
On the Application of Formal Methods
for Specifying and Verifying Distributed Algorithms∗

Marina Gelastou, Chryssis Georgiou and Anna Philippou
Department of Computer Science, University of Cyprus

{gelastoum, chryssis, annap}@cs.ucy.ac.cy

Abstract

This paper studies the applicability of two methods for formally specifying and verifying dis-
tributed algorithms. Specifically, we consider the frameworks of Process Algebra and I/O Automata
and we apply both towards the verification of a distributed leader-election algorithm. Based on the
two experiences we evaluate the approaches and draw conclusions with respect to their relative capa-
bilities, strengths and usability.

1 Introduction
Modern distributed systems are intrinsically difficult to develop and reason about. The need for formally
verifying the correctness of distributed/parallel systems and algorithms has long been realized by the
research community. In the last two decades, the field of formal methods for system design and analysis
has dramatically matured and has reported significant success in the development of theoretical frame-
works for formally describing and analyzing complex systems as well as for providing methodologies
and practical tools for these purposes. More specifically, during the last twenty years, significant re-
search efforts were geared towards the development of formal methodologies for system modelling and
verification. Two prominent such models are those of Input/Output Automata, IOA [10], and Process
Algebra, PA [12, 2]. Both models are equipped with precise semantics, thus providing a solid basis for
understanding system behavior and reasoning about correctness. Since their inception, they have been
the subject of extensive research and they have been extended in various directions. Furthermore they
have been used in the literature for reasoning about a variety of algorithms (see, for example, [9, 3, 6, 17]
and [1, 16, 18] for I/O automata and process algebra respectively).

It is fair to say that these two formalisms are important, well-developed theories that have a lot to
offer towards understanding and reasoning about complex systems. However, to date, research carried in
each line of work has been quite distinct. At the same time, new variations and extensions of verification
formalisms keep cropping up while a thorough investigation into their applicability, strengths and poten-
tials is still missing. Indeed, recently, concerns are being raised with regards to the potentials of formal
methodologies towards the verification of today’s complex algorithms and environments. Characteristi-
cally, [4] questions the suitability of process algebras for reasoning about certain classes of distributed
algorithms.

These concerns have a great impact on the Distributed and Parallel Computing community. While
the need of applying formal techniques for reasoning about algorithm correctness is generally accepted

∗This work is supported in part by the Cyprus Research Foundation Grant “ΠPOO∆OΣ” and the University of Cyprus.

1

by members of the community, various questions still remain open and hinder the selection and adoption
of these techniques. Questions include: Which formalisms are appropriate to use for distributed/parallel
algorithms? Is there one that is “clearly better” for these algorithms, or classes thereof? Which one is
“easier” to learn and apply? Would a newcomer (postgraduate student) be able to apply such methods
to specify and verify the distributed/parallel algorithms we develop? There is no doubt that answers to
such questions can only benefit the Distributed and Parallel Computing community.

We begin to consider these questions by verifying a typical distributed algorithm in both the IOA
and the PA formalisms. In particular we specify and verify a leader-election algorithm [24] with static
membership and fault-free components. The choice of the algorithm was made based on two facts: (a)
the leader election problem is a fundamental problem in distributed computing and hence, an interesting
problem to consider, and (b) the algorithm is simple enough thus allowing us to focus on its specification
and verification rather than on its understanding, but at the same time complex enough to enable us to
evaluate the two frameworks and draw conclusions.

We observe the capabilities of each of the frameworks for modeling the specific algorithm. We
apply the associated proof techniques for proving the algorithm’s correctness and we evaluate them with
respect to their relative capabilities, strengths and usability. We compare and present the two experiences.
To the best of our knowledge, this is the first such hands-on evaluation of the two formalisms.

Document Structure. In the following section we give an overview of the two formalisms as well as
the algorithm to be verified. Sections 3 and 4 contain the specifications and verifications of the algo-
rithms in I/O automata and PA, respectively. In Section 5 we contrast and evaluate the two verification
experiences and in Section 6 we conclude the paper with our conclusions and a discussion of future
work. Missing proofs and some useful background material can be found in the Appendix that has
been sent to the PC chair, or in the full version of the paper [5].

2 Prelimilaries
In this section we present the two formalisms that will be used for the specification and verification of
the leader-election algorithm, as well as its description.

2.1 I/O Automata
In this section we overview the I/O Automata formalism of Lynch and Tuttle [10, 9] focusing on notions
used in this study. For a more detailed presentation we refer to these papers as well as [5, 11].

An I/O Automaton is a labeled state transition system. It consists of three type of atomic transitions
which are named actions: input, output and internal. The input actions of an I/O automaton are generated
by the environment and are transmitted instantaneously to the automaton. In contrast, the automaton can
generate the output and internal actions autonomously and can transmit output actions instantaneously
to its environment. Actions are described in a precondition-effect style. An action π is enabled if its
preconditions are satisfied. Input actions are always enabled. A signature of an I/O automaton consists
of three disjoint sets of input, output and internal actions. The external signature consists only of the
sets of input and output actions.

The operation of an I/O automaton is described by its executions and traces. An execution fragment
of an automaton A is a finite sequence s0, π1, s1, π2, . . . , πn, sn or an infinite sequence s0, π1, . . . of
alternating states and actions of A such that (si, πi+1, si+1) is a transition or step of A, for every i ≥ 0.
An execution is an execution fragment that starts with an initial state (i.e. s0 is an initial state). We

2

denote by exec(A) the set of all executions of A. A trace is an external behavior of an automaton A that
consists of the sequence of input and output actions occurring in an execution of A. I/O automata can be
composed to create more complex I/O automata. The (parallel) composition operator allows an output
action of one automaton to be identified with the input actions in other automata; this operator respects
the trace semantics.

Since the input actions of an I/O automata are always enabled, the specification cannot prevent the
occurrence of an infinite sequence of input actions, which could prevent the automaton from performing
locally-controlled actions (internal and output actions). This can lead to executions that are not fair,
so we are often interested in reasoning about fair executions defined as those executions where if the
automaton enables its locally-controlled actions infinitely often then it executes them infinitely often.

We conclude this section by presenting proof-related notions used in the subsequent study. Within the
I/O automata framework, the proving the correctness of an automaton is often deduced to showing safety
and liveness properties of the automaton. Informally speaking, a safety property specifies a property that
must hold in every state of an execution. In particular, it is required that something “bad” never happens.
A liveness property specifies events that must eventually be performed. In particular, it is required that
something “good” eventually happens, which in turn means that no matter what has happened up to a
certain point, there is still the possibility that something good will happen. Clearly this is a property that
can only be satisfied by fair executions.

An invariant is a property that is true in all reachable states of an automaton. Invariants are typically
proved by induction on the length of an execution leading to the state in question. Several invariants are
usually combined in proving (mainly) safety properties of a given automaton.

A common technique for reasoning about the behavior of a composed automaton is modular decom-
position, in which we reason about the behavior of the composition by reasoning about the behavior of
the component automata of the composition. First, one proves less complex invariants (or properties
in general) for the automata of the composition, and then it uses the composition of those invariants to
reason about the composed automaton.

2.2 The Process Algebra
Many process algebras have been proposed in the literature. For our purposes, we have found one of
the most basic ones, namely CCSv, to suffice. CCSv is a value-passing calculus [12, 22] which includes
conditional agents. For a more detailed presentation we refer to these works as well as [18, 5].

We begin by describing the basic entities of the calculus. We assume a set of constants, ranged over
by v, a set of functions, ranged over by f , operating on these constants and a set of variables, ranged
over by x. These give rise to the set of terms of CCSv ranged over by e, in the expected way. Moreover,
we assume a set of channels, L, ranged over by a, b. Channels provide the basic communication and
synchronization mechanisms in the language. A channel a can be used in input position, denoted by a,
and in output position, denoted by a. This gives rise to the set of actions Act of the calculus, ranged over
by α, β, containing (1) the set of input actions which have the form a(ṽ) representing the input along
channel a of a tuple ṽ, (2) the set of output actions which have the form a(ṽ) representing the output
along channel a of a tuple ṽ, and (3) the internal action τ , which arises when an input action and an
output action along the same channel are executed in parallel. We say that an input action and an output
action on the same channel are complementary actions. Finally, we assume a set of process constants
C, denoted by C. We assume that each constant C has an associated definition of the form C〈x̃〉 def

= P ,
where the process P may contain occurrences of C, as well as other constants. The syntax of CCSv is

3

given as follows:

P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | P\L | cond (e1 ¤ P1, . . . , en ¤ Pn) | C〈ṽ〉.
Process 0 represents the inactive process. Process α.P describes the process which first engages in ac-
tion α and then behaves as process P . Process P1 + P2 represents the nondeterministic choice between
processes P1 and P2. Process P‖Q describes the parallel composition of P and Q: the component pro-
cesses may proceed independently or interact with one another while executing complementary actions.
The conditional process cond (e1 ¤ P1, . . . , en ¤ Pn) presents the conditional choice between a set of
processes: assuming that all ei are closed terms, it behaves as Pi, where i is the smallest integer for
which ei evaluates to true. In P\F , where F ⊆ L, the scope of channels in F is restricted to process
P : components of P may use these channels to interact with one another but not with P ’s environment.
Finally, process constants provide a mechanism for including recursion in the process calculus.

The semantics of the calculus is given by structural operational semantics: each operator is given
precise meaning via a set of rules which, given a process P , prescribe the possible transitions of P ,
where a transition of P has the form P

α−→ P ′, specifying that P can perform action α and evolve into
P ′. These transitions give rise to a labeled directed graph whose vertices are the possible states of the
process and where an edge (v, α, v′) signifies that it is possible to evolve from v to v′ by executing action
α (that is, v

α−→ v′ is enabled by the semantic rules).
Processes are analyzed and compared on the basis of their state graphs. One common method of

performing this is the use of observational equivalences. Observational equivalences are based on the
idea that two equivalent systems exhibit the same behavior at their interfaces with the environment. This
requirement was captured formally through the notion of bisimulation [12, 14]. Bisimulation is a binary
relation on states of systems. Two processes are bisimilar if, for each step of one, there is a matching
(possibly multiple) step of the other, leading to bisimilar states. Below, we introduce a well-known
such relation on which we base our study. First, let us recall that Q is a derivative of P , if there are
α1, . . . , αn ∈ Act, n ≥ 0, such that P

α1−→ . . .
αn−→ Q. Moreover, given α ∈ Act we write P =⇒ Q

for P (
τ−→)∗Q, P

α
=⇒ Q for P =⇒ α−→=⇒ Q, and P

α̂
=⇒ Q for P =⇒ Q if α = τ and P

α
=⇒ Q

otherwise.

Definition 2.1 Bisimilarity is the largest symmetric relation, denoted by ≈, such that, if P ≈ Q and
P

α−→ P ′, there exists Q′ such that Q
α̂

=⇒ Q′ and P ′ ≈ Q′.

Typically, bisimulation relations are used to establish that a system satisfies its specification by de-
scribing the two as process-calculus processes and discovering a bisimulation that relates them. Their
theory has been developed into two directions. On the one hand, sound and complete axiom systems
have been developed for establishing algebraically the equivalence of processes. On the other hand,
proof techniques that ease the task of showing two processes to be equivalent have been proposed. We
point out that bisimilarity implies trace equivalence but the converse does not hold.

Another concept used in our study is the notion of confluence. A process is confluent if, from
each of its reachable states, “of any two possible actions, the occurrence of one will never preclude
the other” [13]. As shown in [13, 12] for pure CCS, and generalized in other calculi (e.g. [7, 22, 8, 15,
19, 18]), confluence implies determinacy and semantic-invariance under internal computation, and it is
preserved by several system-building operators. These facts make it possible to reason compositionally
that a system is confluent and to exploit this fact while reasoning about its behavior. In particular, for a
certain class of confluent processes, in order to check that a property is satisfied in every execution of the
system it suffices to show that it is satisfied by a single (arbitrary) execution. (More details on confluence
can be found in Appendix A.1 and [5].)

4

2.3 The Algorithm
The algorithm we consider for our case study, which we hereafter call LE, is the static version of a
distributed leader-election algorithm presented in [24]. It operates on an arbitrary topology of nodes
with distinct identifiers and it elects as the leader of the network the node with the maximum identifier.

In brief, the algorithm operates as follows. In its initial state, a network node may initiate a leader-
election computation (note that more than one node may do this) or accept leader-election requests from
its neighbors. Once a node initiates a computation, it triggers communication between the network nodes
which results into the creation of a spanning tree of the graph: each node picks as its father the node
from which it received the first request, forwards the request to all of its remaining neighbors and ignores
all subsequent received requests, with an exception described below. Consequently, each node awaits to
receive from each of its children the maximum identifier of the subtrees at which they are rooted and,
then, it forwards to its father the maximum identifier of the subtree rooted at the node. Naturally, this
computation begins at the leaves of the tree and proceeds towards the root. Once this information is
received by the root all necessary information to elect the leader is available. Thus, the root broadcasts
this information to its neighbors who in turn broadcast this to their neighbors, and so on.

Note that if more than one node initiates a leader-election computation then only one computation
survives which is the one originating from the node with the maximum identifier. This is established
by associating each computation with a source identifier. Whenever a node already in a computation
receives a request for a computation with a greater source, it abandons its original computation and it
restarts executing a computation with this new identifier. A more detailed description of the algorithm
can be found in Appendix A.2 or in the full paper [5].

3 Specification and Verification in IOA

3.1 Specification
The specification of algorithm LE in I/O automata is the composition of the LENODEi automata and the
Channel automata Ci,j , ∀ i, j ∈ I . The signature, state, and transitions of the LENODEi automaton are
given in Fig. 1 and of automaton Ci,j in Fig. 2.

3.2 Correctness Proof
The correctness proof is divided into two main parts. We first show that a unique spanning tree is built,
and using this fact we show that a unique common node (the one with the highest id) is elected as the
leader. For each part safety and liveness properties are stated. The technique of modular decomposition
is used for the final conclusions. Due to space limitations, full proofs are not presented, but can be
found in Appendix A.3 or in the full paper [5]. Invariants are proved by induction on the length of the
execution.

3.2.1 A Unique Spanning Tree is Built

We state the safety and liveness properties that lead to the conclusion that algorithm LE builds a unique
spanning tree.

5

Data Types and Identifiers:
I: total ordered set of processes’ identifiers
M: messages

m = 〈type, maxid, leaderid, srcid, mychild〉 ∈ M, where
type ∈ {election, ack, leader}; maxid, leaderid, srcid ∈ I ∪ {⊥};
mychild: Boolean

i, j ∈ I
Signature:
Input:

receive(m)j,i

Output:
send(m)i,j

Internal:
beginComputationi
setAcktoParenti
setLeaderi

States:
maxi ∈ I ∪ {⊥}, initially ⊥
srci ∈ I ∪ {⊥}, initially ⊥
leaderi ∈ I ∪ {⊥}, initially ⊥
parenti ∈ I ∪ {⊥}, initially ⊥
Nbrsi ∈ 2I : Neighbors of i

inElectioni : Boolean, initially false
sentAcktoParenti : Boolean, initially true
toBeAckedi ∈ 2I , initially ∅
tosendi , a vector of queues of messages, initially tosendi [j] = null, ∀j ∈ I

Transitions:
input receive(m)j,i

Effect:
if m.type = election then

if (inElectioni=false ∨ (inElectioni=true ∧m.srcid>srci)) then
srci := m.srcid
for all k ∈ Nbrsi − {j} do

enque m to tosendi [k]
od
toBeAckedi := Nbrsi − {j}
sentAcktoParenti := false
inElectioni := true
parenti := j
maxi := i

elseif (sentAcktoParenti = false ∧ srci = m.srcid) then
enque 〈ack,maxi , ∗, srci , false〉 to tosendi [j]

fi
elseif m.type = ack then

if sentAcktoParenti = false ∧m.srcid = srci then
remove j from toBeAckedi

if m.mychild = true ∧m.maxid > maxi then
maxi := m.maxid

fi
fi

elseif m.type = leader then
if sentAcktoParenti = true ∧ inElectioni = true
∧m.srcid = scri then

leaderi := m.leaderid
inElectioni := false
for all k ∈ Nbrsi − {j} do

enque m to tosendi [k]
od

fi
fi

output send(m)i,j

Precondition:
m first on tosendi [j]
j ∈ Nbrsi

Effect:
deque m from tosendi [j]

internal beginComputationi
Precondition:

inElectioni = false ∧ leaderi = ⊥
Effect:

scri = i
for all k ∈ Nbrsi do

enque 〈election, ∗, ∗, srci , ∗〉 to tosendi [k]
do
toBeAckedi := Nbrsi
sendAcktoParent := false
inElectioni := true
parenti := i
maxi := i

internal setAcktoParenti
Precondition:

toBeAckedi = ∅ ∧ srci 6= i ∧ sentAcktoParenti = false
Effect:

sentAcktoParenti = true
enque 〈ack,maxi , ∗, srci , true〉 to tosendi [parenti]

internal setLeaderi
Precondition:

toBeAckedi = ∅ ∧ srci = i ∧ sentAcktoParenti = false
Effect:

sentAcktoParenti = true
inElectioni = false
leaderi = maxi
for all k ∈ Nbrsi do

enque 〈leader, ∗, leaderi , srci , ∗〉 to tosendi [k]

Figure 1: The LENODEi automaton.

6

Signature:
Input:

send(m)j,i, where m ∈M and i, j ∈ I
Output:

receive(m)i,j , where m ∈M and i, j ∈ I

States:
MSG, a set of messages, initially ∅

Transitions:
input send(m)j,i

Effect:
put m in MSG

output receive(m)i,j

Precondition:
m ∈ MSG

Effect:
remove m from MSG

Figure 2: The Channel Automaton Ci,j

Safety Properties

The first invariant states that once a node enters a leader-election computation, it adapts a parent and a
source (root) of a potential spanning tree.

Invariant 1 Given any execution of LE, any state s, and any i ∈ I ,

(a) if s.inElectioni = false and s.leaderi = ⊥ then s.srci = ⊥ and s.parenti = ⊥.

(b) if s.inElectioni = true then s.srci 6= ⊥ and s.parenti 6= ⊥.

The next lemma states that source nodes do not appear “out of the blue”. The proof is by investigation
of the code and makes use of Invariant 1.

Lemma 3.1 In any given state s of an execution of LE, for any i, j ∈ I if s.srci = j, then there exists a
step (s1, π, s2), s1 < s, s2 ≤ s and π = beginComputationj .

Let execi0 be any execution of LE where only a single node i0 begins computation. We call i0 the
initiator of the computation. The next invariant states that once a process enters a computation with a
unique initiator, it becomes part of the spanning tree rooted at the initiator.

Invariant 2 Given any execution execi0 of LE, any state s, and for all i ∈ I such that s.parenti 6= ⊥,
then the edges defined by all s.parenti variables form a spanning tree of the subgraph of G rooted at i0.

The following invariant states that a node adapts a new source only if it is higher than its current
source.

Invariant 3 For any process i ∈ I and for any two states s, s′ s.t. s < s′ of any execution of LE, if
s′.srci 6= s.srci, then s′.srci > s.srci.

Liveness Properties

This lemma states that in executions with a single initiator a unique spanning tree is eventually built
rooted at the initiator.

Lemma 3.2 In any fair execution execi0 , all nodes i ∈ I eventually belong to a unique spanning tree
rooted at i0.

7

Proof. For any node j ∈ I , let Dj denote the length (in terms of hops) of the longest loop-free path from
i0 to j. We show that eventually j belongs to the spanning tree rooted at i0. The proof is by induction on
Dj and uses Lemma 3.1 and Invariant 2. 2

If more than one beginComputationi actions occur, let ismax be the node with the maximum i value
among them. The following theorem, the core result of this section, shows that a unique spanning tree is
eventually built.

Theorem 3.3 Algorithm LE eventually builds a unique spanning tree rooted at ismax.

Proof. The proof makes use of Lemma 3.2 and Invariant 3. The idea is that if more than one initiators be-
gin computation, by Invariant 3, only the computation with the highest id survives and as per Lemma 3.2
a unique spanning tree rooted at that node is eventually built. 2

3.2.2 A Unique Common Leader is Elected

We now state the safety and liveness properties that lead to the correctness of algorithm LE.

Safety Properties

The following invariant states that a node adapts a new max value only if it is higher than its current one.

Invariant 4 For any node i ∈ I and for any two states s, s′ s.t. s′ < s of any execution of LE, if
s.srci = s′.srci and s.maxi 6= s′.maxi, then s′.maxi > s.maxi.

The following lemma states that the each child propagates to its parent the maximum value of its
subtree. The proof is by code investigation and it makes use of Invariant 4.

Lemma 3.4 In any state s of an execution of LE, if s.toBeAckedi = ∅ and s.sentAcktoParenti =
false then s.maxi is the greatest value among i and the values that i has “seen” from its children.

Let imax denote the process with the maximum value i. The next theorem (which is actually an
invariant) states that if a node elects a leader, this can only be imax.

Theorem 3.5 For any node i and state s of any execution of LE, if s.leaderi 6= ⊥, then s.leaderi = imax.

Liveness Properties

We now give the main result that states that algorithm LE indeed solves the Leader Election problem.

Theorem 3.6 Given a fair execution of LE there exists a state s where ∀ i ∈ I , s.leaderi = imax.

Proof. The proof makes use of Theorem 3.3 stating that a unique spanning tree is built. Then it proceeds
by induction on the depth of the spanning tree and by making use of Lemma 3.4 it is shown that even-
tually the max value is propagated to the root of the tree. Then it is argued that the leader message sent
by the root is eventually received by all nodes and by Theorem 3.5 all nodes elect imax as the leader, as
desired. 2

8

4 Specification and Verification in PA

4.1 Specification
In this section we give a description of the LE algorithm in the CCSv calculus. We assume a set K con-
sisting of the node unique identifiers and a set of channels F = {electioni,j, ack0i,j, ack1i,j, leaderi,j |
i, j ∈ K, i 6= j} where xi,j refers to the channel from node i to node j of type x. The system is described
as the following parallel composition of its constituent nodes:

P0
def
= (

∏

k∈K

NoLeader〈uk, Nk〉)\F

Initially, all nodes are of type NoLeader〈i, N〉 but may evolve into processes
InComp〈i, f, s, N, S, R, A,max〉, LeaderMode〈i, s, N〉 and ElectedMode〈i, s, N, S, l〉, where i
represents the identifier of the process, N the set of its neighbors, and, once the node is in computation
mode, f and s are the father of the node and the source of the computation, respectively, S the set of
request messages the node has still to send, R the set of potential children of the node from which
it is waiting to hear and A the set of acknowledgement messages the process has still to send. The
specification of these processes can be found in Fig. 3.

NoLeader〈i,N〉 def= τ. InComp〈i, i, i, N, N, N, ∅, i〉
+

∑
j∈N electionj,i(s). InComp〈i, j, s,N,N − {j}, N − {j}, ∅, i〉

InComp〈i, f, s,N, S,R, A,max〉 def=∑
j∈S electioni,j(s). InComp〈i, f, s, N, S − {j}, R, A, max〉

+
∑

j∈A ack0i,j(s). InComp〈i, f, s, N, S, R, A− {j}, max〉
+

∑
j∈N ack0j,i(s′). cond ((s = s′) ¤ InComp〈i, f, s, N, S,R− {j}, A,max〉,

true ¤ InComp〈i, f, s,N, S,R, A,max〉)
+

∑
j∈N ack1j,i(s′,max′).

cond ((s = s′ ∧max′ > max) ¤ InComp〈i, f, s,N, S,R− {j}, A,max′〉,
(s = s′ ∧max′ ≤ max) ¤ InComp〈i, f, s,N, S,R− {j}, A,max〉,
true ¤ InComp〈i, f, s, N, S, R, A, max〉)

+
∑

j∈N electionj,i(s′). cond ((s′ > s) ¤ InComp〈i, j, s′, N, N − {j}, N − {j}, ∅, i〉,
(s′ = s) ¤ InComp〈i, f, s, N, S,R, A ∪ {j}, max〉,
true ¤ InComp〈i, f, s,N, S,R, A,max〉)

InComp〈i, f, s,N, ∅, ∅, ∅,max〉 def= ack1i,f (s,max).LeaderMode〈i, s,N〉

InComp〈i, i, i, N, ∅, ∅, ∅,max〉 def= leader(max).ElectedMode〈i, i, N,N, max〉

LeaderMode〈i, s, N〉 def=∑
j∈N leaderj,i(s′, max′). cond ((s = s′) ¤ ElectedMode〈i, s,N, N − {j}, max′〉,

true ¤ LeaderMode〈i, s, N〉)

ElectedMode〈i, s, N, S, l〉 def=
∑

j∈S leaderi,j(s, l).ElectedMode〈i, s, N, S − {j}, l〉
+

∑
j∈N leaderj,i(s′, l′).ElectedMode〈i, s,N, S, l〉

Figure 3: The node process

9

4.2 Correctness Proof
The correctness criterion of our algorithm is expressed as the following bisimulation equivalence be-
tween the system and its specification. The specification consists of the process that elects as a leader
the node with the maximum identifier and terminates.

Theorem 4.1 P0 ≈ leader(max).0 where max = max{ui| i ∈ K}.

The proof is established in two phases. In the first phase we consider a simplification of P0 where a
single initiator begins computation and where the spanning tree on which the algorithm operates is pre-
determined. We show that this restricted system is capable of producing the required leader message and
terminate. Then we observe that this system is confluent and thus it is in fact bisimilar to the process
leader(max).0. It then remains to establish a correspondence between the general system P0 and these
restricted type of agents which leads to the desired result. Due to space limitations, full proofs are
omitted but can be found in Appendix A.4 or in the full paper [5].

The restricted type of systems employed in the first phase of the proof use the following processes:

NoLeader′〈i, f, N, l〉 def
= electionf,i(s). InComp′〈i, f, s, N,N − {f}, N − {f}, ∅, i〉

InComp′〈i, f, s,N, S,R,A, max〉 def
=

. . .
+

∑
j∈N electionj,i(s

′). InComp′〈i, f, s, N, S,R,A ∪ {j},max〉,
. . .

LeaderMode′〈i, s,N〉 def
=∑

j∈N leaderj,i(s
′,max′). ElectedMode〈i, s,N, N − {j},max′〉

+
∑

j∈N electionj,i(s
′). LeaderMode′〈i, s, N〉

Thus, NoLeader′ is similar to NoLeader except that it may only be activated by a signal from a
specified node, f . Similarly, InComp′ and LeaderMode′ are similar to InComp and LeaderMode,
respectively, except that they do not take into account the source node of incoming leader and election
messages.

Let T be the set of agents of the form

T0
def
= (

∏
i∈K−{ν} NoLeader′〈i, fi, Ni, li〉 | InComp′〈ν, ν, ν, Nν , Nν , Nν , ∅, ν〉)\F

where {(i, fi)|i ∈ K − {ν}} is a spanning tree of the network rooted at node ν, for some ν ∈ K. Our
first results shows that T0 has an execution where the maximum node is elected as a leader.

Lemma 4.2 T0
leader(max)

=⇒ ≈ 0.

Proof. The proof consists of the construction of an appropriate execution. The execution considered
follows the intuitive break down of the algorithm in its three phases and involves an induction on the
height of the tree. 2

Lemma 4.3 T0 is confluent.

Proof. We may check that processes NoLeader′, InComp′, LeaderMode′ and ElectedMode, are con-
fluent by construction and satisfy the remaining conditions of Theorem A.4. Thus, the result follows.
2

From these two results we have that T0 satisfies the algorithm specification.

10

Corollary 4.4 T0 ≈ leader(max).0 where max = max{ui|i ∈ K}.

Having used confluence to analyze the behavior of T0, we can now relate it to that of P0. Let P
range over derivatives of P0 and T range over derivatives of T0. First, we introduce a notion of similarity
between derivatives of P0 and T0. We say that P and T are similar if the computation initiator in T
coincides with the maximum source node present in P and, additionally, the set of nodes in P that have
this source form a subtree of the spanning tree of T . All such nodes are in the same state in both P and
T whereas the remaining nodes are idle in T no matter their status in P .

Lemma 4.5 {〈T, P 〉|P and T are similar} is a strong simulation.

Proof. The proof is a case analysis of the possible actions of the form T
α−→ T ′. 2

By Corollary 4.4 and Lemma 4.5 we have that P0
leader(max)

=⇒ 0. Our final result establishes a corre-
spondence between P0 and agents T0 ∈ T .

Lemma 4.6 If P0
w

=⇒ P then there exists T0 such that, T0
w

=⇒ T and P and T are similar.

Proof. The proof is by induction of the length of the transition P0
w

=⇒ P . 2

We can now prove our main theorem. We have seen that P0
leader(max)

=⇒ 0. Further, suppose that
P0

α
=⇒ with α 6= leader(max). Then, there exists T0 such that T0

α
=⇒. However, this is in conflict

with Corollary 4.4. Finally, for the same reason, it is not possible that P0 =⇒ P ′
1 6−→. This implies that

P0 ≈ T0, as required.

5 Framework Evaluation
Having presented the models and correctness proofs of the LE algorithm in the two formalisms, in this
section we evaluate the two approaches and draw conclusions regarding their applicability and relative
strengths. We begin with some general observations on the two frameworks and then we evaluate them
based on our experiences of specifying and verifying our case study.

One may observe that work in I/O Automata and Process Algebras was mostly carried out inde-
pendently and that focus on each of them has been quite distinct. Work on PAs has concentrated on
enhancing the expressive power of the associated languages, developing their semantic theories, and
constructing automated analysis tools. On the other hand, work on I/O automata placed emphasis on ap-
plication of the basic model and its proposed extensions to prove by hand the correctness of algorithms.
One of the few cross-points between the two lines of work was [23] where the semantic relationship be-
tween the formalisms was investigated. In that paper, I/O automata are recasted as a De Simone calculus
and it is shown that the quiescent trace equivalence (an adaptation of the completed trace equivalence)
and the fair trace equivalence are substitutive. Indeed, as a consequence of the input-enabledness of
input actions and the non-blocking properties of the output actions, trace semantics is compositional for
I/O automata. The specific semantics also enables reasoning about fairness within I/O automata models.
In contrast, to provide compositional theories for typical PAs, it is necessary to consider the branching
structure of processes. Thus, process algebras are typically given bisimulation or failure equivalence
semantics. Finally, we point out that PAs have a rich algebraic structure and they are associated with
axioms systems which can be used for reasoning algebraically/compositionally about system behavior.

11

5.1 Specification
Beginning with the specifications developed in the two frameworks, we note that they have many sim-
ilarities as well as points of distinction. For instance, they both consider the system as the parallel
composition of the constituent components described as processes/automata. The nature of these pro-
cesses/automata does not include any internal concurrency. Although this was expected in the I/O au-
tomata model, in process algebra there was an alternative option of firing all acknowledgement and
election messages in processes concurrently to the main body of a node process. It turned out that the
imposition of sequentiality and the maintenance of sets containing this information enabled the tracka-
bility of the system derivatives and a smoother proof. On the other hand, the models depart from each
other in a number of ways.
Language syntax. The languages of the two formalisms differ substantially. The main differences
concern the language constructs, the granularity of the actions, and the methodology used for describing
flow of behavior. On the one hand, process algebras are based on a set of primitives and a fairly large
and expressive set of constructs with the notions of communication and concurrency at the core of their
languages (as it can be observed in Fig. 3). A system is modeled as a process which itself can be a
composition of subprocesses representing further constituent components. Action granularity is very
fine: actions can be input on channels, output on channels and internal actions.

On the other hand, I/O automata feature a more “relaxed” type of language, quite close to imperative
programming (as it can be observed in Fig. 1). It enables a limited (in comparison to PAs) set of opera-
tors: renaming and parallel composition. A system in this formalism is described as an I/O automaton.
As with process algebras, such an automaton is built compositionally as the parallel composition of the
system’s sub-components. However, in contrast to PAs, an I/O automaton possesses a state and its be-
havior is prescribed by the set of actions the automaton may engage in. Input actions are always enabled,
and output and internal actions cannot be prevented from arising. The effect of an action can be a com-
plex behavior described as a sequence of simple instructions that involve operating on the automaton’s
state. This may result in a less fine granularity of actions in comparison to PA’s.
State. As noted above, the I/O automata model builds on the notion of a state. The state of an automa-
ton consists of a set of variables which can be accessed and updated by the automaton’s actions even if
these constitute a set of independent parallel threads. In the context of process algebras, the presence of
independent parallel threads sharing a common set of variables creates the need to build mechanisms for
state maintenance or resort to alternative means of structuring the model which can be quite taxing. In
our case-study there were no parallel threads needing to access the same set of variables, which rendered
such mechanisms unnecessary. Instead, processes carried and updated their store within process constant
names as, for example, process constant InComp〈i, f, s, N, ∅, ∅, ∅,max〉.
Execution flow. Moving on, we note that the CCS model imposes a sequential structure to a node that
captures its flow of execution: in the algorithm’s model, a node normally proceeds through the sequence
of processes NoLeader, InComp, LeaderMode, ElectedMode. As computation proceeds the possible
behaviors a process may engage in are explicitly encoded in the process’s description. On the other hand,
in the I/O automata model, the flow of execution is determined by the state of an automaton: any action
whose precondition is satisfied, may take place. Thus, one has to look into the code carefully to build the
node’s behavior as a flow diagram which can increase the effort required to debug the specification. For
example, the execution flow of the above-mentioned CCS sequence of processes is realized in IOA with
the following values of the state-variable tuple 〈leaderi, inElection, sentAcktoParent〉: NoLeader ≡
〈⊥, false, true〉, InComp ≡ 〈⊥, true, false〉, LeaderMode ≡ 〈⊥, true, true〉, and ElectedMode ≡
〈maxi, false, true〉. Obviously, one needs to carefully check the IOA specification to observe this flow,
as opposed to the PA specification where it is straightforward.

12

Channels. Another interesting point, is that the two formalisms differ in their adoption of channels:
In CCS, channels are a first-class entity (see set F in the PA specification) and communication between
processes is carried out by a handshake mechanism over their connecting channels. This means that
if one needs to employ a more involved type of a channel (e.g. buffer or lossy channel), then special
processes need to be described for connecting the original sender and receiver. In contrast, in the I/O
automata model, channels are modeled as automata which execute complementary actions with their
source and destination (as demonstrated in Fig. 2). For simple types of channels, this machinery is
standard and becomes almost invisible to the main body of an application but has as a consequence that
in a proof one needs to assume the proper delivery of messages, assuming of course that channels are
intended to be reliable (as was the case in the IOA proofs presented in this paper).
Learning curve. The specifications were produced by a newcomer to both of these formalisms who
reported the I/O automata model to be easier to produce. This is mainly due to the programming style
of I/O automata which does not place great demands on a newcomer to the formalism as opposed to the
unfamiliar nature of PAs (language and semantics).

5.2 Verification
Moving on to the verification we again observe that the two proofs build on a number of common ideas
(e.g. both proofs consider the case that the algorithm contains a unique initiator before moving on to the
general case). However, the approaches taken are quite distinct.
Global vs. local properties and Proof methods. As it can be observed in Section 4.2, the process
calculus proof is based on the use of bisimulation for establishing the equivalence between the system
and its perceived intended behavior (Theorem 4.1). As already noted, bisimulations place the emphasis
on the behavior a system exhibits on the interface with its environment, that is, on global system prop-
erties. By adding an advertisement of the election of a leader in the specification of the processes, the
correctness criterion was straightforward to capture in terms of the existence of a bisimulation relation.
With regards to the establishment of the correctness criterion, the PA proof took advantage of the nature
of the algorithm: it is a deterministic algorithm that essentially concerns the computation of a global
function (election of the maximum leader). Given this fact, efforts were geared towards establishing
the confluence of the system and demonstrating that there exists an execution where the desired leader
election is observed.

On the other hand, as it can be observed in Section 3.2, the I/O proof uses assertional techniques for
the proof of a number of safety and liveness properties which establish that in every execution, eventually,
all processes will know a common leader. To achieve this, the global criterion had to be decomposed into
local properties of the constituent components of the system. This task required a careful consideration
of the algorithm’s behavior and some ingenuity on behalf of the prover. As a result, the proof had to be
broken into two parts: in the first part, the internal state of the nodes was “transformed” into to a global
system behavior (by the existence of a globally common spanning tree) and then, in the second part, the
uniqueness of the leader was shown.

A general conclusion that emanates from this observation is that process algebras are especially
suited for applications where the correctness requirement can be expressed as a global property of a
system, whereas I/O Automata can more naturally handle the establishment of local properties of the
component automata, or, where the overall requirement can be easily decomposed into such properties.

One may argue that perhaps it would be possible to use different IOA proof methods geared towards
reasoning about global properties, e.g. simulation relations [11]. For the specific algorithm, our expe-
rience tells us that this would be laborious to establish. It would be interesting to look into whether a

13

notion similar to confluence would aid such reasoning. Nonetheless, we feel that it is questionable that
it would result in easier-to-produce or more comprehensible proofs.
Proof style and Applicability. Looking at Sections 3.2 and 4.2, one may argue that the process calcu-
lus proof appears to be more technical in comparison to the IOA one. While, the PA proof took advantage
of compositionality results for facilitating the verification process, it took some effort for the newcomer
to become familiar with them as well as some ingenuity for choosing and adopting them. On the other
hand, the IOA proof was more intuitive, closer to the “way of thinking” of the algorithm, and did not
require any specialized techniques, thus it seemed easier to apply. The challenge being to identify the
appropriate safety and liveness properties (which for the specific algorithm were not very difficult), the
rest of the process was guided by checking for missing information towards reaching the intended goal
and subsequently expressing it as additional lemmas and invariants. The proofs were mainly carried out
by induction and code investigation. However, the verbose style employed in the IOA liveness proofs
(which is the typical style generally used for such proofs in IOA) could allow a less mature prover to fall
into pitfalls. In contrast, in the process-algebraic proof, safety and liveness properties are paired together
and their proof follows the formal nature of the semantics. This results in a continuous rigidity in the
proof as well as a higher awareness on the part of the prover when an argument is becoming “loose”.
Learning curve. From the above discussion, perhaps it is not a surprise that the newcomer reported
the process of carrying out the proof within the I/O automata framework to be easier than in the PA
framework.

6 Conclusions
The purpose of this work was to study the applicability of two prominent methods for formally specifying
and verifying distributed algorithms. Specifically we specified and verified a leader-election algorithm
using the Input/Output Automata and Process Algebra frameworks and we evaluated the two methods
with respect to their capabilities, strengths and usability. Based on this case-study we can, in summary,
conclude the following:

• Both formalisms were successful in specifying and verifying the algorithm under study. For each
method, standard/natural specification style and proof techniques were employed, demonstrating
that for distributed algorithms of a similar nature as the one under study, both methods are appli-
cable.

• The correctness criterion of the algorithm consisting of a global property (a common leader is
elected) as well as its confluent behavior, rendered the process-calculus proof methodology very
natural to apply. This does not imply that the IOA proof has been any less easy to establish, how-
ever, it required breaking the proof into two parts, the first of which involving the transformation
of local properties into a global one (the creation of a spanning tree) to allow the prover to reach
the desired result.

• As reported by a newcomer to the two formalisms, the programming style of I/O automata specifi-
cation and the nature of the I/O automata proofs (induction and code inspection) enable the easier
understanding and use of this framework. This does not imply that PAs are a difficult tool to em-
ploy. It does appear, however, that greater expertise and investment of time is required in order to
learn and apply this latter methodology which may yield more rigid proofs.

14

For future work we plan to evaluate the IOA and PA frameworks for specifying and verifying dis-
tributed algorithms in more complex systems where component failures or mobility is present. We
expect that in such systems our findings will be different both with respect to the capabilities as well as
the usability of the frameworks.

References
[1] R. M. Amadio and S. Prasad. Modelling IP mobility. In Proceedings of CONCUR’98, LNCS 1466, pages

301–316, 1998.
[2] J. A. Bergstra, A. Ponse, and S. A. Smolka. Handbook of Process Algebra. North-Holland, 2001.
[3] S. Dolev, S. Gilbert, N. A. Lynch, E. Schiller, A. A. Shvartsman, and J. L.Welch. Virtual mobile nodes for

mobile ad hoc networks. In Proceedings of DISC’04, LNCS 3274, pages 230–244, 2004.
[4] R. Fuzzati and U. Nestmann. Much ado about nothing? Electronic Notes of Theoretical Computer Science,

162:167–171, 2005.
[5] M. Gelastou, Ch. Georgiou, and A. Philippou. On the application of formal methods for specifying and

verifying distributed algorithms. Available at http://www.cs.ucy.ac.cy/˜annap/full.pdf.
[6] Ch. Georgiou, N. A. Lynch, P. Mavrommatis, and J. A. Tauber. Automated implementation of complex

distributed algorithms specified in the IOA language. In Proceedings of PDCS’05, pages 128–134, 2005.
[7] J. F. Groote and M. P. A. Sellink. Confluence for process verification. In Proceedings of CONCUR’95, LNCS

962, pages 152–168, 2005.
[8] X. Liu and D. Walker. Confluence of processes and systems of objects. In Proceedings of TAPSOFT’95,

LNCS 915, pages 217–231, 1995.
[9] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[10] N. A. Lynch and M. R. Tuttle. An introduction to Input/Output Automata. CWI-Quarterly, 2(3):219–246,
1989.

[11] N. A. Lynch and F. W. Vaandrager. Forward and backward simulations part I: Untimed systems. Information
and Computation, 121(2):214–233, 1995.

[12] R. Milner. A Calculus of Communicating Systems. Springer, 1980.
[13] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[14] S. Nanz and C. Hankin. Static analysis of routing protocols for ad hoc networks. In Proceedings of WITS’04,

pages 141–152, 2004.
[15] U. Nestmann. On Determinacy and Non-determinacy in Concurrent Programming. PhD thesis, University

of Erlangen, 1996.
[16] U. Nestmann, R. Fuzzati, and M. Merro. Modeling consensus in a process calculus. In Proceedings of

CONCUR’03, LNCS 2671, pages 393–407, 2003.
[17] C. Newport. Consensus and collision detectors in wireless ad hoc networks. Master’s thesis, MIT, 2006.
[18] A. Philippou and G. Michael. Verification techniques for distributed algorithms. In Proceedings of

OPODIS’06, LNCS 4305, pages 172–186, 2006.
[19] A. Philippou and D. Walker. On confluence in the π-calculus. In Proceedings of ICALP’97, LNCS 1256,

pages 314–324, 1997.
[20] B. C. Pierce and D. N. Turner. Pict: A programming language based on the π-calculus. In Proof, Language

and Interaction: Essays in Honour of Robin Milner, pages 455–494. MIT Press, 2000.
[21] M. Sanderson. Proof Techniques for CCS. PhD thesis, University of Edinburgh, 1982.
[22] C. Tofts. Proof Methods and Pragmatics for Parallel Programming. PhD thesis, Univ. of Edinburgh, 1990.
[23] F. W. Vaandrager. On the relationship between process algebra and input/output automata. In Proceedings

of LICS’91, pages 387–398. IEEE Computer Society, 1991.
[24] S. Vasudevan, J. Kurose, and D. Towsley. Design and analysis of a leader election algorithm for mobile ad

hoc networks. In Proceedings of ICNP’04, pages 350–360. IEEE Computer Society, 2004.

15

On the Application of Formal Methods
for Specifying and Verifying Distributed Algorithms

A Appendix

A.1 Confluence
In this part of the Appendix we recall some useful results regarding the theory of confluence that are
employed in this study. For further information we refer the reader to [13, 22, 21, 7, 19].

In [12, 13], Milner introduced and studied a precise notion of determinacy of CCS processes. The
same notion carries over straightforwardly to the CCSv-calculus. It is expressed as follows:

Definition A.1 P is determinate if, for every derivative Q of P and for all α ∈ Act, whenever Q
α−→ Q′

and Q
α̂

=⇒ Q′′ then Q′ ≈ Q′′.

This definition makes precise the requirement that, when an experiment is conducted on a process it
should always lead to the same state up to bisimulation. Determinacy has been extended into the notion
of confluence as follows:

Definition A.2 P is confluent if it is determinate and, for each of its derivatives Q and distinct actions
α, β, where α and β are not input actions on the same channel, if Q

α−→ Q1 and Q
β

=⇒ Q2 then, there

are Q′
1 and Q′

2 such that Q2
α̂

=⇒ Q′
2, Q1

β̂
=⇒ Q′

1 and Q′
1 ≈ Q′

2.

Its essence, to quote [13], is that “of any two possible actions, the occurrence of one will never
preclude the other”. As shown in [13, 12], for pure CCS processes confluence implies determinacy and
semantic-invariance under internal computation, and it is preserved by several system-building operators.
These facts make it possible to reason compositionally that a system is confluent and to exploit this fact
while reasoning about its behavior. These results were extended and generalized in various other calculi
(see, for example, [7, 22, 8, 15, 19, 20, 18]).

In this work, we will employ the following additional notion and result for aiding the verification
process [19].

Definition A.3 P is o-determinate if, for every derivative Q of P and for all channels a, whenever

Q
a(x̃)−→ Q′ and Q

a(ỹ)
=⇒ Q′′, then x̃ = ỹ and Q′ ≈ Q′′.

Theorem A.4 Suppose P = (P1 | . . . | Pn)\L, where each Pj is confluent and o-determinate and each
channel in L is used by at most two components of the composition. Then P is confluent.

A.2 Algorithm LE

In this part of the appendix we present the details of algorithm LE.
Each node i operates as follows:

• If i realizes that it has lost its leader, then it moves to computation mode in order to select a new
leader. It broadcasts an election message to all its neighbors which are considered its potential
children. This message contains the node’s identifier, id, which is considered to be the source

16

identifier of the computation, scrid, and denotes which node has started this procedure. In this
case source id is equal to i. Then it waits to receive acknowledgment messages, ack, from all its
neighbors.

• If i receives an election message from a neighbor j and it is not in computation mode then it sets
j to be its parent and enters computation mode. It then forwards the election message to all its
neighbors except its parent. All these neighbors are considered its potential children and it waits
to receive ack messages from them.

• If i receives an election message and it is already in computation mode with scrid smaller than the
source identifier contained in the message, then it abandons its current computation and proceeds
according to the previous step.

• If i receives an election message and it is already in computation mode with srcid equal to the
source identifier contained in the message, then it replies with an ack message informing the sender
that it is already in computation mode with a different parent node.

• If i receives an election message and it is already in computation mode with srcid larger than the
source id contained in the message, then it simply ignores the message.

• For any ack message that i receives, it removes the sender from its children list. The content
of the message can be distinguished in two categories. Either the sender is informing i that it
does not accept i as its parent, in which case i simply continues its computation. Otherwise, this
message contains an identifier which i compares with its known maximum value, initially set as
i’s identifier, and keeps as its known maximum value the largest of the two.

• When i receives ack messages from all its children or if it does not have any children, then it sends
an ack message to its parent. With this message it informs its parent about maximum value/node
identifier it is aware of. In the case that i has no children, then this identifier is i itself.

• If i is the node that started the computation (thus node i is the root of the spanning tree that was
created) and it has received ack messages from all its children nodes, then it decides which is the
leader node (the one with the maximum value) and informs all its neighbors about the new leader
node through a leader message.

• If a leader message is received and i has not learned its leader yet, it adapts the leader contained in
the message and forwards the message to all its neighbors (except from the sender of this message).

• If a leader message is received and i already has a leader then it simply ignores this message.

A.3 The Input/Output Automata Omitted Proofs
In this part of the appendix we present the missing proofs from the I/O automata correctness proof of the
algorithm.

17

Proof of Invariant 1

We first prove part (a) of the invariant. The proof is by induction on the length of the execution. The
invariant holds in the base case since initially s0.inElectioni = false, s0.leaderi = ⊥, s0.srci = ⊥
and s0.parenti = ⊥. Let the invariant hold for state s and consider step (s, π, s′). If π = send(m)i,j

or setAcktoParenti then s′.inElectioni = s.inElectioni, s′.leaderi = s.leaderi, s′.srci = s.srci and
s′.parenti = s.parenti thus the statement holds by the inductive hypothesis. For the rest of the cases:

• If π = beginComputationi then, by the preconditions of π it holds that s.inElectioni = false and
s.leaderi = ⊥ and by the inductive hypothesis, s.srci = ⊥ and s.parenti = ⊥. From the effects
of π, we get that s′.inElectioni = true, s′.srci = i and s′.parenti = i thus the statement holds.

• If π = setLeaderi then by the effects of this action s′.inElectioni = false and s′.leaderi 6= ⊥
hence the statement holds.

• If π = receive(m)j,i and m.type = ack or m.type = leader then s′.srci = s.srci and s′.parenti =
s.parenti thus the statement holds by the inductive hypothesis.

• If π = receive(m)j,i and m.type = election and s.inElectioni = true then s′.inElectioni =
true thus the statement holds.

• If π = receive(m)j,i and m.type = election and s.inElectioni = false, then from the effects of
this action we have that s′.inElectioni = true, thus the statement holds.

We now prove part (b) of the invariant. The proof is by induction on the length of the execution.
Initially s0.inElectioni = false thus the statement trivially holds. Let the invariant hold for state s
and consider step (s, π, s′). If π = send(m)i,j or setAcktoParenti then s′.inElectioni = s.inElectioni,
s′.srci = s.srci and s′.parenti = s.parenti thus the statement holds by the inductive hypothesis. For
the rest of the cases:

• If π = beginComputationi then, by the preconditions of π it holds that s.inElectioni = false.
From the effects of π, we get that s′.inElectioni = true, s′.srci = i and s′.parenti = i thus the
invariant is re-established.

• If π = setLeaderi then by the effects of this action s′.inElectioni = false hence the statement
holds.

• If π = receive(m)j,i and m.type = ack or m.type = leader and s.inElectioni = false then
s′.inElectioni = s.inElectioni, s′.srci = s.srci and s′.parenti = s.parenti thus the statement
holds by the inductive hypothesis.

• If π = receive(m)j,i and m.type = leader and s.inElectioni = true, then s′.inElectioni =
false and hence the statement holds.

• If π = receive(m)j,i and m.type = election and s.inElectioni = true then by the inductive
hypothesis s.srci 6= ⊥ and s.parenti 6= ⊥. From the effects of π, s′.inElectioni = true and
s′.srci 6= ⊥ and s′.parenti 6= ⊥, thus the invariant is re-established.

• If π = receive(m)j,i and m.type = election and s.inElectioni = false, then by part (a) of
this invariant it holds that s.srci = ⊥ and s.parenti = ⊥. From the effects of π we have that
s′.inElectioni = true, s′.srci = m.srcid and s′.parenti = j, thus the invariant is re-established.

This completes the proof. 2

18

Proof of Lemma 3.1

The proof is by investigation of the code. Since the initial value of s0.srci = ⊥ we have to check under
which cases node i changes the value of srci. From the code there are two cases:

• In the internal action beginComputationi. By the preconditions of this action, for a state s1 < s,
s1.inElectioni = false and s1.leaderi = ⊥, thus from Invariant 1(a), s1.srci = ⊥. From the
effects of π we get s2.srci = j where i = j as required.

• In input action receive(m)k,i where m.type = election and m.srcid = j, i 6= j and for a state
s′ < s such that s′.inElectioni = false or s′.inElectioni = true∧m.srcid > srci. This implies
a preceding send(m)k,i event such that m.type = election ∧m.srcid = j. From the code we find
two cases for such action to occur:

– In internal action beginComputationk where k = j, thus there exists a step (s1, π, s2),
s1, s2 < s′ such that π = beginComputationj as shown in the first bullet above.

– In input action receive(m)`,k where m.type = election, m.srcid = j, k 6= j and
inElectionk = false or inElectionk = true ∧ m.srcid > srck. The proof continues
recursively on `. 2

Proof of Invariant 2

The proof is by induction on the length of the execution. The base case is trivial since parenti = ⊥,
∀ i ∈ I . Let the invariant hold for state s and consider step (s, π, s′). If π = send(m)i,j , setAcktoParenti
or setLeaderi then s′.parenti = s.parenti thus the statement holds by the inductive hypothesis. For the
rest of the cases we have:

• If π = beginComputationi then it must be that i = i0 by our assumption. Moreover from the
preconditions of π we have that s.inElectioni = false and s.leaderi = ⊥ and by Invariant 1(a)
we get that s.parenti = ⊥. Since no other beginComputationj occurred before state s, it holds
also that s.parentj = ⊥, ∀ j ∈ I . From the effects of π, s′.parenti0 = i0. Thus i0 is the only node
in the spanning tree and is considered to be the root of this spanning tree.

• If π = receive(m)j,i then there are the following cases:

– If m.type = ack or m.type = leader then s′.parenti = s.parenti thus the statement holds
by the inductive hypothesis.

– If m.type = election and s.inElectioni = false then, by the effects of this action we have
that s′.parenti = j and s′.srcid = m.srcid. This implies a preceding send(m)j,i event such
that m.type = election. From the code we have that such messages are sent by processes
that are in election and hence by Invariant 1(b) and Lemma 3.1 we have that parentj 6= ⊥
and m.srcid = i0. Thus j belongs to the spanning tree rooted at i0 according to the inductive
hypothesis. Since i is a neighbor of j (by the preconditions of the action send(m)j,i) then the
new edge defined by parenti extends the spanning tree to include node i. Moreover, since
s.inElectioni = false and by Invariant 1(a) it holds that s.parenti = ⊥ thus node i did
not belong to the spanning tree previously and in addition to the uniqueness of the variable
parenti we conclude that i cannot cause loops in the spanning tree.

19

– If m.type = election and s.inElectioni = true and m.srcid = s.srci then s′.parenti =
s.parenti thus the statement holds by the inductive hypothesis.

– If m.type = election and s.inElectioni = true and m.srcid > s.srci, from Lemma 3.1
we have that there must have existed a step (s1, π

′, s2), s1, s2 < s where π′ =
beginComputationm.srcid and m.srcid 6= i0. But this contradicts the assumption of unique
initiator and hence this case is not possible.

This completes the proof. 2

Proof of Invariant 3

The proof is an induction on the length of the execution. The base case holds trivially, as initially,
∀ i ∈ I , s0.srci = ⊥. We suppose that the invariant holds for state s and we examine step (s, π, s′). If
π = send(m)i,j , setAcktoParenti or setLeaderi then s′.srci = s.srci and the statement holds. For the
remaining cases we have:

• If π = beginComputationi then from the preconditions of π we have that s.inElectioni = false
and s.leaderi = ⊥ and by Invariant 1(a) we get that s.srci = ⊥. By the effects of π, s′.parenti = i
and hence the invariant is re-established (by convention, i > ⊥, ∀ i ∈ I).

• If π = receive(m)j,i then there are the following cases:

– If m.type = ack or m.type = leader then s′.srci = s.srci thus the statement holds.

– If m.type = election and s.inElectioni = false then by Invariant 1(a) we have that
s.srci = ⊥ and by the effects of this action we get that s1.srcid = m.srcid. This im-
plies a preceding send(m)j,i event that by the inductive hypothesis, m.type = election and
m.srcid > ⊥. Hence the invariant is re-established.

– If m.type = election and s.inElectioni = true we notice that s′.srci = m.srcid only if
m.srcid > s.srci. Hence s′.srci > s.srci as required.

This completes the proof. 2

Proof of Lemma 3.2

For any node j ∈ I , we denote as Dj the length in hops of the maximum path among the set of loop-
free paths from i0 to j. We will prove that eventually j belongs in the spanning tree rooted at i0. The
proof is by induction on Dj . For Dj = 0, let s0 be an initial state and a step (s0, π, s1) such that
π = beginComputationi0 . Notice that π is the only action possible in execi0 . From the effects of action
π we get that s1.srci = i0, s1.inElectioni = true, s1.parenti = i0 and some messages m such that
m.type = election and m.srcid = i0 are prepared to be sent to the neighbors of i0. ¿From Invariant 2
i0 forms a spanning tree rooted at i0 thus the statement holds.

Assume that for any k, 0 < k < Dj , any node u such that Du ≤ k belongs to the spanning tree
rooted at i0. For k + 1 = Dj , we have two cases:

• j is a neighbor of i0, hence j has received or receives a message m from i0 such that m.type =
election and m.srcid = i0.

20

• j is a neighbor of a node v 6= i0 such that Dv ≤ k. By the induction hypothesis, v belongs to
the spanning tree rooted at i0. This implies a step (s, π, s′) such that π = receive(m)u,v where
m.type = election and inElectionv = false. From the effects of π, a set of messages m are sent
to the neighbors of v, including j such that m.type = election and m.srcid = i0.

Upon receiving m from v, that is π = receive(m)v,j there are two cases for process j:

• j is in election, that is, inElectionj = true. Then parentj 6= ⊥ and since only node i0 started
the computation, by Invariant 2 j already belongs to the spanning tree rooted at i0 and hence the
statement holds.

• j is not in election, that is, inElectionj = false. By the effects of π, srcj = i0 and parentj = v.
By the inductive hypothesis v belongs to the spanning tree and per Invariant 2, parentj forms an
edge of the spanning tree rooted at i0. Hence process j belongs to the spanning tree as desired.

Since j is an arbitrary node of the network, we conclude that every j ∈ I eventually belongs in the
spanning tree rooted at i0 in at most D = maxj∈I Dj hops. 2

Proof of Theorem 3.3

If only one process executes beginComputationi then i = ismax and by Lemma 3.2, eventually a spanning
tree covering all the network will be built rooted at i. Trivially, this spanning tree is unique.

Assume that exactly two processes i0, i1 begin computation and without loss of generality let i0 > i1
thus i0 = ismax. By Lemma 3.2, each one of these computations tends to cover the whole network.
Hence at least one node receives election messages for both computations. Let s the first state in which
a process i that belongs to the one computation receives an election message to enter the second com-
putation. For each state s′ < s, we can find a partition of the network such that in each part only one
beginComputationi occurs. Thus, we can apply Lemma 3.2 in each subgraph of the network, hence there
will be two spanning trees under formation, covering different parts of the network.

At state s there is a process i such that s.srci 6= ⊥ and receives a message m s.t. m.type = election
and m.srcid 6= s.srci. By Invariant 3, i will change the value of the srci variable only if m.srcid >
s.srci. In other words, if process i belongs to the spanning tree of i1 then by Invariant 3 it changes the
value of srci variable to i0, hence it enters the spanning tree of i0. If process i belongs to the spanning
tree of i0 then by Invariant 3 it will not change the value of srci variable to i1 since i1 < i0, hence i
remains in the spanning tree of i0. The same holds for every process j that receives election messages
for both computations, thus the spanning tree of ismax is never blocked by any other spanning tree in the
network. Thus, by Lemma 3.2 eventually every process in the network belongs in the spanning tree of
ismax and this spanning tree is unique.

The case of two starting processes can be easily generalized to any number of starting processes and
the result follows. 2

Proof of Invariant 4

The proof of this invariant is done in a similar manner to the proof of Invariant 3. The only difference is
that in the inductive step while considering action π = receive(m)j,i, we need to investigate m.type =
ack instead of m.type = election and specifically the case where m.srcid = srci. 2

21

Proof of Lemma 3.4

The proof is by code investigation. Initially toBeAckedi = ∅ and sentAcktoParenti = true. From the
code we observe that variable sentAcktoParenti is set to false in two cases:

• In the internal action beginComputationi where toBeAckedi is set to Nbrsi and

• In the input action receive(m)j,i where m.type = election and inElectioni = false or
inElectioni = true ∧m.srcid > srci. In the second case toBeAckedi = Nbrsi − {j}.

In both cases above toBeAckedi 6= ∅ unless Nbrsi = ∅ or Nbrsi = {j} respectively. In such
cases, maxi = i and the lemma holds. In any other case, each k ∈ toBeAckedi has to be removed. A
process k is removed from toBeAckedi only if an input action receive(m)k,i occurs where m.type = ack,
sentAcktoParenti = false and m.srcid = srci. Moreover in the same action, if m.mychild = true
and m.maxid > maxi then maxi = m.maxid. As a result of these actions and by the Invariant 4,
when toBeAckedi = ∅ then maxi is the greatest value among i and the values that i has ”seen” from its
children. 2

Proof of Theorem 3.5

The proof is by induction on the length of the execution. The base case holds trivially, as initially
∀i ∈ I , leaderi = ⊥. Assume that the statement holds for a state s and we examine step (s, π, s′). If
π = beginComputationi, send(m)i,j or setAcktoParenti then s′.leaderi = s.leaderi and the statement
holds. For the remaining cases:

• π = setLeaderi. One of the preconditions of this action requires that s.srci = i. This holds only for
the root of the spanning tree, which by Theorem 3.3 is unique. Furthermore, by the preconditions
it holds that s.toBeActedi = ∅ and s.sentAcktoParenti = false. By Lemma 3.4 we have that
s.maxi is the greatest value among i and the values that i has ”seen” from its children.

Since i is the root of the spanning tree, s.maxi is the maximum value of all nodes in the network,
hence s.maxi = imax. From the effects of π we have that s′.leaderi = s.maxi = imax, and the
statement holds.

• π = receive(m)j,i where m.type = leader, m.srcid = srcj , m.leaderid = leaderj and
s.inElectioni = true. Since s.inElectioni = true then this leader message is the first received
by i thus s′.leaderi = m.leaderid. Since m was sent by j at a prior state, by inductive hypothesis,
m.leaderid = imax, thus s′.leaderi = imax and the statement holds.

• π = receive(m)j,i where m.type 6= leader, then s′.leaderi = s.leaderi and the statement holds.

This completes the proof. 2

Proof of Theorem 3.6

Starting from an initial state s0 the only possible action to occur is the beginComputationi action. From
Theorem 3.3 we have that eventually a unique spanning tree is built rooted at a node ismax. Then, from
the code it can be observed that ∀ i ∈ I , inElectioni = true and sentAcktoParenti = false.

We denote as δj the depth of node j in the spanning tree and δtree the depth of the spanning tree. Fix
a node j 6= ismax. We prove that eventually j sends a message to its parent node such that m.type = ack,

22

m.mychild = true and m.maxid is the maximum value among j and the values that j has ”seen” from
its children. The proof is by induction on δtree. The base case is when δj = δtree, that is j is a leaf of
the spanning tree. In that case toBeAckedj = ∅. Since j 6= ismax and sentAcktoParenti = false then
the preconditions of setAcktoParentj are satisfied. By the effects of this action a message m such that
m.type = ack and m.mychild = true is sent to node parentj . Trivially, m.maxid = j.

Assume that the statement holds for any δj < k < δtree. That is, every node u with δu > δj eventually
sends a message to its parent node such that m.type = ack, m.mychild = true and m.maxid is the
maximum value among j and the values that j has ”seen” from its children. Since each child u of j has
δu = k > δj , by the inductive hypothesis u eventually sends to j a message m such that m.type = ack,
m.mychild = true and m.maxid is the maximum value of the subtree of u. In the worst case, k−1 = δj ,
j has collected from all its children such messages m. Upon receiving such a message m from u, j
removes u from toBeAckedj and changes the value of maxj only if the maximum value of the subtree
of u is greater than maxj according to Invariant 4. Hence, at k − 1 = δj hops, toBeAckedj = ∅ and per
Lemma 3.4, maxj is the greatest value among j and the values that j has ”seen” from its children. Thus
the preconditions of setAcktoParentj are satisfied and by the effects of this action a message m such that
m.type = ack, m.mychild = true and m.maxid = maxj is sent to node parentj and the statement
holds.

Since j is an arbitrary node of the network, we conclude that every j 6= ismax eventually sends
a message to their parent node such that m.type = ack, m.mychild = true and m.maxid is the
maximum value of their subtree. Hence, eventually, ismax receives these messages from all its chil-
dren and toBeAckedismax becomes empty. This enables the internal action setLeaderismax that sets
leaderismax 6= ⊥, and particularly, per Theorem 3.5, leaderismax = imax.

Then, ismax broadcasts a message m s.t. m.type = leader and m.leaderid = imax to its neighbors.
Its neighbors, upon receiving a message m for the first time, that is, inElection = true, set leader =
m.leaderid = imax, inElection = false and forward the message to their neighbors. Given that the
graph is connected, this message is received by all nodes, in D hops in the worst case, where D is the
length of the maximum path among the sets of loop-free paths from ismax to any node i. 2

A.4 The Process Algebra Omitted Proofs
In this part of the appendix we present the missing details and proofs from the process-algebraic correct-
ness proof of the algorithm. We begin with a useful lemma.

Lemma A.5 Let P be an arbitrary derivative of P0:

P
def
= (

∏
m∈M1

NoLeader〈um, Nm〉 |
∏

m∈M2

InComp〈um, fm, sm, Nm, Sm, Rm, Am,maxm〉

|
∏

m∈M3

LeaderMode〈um, sm, Nm〉 |
∏

m∈M4

ElectedMode〈um, sm, Nm, Sm, lm〉)\F

and M = {m ∈ M2∪M3∪M4|sm = max(M2,M3,M4)}. Then {(um, fm)|m ∈ M} is a spanning tree
of the nodes in M .

Proof. The proof is by induction on the length, n, of the derivation P0 =⇒ P . For n = 0, M = ∅ and
the proof follows. Now suppose that the claim holds for n = k − 1 and consider a derivation P0 =⇒ P

23

of length n = k. It then holds that P0 =⇒ P ′ τ−→ P where the claim holds for P ′. Let us write

P ′ def
= (

∏

m∈M ′
1

NoLeader〈um, Nm〉 |
∏

m∈M ′
2

InComp〈um, fm, sm, Nm, Sm, Rm, Am,maxm〉

|
∏

m∈M ′
3

LeaderMode〈um, sm, Nm〉 |
∏

m∈M ′
4

ElectedMode〈um, sm, Nm, Sm, lm〉)\F

mx = max(M ′
2,M

′
3,M

′
4) and M ′ = {m ∈ M ′

2 ∪M ′
3 ∪M ′

4|sm = mx}. Then {(um, fm)|m ∈ M ′} is a
spanning tree of the nodes in M ′. The proof is a case analysis on the transition P ′ α−→ P . We consider
the two most interesting cases:

• α = τ , where

NoLeader〈uk, Nk〉 τ−→ InComp〈uk, uk, uk, Nk, Nk, Nk, ∅, uk〉
and uk > mx. Then M ′ = {uk} and the claim follows.

• α = τ and for some x ∈ M ′
2, y ∈ M ′

1 ∪M ′
3 ∪M ′

4,

InComp〈ux, fx, mx,Nx, Sx, Rx, Ax,maxx〉
electionux,uy (mx)−→ InComp〈. . . , Sx − {uy}, . . .〉

and
X

electionux,uy (max)−→ InComp〈uy, uy,mx, Ny, Ny − {ux}, Ny − {ux}, ∅, uy〉,
where X is one of NoLeader〈uy, Ny〉, InComp〈uy, fy, sy, Ny, Sy, Ry, Ay,maxy〉,
LeaderMode〈uy, sy, ny〉, where sy < mx. Then, M2 = M2 ∪ {uy} and M1 = M1 − {uy}
M3 = M3−{uy}, M4 = M4−{uy}, whereas M = {m ∈ M2∪M3∪M4|sm = mx} = M ′∪{uy}.
Furthermore, {(um, fm)|m ∈ M} = {(um, fm)|m ∈ M ′} ∪ {(ux, uy)}. Note that since uy 6∈ M ′,
this latter set forms a spanning tree of the nodes in M . This completes the proof. 2

Proof of Lemma 4.2

Let D be the maximum distance of a node from the root ν of the spanning tree. Fix sets Md, 0 ≤ d ≤ D,
such that:

Md =

{ {ν} d = 0
{i ∈ K|fi ∈ Md−1} d > 0

In other words, M1 contains the nodes that have ν as their father, M2 the nodes whose father is a
node of M1, and so on. Further, let us write Chi = {j | fj = i} and T d, 0 ≤ d ≤ D for the process

T d def
= (

∏
i∈M0∪...∪Md−1

InComp′〈ui, fi, ν,Ni, Ni − Chi, Ni − {fi}, ∅, ui〉

|
∏

i∈Md

InComp′〈ui, fi, ν, Ni, Ni − {fi}, Ni − {fi}, ∅, ui〉

|
∏

i∈Md+1∪...∪MD

NoLeader′〈ui, fi, Ni〉)\F

We will show that
T0 = T 0 =⇒ T 1 =⇒ . . . =⇒ TD .

24

To begin with, note that Md+1 =
⋃

i∈Md
Chi. Furthermore, for any i ∈ Md, if Chi = {j1, . . . , ji}, we

have that

InComp′〈ui, . . .〉
electioni,j1

(ν)−→ . . .

electioni,ji
(ν)−→

∏

k∈N−Chi

InComp′〈ui, fi, ν, Ni, Ni − Chi, Ni − {fi}, ∅, ui〉

NoLeader′〈uj1 , ui, Nj1〉
electioni,j1

(s)−→ InComp′〈uj1 , ui, ν, Nj1 , Nj1 − {ui}, Nj1 − {ui}, ∅, lj1〉
...

NoLeader′〈uji
, ui, Nji

〉 electioni,ji
(s)−→ InComp′〈uji

, ui, ν, Nji
, Nji

− {ui}, Nji
− {ui}, ∅, lji

〉
Consequently, we have that for any d, T d =⇒ T d+1.

At this point, all pending election messages can be emitted, and the corresponding ack0 acknowl-
edgements returned, yielding

TD =⇒ (
∏

i∈K−MD

InComp′〈ui, fi, ν, Ni, ∅, Ni − Chi, ∅, ui〉

|
∏

i∈MD

InComp′〈ui, fi, ν,Ni, ∅, ∅, ∅, ui〉)\F.

Now, let us write Rd, 0 ≤ d ≤ D, for the process

Rd def
= (

∏
i∈M0∪...∪Md−1

InComp′〈ui, fi, ν, Ni, ∅, Ni − Chi, ∅, ui〉

|
∏

i∈Md

InComp′〈ui, fi, ν, Ni, ∅, ∅, ∅, ui〉

|
∏

i∈Md+1∪...∪MD

LeaderMode′〈ui, fi, ν,Ni,maxi〉)\F

where maxi is the maximum identifier of all nodes in the subtree rooted at node i. We will show that

TD = RD =⇒ . . . =⇒ R0 .

In particular, for any 0 ≤ d < D, and i ∈ Md−1, if Chi = {j1, . . . , ji} we have that

InComp′〈ui, fi, ν, Ni, ∅, Ni − Chi, ∅, ui〉
ack1i,j1

(maxj1
)−→ . . .

ack1i,ji
(maxji

)−→ InComp′〈ui, fi, ν, N, ∅, ∅, ∅,mi〉
InComp′〈uj1 , ui, ν, Nj1 , ∅, ∅, ∅,maxj1〉

ack1i,j1
(maxj1

)−→ LeaderMode′〈uj1 , ui, ν, Nj1〉
...

InComp′〈uji
, ui, ν,Nji

, ∅, ∅, ∅,maxji
〉 ack1i,ji

(maxji
)−→ LeaderMode′〈uji

, ui, ν,Nji
〉

where mi = max{ui, maxj1 , . . . , maxji
}. Consequently, we have that for any d, Rd =⇒ Rd−1. It is

now trivial to see that R0 can produce the required transition

R0 leader(max)−→ S0

25

where

S0
def
= (ElectedMode〈ν, ν, ν, N, N,max〉 |

∏

i6=ν

LeaderMode′〈ui, fi, ν,Ni〉)\F

It is now straightforward to verify that after a number of communications along channels leaderi,j ,
the system will evolve into state

(
∏
i∈K

ElectedMode〈ui, fi, ν, Ni, ∅,max〉)\F ≈ 0

which completes the proof. 2

The following definition gives a precise explanation of the notion of similarity between agents.

Definition A.6 Let

P
def
= (

∏
m∈M1

NoLeader〈um, Nm〉 |
∏

m∈M2

InComp〈um, fm, sm, Nm, Sm, Rm, Am,maxm〉

|
∏

m∈M3

LeaderMode〈um, sm, Nm〉 |
∏

m∈M4

ElectedMode〈um, sm, Nm, Sm, lm〉)\F

T
def
= (

∏

m∈M ′
1

NoLeader′〈um, fm, Nm, lm〉 |
∏

m∈M ′
2

InComp′〈um, fm, ν, Nm, Sm, Rm, Am,maxm〉

|
∏

m∈M ′
3

LeaderMode′〈um, ν,Nm〉 |
∏

m∈M ′
4

ElectedMode〈um, ν,Nm, Sm, lm〉)\F

where, {M1,M2,M3,M4} and {M ′
1, M

′
2,M

′
3,M

′
4} are partitions of set K, {(um, fm) | m ∈ K} forms

a spanning tree of the network rooted at ν, and

ν = max(M2 ∪M3 ∪M4)

M ′
1 = M1 ∪ {u | u ∈ (M2 ∪M3 ∪M4), su 6= ν}

M ′
2 = {u ∈ M2 | su = ν}

M ′
3 = {u ∈ M3 | su = ν}

M ′
4 = {u ∈ M4 | su = ν}

Then we say that P and T are similar processes.

Proof of Lemma 4.5

Let R = {〈T, P 〉|P and T are similar}. Consider processes T and P with (T, P) ∈ R and suppose
that T

α−→ T ′. We will show that P
α−→ P ′ and (T ′, P ′) ∈ R. This can be proved by a case analysis on

the possible actions of T .

• If α = τ and for x ∈ M ′
1, y ∈ M ′

2,

NoLeader′〈ux, uy, Nx〉
electionuy,ux(ν)−→ InComp′〈ux, uy, ν, Nx, Nx − {uy}, Nx − {uy}, ∅, ux〉,

26

InComp′〈uy, fy, ν, Ny, Sy, Ry, Ay,maxy〉
electionuy,ux (ν)−→ InComp′〈. . . , Sy − {ux}, . . .〉

and

T
τ−→ (

∏

m∈M ′
1−{ux}

NoLeader′〈um, fm, Nm〉

| InComp′〈ux, uy, ν,Nx, Nx − {uy}, Nx − {uy}, ∅, ux〉
| InComp′〈uy, fy, ν,Ny, Sy − {sx}, Ry, Ay,maxy〉
|

∏

m∈M ′
2−{uy}

InComp′〈um, fm, ν,Nm, Sm, Rm, Am,maxm〉

|
∏

m∈M ′
3

LeaderMode′〈um, fm, ν, Nm〉

|
∏

m∈M ′
4

ElectedMode〈um, fm, ν,Nm, Sm, lm〉)\F

By the definition of similar processes it must be that uy ∈ M2 and either ux ∈ M1 or ux ∈
M2 ∪M3 ∪M4 and sx 6= ν. Suppose that ux ∈ M3 (the remaining cases are similar). Then we
have:

InComp〈uy, fy, ν, Ny, Sy, Ry, Ay,maxy〉
electionuy,ux (ν)−→ InComp〈. . . , Sy − {ux}, . . .〉

and, since ν = max(M2 ∪M3 ∪M4), sx < ν and

LeaderMode〈ux, fx, sx, Nx〉
electionuy,ux (ν)−→ InComp〈ux, uy, ν, Nx, Nx − {uy}, Nx − {uy}, ∅, ux〉 .

Consequently,

P
τ−→ (

∏
m∈M1

NoLeader〈um, Nm〉

|
∏

m∈M2−{uy}
InComp′〈um, fm, sm, Nm, Sm, Rm, Am,maxm〉

| InComp〈uy, fy, ν, Ny, Sy − {ux}, Ry, Ay,maxy〉
| InComp〈ux, uy, ν,Nx, Nx − {uy}, Nx − {uy}, ∅, uy〉
|

∏

m∈M3−{ux}
LeaderMode〈um, fm, sm, Nm〉

|
∏

m∈M4

ElectedMode〈um, fm, sm, Nm, Sm, lm〉)\F

and T and P are similar to each other.

• If α = τ and for x ∈ M ′
3, y ∈ M ′

4,

LeaderMode′〈ux, uy, ν,Nx〉
leaderuy,ux(ν,ly)−→ ElectedMode〈ux, uy, ν, Nx, Nx − {uy}, ly〉,

ElectedMode〈uy, fy, ν, Ny, Sy, ly〉
leaderuy,ux(ν,ly)−→ ElectedMode〈. . . , Sy − {ux}, . . .〉

27

and

T
τ−→ (

∏

m∈M ′
1

NoLeader′〈um, fm, Nm〉

|
∏

m∈M ′
2

InComp′〈um, fm, ν,Nm, Sm, Rm, Am,maxm〉

|
∏

m∈M ′
3−{ux}

LeaderMode′〈um, fm, ν, Nm〉

| ElectedMode〈ux, uy, ν, Nx, Nx − {uy}, ly〉
| ElectedMode〈uy, fy, ν, Ny, Sy − {ux}, ly〉
|

∏

m∈M ′
4−{uy}

ElectedMode〈um, fm, ν, Nm, Sm, lm〉)\F

By the definition of similar processes it must be that uy ∈ M4 and ux ∈ M3 with sx = sy = ν,
and we have:

LeaderMode〈ux, uy, ν,Nx〉
leaderuy,ux(ν,maxy)−→ ElectedMode〈ux, uy, ν, Nx, Nx − {uy},maxy〉.

Consequently,

P
τ−→ (

∏
m∈M1

NoLeader〈um, Nm〉

|
∏

m∈M2

InComp〈um, fm, sm, Nm, Sm, Rm, Am,maxm〉

|
∏

m∈M3−{ux}
LeaderMode〈um, fm, sm, Nm〉

| ElectedMode〈ux, uy, ν,Nx, Nx − {uy}, ly〉
| ElectedMode〈uy, fy, ν, Ny, Sy − {ux}, ly〉)
|

∏

m∈M4−{ux}
ElectedMode〈um, fm, sm, Nm, Sm, lm〉\F

and T and P are similar to each other.

• If α = τ and the action has arisen from a communication along a channel of type ack0 or ack1
then the proof follows similarly to the previous two cases.

• If α = leader(max) then there exists x ∈ M ′
2 such that

InComp′〈ux, ux, ux, Nx, ∅, ∅, ∅,max〉 leader(max)−→ ElectedMode〈ux, ux, ux, Nx, Nx,max〉

28

and

T
τ−→ (

∏

m∈M ′
1

NoLeader′〈um, fm, Nm〉

|
∏

m∈M ′
2−{ux}

InComp′〈um, fm, ν, Nm, Sm, Rm, Am,maxm〉

|
∏

m∈M ′
3

LeaderMode′〈um, fm, ν, Nm〉

|
∏

m∈M ′
4

ElectedMode〈um, fm, ν, Nm, Sm, lm〉

| ElectedMode〈ux, ux, ux, Nx, Nx, max〉)\F
By the definition of similar processes it must be that x = ν ∈ M2 and

InComp〈ν, ν, ν, Nx, ∅, ∅, ∅,max〉 leader(max)−→ ElectedMode〈ν, ν, ν, Nx, Nx,max〉
and

P
τ−→ (

∏
m∈M1

NoLeader〈um, Nm〉

|
∏

m∈M2−{ux}
InComp′〈um, fm, ν,Nm, Sm, Rm, Am,maxm〉

|
∏

m∈M3

LeaderMode〈um, fm, ν, Nm〉

|
∏

m∈M4

ElectedMode〈um, fm, ν, Nm, Sm, lm〉

| ElectedMode〈ν, ν, ν, Nx, Nx,max〉)\F
and T and P are similar to each other.

This completes the proof. 2

Proof of Lemma 4.6

Given a computation P0
w

=⇒ P , where P is as in the Definition A.6 above, we say that T0 ∈ T , is
compatible with the computation, if

T0
def
= (

∏

i∈K−{ν}
NoLeader′〈i, pi, Ni, li〉 | InComp′〈ν, ν, ν,Nν , Nν , Nν , ∅, ν〉)\F ,

where ν = max(M2 ∪M3 ∪M4) and, for all i ∈ M2 ∪M3 ∪M4 such that si = ν, pi = fi. Note that by
Lemma A.5, {i, fi|i ∈ K, si = ν} is a spanning tree of the network, hence, there exists a compatible T0

process for every derivative P of P0.
We will prove the result by induction on the length, n, of the transition P0

w
=⇒ P .

The base case n = 0 is trivially true for any T0 ∈ T . Suppose that the result holds for n = k− 1 and
consider P0

w
=⇒ P ′ α−→ P a transition of length k. Let T0 be compatible with the computation. Then, T0

is also compatible with the computation P0
w

=⇒ P ′ and, by the induction hypothesis, T0
w

=⇒ T ′ where
P ′ and T ′ are similar. Now, consider the transition P ′ α−→ P . The following cases exist:

29

• α = τ and the internal action took place on a channel in F with object s 6= ν. Then, we may see
that for T = T ′, T ′ ε

=⇒ T ′ with P and T being similar.

• α = τ and the internal action took place on a channel in F with source s = ν. Then, using a case
analysis similar to the one found in the proof of Lemma 4.5, we may find appropriate T such that
T ′ τ−→ T and T , P similar.

• α = leader(m). Then there must exist a process InComp〈u, u, u,N, ∅, ∅, ∅, m〉 in P ′. Further, it
must be that the process has received a message along channel ack1v,u(u, mv) for all v ∈ N . In
turn, this implies that all v ∈ K received a message along channel ack1w,v(u,mw) for all w ∈ Nv,
and so on. Since the network is connected, this implies that all nodes except u have, at some point
in the past, entered state LeaderMode〈i, u, Ni〉. Once in such a mode, a node can either maintain
this state or evolve into a process of the form ElectedMode〈i, u,Ni, Si, l〉. Thus,

P ′ def
= (InComp〈u, u, u,N, ∅, ∅, ∅,m〉 |

∏
m∈L1

LeaderMode〈um, u, Nm〉

|
∏

m∈L2

ElectedMode〈um, u, Nm, Sm, lm〉)\F

α−→ P = (ElectedMode〈u, u, N, N,m〉 |
∏

m∈L1

LeaderMode〈um, u,Nm〉

|
∏

m∈L2

ElectedMode〈um, u, Nm, Sm, lm〉)\F

and consequently,

T ′ def
= (InComp′〈u, u, u,N, ∅, ∅, ∅,m〉 |

∏
m∈L1

LeaderMode′〈um, u, Nm〉

|
∏

m∈L2

ElectedMode〈um, u, Nm, Sm, lm〉)\F

α−→ T = (ElectedMode〈u, u, N, N,m〉 |
∏

m∈L1

LeaderMode′〈um, u, Nm〉

|
∏

m∈L2

ElectedMode〈um, u, Nm, Sm, lm〉)\F

and the result follows.
2

30

