α−→Q′

Composition rule 1 (Comp1):
P

α−→P ′

P |Q α−→P ′|Q

Composition rule 2 (Comp2):
Q

α−→Q′

P |Q α−→P |Q′

Composition rule 3 (Comp3):
P

α−→P ′,Q ᾱ−→Q′

P |Q τ−→P ′|Q′

Restriction rule (Res): P
α−→P ′

P\L α−→P ′\L α, ᾱ /∈ L

Relabeling rule (Rel): P
α−→P ′

P [f]
f̂(α)−→P ′[f]

Figure 2.1: Operational semantics of CCS

Process Algebra variations Due to its simplicity, expressiveness and extensi-

bility, CCS became the basis framework for many extensions that were proposed

to satisfy different needs that cannot be modeled directly by CCS. Here, there

is a list of some Process Algebras that extend CCS to model mobility, dynamic

behavior and broadcasting.

1. The most famous extension of CCS is the π-calculus [40] which models mo-

bility introducing the notion of names and name-passing. A name can be a

variable or a channel and processes communicate by exchanging those names

in order to model systems with dynamically-evolving topology.

2. CBS [16] extend CCS to model broadcasting. It has no channels and com-

munication between different nodes is achieved through a common, global

broadcasting channel.

3. The Ambient calculus [10] is another CCS extension that adds boundaries

in its semantics. Ambients are processes that have a restricted environment

to act where they can enter, exit, and open other ambients in order to move

or secure information. Communication between ambients is not based on

12

channels as in CCS and can exists only between ambients in the same ambient.

Ambient calculus is appropriate for modeling systems with agent mobility and

security issues.

4. A restricted environment is also met in the Dπ- calculus [25] under the name

“locations” where resources and agents coexist. Agents can move from one

location to the other providing mobility, but the resources of the locations

are static. Communication between two nodes can be achieved only if agents

are at the same location.

5. A similar to the Dπ-calculus process algebra d-calculus [55] where locations

are able to move. The agents in a location move with the location, not

independently as in the D-calculus. An addition of this process algebra is

the definition of capabilities and restrictions on channels. Moreover, new

channels and locations can be declared and old channels and locations can

be destroyed in the system to giving dynamic behavior.

6. In the Nomadic π-calculus [56] agents are located at particular sites and

communication between two agents is achieved by sending a message to the

receiver without specifying a channel. A new feature found in Nomadic the

π-calculus is the location independent communication in addition to location

dependent communication (agents has to be at the same site).

7. A special class of process algebras are the timed process algebras that can

model time issues like timeouts and time passing. Timed process algebras

include ATP [45] and TPL [24].

Most of the variations listed above provide useful operators for modeling mobil-

ity issues like movements, channel declaration and destruction which can be very

helpful in ad hoc networks modeling. These process algebras were developed to

model agent mobility, therefore they are not a natural choice for the field of ad

hoc networks since they cannot directly model mobility of ad hoc networks. More-

over, timed process algebras are not appropriate since it appears that the timing

needs posed by ad hoc network applications are simple (timeouts) and they can be

simulated indirectly in untimed process algebras, for example, by defining special

processes imitating a clock and issuing timeout messages when necessary. There-

fore, CCS is more appropriate for this work, since it can be applied to model ad

hoc networks features (even indirectly) and it can be easily extended with new

operators if this is necessary.

13

More specifically, for this work, it was used an extension of CCS with value-

passing and conditional decision (if-then-else). The conditional decision operator

used in this work is the operator cnd (e1 ¤ P1, · · · , en ¤ Pn) where all ei are

conditional terms. The process that contains the conditional operator behaves as

Pi for the smallest i for which ei is true.

2.2.2 Analysis Techniques

Process algebras provide a framework for modeling the behavior of concurrent and

distributed systems. In addition, they are accompanied by a suite of techniques

that allow us to prove that the model of a system is correct in that it fulfills its

specification.

These techniques essentially perform analysis on the state-space of processes.

These state spaces are given rise to by operational semantics defined for each of

the above-mentioned process algebras. In particular, the operational semantics

give precise meaning to each operator of a process algebra via a set of rules which,

given a process P , prescribe the possible transitions the process may take. When a

process takes a transition, it evolves into another process. The set of processes that

a given process P can evolve into by performing a sequence of transitions defines

the state space of P . The state space is represented as a labeled transition system

with actions serving as labels.

The techniques that are described in this section are common proof techniques

used for all process algebras.

1. Equivalence Checking Equivalence checking, in general, means to check

that two processes exhibit equivalent behavior. In process algebras, it is used to

establish that a system is correct by describing the system and its specification

as two process-calculus processes and discovering an equivalence relation among

them. Such equivalence relations are formally described through the notions of

simulation and bisimulation [38]. Simulation and bisimulation are binary relations

on states of systems.

Definition 2.2.1 A binary relation R is a simulation if for each (P, Q) ∈ R and

P
α−→ P ′, then there exists Q′ such that Q

α−→ Q′ and (P ′, Q′) ∈ R.

Two processes are bisimilar if, for each step of one, there is at least one matching

step of the other, leading to bisimilar states.

There exist many types of bisimulation, the two most popular ones being strong

and weak bisimulation. Strong bisimulation demands that for each action presented

14

by the one process, there is at least one matching action presented by the other,

leading to strongly bisimilar states. This provides that the two processes have

exactly the same behavior. But sometimes, this is too restrictive since in practice

one is interested in the observable behavior of processes and does not demand the

matching of internal actions between them. Observational equivalence is based on

the idea that two equivalent systems exhibit the same behavior at their interfaces

with the environment. This idea is captured by weak bisimulation.

Definition 2.2.2 Weak bisimulation is the largest symmetric relation, denoted by

≈, such that, if P ≈ Q and P
α−→ P ′, then there exists Q′ such that Q

α̂
=⇒ Q′ and

P ′ ≈ Q′.

where =⇒ is the reflexive and transitive closure of τ ,
α

=⇒ is the composition

=⇒ α−→=⇒ and α̂ = ε if α = τ or α̂ = α otherwise.

Weak bisimulation abstracts away from internal computation by focusing on the

external, observable actions. Two processes are weakly bisimilar if they can match

each other’s observable behavior. Note that even thought two weakly bisimilar

processes have the same traces, that is they have the same observable behavior,

the opposite does not necessarily hold. In other words, two processes with the same

traces are not necessarily weakly bisimilar.

The theory of bisimulation relations has been developed into two directions.

On one hand, axiom systems have been developed for establishing algebraically

the equivalence between processes. On the other hand, proof techniques that ease

the task of showing two processes to be equivalent have been proposed. Below is

discussed the notion of confluence which has been associated with proofs techniques

belonging to this latter type.

Confluence The notion of confluence was first studied by Milner [38]. Its essence,

to quote [39] is that “of any two possible actions, the occurrence of one will never

preclude the other”. As shown in the mentioned papers, for pure CCS processes,

confluence is preserved by several system-building operators. This fact makes it

possible to reason compositionally that a system is confluent and to exploit this

fact while reasoning about its behavior. In particular, it is often the case that

for establishing the equivalence of a system with its specification, it is sufficient to

establish conformance of only a single execution of the process: by the confluence of

the process one may conclude that since one execution has the requested behavior

then so do all executions.

Here we present some definitions in addition to a theorem that we use in our

proof in Chapter 5.

15

Definition 2.2.3 A process P is determinate if, for every derivative Q of P and

for all alpha ∈ Act, whenever Q
α−→ Q′ and Q

α̂
=⇒ Q′ then Q′ ≈ Q′′.

Definition 2.2.4 A CCS process P is confluent if it is determinate and, for each

of its derivatives Q and distinct actions α, β, if Q
α−→ Q1 and Q

β
=⇒ Q2 then there

exist Q′
1, Q′

2 such that Q1
β̂

=⇒ Q′
1, Q2

α̂
=⇒ Q′

2 and Q′
1 ∼ Q′

2.

Similarly, for input actions that are always enabled

Definition 2.2.5 A process P is i-confluent if for each of its derivatives Q and for

all α ∈ L, if Q
α(v)−→ Q1 and Q

α(u)
=⇒ Q2 then there exist Q′

1, Q′
2 such that Q1

α(u)
=⇒ Q′

1,

Q2
α(v)
=⇒ Q′

2 and Q′
1 ∼ Q′

2.

Theorem 2.2.6 Suppose P = (P1 | . . . |Pn)\L, where (1) each Pj is confluent,

(2) each Pj is i− confluent and (3) fic(Pj) ∩ fic(Pk) = ∅, for all j 6= k. Then P

is confluent.

where fic(P) are the free channels of P which are used in input position within P .

This theorem is a special case of the Theorem 3.9 of [49] and describes the

conditions under which confluence is derived from the input-enabled property of a

process.

The notion of confluence has also been studied in the context of other process

calculi, including value-passing CCS, the π-calculus and an asynchronous version

of value-passing CCS.

2. Model Checking Temporal logic is a special category of modal logic that is

used for system modeling and verification, and it can express properties regarding

proposition satisfaction qualified in terms of time. Temporal logic has the ability

to reason about a time line. Linear time logics as LTL (Linear Temporal Logic) are

restricted to this type of reasoning while branching logics as CTL (Computation

Tree Logic) can reason about multiple time lines.

Model checking is a verification technique aimed at determining whether a

system specification satisfies a property typically expressed as a temporal logic

formula. All of the process algebras considered above are associated with well-

developed temporal logics and their theories. Most of these logics are extensions

of HML (Hennesy-Milner Logic) [23]. HML is a temporal logic that allows speci-

fication of modalities appropriate for checking process-algebraic specifications. In

addition, versions of the logics have been proposed such that two processes are

(strongly or weakly) bisimilar if and only if they satisfy the same HML properties.

16

3. Automated Verification Tools During the last two decades research car-

ried out in the area of formal methods for system design and analysis has made

significant success towards the development of formal methodologies for modeling

systems and reasoning about their behavior. An important result of this work is the

implementation of practical automated tools for verifying system properties at the

push of a button. The use of such tools has already been adopted in the industry

and has been applied for the analysis of large-scale real-life systems. Automated

verification tools were initially developed to reason about the logical correctness

of discrete state systems, but have since been extended to deal with real time and

limited forms of hybrid systems. This section is concluded with a brief mention of

automated tools geared towards the analysis of process-algebraic formalisms.

- The Concurrency Workbench

The Concurrency Workbench is an automated tool that verifies concurrent

systems expressed in the CCS process algebra. It provides users with a num-

ber of different techniques for specification and verification of finite-state

concurrent systems, like equivalence checking for strong and weak bisimula-

tions and model checking of temporal logic properties expressed in HML and

CTL-.

- The Mobility Workbench

The Mobility Workbench (MWB) is a tool for analyzing mobile concurrent

systems described in the π-calculus. It provides implemented algorithms for

checking both strong and weak equivalences as well as commands for finding

deadlocks and interactively simulating an agent.

17

Chapter 3

Ad hoc networks

3.1 Ad hoc network characteristics

3.2 Problem list

3.3 Criteria

3.4 Selected Algorithm

Ad hoc networks [47] are a promising technology that seeks to give solutions to

areas with needs for easily deployed networking and short-lived usage. Such areas

include health, science, communications, business and army.

This chapter contains a list of the key characteristics of ad hoc networks that

seem to influence their behavior and a list of problems arising therein that attracted

the attention of the research community. Moreover, there is a list of criteria that

were used in the selection process of the algorithm for verification. At the end of

the chapter, the selected algorithm is presented.

3.1 Ad hoc network characteristics

An ad hoc network is a set of autonomous nodes that configure an arbitrary topol-

ogy and communicate in the absence of fixed infrastructure or centralized entity.

Usually such a network consists of a set of mobile nodes that communicate with

each other through a wired or wireless medium. A node can have direct communi-

cation with nodes its neighbors (in case of wireless communication its neighbors are

the nodes in its transmission range) and indirect communication with the whole

network (through multihop routing). Ad hoc networks usually suffer from limita-

tions in resources like energy, computation power and storage capacity in addition

to low bandwidth and low reliability (large amount of errors and collisions) in case

of wireless medium.

18

In general ad hoc networks are characterized by:

• Distribution: Network nodes act autonomously, taking individual decisions

based on local information.

• Concurrency: Network nodes act in parallel, independently of each other.

• Heterogeneity: Nodes may have different computation, storage and commu-

nication capabilities.

• Asynchronous communication: Nodes do not have to synchronize in order to

communicate with each other.

• Mobility/Dynamicity: Nodes have the ability to move, changing network’s

topology, connectivity and size dynamically. Nodes may also fail.

More details about ad hoc networks features can be found in [47] and [12].

3.2 Problem list

The dynamic nature of ad hoc networks adds a new dimension to networking,

increasing the complexity of their problems. This causes many problems that have

been solved on wired networks, to be still open on ad hoc networks. Moreover, new

problems need to be addressed, relating to the new features of ad hoc networks.

Here, we list the problems that have been studied most widely in the literature.

Some of these are directly derived from ad hoc networks characteristics, while others

are used as building stones for providing solutions to more general problems.

1. Clustering. The problem of clustering is the problem of partitioning the net-

work into groups, each having a centralized entity to coordinate it. Clustering

ad hoc networks helps in providing energy-efficient communication between

nodes. Some clustering methods are proposed in [51] and [54].

2. Leader Election. Ad hoc networks have no centralized entity to coordinate

network nodes. But coordination is essential for many applications. Thus,

the election of a leader is an important problem of ad hoc networks. In [22]

the authors study the problem of leader election among other fundamental

problems, while in [34, 41] the authors study this problem in special cases of

ad hoc networks.

19

3. Location Discovery. Local information is always necessary in a distributed,

dynamic network such as ad hoc networks. Information about location can

be used to determine network topology, node location and node surroundings.

In [61] the authors discuss the importance of location awareness while in [28]

the authors present two algorithms for localized topology control. Two other

papers that study topology control in ad hoc networks are [64] and [52].

4. Medium Access Control - Collision Avoidance. As said previously, the

nodes in an ad hoc network communicate mostly through a wireless medium.

But, the wireless medium has a serious limitation: it cannot carry more than

one messages at the same time. If more than one messages are forwarded

in the wireless medium then a collision occurs and all the messages on the

medium are collapsed. Thus, the decision of which node will use the wireless

medium to send data, when the medium is idle, is called the medium access

control problem, while the matter of when the data must be sent is what the

collision avoidance mechanisms try to solve. These decisions have to be taken

in a distributed way since there is no centralized entity in the network. In [50]

an algorithm for bandwidth adaptation allocation is presented. In [19] the

authors study a subproblem of the access control problem, called the hidden

terminal problem, and provide solutions to this. The hidden terminal problem

appears when two nodes try to communicate with a third one, ignoring the

existence of each other. This results to collision of the communication packets

on the third node.

5. Minimum Spanning Tree. Computing a minimum spanning tree is a very

important problem in networks in general, since the properties of such trees

help in providing solutions to other problems such as routing, multicasting,

leader election etc. One algorithm that computes a minimum spanning tree

is proposed in [29], while in [4] the authors study the minimum spanning tree

problem and its applicability to other fundamental problems.

6. Power control/ Power conservation. Since mobile nodes mostly depend

on battery power, it is important to minimize their energy consumption in

order to maximize the network’s lifetime. Some strategies for achieving power

control are proposed in [17] and [60].

7. Quality of Service - Fairness. As in every network, there are needs for

quality of service (QoS) and fairness to the applications in the network. In ad

hoc networks it is more difficult to provide quality of service because of the

20

low transfer rate in the wireless medium. Algorithms for QoS and fairness

are proposed in [2, 59, 58].

8. Resource allocation and Mutual Exclusion. In an ad hoc network,

nodes share resources like memory and the wireless medium. Many resources

cannot be allocated to more than one node at the same time and the wireless

medium is the most representative example of such a resource. In [65] and

[57] the authors propose some approaches for the resource allocation problem

and especially for the medium access problem.

The problem of mutual exclusion, that is the problem of sharing a critical

resource, is a special case of the resource allocation problem. A survey on

mutual exclusion algorithms is presented in [5], while in [7] and [63] the

authors present interesting algorithms for the mutual exclusion problem.

9. Routing. The routing problem is a critical problem in networks and concerns

route discovery among a pair of nodes of the network and data transferring

from one node to the other. Without a routing algorithm, communication be-

tween non neighboring nodes is not possible. In traditional networks, routing

is handled by specific nodes, named routers. In contrast, in ad hoc networks

there are no special nodes for routing, so each node has to play the role of

the router in order to achieve communication through the network. Thus,

the known routing algorithms that have been developed for wired networks

cannot be used in ad hoc networks.

Many new algorithms have been proposed for unicast, multicast and broad-

cast routing that consider the special characteristics of ad hoc networks. The

most important protocols that have been developed for routing are described

in [48, 53, 12] while the protocols DSDV proposed in [48] and AODV proposed

in [46] are the most popular.

In addition to the above protocols, some multipath routing protocols ap-

peared motivated by the fact that in ad hoc networks a route can easily fail

due to node movement and the sensitivity of the wireless medium. The idea

is to create multiple paths between nodes in order to succeed small switching

time to a new path if the used path fails. Most multipath algorithms were

built over a unipath protocol as those mentioned above. Some of the most

important multipath protocols were proposed in [36, 66, 44].

10. Security. Just like every wireless network, ad hoc networks face lots of secu-

rity threats. Thus security is a problem that has attracted a lot of attention

21

from the research community and has to be solved in order to secure the con-

tinuous and reliable functioning of the network. In order to provide security

to the network, it must be provided to every communication activity of the

nodes including routing [67] and clustering [6].

3.3 Criteria

The literature provides us with many algorithms related to ad-hoc-networks prob-

lems. For this work, an algorithm was chosen to be verified by formal methods.

Here, there is a list of the criteria according to which the algorithm was selected.

1. Degree of dependency on a topology. The first criterion the algorithm is

examined for, is the degree of its dependency on network topology. Since ad

hoc networks are dynamic systems, topology is continuously evolving. Thus,

the degree of topology dependency of an algorithm shows whether it can

be used in static, partially dynamic or fully dynamic environments. Four

categories of dependency degree are listed below:

(a) High topology dependency: The execution of the algorithms in this cat-

egory is highly dependent on the topology of the network. This means,

that the algorithms request full topology knowledge and they assume

that the network is static. If any change in the topology occurs, the

algorithm fails.

(b) Medium topology dependency: In this category, algorithms still assume

static environment, but they are able to handle node or link failures.

(c) Low topology dependency: The execution of the algorithms in this cat-

egory does not depend on network topology but there is the demand for

the network always to be connected. This means, that the algorithms

can be applied in dynamic systems with mobile nodes as long as the net-

work stays connected. If the network is partitioned, then the algorithms

will not be able to operate correctly.

(d) No topology dependency: Algorithms are fully abstracted from topology

issues, thus they can handle every dynamic behavior of the network,

including losses, mobility and partitions.

The dynamic nature of ad hoc networks includes losses, mobility and parti-

tions, thus an algorithm with no topology dependency, or at least with low

topology dependency would be appropriate for the sequel of this work.

22

2. Fault-Tolerance. The second criterion is whether the algorithm can handle

failures. Failures vary from node and link crashes, to crashes and recoveries

as well as to messages losses. Nodes may also exhibit malicious behavior.

In ad hoc networks, failures are very likely to occur, thus a fault-tolerant

algorithm is required.

3. Synchronization demands. The third criterion we consider is that of syn-

chronization demands, based on in which algorithms are classified in three

categories:

(a) Synchronous: The algorithm demands nodes to be synchronized in order

to achieve communication.

(b) Asynchronous: Nodes do not have to synchronize in order to communi-

cate.

(c) Partially synchronous: Some timing issues are considered in a “loose”

manner.

Ad hoc networks are either partially synchronous or asynchronous systems

so algorithms with synchronous behavior are not suitable for this work.

4. Extended applicability. Extended applicability is the fourth criterion

which describes the capability of an algorithm to be applied in a large class of

systems. Assumptions that concern network’s connectivity, properties about

links’ possible status and messages’ reliable transfer, properties about nodes’

status and actions or even assumptions about timing and synchronization

issues, are made by algorithms in order to assure their correct functioning.

These assumptions reduce the applicability of the algorithms in the sense

that, the less restrictive the assumptions are, the more wide is the class of

networks that the algorithm is applicable to.

3.4 Selected Algorithm

From the problems and algorithms referred to in Section 3.2, the algorithm that

was selected to be verified for the sequel of this work is named “Ad hoc On-demand

Multipath Distance Vector Routing”, or AOMDV for short, and it is a multipath

routing algorithm for ad hoc networks. It was proposed by M.K. Marina and S.R.

Das in [35, 36] and it was built over the unipath routing protocol “Ad hoc On de-

mand Distance Vector Routing (AODV)” [46]. AOMDV inherits from the AODV

23

protocol its on-demand nature and the mechanisms for constructing and maintain-

ing loop-free paths for a pair of source-destination nodes. It extends AODV to

discover multiple paths between source and destination which are guaranteed to

be loop-free and (node or link) disjoint. In this work, we examine the AOMDV

version for link disjoint paths. AOMDV is interested for paths that are link disjoint

respectively to a pair of nodes and not globally in the whole network. That is, a

pair of paths for different source or destination nodes can share a link but a pair

of paths for the same source and destination nodes should have different links.

We see that the AOMDV algorithm fulfills the criteria set in Subsection 3.3 to

a great extent:

1. Degree of dependency on a topology: AOMDV has low topology dependency,

because its execution does not depend on network topology but only on the

local knowledge of the set of neighbors. Moreover, for the right operation

of the algorithm, there is the demand that the source and the destination

belong to the same partition of the network, otherwise it is not possible to

create paths between them.

2. Fault-Tolerance: AOMDV inherits from AODV its fault-tolerant mechanisms

like the error messages that are forwarded when a link failure is detected.

Moreover, by maintaining multiple disjoint paths, in AOMDV, it is easy to

change the used path to a new one in case of a failure.

3. Synchronization demands: AOMDV is an asynchronous algorithm because

nodes communicate in an asynchronous manner.

4. Extended applicability: The assumptions made by AOMDV are the existence

of a unique identifier for every node in the network and that all links of the

network are bidirectional. The first assumption is a typical assumption of

almost every ad hoc routing protocol. The second assumption is satisfied

in ad hoc networks where all nodes have equal transmission range. Thus

AOMDV can be applied to a relatively broad class of ad hoc networks.

AOMDV, as a routing protocol, has three major responsibilities, named Route

Discovery, Route Maintenance and Packet Forwarding. The route discovery pro-

cess concerns the creation of loop free and link disjoint paths when needed. Route

Maintenance is responsible for deleting the routes that are no longer in use, to de-

termine and report failures in the paths and, in case of a failure, to create alternate

paths if possible. Packet Forwarding involves the selection of the neighbor to which

the packet must be forwarded in order to reach its destination.

24

This work concerns the study of the Route Discovery process of AOMDV, thus

the details of the other two parts of the algorithm are not presented here.

The route discovery process begins when a node, the source, needs a path to

another node, the destination. If the source knows a valid path to the destination,

then this path is used and the process is finished. Otherwise, it sends a route

request message (RREQ) to its neighbors, starting a flooding which will reach to

the destination or any other node that knows a valid path for the destination.

When an intermediate node receives a copy of this request message, it has to

decide whether this copy came through a new path from the source. This path is

called a “reverse path” to the source and it is saved in order to forward the replies

of this route discovery process back to the source. Thus, it has to be loop free and

link disjoint to any other routes to the source. If the new path is not loop free or

link disjoint to the other routes, then it is discarded. Otherwise, it is accepted and

inserted in the routing table. Then, the intermediate node forwards the request

message if it does not know a valid path to the destination and the RREQ message

was the first one received by the intermediate node.

When the request reaches the destination or any intermediate node that knows

a valid path to the destination, then instead of forwarding the request, a route

reply message (RREP) is sent back through a reverse path. Each intermediate

node receiving a copy of the reply message, accepts the route only if it satisfies the

conditions of the algorithm that ensure the loop freedom and link disjointness of

this route to any other route for this destination. If the route is accepted, then the

RREP message is forwarded to the source through a reverse path that was not used

previously to send a copy of this reply message. As the RREP messages proceed

toward the source, they establish forward loop free and link disjoint paths to the

destination.

Sequence Numbers. In order to distinguish the messages for different route

discovery processes, AOMDV uses sequence numbers. Each node keeps its own

sequence number. When a node initiates a route discovery process, it increases

its sequence number and includes the new number in the RREQ message. Thus

the combination of the source id number, the source sequence number and the

destination id number uniquely identifies the request messages of a route discovery

flooding. In this way a larger sequence number indicates a newer route discovery

process and it can be used to determine if a RREQ message that is received by a

node is the first such message received for the specific route discovery process.

In reply messages (RREP), the sequence number of the destination is used for

25

the same purpose instead of the source sequence number. The sequence number of

a destination node is increased only when the first RREQ message is received for

the specific route discovery process.

Advertised hop count. A node in AOMDV maintains more that one paths to

a destination node. These paths might have different hop counts. It is essential

for the node to advertise only one hop count for all the paths that it maintains to

a destination. This hop count is named advertised hop count and it plays a key

role in ensuring loop freedom of paths. The advertised hop count for a destination

is the maximum hop count of all the paths that are maintained by the node for

the specific destination. When the first copy of a RREQ or a RREP is received

by a node, the advertised hop count is initialized to infinity in order to allow more

paths to be accepted by the node. When the first RREQ or RREP is forwarded

regarding these paths, then the advertised hop count is set to the maximum hop

count of the paths. From this point the advertised hop count remains the same and

only paths with hop count less that the advertised hop count are accepted, thus

ensuring loop freedom of the paths. The advertised hop count changes only when

a new route discovery process reaches the node regarding the specific destination.

Next and last hops. Besides maintaining multiple loop free paths, AOMDV

seeks to find link disjoint alternate paths. From the perspective of AOMDV algo-

rithm, disjointness is limited to one pair of nodes and does not consider disjointness

across different node pairs. This means that paths for different pairs of source and

destination nodes might use the same link, but alternate paths for the same source

and destination have to use different links.

To succeed link disjointness between paths of the same pair of nodes, AOMDV

uses a mechanism that maintains the last hop information for each path in addition

to the next hop. Next hop of a node I at a path p is the node from which I receives

the message that concerns p, while last hop is the neighbor of the destination of

the path. In the case of RREQ message, last hop is the neighbor of the source of

the message (the source is seen as the destination of the path created by RREQ)

and in case of RREP message, last hop is the neighbor of the destination. The

idea behind the mechanism is that, if two paths from a node to a destination have

different next hops and last hops then they are link disjoint paths. This can be

ensured only if every node enforces the link disjointness property of all its paths to

a specific destination. Thus a node can decide if two paths are link disjoint only

by checking their next and their last hop.

26

Figure 3.1: The source node 1 starts a route discovery process for destination node
9. All nodes have empty Routing tables except node 8 that have information about
node 9.

AOMDV execution. The following figures show the execution of AOMDV al-

gorithm. In Fig.3.1 we can see a network topology. In our scenario, all nodes have

empty routing tables except of node with number 8 that knows a path to node

with number 9. In our scenario, let the node with number 1 be the source node

that requests a path to node number 9, the destination node.

In Fig.3.2 the source node 1 sends request messages to all its neighbors for the

destination node 9. Each of them receiving the request message, creates a reverse

path to the source and since they don’t know any route to the destination node

9 they forward the message to their neighbors as shown in Figure 3.3. When the

request is received by a node that knows a path to the destination node, in our

scenario this is node 8, then this node replies back to the source, through the

reverse path, the information it knows. This is illustrated in Figure 3.4.

When the destination receives the request messages, it sets the reverse paths

to the source as any other node as in Figure 3.5. It then replies to each of the

received request messages, even if it did not accept the path from that request

(Figure 3.7). As the reply messages move to the source, the nodes create forward

paths to the destination and accept the paths that have lower hop count that the

known paths and different next and last hops (Figure 3.8). In this way, the paths

that are created are loop free and link disjoint.

When the source accepts the first path to the destination, it determines that

the route discovery process has finished even though more reply messages are still

in their way back to the source (Figure 3.6). Finally, when more messages arrive,

27

Figure 3.2: The source node 1 sends request messages to all its neighbors for the
destination node 9. The nodes 2,5 and 7 create reverse paths to the source from
the information of the message.

Figure 3.3: Nodes 2,5 and 7 forward the request messages to their neighbors since
they don’t know any path to the destination. Node 3 accepts both routes to the
source since they are came from different last nodes. Node 7 discards the route
from node 3 since it has greater hop count from the advertised hop count of the
route it knows.

28

Figure 3.4: Node 3 forwards the first one of the two request messages that it
accepted, in our scenario this is the message came from node 2. Node 8, since it
knows a path to node 9, replies back through the reverse path it has created. Upon
receiving the reply message, node 7 builds a forward path to node 9.

29

Figure 3.5: Nodes 4 and 6 send their request messages to node 9 which is the
destination. Since these two messages have the same last hop, node 9 discards the
second message that it receives, in our scenario this is the message received from
node 6. Node 7, forwards the reply message to the source. Node 1 receives the
reply and builds the path to node 9.

30

Figure 3.6: The source node, node 1 determines that the route discovery process
has finished since one path has been found. With dotted line is presented the path
that the source node knows so far.

it keeps the newest information (the messages with largest destination sequence

number) and the paths that are loop free and link disjoint (Figure 3.8).

31

Figure 3.7: The reply messages continue their way back to the source building the
forward paths to the destination. Each node accepts the paths that have grater
destination sequence number, lower hop count that the known paths and different
next and last hops.

Figure 3.8: In this figure are presented the two loop free and link disjoint paths
that are finally accepted from the source. The one path is presented by dashed line
and the second by dotted line.

32

Chapter 4

Specification and Verification of AOMDV using

I/O Automata

4.1 Specification of AOMDV

4.2 Correctness proof

4.2.1 Safety properties

4.2.2 Liveness Properties

In this chapter we will apply I/O Automata for the specification and verification

of AOMDV algorithm.

4.1 Specification of AOMDV

The specification of AOMDV is the composition of the Process Automata Pi and

Channel Automata Ci,j, ∀ i, j ∈ I. The specification of each automaton is given

below.

Data types and Identifiers:

I: total ordered set of processes’ identifiers
M : messages
m = 〈type, data〉 ∈ M , where type ∈ {RREQ,RREP};
if type = RREQ then data = 〈flag, destId, destSeqNum, srcId, srcSeqNum, last, hops〉,
if type = RREP then data = 〈destId, destSeqNum, srcId, last, hops〉, where
flag: Boolean; destId, srcId, last ∈ I; destSeqNum, srcSeqNum, hops ∈ Z+

ROUTING TABLE: set of record tuples
rec = 〈destId, destSeqNum, V alid, advHop, routeList〉 ∈ ROUTING TABLE,
where destId ∈ I; destSeqNum, advHop ∈ Z+; V alid: Boolean; routeList: list of routes;

33

rt = 〈next, last, hops〉 ∈ routeList, where next, last ∈ I; hops ∈ Z+

REPLY LIST: list of advertised routes
rp = 〈srcId, destId, first, last〉 ∈ REPLY LIST
where srcId, destId, first, last ∈ I

i, j, d ∈ I

recs, recd ∈ ROUTING TABLE
rts ∈ recs.routeList; rtd ∈ recd.routeList

Process Automaton Pi

Signature:

Input:
receive(m)j,i

startSearch(d)i

Internal:
updateHopCount(m)i

Output:
send(m)i,j

foundAnnouncement(d)i

States:

seqNumi ∈ Z+, initially 0
replyListi ∈ REPLY LIST, initially null

RTi ∈ ROUTING TABLE, initially ∅
Neighi ∈ 2I : Neighbors of i, initially a fix set
foundi ∈ 2I : destinations found, initially ∅
tosend, a vector of sets of messages, initially tosend[j] = ∅ ∀ j ∈ I

pathAcceptancei: Boolean, initially false
entryIniti: Boolean, initially false
templasti ∈ I, initially ⊥

Transitions:

input startSearch(d)i

Effect:
if ∃ recd ∈ RT s.t. recd.destId = d then
if recd.V alid = true then
found := found ∪ {d}

else
seqNumi := seqNumi+1
for all k ∈ Neighi do
insert

〈
RREQ, 〈false, d, recd.destSeqNum, i, seqNum,⊥, 0〉〉 to tosendi[k]

34

od
fi

else
seqNumi := seqNumi+1
for all k ∈ Neighi do
insert

〈
RREQ, 〈true, d, 0, i, seqNum,⊥, 0〉〉 to tosendi[k]

od
fi

input receive(m)j,i

Effect:
pathAcceptance := false

entryInit := false

if m.last = ⊥ then
templast = i

else
templast = m.last

fi
if m.type = RREQ then
if ∃ recs ∈ RT s.t. recs.destId = m.srcid then
if recs.destSeqNum < m.srcSeqNum then
recs.destSeqNum := m.srcSeqNum

recs.V alid := true

recs.advHop := ∞
recs.routeList := 〈j, templast,m.hops + 1〉
pathAcceptance := true

entryInit := true

elseif recs.destSeqNum = m.srcSeqNum ∧ recs.advHop > m.hops

∧ 6 ∃rts ∈ recs.routeList s.t. (rts.next = j ∨ rts.last = templast) then
insert 〈j, templast,m.hops + 1〉 in recs.routeList

pathAcceptance := true

fi
else % if no route is known to the source

insert recs =
〈
m.srcId,m.srcSeqNum, T,∞, 〈j, templast, m.hops + 1〉〉 in RTi

pathAcceptance := true

entryInit := true

fi
if i = m.destId then
if entryInit = true then
insert

〈
RREP, 〈i, seqNum + 1,m.srcId,⊥, 0〉〉 to tosendi[j]

seqNum := seqNum+1
else
insert

〈
RREP, 〈i, seqNum, m.srcId,⊥, 0〉〉 to tosendi[j]

fi

35

% if i is an intermediate node

elseif pathAcceptance = true ∧ i 6= m.destId then
if ∃ recd ∈ RT s.t. recd.destId = m.destId then
if recd.V alid = true ∧ ∃ rtd ∈ recd.routeList s.t
〈m.srcId, recd.destId, ∗, rtd.last〉 /∈ replyList then
insert

〈
RREP, 〈m.destId, recd.destSeqNum,m.srcId, rtd.last, recd.advHop〉〉

on tosendi[j]
insert 〈m.srcId, m.destId, templast, rtd.last〉 in replyList

elseif entryInit = true ∧ recd.V alid = false then
for all k ∈ Neighi do
insert

〈
RREQ, 〈false, m.destId,max(m.destSeqNum, recd.destSeqNum),

m.srcId, m.srcSeqNum, templast, recs.advHop〉〉 to tosendi[k]
od

fi
elseif entryInit = true then % if no route is known to the destination

for all k ∈ Neighi do
insert

〈
RREQ, 〈true, m.destId, 0,m.srcId, m.srcSeqNum, templast,

recs.advHop〉〉 to tosendi[k]
od

fi
fi % end of m.type = RREQ

elseif m.type = RREP then
if ∃ recd ∈ RT s.t recd.destId = m.destId then
if recd.destSeqNum < m.destSeqNum then
recd.destSeqNum := m.destSeqNum

recd.V alid := true

recd.advHop := ∞
recd.routeList := 〈j, templast,m.hops + 1〉
pathAcceptance := true

entryInit := true

elseif recd.destSeqNum = m.destSeqNum ∧ recd.advHop > m.hops then
if 6 ∃ rtd ∈ recd.routeList s.t. rtd.next = j ∨ rtd.last = templast then
insert 〈j, templast,m.hops + 1〉 in recd.routeList

pathAcceptance := true

fi
fi

else % if no route is known to the destination

insert
〈
m.destId, m.destSeqNum, T,∞, 〈j, templast,m.hops + 1〉〉 in RTi

pathAcceptance := true

entryInit := true

fi
if i = m.srcId ∧ entryInit = true then
found := found ∪ {m.destId}

if i 6= m.srcId ∧ pathAcceptance = true then % if i is an intermediate node

36

if ∃ recs ∈ RT s.t. recs.destId = m.srcId

∧ ∃ rts ∈ recs.routeList s.t. 〈m.srcId,m.destId, rts.last, ∗〉 /∈ replyList then
insert

〈
RREP, 〈m.destId, m.destSeqNum,m.srcId, templast, recd.advHop〉〉

to tosendi[rts.next]
insert 〈m.srcId, m.destId, rts.last, templast〉 in replyList

fi
fi % end of pathAcceptance check

fi

internal updateHopCount(m)i

Precondition:
m ∈ tosend[j], j ∈ Neighi

if m.type = RREQ then
m.data.hops 6= max(rt.hops|∀ rt ∈ rec.routeList)
where rec ∈ RTi s.t. rec.destId = m.srcId

elseif m.type = RREP then
m.data.hops 6= max(rt.hops|∀ rt ∈ rec.routeList)
where rec ∈ RTi s.t. rec.destId = m.destId

fi
Effect:
m.data.hops := max(rt.hops|∀ rt ∈ rec.routeList)
rec.advHop := m.data.hops

output send(m)i,j

Precondition:
m ∈ tosend[j]
j ∈ Neighi

if m.type = RREQ and ∃ rec ∈ RTi s.t. rec.destId = m.srcId then
m.data.hops = max(rt.hops|∀ rt ∈ rec.routeList)
elseif m.type = RREP and ∃rec ∈ RTi s.t. rec.destId = m.destId then
m.data.hops = max(rt.hops|∀ rt ∈ rec.routeList)
fi

Effect:
remove m from tosend[j]

output foundAnnouncement(d)i

Precondition:
d ∈ foundi

Effect:
found = found− {j}

Tasks:

37

{updateHopCount(m)i : m ∈ M}
For every j 6= i {send(m)i,j : m ∈ M}
{foundAnnouncement(d)i : d ∈ I}

Channel Automaton Ci,j

Signature:

Input:
send(m)j,i

Output:
receive(m)i,j

States:

MSG, a set of elements in M , initially ∅

Transitions:

input send(m)j,i

Effect:
MSG := MSG ∪ {m}

output receive(m)i,j

Precondition:
m ∈ MSG

Effect:
MSG := MSG− {m}

Tasks:

{receive(m)i,j : m ∈ M}

38

4.2 Correctness Proof

In this section we aim to prove that AOMDV has the desired behavior. To achieve

this we use the method of Safety and Liveness properties, that is to prove firstly

that the algorithm will never act doing some “bad” things and then to prove that

something good eventually happens.

4.2.1 Safety Properties

We start our proof of correctness by the proof of some safety properties. Each

computation, or route discovery process, starts when a node i, the source, exe-

cutes a startSearch(j)i input action and ends when the same node i, executes

a foundAnnouncement(j)i output action. Thus, startSearch(j)i input means

that i needs a path to a destination d and foundAnnouncement(j)i output

means that i knows at least one path to j. We first want to ensure that no

computation ever starts without a startSearch(j)i action, in other words, ev-

ery foundAnnouncement(j)i action is the result of a computation started by a

startSearch(j)i action.

Lemma 4.2.1 If a foundAnnouncement(j)i output occurs, then there must exists

a preceding startSearch(j)k input where k = i.

Proof. The proof is by investigation of the code. From the precondition of the

foundAnnouncement(j)i action, it’s obvious that for this action to occur, it must

hold that j ∈ foundi, which is empty initially. The only two cases that a node is

inserted in foundi set are the following:

- At startSearch(j)i action when ∃ rec ∈ RTi s.t. rec.destId = j and

rec.V alid = true. In this case found := found ∪ {j}, thus a startSearch(j)i

input occurs before a foundAnnouncement(j)i output.

- At receive(m)l,i action when m.type = RREP , i = m.srcId and

entryInit = true. If m.destId = j then found := found ∪ {j} and the

foundAnnouncement(j)i can occur. Now let us check where this message is

from. Node i has received this message m from a node l. This implies a pre-

ceding send(m)l,i action. Node l can send m message s.t. m.type = RREP

in the following cases:

– In receive(m)k,l action, when m.type = RREQ and l = m.destId (that

is l = j).

39

– In receive(m)k,l action, when m.type = RREQ, pathAcceptance = true,

l 6=m.destId, ∃rec ∈RTl s.t. rec.destId = m.destId, rec.V alid = true

and ∃rt ∈ rec.routeList s.t.〈m.srcId, rec.destId,∗, rt.last〉 6∈replyListl.

– In receive(m)k,l action, when m.type = RREP , pathAcceptance = true,

l 6=m.srcId,∃rec∈RTl s.t. rec.destId=m.srcId and ∃rt∈rec.routeList

s.t. 〈m.srcId, rec.destId, rt.last, ∗〉 6∈ replyListl.

For the last case we apply recursively the same arguments. For the first

two cases we have to check when node k can send a message m s.t.

m.type = RREQ. Node u can send message m s.t. m.type = RREQ in

the following cases:

– At startSearch(j)k action when ∃ rec ∈ RTk s.t. rec.destId = j but

rec.V alid = false. In this case m.srcId = k thus a startSearch(j)k

input occurs before a foundAnnouncement(j)i output. Note that

k = m.srcId = i.

– At startSearch(j)k action when 6 ∃ rec ∈ RTk s.t. rec.destId = j.

Again m.srcId = k and a startSearch(j)k input occurs before a

foundAnnouncement(j)i output where k = m.srcId = i.

– In receive(m)u,k action, when m.type=RREQ, pathAcceptance = true,

k 6= m.destId, ∃rec ∈ RTl s.t. rec.destId = m.srcId, rec.V alid = false

and entryInit = true.

– In receive(m)u,k action, when m.type = RREQ, pathAcceptance = true,

k 6=m.destId, 6 ∃rec∈RTl s.t. rec.destId=m.srcId and entryInit= true.

For the last two cases, the proof continues recursively.

We have shown that in every case if a foundAnnouncement(j)i output occurs,

then a startSearch(j)k input had occurred earlier in the execution and k = i.

This completes the proof. 2

We have shown that no computation ever starts without a startSearch(j)i

action, but what about more that one answers to the same start action? Here,

we show that for every startSearch(j)i input, there won’t occur more than one

foundAnnouncement(j)i output, if such an output occurs.

Lemma 4.2.2 For every startSearch(j)i input, there is at most one succeeding

foundAnnouncement(j)i output.

40

Proof. From Lemma 4.2.1 we know that if a foundAnnouncement(j)i output

occurs, then there is a preceding startSearch(j)i input. A code investigation of

foundAnnouncement(j)i action shows that the effect of this action is to remove

j from foundi set, thus foundAnnouncement(j)i will never occur again unless a

new startSearch(j)i input occurs in order to put j again in foundi. 2

During the execution of AOMDV, each node i holds the routing information for

other destinations in a routing table. For each destination, i holds a unique record

in its routing table, thus, there are no duplicates in the routing information for

other nodes. The alternative paths to a destination d that are maintained by i are

kept as unique routes rt ∈ rec.routeList, where rec is the specific record for the

destination j in i’s routing table. With the next invariant we show the uniqueness

of the record for each destination in i’s routing table.

Invariant 1 Given any execution of algorithm AOMDV, any reachable state s and

any node i ∈ I, then ∀ reck, recl ∈ s.RTi, reck.destId 6= recl.destId.

Proof. The proof is by induction on length of the execution. The base case is trivial

since RTi = ∅, ∀ i ∈ I. Let the invariant hold for state s and consider step (s, π, s′).

We will prove that the invariant also holds at state s′. If π = startSearch(j)i, i,j∈I

then RTi is not altered from the respective in s state, thus the statement holds.

The same holds for π = send(m)i,j and π = foundAnnouncement(j)i. In the case

that π = updateHopCount(m)i, rec ∈ RTi might be modified but rec.destId is

unchanged while no else rec is inserted in RTi. Thus, rec.destId is unique and

statement holds. If π = receive(m)j,i then there are the following cases:

• If 6 ∃ rec ∈ RTi s.t. rec.destId = j then a record is inserted in RTi s.t.

rec.destId = j. Thus the statement holds.

• If m.type=RREQ and ∃rec∈RTi s.t.rec.destId=m.srcid then no rec is in-

serted in RTi. Instead, rec might be modified but keeps rec.destId=m.srcid

unchanged. Thus rec.destId is unique and statement holds.

• If m.type = RREQ and 6 ∃ rec ∈ RTi s.t. rec.destId = m.srcid then a

relative rec is inserted in RTi. Again, the statement holds.

• If m.type = RREP and ∃ rec ∈ RTi s.t. rec.destId = m.destId then no

other rec is inserted in RTi. Thus the statement holds.

• If m.type = RREP and 6 ∃ rec ∈ RTi s.t. rec.destId = m.destId then a

relative rec is inserted in RTi. Again, the statement holds.

41

• In any other case of this action, RTi remains the same as in state s, thus the

invariant holds.

This completes the proof. 2

We continue with the proof of an invariant that sets the foundations for a node’s

localized decisions about rejecting paths that might end up in a cycle. Recall that

no path is accepted if its hop count is greater than the advertised hop count that

maintains a node for a destination. This lemma says that once the advertised hop

count for a destination node is set to the maximum hop number of the known

paths, then it remains the same until the destination sequence number is changed.

Lemma 4.2.3 For any record rec ∈ RTi, i ∈ I, once rec.advHop gets a value

for a specific rec.destSeqNum, it remains the same until the rec.destSeqNum is

changed.

Proof. The proof is by investigation of the code. When the first message, with

a new sequence number is received by a node i, the advertised hop count is set

to infinity. This can be seen in two cases of receive(m)j,i action. The first is

when m.type = RREQ and either ∃ rec ∈ RTi s.t. rec.destId = m.srcId and

rec.destSeqNum < m.srcSeqNum or 6 ∃ rec ∈ RTi s.t. rec.destId = m.srcId.

The second case is symmetrical to the first for m.type = RREP , when either

∃ rec ∈ RTi s.t. rec.destId = m.destId ∧ rec.destSeqNum < m.destSeqNum or

6 ∃ rec ∈ RTi s.t. rec.destId = m.destId. In these cases rec.advHop := ∞. When a

message m is prepared to be sent, whether m.type = RREQ or m.type = RREP ,

then m inherits the advertised hop count of the paths that advertises, that is

m.hops = rec.advHops. It is obvious that if m is the first such message, then

m.hops = ∞. A special case is when i = m.destId where m.hops = 0.

By the preconditions of the send(m)i,j action it is obvious that the message m

cannot be sent as long as m.data.hops = ∞. This condition trickers the internal

action updateHopCount(m)i in which m.data.hops and rec.advHop are set equal

to max(rt.hops | ∀rt ∈ rec.routeList).

When any other message m is received by i with the same sequence number

then the path is accepted only if m.hops < rec.advHop. This can be seen in the

following cases: When m.type = RREQ and ∃ rec ∈ RTi s.t. rec.destId = m.srcId

and rec.destSeqNum = m.srcSeqNum or when m.type = RREP and ∃rec ∈ RTi

s.t. rec.destId = m.destId ∧ rec.destSeqNum = m.destSeqNum. By this con-

dition, even if new paths are accepted by i, these paths have less hop count that

the advertised hop count. Thus, as long as rec.destSeqNum remains the same,

rec.advHops = max(rt.hops | ∀rt ∈ rec.routeList). 2

42

Now, we prove an Invariant that leads to the conclusion that every path created

by AOMDV is loop free.

Invariant 2 Given any execution of algorithm AOMDV, any reachable state s

and any pair of nodes i, j ∈ I, if ∃ rec ∈ s.RTi, s.t. rec.destId = j then for every

rt ∈ rec.routeList, rt induces a loop free path from i to j.

Proof. A path is loop free if every node in the path appears exactly one time.

Here we prove that every node will never appear twice in a path. The proof is by

induction on the states of the execution. The base case is trivial since RTi = ∅,
∀ i ∈ I. Let the invariant hold for state s and consider step (s, π, s′). We will

prove that the invariant also holds at state s′. If π = startSearch(d)i, send(m)i,j

or foundAnnouncement(d)i, d ∈ I then s′.RTi = s.RTi, thus the statement holds.

If π = updateHopCount(m)i there might be a modification of rec ∈ RTi, but

this modification is not over the paths of the record thus, the statement holds. If

π = receive(m)k,i then there are the following cases:

• If m.type = RREQ and m.srcid = j and 6 ∃ rec ∈ RTi s.t. rec.destId = j

then a record is inserted in RTi s.t. rec.destId = j and rt.next = k. This

means that i participates for the first time on the path to j induced by rt.

Moreover, by inductive hypothesis, the path was loop free until node k on

state s, thus the path is loop free.

• If m.type = RREQ, m.srcid = j and ∃ rec ∈ RTi s.t. rec.destId = j and

m.srcSeqNum > rec.destSeqNum, then the record’s fields except rec.destId

are deleted and filled with the information of the message m. Thus, every

rt ∈ rec.routeList is deleted and at state s′, rec.routeList contains only

one rt that induce the path through k. In other words, i cannot be in the

same path for the second time, since every path known so far is dropped. By

inductive hypothesis, the path was loop free until node k on state s, thus the

path is loop free. Moreover, note that because of Invariant 1, rec is unique

in RTi.

• If m.type = RREQ, m.srcid = j and ∃ rec ∈ RTi s.t. rec.destId = m.srcid,

m.srcSeqNum = rec.destSeqNum then there are two cases:

1. the new path is rejected. This happens when either

m.hops > rec.advHop or ∃ rt′ ∈ rec.routeList s.t. rt′.next = k or

rt′.last=m.last (or rt′.last= i if m.last=⊥). In this case s′.RTi =s.RTi,

thus the statement holds.

43

2. the new path is accepted. This happens when m.hops < rec.advHop

and 6 ∃ rt′ ∈ rec.routeList s.t. rt′.next = k or rt′.last = m.last (or

rt′.last = i if m.last = ⊥). In this case i is added to the path

to j as the node after k. According to the inductive hypothesis for

state s, the path of k with destination j is loop free. For contra-

diction purpose, let us assume that i enters the path for the second

time, thus in the path accepted there exists a link (i, l), l ∈ I. This

link was created when a pair of send(m′)i,l − receive(m′)i,l actions oc-

curred at a state s′ < s, where m′.type = RREQ and m′.data.srcid = j

or m′.type = RREP and m′.data.destid = j. Moreover m′.data.hops

is equal to the maximum rt.hop, ∀ rt ∈ rec.routeList. This is en-

forced by the preconditions of send(m′)i, u and updateHopCount(m′)i

actions. At the same time, updateHopCount(m′)i action, enforces that

m′.data.hops = rec.advHop. The creation of the link implies that l

accepted this path.

According to the new path that was accepted, there are two cases; the

path was accepted before or after the message m′ was sent. If the path

was accepted before the m′ was sent, then s < s′ and the path was ac-

cepted before the creation of the link (i, l), a contradiction. Now, if the

path was accepted after m′ was sent, then m.data.hops > m′.data.hops

since the new path contains at least one link, the link (i,l), more than

the previous path that was advertised in m′. Recall that for a path

to be accepted it must hold that m.data.hops < rec.advHop. But

rec.advHop = m′.data.hops and according to Lemma 4.2.3 rec.advHop

was not changed from s′ (since rec.destSeqNum did not change), which

leads to a contradiction. Thus i participates in the path for the first

time, so the new rt inserted in rec.routeList induces a loop free path

from i to j.

• If m.type = RREP and m.data.destId = j, we have similar cases since in

routing table both source and destination of the route discovery process are

handled as different destinations of paths from i. This allows us to use similar

arguments for each case.

This completes the proof. 2

Here is the first of our main results. This result regards the loop-freedom of

each path created by AOMDV in a route discovery process between a source node

i and a destination node j.

44

Theorem 4.2.4 For every pair of nodes i, j ∈ I s.t. ∃ startSearch(j)i input, if i

knows a path to j, then this path is loop free.

Proof. The proof comes straight forward from Invariant 2 since, if i knows a

path to j then there exists rec ∈ s.RTi s.t. rec.destId = j with at least one

rt ∈ rec.routeList. 2

We continue with an invariant that proves that any two paths known by a node

i for a specific destination are link-disjoint.

Invariant 3 Given any execution of algorithm AOMDV, any reachable state s and

any pair of nodes i, j ∈ I, if ∃ rec ∈ s.RTi s.t. rec.destId = j, then for every pair

of rt1, rt2 ∈ rec.routeList:

1. rt1.next 6= rt2.next and rt1.last 6= rt2.last and

2. rt1 and rt2 induce link disjoint paths from i to j.

Proof. The first part of the invariant is enforced in action receive(m)k,i, k ∈ I in

the following cases:

1. m.type = RREQ∧m.data.srcId = j when ∃rec ∈ RTi s.t. rec.destId = j,

rec.destSeqNum = m.srcSeqNum and rec.advHop > m.hops by the condi-

tion that there exists no rt ∈ rec.routeList s.t. rt.next = k or

rt.last = m.last (or rt.last = i if m.last = ⊥).

2. m.type = RREP ∧m.data.srcId = j when ∃ rec ∈ RTi s.t. rec.destId = j,

rec.destSeqNum = m.destSeqNum and rec.advHop > m.hops by the rela-

tive condition.

The proof of the second part is an induction on the states of the execution. The

base case is trivial on the initial state, since RTi = ∅, ∀ i ∈ I. Let the invariant (sec-

ond part) hold for state s. We will prove that it also holds at state s′, s.t. (s, π, s′).

If π = startSearch(d)i, send(m)i,k or foundAnnouncement(d)i, i, k, d ∈ I then

RTi is not altered from the respective in s state, thus the statement holds by the

inductive hypothesis. If π = updateHopCount(m)i, there might be a modifica-

tion of rec ∈ RTi, but rec.routeList is unchanged thus, the statement holds. If

π = receive(m)k,i then there are the following cases:

• If m.type = RREQ,m.srcid = j and 6 ∃ rec ∈ RTi s.t. rec.destId = j or

∃ rec ∈ RTi s.t. rec.destId = j but m.srcSeqNum > rec.destSeqNum, then

the record is initiated with one rt. The invariant is reestablished.

45

• If m.type = RREQ, m.srcid = j and ∃ rec ∈ RTi s.t. rec.destId = m.srcid,

m.srcSeqNum = rec.destSeqNum then there are two cases:

1. the new path is rejected. This happens when either m.hops>rec.advHop

or ∃ rt′ ∈ rec.routeList s.t. rt′.next = k or rt′.last = m.last (or

rt′.last = i if m.last = ⊥). In this case s′.RTi = s.RTi, thus the

statement holds.

2. the new path is accepted. This happens when m.hops < rec.advHop

and 6 ∃ rt′ ∈ rec.routeList s.t. rt′.next = k or rt′.last = m.last (or

rt′.last = i if m.last = ⊥). In this case i is added to a new path to

j as the node after k and a new rt (for the new path) is inserted in

rec.routeList. Let us check the link disjointness property of the new rt

(name rt1) with any rt2 ∈ rec.routeList. Note that rt1 and rt2 have

different next and last nodes according to first part of this invariant.

Moreover, every previous node in rt1 and rt2 have link-disjoint paths

according to the inductive hypothesis. Thus rt1 and rt2 induce link

disjoint paths.

• If m.type = RREP and m.data.destId = j, we have similar cases since in

routing table both source and destination of the route discovery process are

handled as different destinations of paths from i. This allows us to use similar

arguments for each case.

This completes the proof. 2

Next we present the second of our main results. This result regards the link-

disjointness of any pair of paths created by AOMDV in a route discovery process

between a source node i and a destination node j.

Theorem 4.2.5 For every pair of nodes i, j ∈ I s.t. ∃ startSearch(j)i input, if i

knows paths p1, p2 to j, then p1, p2 are link disjoint paths.

Proof. The proof comes straight forward from Invariant 3 if ∃ rec ∈ RTi s.t.

rec.destId = j, and ∃ rt1, rt2 ∈ rec.routeList that induce paths p1 and p2 respec-

tively. 2

4.2.2 Liveness Properties

After showing that nothing “bad” will happen in AOMDV execution, we have to

show that something “good” will eventually happen. That is, the route discovery

process will eventually terminate by source announcing that at least one path was

46

found for the desired destination. In this section we consider only fair executions of

the algorithm AOMDV and we assume that messages are delivered in finite time.

We start this proof with a simple case. In this case only one source node i starts

a route discovery process for a destination node j. We prove that after starting

this process, eventually i announces that a path to j was found.

Lemma 4.2.6 For a startSearch(j)i input, eventually a corresponding

foundAnnouncement(j)i output occurs.

Proof. The proof is by construction. Suppose that we start from an initial sit-

uation in which a startSearch(j)i input occurs. If i already knows a valid path

to j, that is ∃ rec ∈ RTi s.t. rec.destId = j and rec.V alid = true, then j is

inserted in set found which enables the foundAnnouncement(j)i to occur. From

Lemma 4.2.2 we know that this is the only foundAnnouncement(j)i action that

occurs.

If i knows an invalid path to j, that is ∃ rec ∈ RTi s.t. rec.destId = j and

rec.V alid = false, then i increase its sequence number to denote a new path

discovery process and prepares a new request message with the information in rec.

If i does not know any path to j, that is 6 ∃ rec ∈ RTi s.t. rec.destId = j, then i

does the same actions as in the case of invalid path, but the message is different

since i has no information about j. In this case the message denotes that the

destination j is unknown, that is m.data.U = true and m.data.destSeqNum = 0.

Both these cases start a sequence of send/receive actions for route discovery of

at least one path from i to j. Recall that from Theorem 4.2.4 any path created

is loop free and from Theorem 4.2.5, if more than one paths are discovered, then

these paths are link disjoint.

The request messages will be sent to every k s.t. k ∈ Neigi, thus at hop 1

from i. Upon receive the request message, k checks whether it knows any path to

i, that is ∃ rec ∈ RTk s.t. rec.destId = i. If yes then it reinitializes the record

since m.srcSeqNum > rec.destSeqNum (m is the first message with the specific

m.srcSeqNum) and goes forward to check for the destination. If no then it inserts

a new record with the information of the message and again goes forward to check

its knowledge for the destination. In both cases k sets pathAcceptance = true and

entryInit = true.

If k is the destination, that is k = m.destId = j, then it prepares a message m

for reply which will be send back to i. If k 6= j and knows a valid route to j, that

is ∃ rec ∈ RTk s.t. rec.destId = j and rec.V alid = true, then again it prepares

a message m for reply. In this case, k selects one route from the known routes to

47

include in m. In any other case k forwards the request to its neighbors. These

actions occur in round 1.

In the last case, every l ∈ Neighk who receives this RREQ for the first time,

that is l is at hop 2 from i, acts at the same way as described above for k. If

this message is not the first one, then it holds that ∃ rec ∈ RTl s.t. rec.destId =

m.srcId and rec.destSeqNum = m.destSeqNum. In this case, the path is accepted

only if it is a loop free path and it is link disjoint to any previously accepted path.

If l accepts the path, it inserts the new information in rec.routeList and sets

pathAcceptance = true which makes l decide its next actions according to the

knowledge of destination. If l is the destination, then it prepares a message m

for reply which will be send back to k. If k 6= j and knows a valid route to j,

then it selects one route from the known routes for destination j and includes it

in the reply message m. If l does not know any valid route to j then it does not

forwards the request to its neighbors since it has forwarded the first request message

it has received. This process continues recursively until the message reaches the

destination or a node that knows a valid path to j.

In the worst case, given the flooding property, the connectivity of the network

and the above discussion, a request message will reach the destination j at D hops,

where D is the maximum loop free path from i to j. When j receives the request

message, then it checks the path to the source as every previous node, to determine

if it should accept the path or not. If it accepts the path, then it inserts the path

in its routing table with destination i, increases is sequence number if it is the first

RREQ message that receives for this route discovery process and answers back

through the path with a reply message. In order to create more link disjoint paths,

the destination replies in every RREQ message that receives, even if it rejected the

path.

Each node k that receives a reply message RREP, decides if it will accept

the new path to the destination j or not. That is, k checks whether it knows

any path to j, that is ∃ rec ∈ RTk s.t. rec.destId = j. If yes then it checks if

m.destSeqNum > rec.destSeqNum. In this case it reinitializes the record with

the new information about the destination. Otherwise, it checks if the path is

loop free and link disjoint to the paths that already knows. If it does not know

any path to j, then it inserts a new record with the information of the message.

If the path is accepted and k is the source, that is k = m.srcId = i, then j is

inserted in set found only if it is the first RREP that receives. Otherwise, the

message is discarded. When j ∈ found then the foundAnnouncement(j)i action

is enabled. From Lemma 4.2.2 we know that no more foundAnnouncement(j)i

48

actions will occur. If k 6= i then it forwards the request through any known

route to i which was not used previously to send RREP messages for the same

route discovery process. In this way, the RREP messages move backwards to the

source. In the worst case i will eventually receive one RREP message in 2D hops. 2

We continue with the proof that if two route discovery processes are executed

concurrently, both of them will eventually terminate and at least a path for each

is found.

Lemma 4.2.7 For a startSearch(j)i input and a startSearch(k)l input, eventu-

ally corresponding foundAnnouncement(j)i and foundAnnouncement(k)l outputs

occur.

Proof. The proof of this lemma depends on the different possible paths built by

these computations. We check the following cases:

• The two computations built baths with no node in common. That is i 6=k 6= l,

j 6= k 6= l and no intermediate node belongs in paths of both computations.

In this case the paths built by the computations are distinct.

• The paths of the two computations have one intermediate node u in common,

that is u 6= i 6= j 6= k 6= l. Then u can take distinct local decisions for

each computation depending on their source and destination nodes. This is

accomplished due to the distinct records in RTu for each node. Thus the

paths can be seen as distinct. The same holds in cases that the common

node u is the source or destination node for the paths of the one computation

and intermediate node for the paths of the other or if u is the source node of

the paths of the one computation and the destination node for the paths of

the other computation.

• The paths of the two computations have the same source or the same des-

tination, that is u = i = k or u = j = l. In these cases u can deter-

mine the paths for each computation by the pairs (destId, destSeqNum)

or (srcId, srcSeqNum) respectively which are unique for each computation.

Moreover if there is any intermediate node v, that is also in common, then

v can determine the paths for the same source or destination by the differ-

ent (destId, destSeqNum) and (srcId, srcSeqNum) pairs and the different

records in RTv for each source and destination (recall that for each desti-

nation, the relative record is unique by Lemma 1). Note that if v receives

49

two routes for the same source or same destination from different computa-

tions, then v holds the route with the larger srcSeqNum or destSeqNum

respectively. Thus the paths can be built independently from each other.

Since in every case the two computations built their paths independently then we

can use Lemma 4.2.6 for both computations and this completes the proof. 2

Now, we are ready to conclude that every route discovery process executed in

the system will eventually terminate, which is the proof that our specification solves

the problem under study (i.e the routing problem).

Theorem 4.2.8 For every startSearch(j)i input, eventually i performs a

foundAnnouncement(j)i output.

Proof. By Lemma 4.2.6 we get that when a single computation executes, then

it terminates. By Lemma 4.2.7 we get that when any two computations execute,

then the one does not involve in the process of the second, thus both eventually

terminate. Since Lemma 4.2.7 holds for any pair of executions then it can be

easily generalized to any number of executions. Thus from Lemmas 4.2.6 and 4.2.7

the result follows. 2

Finally, we summarize our results to show that AOMDV exhibits the desired

behavior.

Theorem 4.2.9 If a route discovery process starts in a fair execution of algorithm

AOMDV, then eventually it will terminate creating paths that are loop-free and link

disjoint for the specific pair of source-destination nodes.

Proof. From Theorems 4.2.4, 4.2.5 and 4.2.8. 2

50

Chapter 5

Specification and Verification of AOMDV using

Process Algebra

In this chapter we use the process algebra CCS for the specification and verification

of AOMDV algorithm.

5.1 Specification of AOMDV

Data types:

replies = {rep | rep = 〈s, d, first, last〉}
routes = {r | r = 〈next, last, hops〉} - List of different paths to a destination d

RT = {e | e = 〈d, dstSeq, V alid, hops, routes〉} - The routing table of i

B = {t | t = 〈init, U, d, dstSeq, s, srcSeq, last, hops, j, es〉}
C = {t | t = 〈init, d, dstSeq, s, last, hops, j, ed〉}
RREQj,i(U, d, dstSeq, s, srcSeq, last, hops)

RREPj,i(d, dstSeq, s, last, hops)

System
def
= (

∏
k∈K RP[k, Nk, 0, ∅, ∅, ∅, ∅])\L

L = {RREQi,j, RREPi,j|i ∈ K, j ∈ Ni}

RP[i, N, seqNum, replies, RT, B, C]
def
=

starti(j).cnd
(
(∃ e ∈ RT · (e :d = j ∧ e :V alid = T)) ¤

RP[· · · , C ∪ 〈T, j,−, i,−,−,−,−〉],
true ¤ RP[i, N, seqNum+1, · · · ,

B ∪ 〈T,¬(∃ e ∈ RT · e :d = j), j,−, i, seqNum+1,−,−,−,−〉, C]
)

+
∑

j∈N RREQj,i(U, d′, dstSeq′, s′, srcSeq′, last′, hops′).

cnd
(
(∃ e ∈ RT · e :d = s′) ¤

51

cnd ((e :dstSeq < srcSeq′) ¤

RP[· · · , RT_e 〈s′, srcSeq′, T,∞, 〈j, f(i, last′), hops′+1〉〉,
B ∪ 〈T, U, d′, dstSeq′, s′, srcSeq′, f(i, last′), hops′, j, e 〉, C],

(e :dstSeq = srcSeq′ ∧ e :hops > hops′) ¤

cnd ((6 ∃ r ∈ e :routes ∧ (r :next = j ∨ r : last = f(i, last′))) ¤

RP[· · · , RT∪
e
〈j, f(i, last′), hops′+1〉,

B ∪ 〈F, U, d′, dstSeq′, s′, srcSeq′, f(i, last′), hops′, j, e 〉, C],

true ¤ cnd ((i = d′) ¤

RREPi,j(i, seqNum, s′,⊥, 0).0 | RP[· · · , B, C]

true ¤ RP[· · · , B, C])

true ¤ RP[· · · , B, C])

true ¤ RP[· · · , RT ∪ e = 〈s′, srcSeq′, T,∞, 〈j, f(i, last′), hops′+1〉〉,
B ∪ 〈T, U, d′, dstSeq′, s′, srcSeq′, f(i, last′), hops′, j, e 〉, C]

)

+
∑

j∈N RREPj,i(d
′, dstSeq′, s′, last′, hops′).

cnd
(
(∃ e ∈ RT · e :d = d′) ¤

cnd ((e :dstSeq < dstSeq′) ¤

RP[· · · , RT_e 〈d′, dstSeq′, T,∞, 〈j, f(i, last), hops′+1〉〉, B,

C ∪ 〈T, d′, dstSeq′, s′, f(i, last), hops′ + 1, j, e〉],
(e :dstSeq = dstSeq′ ∧ e :hops > hops′) ¤

cnd ((6 ∃ r ∈ e :routes ∧ (r :next = j ∨ r : last = f(i, last′))) ¤

RP[· · · , RT∪
e
〈j, f(i, last), hops′+1〉, B,

C ∪ 〈F, d′, dstSeq′, s′, f(i, last′), e :hops, j, e〉],
true ¤ RP[· · · , B, C]

true ¤ RP[· · · , B, C])

true ¤ RP[· · · , RT ∪ e = 〈d′, dstSeq′, T,∞, 〈j, f(i, last), hops′+1〉〉, B,

C ∪ 〈T, d′, dstSeq′, s′, f(i, last), hops′ + 1, j, e〉])

+
∑

t∈B cnd
(
(i = t :d ∧ t : init = T) ¤

RREPi,t:j(i, seqNum+1, t :s,⊥, 0).0

| RP[i, N, seqNum+1, · · · , B\{t}, C],

(i = t :d ∧ t : init = F) ¤

RREPi,t:j(i, seqNum, t :s, ∅, 0).0 | RP[· · · , B\{t}, C],

(∃ e ∈ RT · (e :d = t :d ∧ e :V alid = T) ∧
∃ r ∈ e :routes ∧ 〈t :s, t :d, ∗, r : last〉 /∈ replies) ¤

RREPi,t:j(t :d, e :dstSeq, t :s, r : last, maxHop(e)).0

| RP[· · · , replies ∪ 〈t :s, t :d, t : last, r : last〉, RT o e,B\{t}, C],

(i = t :s) ¤

(
∏

k∈N RREQi,k(u(t :U,∃ e ∈ RT · e :d = t :d), t :d, g(t :U, t, e), i,

52

t :seqNum,⊥, 0).0| RP[· · · , B\{t}, C]),

(t : init = T) ¤

(
∏

k∈N RREQi,k(u(t :U,∃ e ∈ RT · e :d = t :d), t :d, g(t :U, t, e), t :s,

t :srcSeq, t : last, maxHop(t :es)).0| RP[· · · , RT o t :es, B\{t}, C]),

true ¤ RP[· · · , B\{t}, C]
)

+
∑

t∈C cnd
(
(i = t :s ∧ t : init = T) ¤ routeFoundi(d).0 | RP[· · · , C\{t}],
(∃ e ∈ RT · (e :d = t :s) ∧
∃ r ∈ e :routes ∧ 〈t :s, t :d, r : last, ∗〉 /∈ replies))) ¤

RREPi,r:next(t :d, t :dstSeq, t :s, t : last, maxHop(t :ed)).0

| RP[· · · , replies ∪ 〈t :s, t :d, r : last, t : last〉, RT o t :ed, · · · , C\{t}],
true ¤ RP[· · · , C\{t}])

Functions:

f(i, l) =

{
l if l 6= ⊥
i otherwise

RT_e 〈d, dstSeq, T, hops, 〈next, last, hops〉〉 =

{· · · , e = 〈d, dstSeq, T, hops, 〈next, last, hops〉〉, · · · }

RT∪
e
〈next, last, hops〉 = {· · · , e :routes ∪ 〈next, last, hops〉, · · · }

maxHop(e) =

{
e :hops if e :hops 6= ∞
max{r :hops | r ∈ e :routes} otherwise

RT o e = {· · · , e :hops = maxHop(e), · · · }

u(U, l) =

{
T if U = T ∧ l = F

F if U = F ∨ l = T

g(U, t, e) =

0 if u(U,∃e ∈ RT · e :d = t :d) = T

t :dstSeq if t :U = F ∧ e /∈ RT

e :dstSeq if t :U = T ∧ e ∈ RT

max(t :dstSeq, e :dstSeq) if t :U = F ∧ e ∈ RT

¬` =

{
T if ` = F

F otherwise

53

The system model above consists of |K| RP agents that correspond to the

|K| nodes of the network. Each node has its own id number i, its own sequence

number seqNum, the set of its neighbors N and its routing table RT . Moreover,

each process maintains three sets: the set replies that hold information about what

replies were send for each path, the set B that holds the information from RREQ

messages that were received and i accepted their paths to the source and the set C

that holds the information from RREP messages that were received and i accepted

their paths to the destination.

In brief, process RP[i, · · ·] can do five actions:

1. Receive a signal starti(j) and start a routing discovery process.

2. Receive a message RREQ and process it in order to decide if it will accept

the path that contains the message to the source. If it accepts the path then

it enters the information in a tuple in set B.

3. Receive a message RREP and process it in order to decide if it will accept

the path that contains the message to the destination. If it accepts the path

then it enters the information in a tuple in set C.

4. Process any tuple in set B to decide its next actions including message for-

warding and message reply.

5. Process any tuple in set C to decide its next actions including message for-

warding and routeFoundi(j) action that terminates the route discovery pro-

cess.

Here we give a more detailed explanation of our model in order to help the

reader understand our notation and follow the correctness proof.

When a node i receives a signal starti(j) for a destination j it checks whether

it already knows a valid path to j, that is ∃ e ∈ RTi s.t. e :d = j and e :V alid = T.

In this case it inserts a tuple t in set C with information about j in order to

trigger the action routeFoundi(j) when t is processed. Otherwise, it increases its

sequence number to denote a new path discovery process and inserts a tuple t in set

B with the new sequence number and other prober information in order to trigger

a message RREQ to be sent to its neighbors when t is processed, starting in this

way a path discovery process. If i knows a path to j but it is not valid then the

tuple t contains the value t :U = F while if i does not know any path then t :U = T.

Upon receiving a request message RREQ for a route discovery process that

was started by i for a destination j with source sequence number srcSeq, a node

54

k checks whether it knows any path to i, that is ∃ e : RT s.t. e : d = i. If yes

then it reinitializes the record e if srcSeq > e :dstSeq with the information srcSeq,

next (the node from which k received this message), last and hops + 1. Moreover

it sets the path as valid, e : V alid = T, and the advertised hop count as infinity,

e : hops = ∞. Since the path is accepted, a new tuple t is created with the

information from the message and inserted in set B. Since this path resulted in

reinitialization of the record for i (the message was the first one received for this

route discovery process) then t : init = T. Similar actions will be executed if k does

not have any record for i, thus it does not know any path to i. In this case, a new

record with the same information as above is created and inserted in the routing

table RT . Moreover, the same tuple t will be inserted in B.

If k has a record e ∈ RT s.t. e :d = i and srcSeq = e :dstSeq, this means that

the message received was not the first copy received for the specific route discovery

process. In this case k accepts the new path only if the hops number in the message

is smaller than the advertised hop count for i, e :hops > hops, a if there is no other

route in e :routes with the same next and last nodes. If the path is accepted, then

a new route r is inserted in e :routes with r :hops = hops + 1 and a new tuple t is

inserted in B with the information of the message and t : init = F since the message

did not result in initialization of the record e for i. If the path is not accepted then

the message is regarded except if k = d. In this case a reply message is sent back to

the node from which the message is received, but no route is inserted in e :routes

neither a tuple t is inserted in B.

Upon receiving a RREP message, a node k checks whether it knows any path

to the destination d and acts in a similar manner as in the case of a RREQ message

regarding the destination d instead of source s and the destination sequence number

dstSeq instead of the source sequence number srcSeq. Moreover, if the path is

accepted, k inserts a tuple t in set C instead of set B.

If there exists a tuple t ∈ B, this means that t contains the information of a

RREQ message whose path was accepted. There are six cases:

• k is the destination of the message and the message is the first one received

for the specific route discovery process, that is k = t :d ∧ t : init = T. In this

case, a reply message RREP will be sent back to the node t : j from which

the message was received and the sequence number of k will be increased.

The reply message includes this new destination sequence number. Finally t

is removed from B.

• k is the destination but t : init = F. In this case, a reply message RREP will

55

be sent back to the node t : j from which the message was received but the

sequence number of k will not be increased. Finally t is removed from B.

• If k is not the destination node but it knows a valid path to the destination,

∃ e ∈ RT s.t. e :d = d and e :V alid = T, then it checks if there is any route

to the destination that was not included in any previous reply to this source,

that is ∃ r ∈ e :routes s.t. 〈t :s, t :d, ∗, t : last〉 /∈ replies. In this case k sends

a reply message to t : j with route r and the information it has for d, like

the destination sequence number e :dstSeq and the advertised hop count. If

e :hops = ∞ then it sets the advertised hop count to the maximum hop count

of the routes to d. Finally it enters the appropriate information in replies

set and t is removed from B.

• If k is the source, k = t :s then it sends a RREQ message to all its neighbors.

The message contains the value U = T if there is no record e ∈ RT for the

destination and U = F if there is a record. In this case dstSeq = e :dstSeq,

otherwise dstSeq = 0.

• If none of the above holds and t : init = T, this denotes that k is an in-

termediate node that does not know a valid path to the destination t : d.

Thus, k sends a RREQ message to all its neighbors including the infor-

mation in t. The message contains the value U = T if t : U = T and

there is no record e ∈ RT for the destination. Otherwise U = F and

dstSeq = max{e : dstSeq, t : dstSeq} if ∃ e ∈ RT . Moreover, if e : hops = ∞
then it sets the advertised hop count to the maximum hop count of the routes

to t :s. Finally it exits t from B.

• If none of the above holds then t is removed from B.

If there exists a tuple t ∈ C, this means that t contains the information of a

RREP message whose path was accepted. There are three cases:

• If k is the source of the route discovery process and t : init = T. This means

that t is the first tuple created for this purpose. In this case k will send a

signal routeFoundk(t :d) and remove t from C.

• If k is not the destination node but it knows a path to the source, ∃ e ∈ RT

s.t. e : d = s and a route r that was not used in any previous reply from

d to s, that is ∃ r ∈ e : routes s.t. 〈t : s, t : d, t : last, ∗〉 /∈ replies, then k

sends a reply message to r : next with the information it has for d, like the

destination sequence number e :dstSeq and the advertised hop count. Again,

56

if e : hops = ∞, then it sets the advertised hop count to the maximum hop

count of the routes to d. Finally it enters the appropriate information in

replies set and exits t from C.

• If none of the above holds then t is removed from C.

With this action, the explanation of our model is completed.

5.2 Correctness Proof

In this section we aim to prove that System exhibits the desired behavior. To

achieve this we will prove that System is weakly bisimilar to its specification which

shows the desired behavior.

To begin with, let P a derivative of System such that

P =
(
RP[1, N1, seqNum1, replies1, RT1, B1, C1]

| · · ·
| RP[n,Nn, seqNumn, repliesn, RTn, Bn, Cn]

)\L

This notation will be used hereafter.

Let us also define a useful function Paths(P, i, x) that returns the set of paths

from a node i to a node x, i, x ∈ K, at a given state P by extracting the paths

from the routing tables of the nodes in the paths recursively as follows

Paths(P, i, x) =

{〈i〉++ Paths(P, j, x) | ∃ e ∈ RTi · (e :d = x) ∧
r ∈ e :routes ∧ r :next = j}, i 6= x

{〈x〉}, i = x

Consider the following process

SpecS =
∑

i,d starti(d).SpecS∪{〈i,d〉}
+

∑
{〈i,d〉}∈S routeFoundi(d).SpecS−{〈i,d〉}

To prove that System modeled in Section 5.1 delivers the desired behavior, we

have to show that:

Theorem 5.2.1

1. System = Spec ∅

2. For any P such that System =⇒ P and ∀ i, x ∈ K, Paths(P, i, x) is a set

of loop-free and link disjoint paths.

57

We start with the proof of the second part of Theorem 5.2.1, that is, at any

state of the system, the paths between any pair of nodes are loop free and link

disjoint.

We start with three lemmas that we will use later in our proof. Their proof is

easily derived from the specification of the system.

The first lemma says that when a communication happens regarding a path to

a destination, then the sender process sets the hops for this destination to be equal

to the value on the message.

Lemma 5.2.2 If P
τ−→ P ′ such that

• τ has arisen from a communication along a channel RREQi,j, i 6= s with

values s, srcSeq and hops or

• τ has arisen from a communication along a channel RREPi,j, i 6= d with

values d, dstSeq and hops

then ∃e ∈RTi · (e :d=s ∧ e :dstSeq = srcSeq) or ∃e ∈ RTi · (e :d = d ∧ e :dstSeq =

dstSeq) respectively, and e :hops = hops.

The second lemma states that a path increases its hops number as new nodes

are inserted in the path.

Lemma 5.2.3 If P
τ−→ P ′ such that

• τ has arisen from a communication along a channel RREQi,j with values

d, s, srcSeq, last and hops or

• τ has arisen from a communication along a channel RREPi,j with values

d, dstSeq, s, last and hops

and P ′ ⇒ τ−→ P ′′ such that

• τ has arisen from a communication along a channel RREQx,y with values

d, s, srcSeq, last and hops′ or

• τ has arisen from a communication along a channel RREPx,y with values

d, dstSeq, s, last and hops′

then hops′ > hops.

The third lemma shows that when the hops number for a destination on a node

i is set to a numerical value for a specific destination sequence number dstSeq, it

does not change as long as dstSeq remains the same.

58

Lemma 5.2.4 If RP [i, · · · , RT, · · ·] and ∃ e = 〈d, dstSeq, · · · , hops, · · · 〉 ∈ RT ,

such that hops 6= ∞ then if RP [i, · · · , RT, · · ·] α−→ RP [i, · · · , RT ′, · · ·] where

• α 6= RREQj,i(· · · , s, srcSeq, · · ·), s = e :d, srcSeq > e :dstSeq or

• α 6= RREPj,i(· · · , d, dstSeq, · · ·), d = e :d, dstSeq > e :dstSeq

then for e′ = 〈d, dstSeq, · · · , hops, · · · 〉 ∈ RT ′, e :hops = e′ :hops.

We, now, continue with our main lemmas.

Lemma 5.2.5 Suppose System
ω

=⇒ P and let i, j ∈ K. Then for any p ∈
Paths(P, i, j), p is a loop free path.

Proof. Let a path p = i . . . k k1, · · · , kn︸ ︷︷ ︸ k . . . j ∈ Paths(P, i, j). This means that

there exists an execution ω = αk,k1 . . . αkn−1,kn such that System =⇒ Q
ω−→ Q′ αkn,k−→

P where at state Q, node k enters in the path for the first time and P is the

state where the path creates a cycle. Here we check the case that each αu,v is a

communication along a channel RREQu,v with values d, s, srcSeq, last and hops.

The same arguments can be applied in the case that αu,v is a communication along

a channel RREPk,k1 with values d, dstSeq, s, last and hops.

αk,k1 is a communication along the channel RREQk,k1 with values d, s, srcSeq,

last and hops. According to Lemma 5.2.2, for e ∈ RTk s.t. e : d = s and

e :dstSeq = srcSeq, it holds that e :hops = hops.

...

αkn,k is a communication along a channel RREQkn,k with values d, s,

srcSeq, last and hops′. According to Lemma 5.2.3, it holds that

hops′ > hops. Moreover, according to Lemma 5.2.4, for RP [k, · · · , RT, · · ·],
and e′ = 〈s, srcSeq, · · · , hops, · · · 〉 ∈ RT , it holds that e′ : hops = e : hops,

thus e′ :hops < hops′. Now, from the specification of the system, we see that

this path received by a message RREQ such that srcSeq = e′ :dstSeq is not

accepted by k since hops′ > e′ :hop. Thus, 〈kn, last, hops′+1〉 6∈ e′ :routes and

Q′ αkn,k−→ Q′′ 6= P . This leads to the conclusion that Q′ αkn,k−→ P is impossible.

2

Lemma 5.2.6 For every P, i, x and for each p1, p2 ∈ Paths(P, i, x), p1, p2 are link

disjoint.

59

Proof. The proof is by induction on the length of the transition System =⇒ P .

For

P0 =
(∏

k∈K

RP [k, Nk, 0, ∅, ∅, ∅, ∅, ∅]
)\L

It is easy to see that ∀i, x Paths(P0, i, x) = ∅, thus the proof is trivial.

Let the proposition hold for a state P ′ such that P0 ⇒ P ′. We will prove that

the proposition holds for a state P ′′ such that P ′ α→ P ′′. The proof is by case

analysis on action α.

• If α = start(d) we can see that ∀i, x Paths(P ′′, i, x) = Paths(P ′, i, x) thus

for any p1, p2 ∈ Paths(P ′, i, x), p1, p2 are link disjoint by the induction hy-

pothesis.

• The same holds for α = routeFound(d).

• If α = τ and the action has arisen from a communication along a channel

RREQj,i then there exist the following cases:

– First note that ∀x, Paths(P ′′, j, x) = Paths(P ′, j, x) thus for any

p1, p2 ∈ Paths(P ′′, j, x), p1, p2 are link disjoint.

– If in state P ′ it holds that 6 ∃ e ∈ RTi such that e : d = j then

Paths(P ′′, i, j) = 〈j, i〉 which is link disjoint by trivial.

– If in state P ′ it holds that ∃ e ∈ RTi such that e : d = s′ then

Paths(P ′′, i, j) = Paths(P ′, i, j) which is link disjoint from our induc-

tion hypothesis.

– If in state P ′ it holds 6 ∃ e ∈ RTi such that e :d = s′ then Paths(P ′′, i, s′) =

〈j, f(i, last′)〉 and ∀x 6= s′, j, Paths(P ′′, i, x) = Paths(P ′, i, x). Thus for

any x, p1, p2 ∈ Paths(P ′′, i, x), p1, p2 are link disjoint.

– The same as above holds in case that in P ′ ∃ e ∈ RTi s.t. e :d = s′ and

e :dstSeq < srcSeq′.

– If in state P ′ holds that ∃e ∈ RTi s.t. e : d = s′ ∧ e : dstSeq = srcSeq′

and e : hops > hops′ and ∃ r ∈ e : routes s.t. (r : next = j ∨ r :

last = f(i, last′)) then Paths(P ′′, i, s′) = Paths(P ′, i, s′) and ∀x 6= s′, j,

Paths(P ′′, i, x) = Paths(P ′, i, x). Thus for any

x, p1, p2 ∈ Paths(P ′′, i, x), p1, p2 are link disjoint.

– The last case is the case where in state P ′ it holds that ∃e ∈ RTi

s.t. e : d = s′ and e : dstSeq = srcSeq′ ∧ e : hops > hops′ but

6 ∃ r ∈ e : routes s.t. (r : next = j ∨ r : last = f(i, last′)) then

60

Paths(P ′′, i, s′) = Paths(P ′, i, s′) ∪ 〈j, f(i, last′)〉 and ∀x 6= s′, j,

Paths(P ′′, i, x) = Paths(P ′, i, x). We prove that for any x, p1, p2 ∈
Paths(P ′′, i, s′), p1, p2 are link disjoint by contradiction. Assume that

Paths(P ′′, i, s′) has two paths p, p′ that are not link disjoint. This

means there is a link (u, v), u, v 6= j, f(i, last) common in p, p′. Since

u, v 6= j, f(i, last) then p, p′ 6= 〈j, f(i, last′)〉 (the new inserted path).

Thus p, p′ ∈ Paths(P ′, i, s′) which is a contradiction to our induction

hypothesis. Thus for any x, p1, p2 ∈ Paths(P ′′, i, x), p1, p2 are link dis-

joint and the proof for this action is complete.

• If α = τ and the action has arisen from a communication along a channel

RREPj,i then the proof follows similarly to the previous case.

2

We continue with the proof of the first part of Theorem 5.2.1. In this proof we

consider a restricted system similar to System which delivers the desired behavior.

Then we show that System simulates the restricted system, thus it can also deliver

the desired behavior. Furthermore we show that every derivative of System can

deliver the desired behavior. To conclude we show that System is weak bisimilar

to the process Spec∅, in other words, System always delivers the desired behavior.

Consider a restricted system as follows:

Let {w1, · · · , wn} a set of loop-free and link-disjoint paths. Let Flow(s, d) =

{w = 〈s, · · · , d〉 | w ∈ {w1, · · · , wn}} and MainPaths(s, d) ⊆ Flow(s, d) such that

for every pair of paths w1, w2 ∈ MainPaths(s, d), if i 6= s ∧ i 6= d ∧ i ∈ w1 ∧ i ∈
w2 then either w1 = w2. Moreover, for each node i that participates in a path

w ∈ MainPaths(s, d) name w as wi
main. If a node does not participate in any path

w ∈ MainPaths(s, d), but participates in some w ∈ Flow(s, d) then wi
main = w.

Finally, let

maini = {〈s, prev, next, d〉 | w = 〈s, . . . , prev, i, next . . . , d〉 ∈ Flow(s, d),

∀s, d ∈ K, ∧ w = wi
main}

accepted = {〈s, first, prev, next, last, d〉 |
〈s, first, . . . , prev, i, next . . . , last, d〉 ∈ Flow(s, d), ∀s, d ∈ K}

Nnext(i, s, d) = {j | ∃ 〈s, · · · , next = j, · · · , d〉 ∈ accepted}
The set acceptedi keeps the loop-free and link-disjoint paths that i participates

in. From this set we extract the neighbors Nnext that should be informed if a RREQ

message is received for the specific source-destination pair (s, d). Finally set maini

contains a copy of each path in acceptedi that is considered as main path for a

source-destination pair.

61

Next we give the form of the agents we use in our restricted system. Wherever

the new agent acts as agent RP we put · · · while the differences between them are

shown with bold fonts.

RP′[i, N, main, accepted, seqNum, replies, RT,B, C]
def
=

starti(j) · · ·
+

∑
j∈N RREQj,i(U, d, dstSeq, s, srcSeq, last, hops).

cnd
(
(∃ e ∈ RT · e :d = s) ¤

cnd ((e :dstSeq < srcSeq) ¤ · · ·
(e :dstSeq = srcSeq) ¤

RP′[· · · , RT∪
e
〈j, f(i, last), hops+1〉,

B ∪ 〈F, U, d, dstSeq, s, srcSeq, f(i, last), hops, j, e〉, C],

true ¤ RP′[· · · , B, C])

true ¤ · · ·)

+
∑

j∈N RREPj,i(d, dstSeq, s, last, hops).

cnd
(
(∃ e ∈ RT · e :d = d) ¤

cnd ((e :dstSeq < dstSeq) ¤ · · ·
(e :dstSeq = dstSeq) ¤

RP′[· · · , RT∪
e
〈j, f(i, last), hops+1〉, B,

C ∪ 〈F, d, dstSeq, s, f(i, last), e :hops, j, e〉],
true ¤ RP′[· · · , B, C])

true ¤ · · ·)

+
∑

t∈B cnd
(
(i = t :d ∧ 〈t :s, t : j,−, t :d〉 ∈ main) ¤

RREPi,t:j(· · ·).0| RP′[· · · , seqNum+1, · · · , B\{t}, C],

(i = t :d ∧ 〈t :s, ∗, j,−, j,d〉 ∈ accepted) ¤

RREPi,t:j(· · ·).0 | RP′[· · · , B\{t}, C],

(∃ e ∈ RT · (e :d = t :d ∧ e :V alid = T) ∧
∃ r ∈ e :routes ∧ 〈t :s, ∗, t : j, r :next, r : last, t :d〉 ∈ accepted) ¤

RREPi,t:j(· · ·).0| RP′[· · · , RT o e,B\{t}, C],

(i = t :s) ¤ (
∏

k∈Nnext(i)
RREQi,k(· · ·).0| RP′[· · · , B\{t}, C]),

〈t :s, t : j, ∗, t :d〉 ∈ main ¤

(
∏

k∈Nnext(i)
RREQi,k(· · ·).0| RP′[· · · , RT o t :es, B\{t}, C]),

true ¤ RP′[· · · , B\{t}, C]
)

+
∑

t∈C cnd
(
(i = t :s ∧ 〈t :s, ∗, t : j, t :d〉 ∈ main) ¤

routeFoundi(d).0 | RP′[· · · , C\{t}],
(∃ e ∈ RT · (e :d = t :s) ∧
∃ r ∈ e :routes · 〈t :s, ∗, r :next, t : j, t : last, t :d〉 ∈ accepted) ¤

RREPi,r:next(· · ·).0| RP′[· · · , RT o t :ed, · · · , C\{t}],

62

true ¤ RP′[· · · , C\{t}])

Thus RP′ is similar to RP except that it restricts its outputs over a set of loop

free and link disjoint paths.

Let T be the set of agents of the form

T0
def
= (

∏
k∈K RP′[k,N, main, accepted, seqNum, replies, RT, B, C])\L

We prove that the restricted systems T0 can deliver the desired behavior, that is,

every request for a path to some destination is eventually satisfied.

Lemma 5.2.7 T0
starts(d)−→ T1

routeFounds(d)
=⇒ Tw.

Proof. The proof is by construction of the possible execution of T0 that leads to

the desired result. Let us start with T0
starts(d)−→ T1 and let D = {u ∈ K | u =

d ∨ (∃e ∈ RTu ∧ e :d = d ∧ e :V alid = T)}. If s ∈ D then T1
routeFounds(d)−→ T2 as

asked. We continue for the case that s /∈ D.

Let p ∈ MainPaths(s, d) the path with the minimum distance L from s to

node u ∈ D. Name the nodes v0, v1, . . . , vL such that each node vl, 0 ≤ l ≤ L is at

distance l from s on path p. Note that v0 = s, vL = u and for each vl,

〈v0, vl−1, vl+1, d〉 ∈ mainvl
, 0 ≤ l ≤ L and

〈v0, v1, vl−1, vl+1, p : last, d〉 ∈ acceptedvl
, 0 ≤ l ≤ L

where vl−1 = ⊥ if l = 0 and

vl+1 = ⊥ if vl = d

Now, let us write T l, 0 ≤ l ≤ L, for the process

T l def
= (

∏
i/∈〈v0,...,vL〉 RP′[i, N, main, accepted, seqNum, replies, RT,B,C]

| ∏
i∈{v0,...,vL}−vl

RP′[i, N, main, accepted, seqNum, replies, RT,B,C]

| RP′[vl, N, main, accepted, seqNum, replies, RT,

B ∪ 〈init, d, dstSeq, s, srcSeq, v1, hops, vl−1, e〉, C])\L

That is, in step l, the node in distance l receives the request and is ready for its

next action. Note that T 0 = T1. It is easy to see that T l =⇒ T l+1, 0 ≤ l ≤ L − 1

since for each vl, 〈v0, vl−1, vl+1, d〉 ∈ mainvl
for each vl+1, 〈v0, ∗, vl, vl+2, p : last, d〉 ∈

acceptedvl+1
and if ∃ e ∈ RTvl+1

s.t. e :d = s then e :dstSeq < srcSeq, 0 ≤ l ≤ L−1.

Thus,

RP′[vl, · · · , B∪〈init, d, dstSeq, s, srcSeq, v1, hops, vl−1, e〉, C]
RREQvl,vl+1

(U,d,destSeq,s,srcSeq,v1,hops)−→ RP′[vl, · · · , B, C]

RP′[vl+1, · · · , B, C]
RREQvl,vl+1

(U,d,destSeq,s,srcSeq,v1,hops)−→
RP′[vl+1, · · · , B∪〈init, d, dstSeq, s, srcSeq, v1, hops, vl, e〉, C]

63

When l = L the request has arrived at a node vL = u ∈ D, that means, a reply

message will be generated since 〈s, ∗, vL−1, vL+1, p : last, d〉 ∈ acceptedvL
. Thus,

RP′[vL, · · · , B ∪ 〈init, d, dstSeq, s, srcSeq, v1, hops, vL−1, e〉, C]
RREPvL,vL−1

(d,dstSeq′,s,p:last,hops)−→ RP′[vL, · · · , B, C]

RP′[vL−1, · · · , B, C]
RREPvL,vL−1

(d,dstSeq′,s,p:last,hops)−→
RP′[vL−1, · · · , B, C ∪ 〈init, d, dstSeq′, s, p : last, hops, vL, e〉]

since 〈s, ∗, vl−2, vl, p : last, d〉 ∈ acceptedvl−1
, 1 ≤ l ≤ L.

Let us write Rl, 0 ≤ l ≤ L− 1 for the process

Rl def
= (

∏
i/∈〈v0,...,vL〉 RP′[i, N,main, accepted, seqNum, replies, RT, B, C]

| ∏
i∈{v0,...,vL−1}−vl

RP′[i, N, main, accepted, seqNum, replies, RT,B, C]

| RP′[vl, N,main, accepted, seqNum, replies, RT, B,

C ∪ 〈init, d, dstSeq, s, p : last, hops, vl+1, e〉])\L

That is, in step l, the node in distance l from s, receives the reply message.

We have seen how TL =⇒ RL−1. With similar arguments we prove that for any l,

2 ≤ l ≤ L− 1, Rl =⇒ Rl−1 since for each vl, 〈s, ∗, vl−1, vl+1, p : last, d〉 ∈ acceptedvl

and for each vl−1, 〈s, ∗, vl−2, vl, p : last, d〉 ∈ acceptedvl−1
, 1 ≤ l ≤ L− 1.

When we reach l = 0, v0 = s will receive the reply message:

RP′[s, · · · , C ∪ 〈init, d, dstSeq, s, last, hops, v1, e〉] routeFounds(d)−→ RP′[s, · · · , C]

that is

T1
routeFounds(d)−→ Tx

After this point we can apply similar arguments for all paths p′ ∈ MainPaths(s, d)

except from the last step above. In these cases for l = 0 it would be:

RP′[s, · · · , C ∪ 〈init, d, dstSeq, s, last, hops, v1, e〉] −→ RP′[s, · · · , C]

When finished for every path p′ ∈ MainPaths(s, d), it holds that

Tx =⇒ Ty

where Paths(Ty, s, d) = MainPaths(s, d). In case that MainPaths(s, d) = Flow(s, d)

then Paths(Ty, s, d) = Flow(s, d) as asked.

64

In case that ∃ p ∈ Flow(s, d) \MainPaths(s, d) then for any such path, there

is a similar RREQ sequence of actions as the previous paths, until the message

reaches a node v that also participates in a path that is already built. That is,

∃ e ∈ RTv∧e :d = s∧e :dstSeq = srcSeq. In this case the message is not forwarded

but the path is inserted in RTv. If a RREP message on p was previously received

by v or when such message is received, v creates a RREP message which sends

backwards in p until it reaches s.

When this is done for every path p, then

Ty =⇒ Tw

where Paths(Tw, s, d) = Flow(s, d) and the proof is completed. 2

We now give an important feature of our restricted system which will help us

in the sequel of the proof.

Lemma 5.2.8 T0 is confluent.

Proof. The process RP′ is confluent by construction and input-enabled. Moreover,

each channel employed in T0 is used by at most two processes in the system. Thus,

by Theorem 2.2.6, the result follows. 2

For our next result we need a definition of the pending requests of a computa-

tion.

Definition 5.2.9 For any derivative T of T0 such that T0
ω

=⇒ T ,

pending(T) = {〈s, d〉 | starts(d) ∈ ω and routeFounds(d) /∈ ω, ∀ s, d ∈ K}

Similarly we define pending(P) for any derivative P of System.

Now, we can prove that our restricted system delivers the required behavior.

Lemma 5.2.10 Suppose T is a derivative of T0 and suppose 〈i, d〉 ∈ pending(T).

Then T
routeFoundi(d)

=⇒ T ′.

Proof. Suppose T0
ω

=⇒ T . Then it must be that starti(d) ∈ ω. Specifically,

there exists some T1 such that T0
ω1=⇒ T1

starti(d)−→ T2
ω2=⇒ T . By Lemma 5.2.7

T2
routeFoundi(d)

=⇒ T3. Furthermore, since T0 is confluent, there exists T ′
3, T

′ such that

T3
ω2=⇒ T ′

3, T
routeFoundi(d)

=⇒ T ′ and T ′
3 ≈ T ′. Thus, the result follows. 2

So far, we have created a restricted system and we have proved that every

request for a path to some destination is eventually satisfied. It now remains to

65

relate System to T0 in order to apply the above results. First we built a notion of

similarity between derivatives of T0 and System which we will use in the relation

between System and T0.

Definition 5.2.11 Let

T
def
= (

∏
i∈K RP′[i,maini, acceptedi, seqNumi, repliesi, RT ′

i , B
′
i, C

′
i])

P
def
= (

∏
i∈K RP[i, Ni, seqNumi, repliesi, RTi, Bi, Ci])

where

B′
i ⊆ Bi, C ′

i ⊆ Ci,

if ∃ e ∈ RT ′
i then e ∈ RTi,and for any r ∈ e.routes s.t. e ∈ RT ′

i , then

r ∈ e.routes s.t. e ∈ RTi,

Ni ⊇ {u, u′ ∈ K | 〈∗, ∗, u, u′, ∗, ∗〉 ∈ acceptedi} and

Paths(T, s, d) = Paths(P, s, d).

Then we say that P and T are similar processes.

Now we prove that there exists a simulation relation between T0 and System,

specifically System simulates T0. In other words, System can do anything T0 can

do, while System can do more things.

Lemma 5.2.12 R = {〈T, P 〉 | P and T are similar} is a strong simulation.

Proof. Let 〈T, P 〉 ∈ R and T
a−→T ′. We will show that P

a−→P ′ and 〈T ′, P ′〉 ∈ R.

The proof is a case analysis on the possible actions of T .

• If a = starti(j), j ∈ K − {i}, there are two possible cases:

1. ∃ e ∈ RTi ∧ e :d = j ∧ e :V alid = T

RP′[i, · · ·] starti(j)−→ RP′[i, · · · , C ∪ 〈T, j,−, i,−,−,−,−〉]

2. 6 ∃ e ∈ RTi s.t. e :d = j or ∃ e ∈ RTi ∧ e :d = j ∧ e :V alid = F

RP′[i, · · ·] starti(j)−→ RP′[i, · · · , B ∪ 〈T, (e ∈ RT), j,−, i, seqNumi+1,−,−,−,−〉, C]

In both cases P
a−→ P ′ and 〈T ′, P ′〉 ∈ R.

66

• If a = routeFoundi(j), j ∈ K − {i} then:

RP′[i, · · · , C ∪ 〈T, j, ∗, i, ∗, ∗, ∗, ∗〉] routeFoundi(j)−→ RP′[i, · · · , C]

which can be followed by process RPi of P since Ci set of RP ′
i is subset of

the corresponding Ci set of RPi. Thus P
a−→ P ′ and 〈T ′, P ′〉 ∈ R.

• If a = τ and the action has arisen from a communication along a channel

of type RREQ between processes RP ′
i and RP ′

j , i, j ∈ K. For process RP ′
i

there are two possible cases:

1. i = s. This means that i has previously received a start signal for a

destination d and it does not have any valid route to this destination.

Moreover, it holds that 〈i, j,−, j, ∗, d〉 ∈ acceptedi and j ∈ Nnext(i, i, d),

thus either

RP′i[i, · · · , B ∪ 〈T, U, d,−, i, seqNumi,−,−,−,−〉, C]

RREQi,j(U,d,dstSeq,i,seqNumi,⊥,0)−→ RP′i[i, · · · , B, C]

| ∏
Nnext(i,i,d)−j RREQi,k(U, d, dstSeq, i, seqNumi,⊥, 0).0

or

RP′i[i, · · · , B, C]| ∏
t∈Nnext(i,i,d) RREQi,k(U, d, dstSeq, i, seqNumi,⊥, 0).0

RREQi,j(U,d,dstSeq,i,srcSeq,⊥,0)−→
RP′i[i, · · ·] |

∏
Nnext(i,i,d)−j RREQi,k(U, d, dstSeq, i, seqNumi,⊥, 0).0

2. i 6= s. This means that i has already received a similar RREQ message,

has accepted the route of the message and does not have a valid route

to the destination. Moreover, it holds that 〈s, ∗, ∗, j, ∗, d〉 ∈ acceptedi

and j ∈ Nnext(i, s, d), thus either

RP′i[i, · · · , B ∪ 〈T, U, d, dstSeq, s, srcSeq, last, hops, prev, es〉, C]

RREQi,j(U,d,dstSeq,s,srcSeq,last,hops)−→ RP′i[i, · · · , RT o es, B, C]

| ∏
Nnext(i,s,d)−j RREQi,k(U, d, dstSeq, s, srcSeq, last, hops).0

or

67

RP′i[i, · · · , B, C]| ∏
t∈Nnext(i,i,d) RREQi,k(U, d, dstSeq, s, srcSeq, last, hops).0

RREQi,j(U,d,dstSeq,s,srcSeq,last,hops)−→

RP′i[i, · · ·] |
∏

Nnext(i,i,d)−j RREQi,k(U, d, dstSeq, s, srcSeq, last, hops).0

Considering the definition of similarity between processes T and P , it is

obvious that this action can be followed by any RPi in P in anyone of the

above cases.

Now lets check the receiver j ∈ K. Recall that 〈s, ∗, i, ∗, ∗, d〉 ∈ acceptedj.

We have the following two cases:

1. ∃ e ∈ RT ′
j ∧ e :d = s and e :dstSeq < srcSeq or 6 ∃ e ∈ RT ′

j ∧ e :d = s.

This means that this request is the first received for the specific flow.

Thus

RP′j[j, · · · , B, C]
RREQi,j(U,d,dstSeq,s,srcSeq,last,hops)−→

RP′j[j, · · · , 〈s, srcSeq, T,∞, 〈i, last, hops+1〉〉 ∈ RT,

B ∪ 〈T, d, dstSeq, s, srcSeq, last, hops, i, e〉, C]

2. ∃ e ∈ RT ′
j ∧ e : d = s and e : dstSeq = srcSeq. This means that j has

already received the first RREQ message for this flow, so it contains a

route to the source. From the specification we have:

RP′j[j, · · · , B, C]
RREQi,j(U,d,dstSeq,s,srcSeq,last,hops)−→

RP′j[j, · · · , RT∪
e
〈i, last, hops+1〉,

B ∪ 〈F, d, dstSeq, s, srcSeq, last, hops, i, e〉, C]

By the construction of the restricted system, the loop freedom and link dis-

jointness of the paths in accepted sets and the definition of similarity, it is

easy to see that in any of the above cases of j, any process RPj of P will

behave in the same way. Thus P
a−→ P ′ and 〈T ′, P ′〉 ∈ R.

• If a = τ and the action has arisen from a communication along a channel of

type RREP between processes RP ′
i and RP ′

j . For process RP ′
i , i ∈ K there

are the following possible cases:

1. i = d ∧ 〈s, j, ∗, d)〉 ∈ maini. In this case i has received the first request

message for this flow. Thus

68

RP′i[i, · · · , B ∪ 〈T, U, d, dstSeq, s, srcSeq, last, hops, j, es〉, C]

RREPi,j(d,dstSeq,s,⊥,0)−→ RP′i[i, · · · , seqNumi+1, · · · , B, C]

or

RP′i[i, · · · , B ∪ 〈T, U, d, dstSeq, s, srcSeq, last, hops, j, es〉, C]

RREPi,j(d,dstSeq+1,s,⊥,0)−→ RP′i[i, · · · , seqNumi+1, · · · , B, C]

2. j = d ∧ 〈s, ∗, i,−, i, d〉 ∈ acceptedj. In this case i has received a request

message but rejected the new path. Thus

RP′i[i, · · ·] | RREPi,j(i, seqNumi, s, ∅, 0).0
RREPi,j(d,seqNumi,s,∅,0)−→ RP′i[i, · · ·]

3. i 6= d and e ∈ RTi ∧ e : d = d and e : V alid = T ∧ r ∈ e : routes s.t.

〈s, ∗, j, r : next, r : last, d〉 ∈ acceptedi. In this case i, an intermediate

node, has received a request message to a destination to which it knows

a route r. Thus

RP′i[i, · · · , B ∪ 〈init, d, dstSeq, s, srcSeq, last, hops, j, es〉, C]
RREPi,j(d,dstSeq,s,r:last,e:hops)−→

RP′i[i, · · · , replies ∪ 〈s, d, last, r : last〉, · · · , B, C]

4. i 6= d and e ∈ RTi ∧ e : d = s and ∃r ∈ e : routes s.t.

〈s, ∗, r : next = j, next, last, d〉 ∈ accepted). In this case i, an inter-

mediate node, has received a reply message that forwards. Thus

RP′i[i, · · · , C ∪ 〈init, d, dstSeq, s, last, hops, next, es〉]
RREPi,j(d,dstSeq,s,last,e:hops)−→ RP′i[i, · · · , replies ∪ 〈s, d, r : last, last〉, · · · , C]

By the construction of the simplified system and the definition of similarity,

it is easy to see that in anyone of the above cases, the action can be followed

by any RPi of P .

Now lets check the receiver j ∈ K. Recall that 〈s, ∗, ∗, i, last, d)〉 ∈ acceptedj.

There are two possible cases:

1. (∃ e ∈ RT ∧ e :d = d ∧ e :dstSeq < desSeq) ∨ (6 ∃ e ∈ RT ∧ e :d = d).

This means that this reply is the first received for the specific flow. Thus

RP′j[j, · · · , B, C]
RREPi,j(d,dstSeq,s,last,hops)−→

RP′j[j, · · · , e = 〈d, dstSeq, T,∞, 〈i, last, hops+1〉〉 ∈ RT, B,

C ∪ 〈T, d, dstSeq, s, last, hops, i, e〉]

69

2. ∃ e ∈ RT ∧ e :d = d ∧ e :dstSeq = dstSeq. This means that this is a

duplicate reply of this flow that contains a new loop free and link-disjoint

path to the destination. Thus

RP′j[j, · · · , B, C]
RREPi,j(d,dstSeq,s,last,hops)−→

RP′j[j, · · · , RT∪
e
〈i, last, hops+1〉, B, C ∪ 〈F, d, dstSeq, s, last, hops, i, e〉]

It’s obvious that under these conditions, any process RPj of P will follow this

action. Thus P
a−→ P ′ and 〈T ′, P ′〉 ∈ R.

This completes the proof. 2

This result says that System can do the required actions. But this is not

enough; it does not guarantee that System always exhibit the required behavior.

We continue to prove that System can do no more than the desired. This is done

through a notion of compatible computations of System and T0.

Given a computation System
ω−→ P , for each action starts(d) ∈ ω, fix sets

Flow(s, d) as loop free and link disjoint sets of paths from s to d, and

MainPaths(s, d) ⊆ Flow(s, d) as defined earlier.

We say that T0 ∈ T is compatible with this computation if

Flow(s, d) ⊇ Paths(P, s, d) and

T0
def
= (

∏

k∈K

RP′[k, N, maink, acceptedk, seqNumk, repliesk, RTk, Bk, Ck])

where sets maink and acceptedk are computed from sets Flow(s, d) and

MainPaths(s, d) as in the definition of the restricted system, seqNumk and RTk

are equal to respective seqNumk and RTk of System and repliesk = Bk = Ck = ∅.
We now prove that, any set of actions done by System, there is a T0 that can

execute a compatible set of actions and lead to similar state.

Lemma 5.2.13 If System
ω

=⇒ P then there exists T0 such that, T0
ω

=⇒ T and P

and T are similar.

Proof. We will prove the result by induction on the length, n, of the transition

System
ω

=⇒ P .

The base case, n = 0 is trivially true for any T0 ∈ T . Suppose that the result

holds for n = k − 1 and consider System
ω

=⇒ P ′ a−→ P a transition of length

k. Let T0 be compatible with the computation as defined above. Then, T0 is also

compatible with the computation System
ω

=⇒ P ′ and, by the induction hypothesis,

T0
ω

=⇒ T ′ where P ′ and T ′ are similar. Consider the transition P ′ a−→ P . The

following cases exists:

70

- a = τ and the internal action took place on a channel that does not belong to

any path w ∈ Flow(s, d) of T0. Then we may see that for T = T ′, T ′ ε
=⇒ T

and T , P are similar.

- a = τ and the internal action took place on a channel that belongs to some

path w ∈ Flow(s, d) of T0. Then using a case analysis similar to the one

found in the proof of Lemma 5.2.12 we may find appropriate T such that

T ′ τ−→ T and T , P are similar.

- a = starts(d). In this case we can see that process P depends on whether

node s knows a valid path to d or not. In both cases we can find appropriate

T such that T ′ τ−→ T and T , P are similar.

- a = routeFounds(d). Suppose that this action was emitted in P ′ by some

process RP [u, · · · , Cu] such that 〈T, d, ∗, s, ∗, ∗, ∗, ∗〉 ∈ Cu. Then, it must

be that the process has received either a starts(d) signal and there exists

an e ∈ RTu s.t. e : d = d ∧ e : V alid = T or a message along a channel

RREPv,u(d, dstSeq, s, last, hops), v ∈ Nu. In the first case it is easy to find

an appropriate T such that T ′ τ−→ T and T , P are similar. In the second

case, this implies that either v = d or v knows a valid path to d or it has

received a message along channel RREPw,v, w ∈ Nv and so on. Since the

network is connected, this implies that each one of these nodes (except s

who first send RREQ messages) have, at some point in the past, received

a RREQ message from a new loop free and link disjoint path from s which

they accepted. Once accepted this path, a node either replies to the message

(if it is the destination node d, or knows a valid path to d), or forwards the

message to its neighbors. Due to this sequence of actions, s learns a new path

to d and there is an appropriate T such that T ′ τ−→ T and T , P are similar.

2

With the following lemma we complete the proof of Theorem 5.2.1.

Lemma 5.2.14 R = {(P, SpecS) | S = pending(P)} is a weak bisimulation.

Proof. Let (P, Q) ∈ R. First we show that if P
α−→ P ′ then Q

α−→ Q′ and

(P ′, Q′) ∈ R. Suppose P
α−→ P ′. There are three cases:

- α = startj(f). Then Q
α−→ Q′ = SpecS∪{〈j,f〉} and clearly (P ′, Q′) ∈ R.

- α = routeFoundi(d). Then it must be that 〈i, d〉 ∈ S and clearly Q
α−→ Q′ =

SpecS−{〈i,d〉} where clearly (P ′, Q′) ∈ R.

71

- α = τ . Then we may observe that pending(P ′) = pending(P) and conse-

quently (P ′, Q) ∈ R as required.

We next show that if Q
α−→ Q′ then P

α−→ P ′ and (P ′, Q′) ∈ R. Suppose Q
α−→ Q′.

Then there are two cases:

- α = startj(f) and Q′ = SpecS∪{〈j,f〉}. Then P
α−→ P ′ where pending(P ′) =

pending(P) ∪ {〈j, f〉} and clearly (P ′, Q′) ∈ R.

- α = routeFoundi(d) and Q′ = SpecS−{〈i,d〉}. Then it must be that

〈i, d〉 ∈ pending(P) and by Lemma 5.2.13 there exists T0 =⇒ T such that

P and T are similar. By Lemma 5.2.10 we know that T
α−→ T ′ and by

Lemma 5.2.12 we get that P
α−→P ′ where pending(P ′)=pending(P)−{〈i, d〉}.

Thus (P ′, Q′) ∈ R which completes the proof.

2

This concludes the proof of Theorem 5.2.1 which shows that algorithm AOMDV

delivers the desired behavior, that is every route request will eventually discover at

least one path and the paths that are discovered are loop free and link disjoint.

72

Chapter 6

Conclusions

6.1 Comparison of I/O Automata and Process Algebras

6.2 Future Work

In this work, we have modeled and analyzed a multipath routing protocol from

the area of ad hoc networks using two formalisms, the I/O Automata and the

Process Algebra CCS. Specifically, we have modeled the Route Discovery Process

of the “Ad hoc on-demand multipath distance vector routing” [36] algorithm, which

is an extension of the “AODV” [46] protocol, and we have analyzed the algorithm

to prove its correctness. This constitute our main contribution.

We point out that our specifications of AOMDV are significant in themselves

since the protocol AOMDV is not given in any formal description. In fact, both of

the protocols AOMDV and AODV are given in “natural” language which in many

occasions is obscure and can have ambiguous meanings. In addition, the authors of

AOMDV in [36] give only the parts that their algorithm extend AODV and not the

description of the whole algorithm. This results in missing details in algorithm’s

description. Instead, the specification of the algorithm make precise these missing

and obscure parts helping in the understanding of AOMDV. This illustrates an

additional benefit in the use of formal methods in the development and verification

of algorithms or systems in general.

Contrasting the specifications and verifications of AOMDV with the two for-

malisms, the first impression we get is that “they have been developed on different

planets” as F. Vaandrager mentions gracefully in [62]. In the same paper the au-

thor provides a comparison of the two methodologies regarding their semantics. It

is shown that I/O Automata is a subset of Process Algebras. Moving on we see

that the two frameworks have many ideas in common, but they have also many

differences.

73

6.1 Comparison of I/O Automata and Process Algebras

Beginning with the specification of AOMDV in each framework, we can identify the

first differences. Process Algebras have many operators that give precise meaning

to the states and operations of the system. Moreover, a new operator can be

easily added if needed. These operators are used to compose simple processes

to complex systems. In contrast, I/O Automata have only a few operators such

as composition which composes the automata to built systems. A state (set of

variables) of an I/O Automaton is central and has global scope in the automaton

specification. In contrast in Process Algebras the parameters of the process state

has to be carried around and their scope is limited to the actions in the specific

process. I/O Automata focus on the description of the actions that each component

does while Process Algebra focus on the states that a system can be. Thus, I/O

Automata are closer to the development way of thinking than Process Algebra,

since the development way of thinking concentrates on what each component has

to do rather than on what state the system should reach after a certain action.

Another main difference is that each action in I/O Automata is given in terms

of precondition-effects. In this way each action is enabled when its preconditions

are fulfilled and the enabled actions can be executed in nondeterministic manner.

Recall that input actions have no preconditions, thus they are always enabled.

In contrast, in Process Algebras, the actions of each process are structured by the

semantic operators and they are enabled only if they reach the top of the structure.

Moreover, the enabled actions can be executed in a nondeterministic manner, just

like in I/O Automata.

Each action in I/O Automata is an atomic action that consists of a series of

state changes. In contrast, each action in Process Algebra changes the state of the

system only once, probably though changing more than one parameters. Moreover,

this difference of action granularity affects the proofs of each formal method. In

Process Algebra the proof has to include more actions than in I/O Automata,

where the proof is limited to fewer actions which are split to more cases of the

same action.

Both specifications of I/O Automaton and Process Algebras can become more

abstract or more detailed depending on the goal of the study.

Concerning the proofs of each formalism, I/O Automata split the required be-

havior in small invariant assertions and safety lemmas that prove that the system

does not do anything that is not supposed to do. In addition, some liveness lemmas

show that even if everything is ok and fair in the system, it will eventually deliver

74

the required behavior. In contrast, Process Algebras uses simulation and bisimu-

lations results to conclude that the system works as it is supposed to work. In the

proof of AOMDV we used the following method: We built a restricted system that

exhibits the desired behavior and we proved that the general system is a simula-

tion of the restricted. In other words we proved that the general system can do

the “good” things. Moreover, we proved bisimilarity to the system specification,

proving that not only it can do the “good” things, but it will do them. Thus,

I/O Automata concentrate to preclude any wrong behavior while Process Algebra

concentrates to show that the desired behavior is the only behavior that the system

can have.

This observation leads to an important similarity of the two frameworks. Both

formalisms provide abstract descriptions of systems and algorithms, thus they don’t

take into account faulty situations as crashes, message errors and losses unless they

are modeled in the specification. In other words if the goal of the analysis is to

determine the behavior of the system or the algorithm in study in such situations,

then these cases have to be modeled in the specification.

In general, I/O Automata have local focus, that is they focus on the actions

of each automaton individual. This makes it easier to proof local statements than

global statements. Instead, in Process Algebra, the focus of the proof can be easily

transfered from global focus to local focus thus the proofs for global and local

statements have the same degree of difficulty.

6.2 Future work

This dissertation investigates the foundations of the modeling, development and

analysis of ad hoc networks through the modeling and analysis of an algorithm

of ad hoc networks. In specific, this work regards the route discovery phase of

the algorithm AOMDV, a multipath routing algorithm of ad hoc networks. The

algorithm was modeled and analyzed by two formalisms, the I/O Automata and

Process Algebras.

As a next step in this work, the second phase of the same algorithm, the main-

tenance phase, will be modeled and analyzed to check that the correctness of the

algorithm is not affected by this phase. In addition, the algorithm will be checked

applying timeouts on the created paths.

Moreover, in this work we give a first comparison of the two formalisms for their

applicability in the field of ad hoc networks. This work can be used as a reference

point for future work including further extensive study of the two formalisms in the

75

field of ad hoc networks. This can be achieved by modeling and analyzing more

algorithms, or the same algorithm in more dynamic environment modeling node

movements and failures. This will lead to a deeper investigation of the strengths

and weaknesses of each formal method and possibly one of them will surpasses the

other or a new hybrid formalism will be born that includes the strengths of both

formalisms.

76

Bibliography

[1] The IOA Toolkit. http://theory.lcs.mit.edu/tds/ioa/.

[2] G.-S. Ahn, A.T. Campbell, A. Veres, and L.-H. Sun. SWAN: Service Differ-

entiation in Stateless Wireless Ad Hoc Networks. In Proceedings of the 21st

Annual Joint Conference of the IEEE Computer and Communications Soci-

eties, INFOCOM 2002, volume 2, pages 457– 466, 2002.

[3] P. Attie and N. Lynch. Dynamic Input/Output Automata: a Formal Model

for Dynamic Systems. In Proceedings of the 12th International Conference on

Concurrency Theory, pages 21–24, 2001.

[4] B. Awerbuch. Optimal distributed algorithms for minimum weight spanning

tree, counting, leader election, and related problems. In Proceedings of the 19th

annual ACM conference on Theory of computing, STOC ’87, pages 230–240,

1987.

[5] R. Baldoni, A. Virgillito, and R. Petrassi. A distributed mutual exclusion

algorithm for mobile ad-hoc networks. In Proceedings of the 7th International

Symposium on Computers and Communications, ISCC 2002, pages 539– 544,

2002.

[6] M. Bechler, H.-J. Hof, D. Kraft, F. Pahlke, and L. Wolf. A cluster-based secu-

rity architecture for ad hoc networks. In Proceedings of the 23rd AnnualJoint

Conference of the IEEE Computer and Communications Societies, INFOCOM

2004, volume 4, pages 2393– 2403, 2004.

[7] M. Benchaiba, A. Bouabdallah, N. Badache, and M. Ahmed-Nacer. Dis-

tributed mutual exclusion algorithms in mobile ad hoc networks: an overview.

SIGOPS Operating Systems Review, 38(1):74–89, 2004.

[8] J. A. Bergstra. Handbook of Process Algebra. Elsevier Science Inc., 2001.

77

[9] K. Bhargavan, D. Obradovic, and C. A. Gunter. Formal verification of stan-

dards for distance vector routing protocols. Journal of ACM, 49(4):538–576,

2002.

[10] L. Cardelli and A. Gordon. Mobile Agents. In Proccedings of the International

Conference on Foundations of Software Science and Computation Structures,

FOSSACS’98, LNCS 1378, pages 140–155, 1998.

[11] S. Chiyangwa and M. Kwiatkowska. A Timing Analysis of AODV. In Proceed-

ings of the 7th IFIP International Conference on Formal Methods for Open

Object-based Distributed Systems, pages 306–322, 2005.

[12] I. Chlamtac, M. Conti, and J. Liu. Mobile Ad Hoc Networking: Imperatives

and Challenges. Ad Hoc Networks, 1(1):13–64, 2003.

[13] S. Dolev, S. Gilbert, N. A. Lynch, E. Schiller, A. A. Shvartsman, and J. Welch.

Virtual Mobile Nodes for Mobile Ad Hoc Networks. In Proceedings of the 18th

International Symposium on Distributed Computing, pages 230–244, 2004.

[14] S. Dolev, S. Gilbert, N. A. Lynch, A. A. Shvartsman, and J. Welch. GeoQuo-

rums: Implementing Atomic Memory in Ad Hoc Networks. In Proceedings

of 17th International Symposium on Distributed Computing, pages 306–320,

2003.

[15] S. Dolev, S. Gilbert, E. Schiller, A. A. Shvartsman, and J. Welch. Autonomous

Virtual Mobile Notes. In Proceedings of the 3rd Annual ACM/SIGMOBILE

International Workshop on Foundations of Mobile Computing, 2005.

[16] C. Ene and T. Muntean. A Broadcast-based Calculus for Communicating

Systems. In Proceedings of the 15th International Parallel & Distributed Pro-

cessing Symposium, IPDPS ’01, pages 1516–1525, 2001.

[17] L.M. Feeney and M. Nilsson. Investigating the energy consumption of a wire-

less network interface in an ad hoc networking environment. In Proceedings of

the 20th Annual Joint Conference of the IEEE Computer and Communications

Societies, INFOCOM 2001, volume 3, pages 1548–1557, 2001.

[18] W. Fokkink. Introduction to Process Algebra. Springer-Verlag New York, Inc.,

2000.

[19] C. L. Fullmer and J. J. Garcia-Luna-Aceves. Solutions to hidden terminal

problems in wireless networks. SIGCOMM Computer Communication Review,

27(4):39–49, 1997.

78

[20] S. Giordano. Handbook of Wireless Networks and Mobile Computing, chapter

Mobile Ad-Hoc Networks. John Wiley and Sons, 2002.

[21] J. C. Godskesen. A calculus for mobile ad hoc networks. In Proceedings of

Coordination’07 to appear, 2007.

[22] K. P. Hatzis, G. P. Pentaris, P. G. Spirakis, V. T. Tampakas, and R. B. Tan.

Fundamental control algorithms in mobile networks. In Proceedings of the 11th

Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA ’99,

pages 251–260, 1999.

[23] M. Hennessy and R. Milner. Algebraic Laws for Nondeterminism and Con-

currency. Journal of the ACM, 32, 1985.

[24] M. Hennessy and T. Regan. A process algebra for timed systems. Information

and Computation, 117(2):221–239, 1995.

[25] M. Hennessy and J. Riely. Resource Access Control in Systems of Mobile

Agents. In Proccedings of the 3rd International Workshop on High-Level Con-

current Languages, pages 3–17, 1998.

[26] A.D. Jaggard and V. Ramachandran. Relating two formal models of path-

vector routing. In Proceedings of the 24th Annual Joint Conference of the

IEEE Computer and Communications Societies, INFOCOM 2005, volume 1,

pages 619– 630, 2005.

[27] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. Timed I/O Automata:

A Mathematical Framework for Modeling and Analyzing Real-Time Systems.

In Proceedings of the 24th IEEE International Real-Time Systems Symposium,

pages 166–177, 2003.

[28] N. Li and J.C. Hou. Topology control in heterogeneous wireless networks:

problems and solutions. In Proceedings of the 23rd Annual Joint Conference

of the IEEE Computer and Communications Societies, INFOCOM 2004, vol-

ume 1, page 243, 2004.

[29] N. Li, J.C. Hou, and L. Sha. Design and analysis of an MST-based topology

control algorithm. In Proceedings of the 22nd Annual Joint Conference of the

IEEE Computer and Communications Societies, INFOCOM 2003, volume 3,

pages 1702– 1712, 2003.

79

[30] N. Lynch, R. Segala, and F. Vaandrager. Compositionality for Probabilistic

Automata. In Proceedings of the 14th International Conference on Concur-

rency Theory, pages 208–221, 2003.

[31] N. Lynch, R. Segala, and F. Vaandrager. Hybrid I/O Automata. Information

and Computation, 185(1):105–157, 2003.

[32] N. Lynch and M. R. Tuttle. Hierarchical Correctness Proofs for Distributed

Algorithms. In Proceedings of the 6th Annual ACM Symposium on Principles

of Distributed Computing, pages 137–151, 1987.

[33] N.A. Lynch and M. Tuttle. An introduction to input/output automata. CWI-

Quarterly, 2(3):219–246, 1989.

[34] N. Malpani, J. L. Welch, and N. Vaidya. Leader election algorithms for mobile

ad hoc networks. In Proceedings of the 4th international workshop on Discrete

algorithms and methods for mobile computing and communications, DIALM

’00, pages 96–103, 2000.

[35] M. Marina and S. Das. On-Demand Multi-Path Distance Vector Routing

in Ad Hoc Networks. In Proceedings of the 9th International Conference on

Network Protocols, ICNP’01, page 14, 2001.

[36] M. K. Marina and S. R. Das. Ad hoc on-demand multipath distance vector

routing. Wireless Communications and Mobile Computing, 6(7):969 – 988,

2006.

[37] M. Merro. An observational theory for mobile ad hoc networks. In Proceed-

ings of the 23rd Conference on the Mathematical Foundations of Programming

Semantics (MFPS XXIII), volume 173 of Electronic Notes in Theoretical Com-

puter Science, pages 275–293, 2007.

[38] R. Milner. A Calculus of Communicating Systems. Springer, 1980.

[39] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[40] R. Milner. The Poyadic π–Calculus: a Tutorial. In Logic and Algebra of

Specification, pages 203–246. 1991.

[41] K. Nakano and S. Olariu. Randomized Leader Election Protocols for Ad-hoc

Networks. In Proceedings of the 7th International Colloquium on Structural In-

formation and Communication Complexity, SIROCCO, pages 253–267, 2000.

80

[42] S. Nanz and C. Hankin. Static analysis of routing protocols for ad-hoc net-

works. In Proceedings of the 5th ACM SIGPLAN and IFIP WG 1.7 Workshop

on Issues in the Theory of Security, WITS04, pages 141–152, 2004.

[43] S. Nanz and C. Hankin. A framework for security analysis of mobile wireless

networks. Theoretical Computer Science, 367(1):203–227, 2006.

[44] A. Nasipuri, R. Castaneda, and S.R. Das. Performance of Multipath Routing

for On-Demand Protocols in Mobile Ad Hoc Networks. Mobile Networks and

Applications, 6(4):339–349, 2001.

[45] X. Nicollin and J. Sifakis. The algebra of timed processes, ATP: theory and

application. Information and Computation, 114(1):131–178, 1994.

[46] C. Perkins, E. Belding-Royer, and S. Das. RFC3561: Ad hoc On-Demand

Distance Vector (AODV) Routing, 2003.

[47] C. E. Perkins. Ad Hoc Networking. Addison-Wesley, 2001.

[48] C. E. Perkins and P. Bhagwat. Highly dynamic Destination-Sequenced

Distance-Vector routing (DSDV) for mobile computers. SIGCOMM Computer

Communication Review, 24(4):234–244, 1994.

[49] A. Philippou and G. Michael. Verification Techniques for Distributed Algo-

rithms. In OPODIS, pages 172–186, 2006.

[50] Y. Qiu and P. Marbach. Bandwidth Allocation in Ad Hoc Networks: a Price-

Based Approach. In Proceedings of 22nd Annual Joint Conference of the IEEE

Computer and Communications Societies. INFOCOM 2003, volume 2, pages

797 – 807, 2003.

[51] L. Ramachandran, M. Kapoor, A. Sarkar, and A. Aggarwal. Clustering algo-

rithms for wireless ad hoc networks. In Proceedings of the 4th International

Workshop on Discrete Algorithms and Methods for Mobile Computing and

Communications, DIALM ’00, pages 54–63, 2000.

[52] R. Ramanathan and R. Rosales-Hain. Topology control of multihop wireless

networks using transmit power adjustment. In Proceedings of the 19th An-

nual Joint Conference of the IEEE Computer and Communications Societies,

INFOCOM 2000, volume 2, pages 404–413, 2000.

[53] E.M. Royer and C.-K. Toh. A review of current routing protocols for ad hoc

mobile wireless networks. IEEE Personal Communications, 6(2):46–55, 1999.

81

[54] A. Savvides, C.-C. Han, and M. B. Strivastava. Dynamic fine-grained local-

ization in Ad-Hoc networks of sensors. In Proceedings of the 7th Annual In-

ternational Conference on Mobile Computing and Networking, MobiCom ’01,

pages 166–179, 2001.

[55] P. Sewell. Global/Local Subtyping and Capability Inference for a Distributed

π-calculus. In Proccedings of the 25th International Colloquium in Automata,

Languages and Programming, LNCS 1443, pages 695–706, 1998.

[56] P. Sewell, P. Wojciechowski, and B. Pierce. Location Independence for Mobile

Agents. In Proceedings of the International Conference on Computer Lan-

guages, volume 1686, 1998.

[57] V. Srinivasan, C.F. Chiasserini, P. Nuggehalli, and R.R. Rao. Optimal rate

allocation and traffic splits for energy efficient routing in ad hoc networks. In

Proceedings of the 21st Annual Joint Conference of the IEEE Computer and

Communications Societies, INFOCOM 2002, volume 2, pages 950– 957, 2002.

[58] K. Sundaresan, R. Sivakumar, M.A. Ingram, and T.-Y. Chang. A fair medium

access control protocol for ad-hoc networks with MIMO links. In Proceedings of

the 23rd Annual Joint Conference of the IEEE Computer and Communications

Societies, INFOCOM 2004, volume 4, pages 2559– 2570, 2004.

[59] L. Tassiulas and S. Sarkar. Maxmin fair scheduling in wireless networks. In

Proceedings of the 21st Annual Joint Conference of the IEEE Computer and

Communications Societies, INFOCOM 2002, volume 2, pages 763– 772, 2002.

[60] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh. Power-saving protocols for IEEE

802.11-based multi-hop ad hoc networks. In Proceedings of the 21st Annual

Joint Conference of the IEEE Computer and Communications Societies, IN-

FOCOM 2002, volume 1, pages 200–209, 2002.

[61] Y.-C. Tseng, S.-L. Wu, W.-H. Liao, and C.-M. Chao. Location awareness in

ad hoc wireless mobile networks. IEEE Computer, 34(6):46–52, 2001.

[62] F. Vaandrager. On the Relationship Between Process Algebra and In-

put/Output Automata. In Proceedings of the 6th Symposium on Logic in

Computer Science, pages 387–398, 1991.

[63] J. E. Walter, J. L. Welch, and N. H. Vaidya. A mutual exclusion algorithm

for ad hoc mobile networks. Wireless Network, 7(6):585–600, 2001.

82

[64] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang. Distributed topology control

for power efficient operation in multihop wireless ad hoc networks. In Proceed-

ings of the 20th Annual Joint Conference of the IEEE Computer and Com-

munications Societies, INFOCOM 2001, volume 3, pages 1388–1397, 2001.

[65] Y. Xue, B. Li, and K. Nahrstedt. Optimal resource allocation in wireless

ad hoc networks: a price-based approach. In IEEE Transactions on Mobile

Computing, volume 5, pages 347– 364, 2006.

[66] Z. Ye, S.V. Krishnamurthy, and S.K. Tripathi. A framework for reliable routing

in mobile ad hoc networks. In Proceedings of the 22nd Annual Joint Confer-

ence of the IEEE Computer and Communications Societies, INFOCOM 2003,

volume 1, 2003.

[67] M. G. Zapata and N. Asokan. Securing ad hoc routing protocols. In Proceedings

of the 3rd ACM workshop on Wireless security, WiSE ’02, pages 1–10, 2002.

83

