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History of Neural Coding Workshops and aim of NC2010

Neural Coding Workshops are traditionally biennial symposia each lasting 5-6 days. They are rela-
tively small in size, inter- and trans- disciplinary with major emphasis on the search for common principles
in neural coding , without neglecting functionally relevant differences between different systems and across
system levels.

NC2010, which is to be held in the sunny resort of Limassol, Cyprus, is the 9th of this interna-
tional workshop series. As in the previous workshops in Prague (1995), Versailles (1997), Osaka (1999),
Plymouth (2001), Aulla (2003), Marburg (2005), Montevideo (2007) and Tainan (2009), this will be a
single track multi-disciplinary event bringing together experimental and computational neuroscientists
with ample time for informal discussions in a convivial atmosphere. Attendees of the workshop should
thus be prepared to cross the borders of their own disciplines.

NC2010 will have the honour of having Professor Jose Pedro (Pepe) Segundo marking the opening
of its scientific programme. The appreciation and respect of everyone is offered to Professor Segundo,
an important and leading member of the pioneering Neurosciences Research Program “neural coding”
workshop in 1968 and a keen and active participant in this series of workshops since their inception.

In total, there will be 70 presentations at NC2010 divided into 44 oral and 26 poster ones, with the
poster sessions preceded by poster trailer oral sessions. Main emphasis will be given on the exchange of
ideas, which would hopefully continue during the various social events (see Programme Schedule), that
are integrated into the symposium. Moreover, this will be an excellent opportunity to establish contacts
between the international experts and a very small but valuable and growing community of Greek Cypriot
computational neuroscientists and to foster international collaboration.





Neural Coding 2010 – Programme Schedule
Friday, 29 October 2010

19:00-19:30 Registration
19:30- Welcoming Reception – Venue: Mediterranean Beach Hotel

Saturday, 30 October 2010

Venue: Mediterranean Beach Hotel

08:30-09:00 Registration

09:00-09:05 Welcoming and practical information
Chris Christodoulou

09:05-09:15 A few words a propos of Neural Coding
Jose Segundo

Session IA
Chair: Jose Segundo

09:15-09:35 The Encoding of Information by Neurons in the Temporal Visual
Cortical Areas, the Hippocampus, and the Orbitofrontal Cortex
Edmund T Rolls

Page 099

09:35-09:55 Neural Latching Dynamics: A Salutatory Code for Sustained Cog-
nition
Alessandro Treves and Eleonora Russo

Page 129

09:55-10:15 Spatio-Temporal Filtering of the Distributed Temporal Informa-
tion in Spike Trains Through a Diverging/Converging Neural Net-
work
Yoshiyuki Asai and Alessandro E. P. Villa

Page 001

10:15-10:35 Using Classical Ablations and Modern Molecular Biology to Study
Neural Codes
Barry Richmond

Page 097

10:35-11:05 Coffee Break

Session IB
Chair: Petr Lansky

11:05-11:25 Emergence of Bayesian Computation and Neural Codes for Hid-
den Causes through STDP in Generic Cortical Microcircuits
Wolfgang Maass

Page 067



NC2010 Schedule

11:25-11:45 Biologically Realistic Model of Neural Connections of the Tadpole
Spinal Cord Generates Swimming Activity
Roman Borisyuk and Abul Kalam al Azad

Page 007

11:45-12:05 On the Dependencies Between Spiking Times of a Couple of Neu-
rons
Laura Sacerdote

Page 103

12:05-12:25 Neural Coding in Graphs of BAMs
Guenther Palm and David Bouchain

Page 091

12:25-12:45 High Firing Irregularity Enhances Learning
Chris Christodoulou and Aristodemos Cleanthous

Page 019

12:45-14:30 Lunch - Venue: Franx Bar & Restaurant
http://www.franxbar.com/
(right opposite the entrance to the Mediterranean Beach Hotel)

14:30-14:45 Hanging of Posters for Poster Session I

Poster Trailer Oral Session I
Chair: Jean-Pierre Rospars

14:45-15:55 Poster trailer Oral sessions (5 mins each - 14 poster presentations)

PI.1: Electric Images of a Fish With a Distributed Electric Organ
Ruben Budelli, Federico Pedraja, Juan Ignacio Sanguinetti,

Adriana Migliaro, Leonel Gomez, Esteban Cilleruelo, Pedro

Aguilera and Angel Caputi

Page 011

PI.2: Multiple Spike Trains Observed in a Short-Time Window
Zbynek Pawlas and Petr Lansky

Page 093

PI.3: An Information Theoretic Approach to Inferring the Opti-
mal Number of Electrodes for Future Cochlear Implants
Alexey S. Moroz and Mark D. McDonnell

Page 077

PI.4: Inverse Suprathreshold Stochastic Resonance in a Network
of Hodgkin-Huxley Model Neurons
Sean S. C. Wong and Mark D. McDonnell

Page 135

PI.5: Information Capacity in the Weak Signal Approximation
Lubomir Kostal

Page 055

PI.6: Spike-Frequency-Adaptation Benefits Neural Population
Coding
Martin Paul Nawrot, Eilif Mueller and Farzad Farkhooi

Page 083
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PI.7: Analysis of the Signal Transformation From First- to
Second-order Neurons in the Moth Sex-Pheromone Olfac-
tory System
A. Gremiaux, D. Jarriault, A. Chaffiol, S. Anton, D. Mar-

tinez and J. P. Rospars

Page 041

PI.8: Temporal Modulation of the Input Parameters Can be
Deduced From Intracellular Recordings in the Ornstein-
Uhlenbeck Neuronal Model
Ryota Kobayashi, Shigeru Shinomoto and Petr Lansky

Page 053

PI.9: A Neurocomputational Model of Deviance Detection in
Stimulus-Specific Adaptation
Robert Mill, Martin Coath, Thomas Wennekers and Susan

L. Denham

Page 073

PI.10: Cortico-Thalamic Modulation and Emergent Feature Pref-
erences in a Model of Auditory Cortex
Martin Coath, Robert Mill, Susan L. Denham and Thomas

Wennekers

Page 021

PI.11: Synchronized Activity in the Subthalamic Nucleus
Alessandra Lintas, Izabella Silkis, Olga Chibirova, Tatyana

Aksyonova, Lavinia Alberi, Alessandro E. P. Villa

Page 061

PI.12: Effect of Feedback Projections Between Networks in Evolv-
able Hierarchically Organized Neural Circuits
Vladyslav Shaposhnyk and Alessandro E. P. Villa

Page 115

PI.13: Deterministic Bias in Spike-Train Similarity Measures Used
for Fitting
Richard Naud, Felipe Gerhard, Skander Mensi and Wul-

fram Gerstner

Page 081

PI.14: Distinguishing the Causes of Firing with the Membrane Po-
tential Slope
Achilleas Koutsou, Chris Christodoulou, Guido Bugmann

and Jacob Kanev

Page 057

16:00-18:15
(approx)

Poster Session I (14 Posters)
(combined with Coffee Break served at 16:00)

19:00- Dinner - Venue: Music Ark, Stavros Greek Tavern
(opposite the east side of the Mediterranean Beach Hotel)



NC2010 Schedule
Sunday, 31 October 2010

Please note that at 04:00 am on Sunday, 31 October 2010,

the daylight saving time (summer time) ends in Cyprus

and clocks turn back one hour

Venue: Mediterranean Beach Hotel

Session IIA
Chair: Ruben Budelli

08:30-08:50 Stimulus Coding by Populations of First- and Second-Order Ol-
factory Neurons
Jean-Pierre Rospars, Petr Lansky, Pavel Sanda and Patricia

Duchamp-Viret

Page 101

08:50-09:10 Neural Coding in the Olfactory System of Insects
Christopher L. Buckley, Andrei Zavada and Thomas Nowotny

Page 139

09:10-09:30 Extending the Critical Brain Hypothesis to the Rate Domain: A
Case Study of the Pheromone System of the Moth
Christopher L. Buckley and Thomas Nowotny

Page 009

09:30-09:50 Multiple Subtypes of Local Interneurons Suggest Distinct Tasks
During Odor Processing in the Antennal Lobe
Debora Fusca, Andreas Husch, Lars Paeger, Moritz Paehler, An-

dreas Pippow and Peter Kloppenburg

Page 037

09:50-10:10 Coffee Break

Session IIB
Chair: Alessandro E. P. Villa

10:10-10:30 Coincidence Detection vs. Temporal Integration in Insect Olfac-
tion
Maxim Bazhenov

Page 003

10:30-10:50 Spontaneous and Evoked Responses of Olfactory Receptor Neu-
rons Determine the Properties of Follower Neurons
Mark Stopfer

Page 123

10:50-11:10 Electric Scene Segmentation by the Electric Fish
Leonel Gomez-Sena, Juan Ignacio Sanguinetti and Ruben Budelli

Page 039

11:10-11:30 Coding of Electric Images in Electric Fish with Distributed Elec-
tric Organs
Angel Ariel Caputi, Esteban Cilleruelo and Carolina Pereira

Page 015
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11:30-14:45
(approx)

Excursion and Cultural Bus Tour to Ancient Curium Amphithe-
atre/City passing from Kolossi Castle
(packed lunch - to be consumed after arrival at Curium and not
in the bus)

Group Photo in the Ancient Curium Amphitheatre

Return to the Cyprus University of Technology, Limassol

Venue: Cyprus University of Technology, Limassol

Session IIC
Chair: Barry Richmond

15:00-15:20 Spike Surrogates Based on Operational Time
Markus Diesmann, Sebastien Louis, George L. Gerstein and Sonja

Gruen

Page 025

15:20-15:40 Signatures of Spiking Neuronal Assemblies in the Local Field Po-
tential
Sonja Gruen, Michael Denker, Markus Diesmann, Sebastien

Roux, Alexa Riehle and Henrik Linden

Page 043

15:40-16:00 Neural Coding Clues From Early Brain Activity in Well-
Circumscribed Areas Obtained With Tomographic Analysis of
Magnetoencephalographic (MEG) Signals
Andreas A. Ioannides, Lichan Liu and Vahe Poghosyan

Page 049

16:00-16:20 Neural Coding of Natural Vestibular Signals
Lars Schwabe, Youwei Zheng, Andre Hoffmeyer and Thomas

Kirste

Page 113

16:20-16:50 Coffee Break

Session IID
Chair: Roman Borisyuk

16:50-17:10 Waves in Potassium Driven Neuronal Media
L. Schimansky-Geier, F. Mueller, N. Kouvaris and D. Postnov

Page 109

17:10-17:30 Spontaneous Oscillations, Information Transmission and Signal
Detection in Ampullary Electroreceptors
Alexander B. Neiman, Tatiana A. Engel, David F. Russell and

Lutz Schimansky-Geier

Page 085



NC2010 Schedule

17:30-17:50 Information-Optimal Neural Coding in Poisson Neurons
Alexander Nikitin, Nigel G. Stocks, Robert P. Morse and Mark D.

McDonnell

Page 087

17:50-18:10 Modulation of Gamma Oscillations in Simulations of Cortical Net-
works is Sensitive to Network Topology
Mark D. McDonnell and Lawrence M. Ward

Page 071

18:10-18:30 Quantifying Neural Encoding of Event Timing
Demetris S Soteropoulos and Stuart N Baker

Page 119

Walk to Karatello Cyprus Tavern for dinner

19:00-
(approx)

Dinner - Venue: Karatello Cyprus Tavern,
http://www.carobmill-restaurants.com/article.php?id=53



NC2010 Schedule
Monday, 1 November 2010

08:30-08:45 Departure for Nicosia

09:45-13:15
(approx)

Tour of Nicosia - Europe’s last divided capital

Transfer to the University of Cyprus, Nicosia (New Campus)

13:30-14:45
(approx)

Lunch - Venue: University of Cyprus (New Campus)

Venue: University of Cyprus, Nicosia (New Campus)

Session IIIA
Chair: Laura Sacerdote

15:00-15:20 Individual Firing Frequencies Estimated From Superimposed
Spike Trains
Ondrej Pokora and Petr Lansky

Page 095

15:20-15:40 A Network Model of Learning Stimulus-Response Associations
Guido Bugmann

Page 013

15:40-16:00 Layer-Specific Modification of Spontaneous Cortical State Dy-
namics by Sensory Stimulation
Simon R Schultz, E Phoka and M Barahona

Page 111

16:00-16:20 Primary Visual Cortex Encodes Complementary Information
About Naturalistic Movies at Different Temporal Scales
Alberto Mazzoni, Christoph Kayser, Yusuke Murayama, Juan

Martinez, Rodrigo Q Quiroga, Nikos K. Logothetis and Stefano

Panzeri

Page 069

16:20-16:50 Coffee Break

Session IIIB
Chair: Hans Braun

16:50-17:10 Single Neuron And Network Models in Force Control
Leonardo Abdala Elias and Andre Fabio Kohn

Page 031

16:10-17:30 Modeling FM Responses of Midbrain Auditory Neurons – An In-
tegrated Approach Based on STRF and PSTH
T.R. Chang, T.W. Chiu, X. Sun and Paul W.F. Poon

Page 017
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17:30-17:50 Sharpening Tuning Curves With Spike-Time Dependent Plasticity
Fabio Stefanini, Rahel Von Rohr, Giacomo Indiveri and Elisabetta

Chicca

Page 121

17:50-18:10 Sound Encoding in the Auditory Pathway: Auditory Brainstem
and Beyond
Pavel Sanda and Petr Marsalek

Page 107

18:10-18:30 Category Perception: From Efficient Coding to Reaction Times
Laurent Bonnasse-Gahot and Jean-Pierre Nadal

Page 005

Back towards Limassol and stop at Kalymnos Fish Tavern, Gov-
ernor’s Beach for dinner

19:45-20:00
(approx)

Dinner - Venue: Kalymnos Fish Tavern, Governor’s Beach



NC2010 Schedule
Tuesday, 2 November 2010

Venue: Mediterranean Beach Hotel

Session IVA
Chair: Guido Bugmann

09:10-09:30 Defining the Firing Rate for a Non-Poissonian Spike Train
Shigeru Shinomoto

Page 117

09:30-09:50 On Gaussian Random Neuronal Field Model: Moment Neuronal
Network Approach
Wenlian Lu and Jiangfeng Feng

Page 065

09:50-10:10 The Multiple Time Scales of Spike After-Effects
Richard Naud, Christian Pozzorini, Skander Mensi and Wulfram

Gerstner

Page 079

10:10-10:30 Dependencies Between Spike Times of a Couple of Neurons Mod-
eled via a Two-Dimensional LIF Model
Laura Sacerdote, Massimiliano Tamborrino and Cristina Zucca

Page 104

10:30-11:00 Coffee Break

Session IVB
Chair: Shigeru Shinomoto

11:00-11:20 The Morris-Lecar Neuron Model Embeds the Leaky Integrate-
and-Fire Model
Susanne Ditlevsen and Priscilla Greenwood

Page 027

11:20-11:40 Cooperative Effects of Noise and Nonlinear Dynamics in Hodgkin-
Huxley-Type Model Neurons
Christian Finke, Ulrike Feudel, Jan A. Freund, Svetlana Postnova

and Hans A. Braun

Page 033

11:40-12:00 Evolution of Neural Networks under Unsupervised Learning
Tatyana Turova

Page 131

12:00-12:20 Recursive Bayesian Algorithms for Real-Time Brain-Computer In-
terface
Shinsuke Koyama

Page 059

12:20-12:40 Evaluation of Alternative Coding Strategies in Early Olfaction
Pawel Herman and Anders Lansner

Page 045



NC2010 Schedule

12:40-14:15 Lunch - Venue: Franx Bar & Restaurant,
http://www.franxbar.com/
(right opposite the entrance to the Mediterranean Beach Hotel)

14:15-14:30 Hanging of Posters for Poster Session II

Poster Trailer Oral Session II
Chair: Paul Poon

14:30-15:30 Poster trailer Oral sessions (5 mins each - 12 poster presentations)

PII.1: Firing Patterns Manifested by the Multi-Timescale Adap-
tive Threshold Model
Satoshi Yamauchi, Hideaki Kim and Shigeru Shinomoto

Page 137

PII.2: Effects of Type 1 and Type 2 Synapses on Oscillations in
Models of Recurrent Cortical Networks
Ashutosh Mohan, Mark D. McDonnell and Christian

Stricker

Page 075

PII.3: Information Capacity and Robustness of Spatially Sepa-
rated Dendritic Synapses
Nicolangelo L. Iannella and Mark D. McDonnell

Page 047

PII.4: Bayesian Analysis of the Single Cell Response in Mouse
Olfactory Receptor Neurons
Daniel P. Dougherty and Johannes Reisert

Page 029

PII.5: Auditory Coding in the Inner Hair Cell Ribbon Synapse
Daniela Woltmann and Nigel Stocks

Page 133

PII.6: Stochastic Modelling of Neuron Activity
Blazena Frcalova, Viktor Benes and Daniel Klement

Page 035

PII.7: Estimation of Functional Connections in the Premotor Cen-
ter of an Insect Brain
Ikuko Nishikawa, Tanaka Taiga, Yoshiki Igarashi, Ryota

Kobayashi, Hidetoshi Ikeno, Tomoki Kazawa and Kanzaki

Ryohei

Page 089

PII.8: Hebbian Plasticity Combined With Homeostasis Shows
STDP-Like Behavior
Christian Tetzlaff, Christoph Kolodziejski and Florentin

Woergoetter

Page 127

PII.9: Short-Term Potentiation in Pattern Recall Process of
Sparsely Coded Neural Network
Julius Stroffek and Petr Marsalek

Page 125



NC2010 Schedule

PII.10: Anatomically Realistic Winner-Take-All Networks as Mod-
els of Cortical Computation
Markus Jehl and Giacomo Indiveri

(to be presented by Fabio Stefanini)

Page 051

PII.11: Neural Coding and Variability Measure via Cumulative En-
tropy
Antonio Di Crescenzo

Page 023

PII.12: Multilevel Constraints on a Cortical Attractor Model
Mikael Lundqvist, Pawel Herman and Anders Lansner

Page 063

15:30-18:00 Poster Session II (12 Posters)
(combined with Coffee Break served at 15:30)

18:00
(approx)

Workshop closing

Free Evening

Wednesday, 3 November 2010

Optional Tour to Paphos – Departure 08:30-08:45
Please register for the tour at the registration desk
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Spatio-Temporal Filtering of

the Distributed Temporal Information in Spike Trains

Through a Diverging/Converging Neural Network

Yoshiyuki Asai

The Center for Advanced Medical Engineering and Informatics. Osaka University
Suita, Osaka, JAPAN

asai@bpe.es.osaka-u.ac.jp

Alessandro E. P. Villa

NeuroHeuristic Research Group, Grenoble Institute of Neuroscience Equipe 7
Université Joseph Fourier, Grenoble, F-38043, France

NeuroHeuristic Research Group, Information Science Institute
University of Lausanne, CH-1005 Lausanne, Switzerland

Sleep Research Laboratory, Dept. of Psychiatry
Hôpitaux Universitaires de Genève, CH-1225 Chêne-Bourg, Switzerland

avilla@neuroheuristic.org – http://www.neuroheuristic.org/

ABSTRACT

It is well established and known for a long time that the temporal structure of the afferent spike
trains plays a critical role for the integration of neural activity [1]. Experimental evidence in
multiple spike trains recordings in vivo and in behaving animals revealed that the temporal
information is preserved at high level of cortical processing [2]. Each one of multiple afferences
may carry complex temporal information. A neuron can be considered as a dynamic filter of
afferent spike trains characterized by highly nonlinear transfer functions [3] at the presence of
the stochastic background activities which can mask the temporal information embedded in the
spike trains. The filtering effect of spike trains by neurons remains unclear to which extent
the precise afferent temporal information may be preserved throughout a neural network. This
study investigates the ability of a diverging/converging neural network to transmit and integrate
a complex temporally organized activity embedded in afferent spike trains.

Recurrent temporal patterns of spikes, often referred to as precise firing sequences, consist of
occurrences of higher order spike intervals with high temporal accuracy of the order of millisec-
onds. We applied the Pattern Grouping Algorithm (PGA) [4] developed to detect all sequences
of events recurring more often than expected by chance to examine the spatiotemporal precise
firing pattern in a spike train [5]. In our previous studies based on a simple spiking neuron
model, we investigated the spike filtering properties of a single neuron [6] mimicking the be-
havior of several archetypal neurons and of sequentially connected multiple neurons [7] using
the PGA. It has been shown that the characteristic transfer function of a neuronal model and
the statistical feature of the the background activity may affect the transmission of temporal
information through synaptic links. We suggested that specific neuronal dynamics characteristic
of certain brain areas or associated to specific functional neuronal states play an essential role
in the efficacy of transmitting a temporal pattern in a neuronal network. This feature is critical
to determine the encoding and decoding processing that might be carried out by a single neuron
and by the network and the extent of a distributed population coding scheme.

In the current research we extend our previous analysis to diverging/converging feed-forward
neuronal networks–synfire chains–which are supposed to represent the most appropriate circuits
able to transmit information with the best temporal accuracy [8]. The temporal structure
originated in a deterministic dynamical system embedded in stochastic background activity
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is dispersively given to the neural network composed of three neuron layers. We investigate
the robustness and reliability of transmitting the precise afferent temporal structure through
neural networks characterized by different neuronal models. We suggest that adaptive threshold
neurons are more efficient in maintaining a specific temporal structure throughout the layers of
a synfire chain.

Keywords: Spatio-temporal pattern, Spiking neuron, Reconstruction of spike train.
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Figure 1: A three layer neural network model. Randomly selected fifteen neurons in a layer con-
verge to one neuron. Each neuron also receives an independent stochastic background activity.
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Coincidence Detection vs. Temporal Integration

in Insect Olfaction

Maxim Bazhenov

Department of Cell Biology and Neuroscience, University of California
Riverside, CA 92521, USA

Maksim.Bazhenov@ucr.edu – http://biocluster.ucr.edu/∼mbazhenov/

ABSTRACT

Ideally, a coding strategy used by a sensory system should provide an optimal representation
across the full possible range of stimulation conditions. For the olfactory system, this task
involves optimally encoding odors at different concentrations, an ability critical in many species
for survival. How successive layers of neural circuits in the olfactory system regulate sensory
input to maintain stable odor representations across broad ranges of concentration remains a
mystery. Drawing on results obtained with biophysical network models of insect olfaction, I
will discuss intrinsic and circuit properties that contribute to encoding olfactory information at
different levels of odor processing, and the role of the intrinsic dynamics of the olfactory system
in optimizing odor representations. I will present a hypothesis how circuit properties of the
olfactory system allow adopting an optimal strategy of information processing, shifting from
coincidence detection to temporal integration as the odor concentration changes. The ability to
shift operational modes can be achieved readily by a combination of environmental contingencies
and network interactions.
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Category Perception: From Efficient Coding to Reaction Times

Laurent Bonnasse-Gahot

Centre d’Analyse et de Mathématique Sociales
(CAMS, UMR 8557 CNRS – EHESS)

École des Hautes Études en Sciences Sociales, Paris, France

Jean-Pierre Nadal

Centre d’Analyse et de Mathématique Sociales
(CAMS, UMR 8557 CNRS – EHESS)

École des Hautes Études en Sciences Sociales, Paris, France
and

Laboratoire de Physique Statistique
(LPS, UMR 8550 CNRS – ENS – UPMC – Paris Diderot)

École Normale Supérieure, Paris, France
nadal@lps.ens.fr

ABSTRACT

When dealing with a categorization task, the brain has to face two different sources of uncer-
tainty: categorization uncertainty and neuronal uncertainty. The latter stems from neuronal
noise, whereas the former is intrinsic to the category structure: categories like phonemes or col-
ors typically overlap in stimulus space, so that a given stimulus might corresponds to different
categories. Here, we propose a general neural theory of category coding, in which these two
sources of uncertainty are quantified by means of information theoretic tools. We analytically
show [1, 2] how these two quantities combine at both coding and decoding stages of the informa-
tion process. From the hypothesis of optimal information processing, we derive formulae which
capture different psychophysical consequences of category learning – namely, a better discrimi-
nation between categories, and longer reaction times to identify the category of a stimulus lying
at the category boundary. Finally, we model experimental data, in the present work taken from
the psycholinguistic literature. A major contribution of this work is thus to exhibit, in both
quantitative and qualitative terms, the interplay between discrimination and identification.

Keywords: categorization, reaction times, optimal coding
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ABSTRACT

Although computational neuroscience provides a variety of biologically realistic models of a sin-
gle neuron, modelling of a neural network activity is still an open problem. A crucial question is
to define an appropriate architecture of neural connections which provides a proper dynamical
pattern of neural activity corresponding to a function of this neural network. Thus, to address
the classical structure-function problem we model anatomy and electrophysiology of the tadpole
spinal cord. Our approach to modelling of neural connectivity is based on developmental pro-
cesses of axon growth. A simple mathematical model of axon growths allows us to reconstruct
a complete biologically realistic architecture of neuronal connectivity of the tadpole spinal cord
([1], [2]). In this project we collaborate with neurobiologists from Prof. Alan Roberts Lab at
the University of Bristol.

In the reconstruction model, both cell bodies and dendrites are randomly distributed along the
spinal cord on the left and right sides of the body in correspondence with the experimental
measurements provided by A. Roberts Lab. The growing axon makes a synaptic contact with
some probability if the axon passes through the dendrite of some neuron. The total neural
network contains 1680 neurons of six cell types (280 neurons of each cell type) and the total
number of connections is about 100,000. The anatomical model contains random components;
therefore, each repetition of the reconstruction procedure generates a neural network which
differs from others. However, there are some common features of all these networks. For example,
statistical characteristics of distributions of cell bodies, dendrites and axons are the same for all
generated connection architectures.

A study of connection architecture reveals a complex structure of the connectivity graph with
many interesting specific features. Some features are similar to connectivity graphs of other
animals. For example, the distribution of connection lengths (without taken into account cell
types and direction of the connection) is similar to the distribution of connection lengths in the
global neuronal network of C. elegans (see this distribution in Fig. 2D of paper [3]). Analysis of
specific connections between cells of different types in ascending (towards head) and descending
(towards tail) directions shows a broad variety of distributions. Figure 1 shows two distributions
of lengths for incoming connections from neurons of dlc type. The histogram in Figure A (left)
corresponds to incoming connections to descending interneurons of dIN type. This distribution
shows that there are many connections between neurons of these types, the total number of
connections is about 6500, the mean number of incoming connections to the neuron is about
23. Although there are many short-range connections, the distribution is bimodal with peaks
corresponding to distance of about 300 microns in each direction. The histogram in Figure B
(right) corresponds to incoming connections between neurons of dlc type (connection from dlc
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cell to dlc cell). The total number of connections is relatively small (about 450) and the mean
number of incoming connections per neuron is about 1.6. The distribution is asymmetrical:
more connections arrive from the tail than from the head side. Also, this distribution shows
that there are no local connections in the vicinity of 100 microns from the dlc cell.

To model neural activity we use the Morris-Lecar neuron with post-inhibitory rebound. Cou-
pling between these neurons is arranged in accordance with the reconstruction connectivity.
Simulation of the neural network shows that the model demonstrates a pattern of neural activ-
ity corresponding to swimming. It means that any two cells of the same type allocated near the
same rostro-caudal position but on opposite sides of the body (one cell on the right and one cell
on the left) will generate spikes in anti-phase and the metachronal wave of spiking activity will
propagate from head to tail.

Figure 1: Figure. Distribution of connection lengths for different cell types in different directions
(negative (positive) values correspond to ascending (descending) direction). A (left) Histogram
of connection lengths for connections from neurons of dlc type to neurons of dIN type. B (right)
Histogram of connection lengths connections from neurons of dlc type to neurons of dlc type.

Keywords: Connectivity, tadpole, swimming pattern
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ABSTRACT

The critical brain hypothesis has been receiving an increasing amount of attention in the neu-
roscience literature [1, 2, 3, 4]. The idea goes that the dynamics of the brain are analogous with
a system poised at the critical point of a phase transition [1]. Such dynamics afford the brain a
suite of computational properties including optimal information storage [2], signal transmission
[3] and dynamic range [4]. The conceptual and formal framework that has been used to scaffold
this idea draws heavily on phase transitions in Ising spin or more generally stick slip models.
Consequently, neural models have tended to comprise of discrete states (firing or quiescence)
non-leaky integrate a fire neurons interacting via excitatory synapses. The dynamics of these
model is generally sparse and characterised by periods of silence followed by transient period of
activity called avalanches. Such models are reminiscent of the dynamics of cortex and have been
used with a degree of effectiveness to account for several observed experimental properties [1].
To date it is not clear if, or how, the critical brain hypothesis could be applied to wider range of
neural systems which are not well described by avalanche dynamics. For example, can a notion
of criticality be developed in systems interacting through slow synapses which perhaps sustain
significant information processing through a rate based code?
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Recently Kinouchi et. al. [4] have suggested that critical dynamics can account for the dynamic
range of the mammalian olfactory system . They demonstrated that the sensitivity and dynamic
range of a network of excitable elements, is maximised near the critical point of a phase transi-
tion. They suggest such a system is underpinned by the dynamics of gap junctions within the
olfactory bulb (OB). However, the level of involvement of gap junctions in the dynamics of the
OB has yet to be established. Further the presence of gap junction has not been experimentally
established in antennal lobe AL (the invertebrate equivalent of the OB) which also exhibits
a large dynamic range. Perhaps more importantly the dynamics of both the OB and AL are
not consistent with an excitable system. These systems are dominated by both fast and slow
inhibitory synapses that mediate slow rate patterning dynamics. In this work we propose an
account of the dynamic range of the AL which draws in spirit from the critical brain hypothesis
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but develop an alternate notion of criticality in terms of the rate interactions between neurons.
We ground this idea in a model of the Macro Glomerular Complex (MGC), a core subsytem of
the AL of the male moth devoted to the detection of pheromones. The pheromone subsystem of
the olfactory system of MGC comprises a set of specialized olfactory receptor neurons (ORNs)
on the antennae that project to a recurrent network of GABAB inhibitory local interneurons
(LNs) in the MGC. These in turn synapse on a set of projection neurons (PNs) that arbourise
outside the AL and relay information to higher brain areas, see figure A.
We model the MGC systems as a large random, recurrent network of slow inhibitory neurons.
We employ Hodgkin Huxley neurons with an m-current and (“α − β”) synapses. Leveraging
the fact that GABAB synapses act at a much slower timescale than the membrane dynamics we
reduce our conductance based model to a formally equivalent rate model, see figure B. We model
the rate dynamics of the LNs as transient excursions from their stable baseline rates which are
formally described as a globally asymptotically stable fixed point attractor. We then show how
even a randomly connected network of LNs constrained to show these transient dynamics can
account for the slow rate patterning and strong disinhibition of the PNs observed in experiment.
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The dynamic range of the male moths response
to pheromone has been found to manifest in the
PN’s initial excitatory response. Correspondingly we
demonstrate that if the fixed point attractor describ-
ing the rate dynamics of the LN network is barely
stable the disinhibition of the PNs will be highly sen-
sitive to input (formally we show the effective gain of
the system tends to infinity as the largest real eigen-
value of the Jacobian of the fixed point tends to zero).
Furthermore by employing a population mean field
approach we show if the baseline rate of the LNs are
sufficiently inhomogeneous then the dynamic range of
the PN responses is maximised at this critical point,
see figure C.

We finish by arguing that this idea of critical rate dynamics is a much more appealing account
of the dynamic range of the AL and OB. We also claim that the notion of neural criticality
as a bifurcation in a higher level quantity (here the rate dynamics) is much more general than
the “stick slip” framework prevalent in the neuroscience literature. In future work we hope to
show how this idea can be applied more widely to biological systems. For example there is
a striking similarity between the ideas outlined here and an account of the dynamic range of
the mammalian auditory system, which is thought to be mediated by a Hopf bifurcation in the
dynamics of the inner ear’s mechanoreceptive hair cells [5].
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ABSTRACT

The active electroreception of Gymnotus omarorum is a complex sensory modality that allows
this specie to create its own electric field in a pulse like manner and sense it by measuring
transepidermal voltage or current density [2]. Differently than mormyriform electric fish, gym-
notiforms have an electric organ distributed along the body, which does not fire synchronically.
As a consequence, the shape of the electric field generated and the images of the objects change
in time. To study how G. omarorum composes a perceptual representation, we developed a
computational model [3] that allows the determination of the evolution of the field generated by
the fish and the electric image.

We have found a correlation between in vivo measures and our model’s predictions for the basal
discharge, the relation to the conductance of the water of the environment and the electric
images of metal objects. The image of resistive objects, in rostral regions, varies in amplitude,
but the shape remains constant. This feature is important to detect capacitive properties of the
object, since they will distort the shape of the local electric organ discharge that can be detected
for the three types of electroreceptors present in rostral regions. To study these distortions, we
propose ways to characterize the electric images, when they change along the electric pulse,
allowing the definition of electric color [1].

Electrosensory afferents inform the brain about the local value of the image using a latency code
and the brain structures involved are well suited to process smooth changes in the transepithelial
currents. So, sudden changes of the image, as those occurring when the object is close to the
region where the electric potential generated by the electric organ is close to zero, will be
distorted by the brain. The objects positions where this occurs are caudal, where the density of
receptors is low. Consequently, these changes of the image could be used mainly to detect the
position of the object rather than its shape.

Keywords: electrolocation, image, active sense.
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ABSTRACT

Humans are able to learn Stimulus-Response (S-R) association in a very short time, e.g. following
verbal instructions such as If that red light turns ON, then press that left button. This involves
establishing rapidly a link between the cortical representation of the stimulus and the cortical
representation of the response. It is known that verbal actions and objects descriptions activate
motor preparation areas in the posterior parietal cortex (PPC) and representation areas of the
visual stream [1,2]. There are also data showing that an area of the PPC becomes responsive to
the stimulus after instruction [3] but that is about all we know on the process of linking S and
R areas during instruction.

Figure 1: The S-R map is the focus of this work.
It is assumed that the mapping between speech
input and stimulus imagery is available, as well
as the mapping between speech input and motor
imagery.

Figure 2: Neuronal connectivity assumed in the
model.

The work presented here explores a possible
neural network architecture that enables one-
shot learning of S-R associations in a biologi-
cally plausible way. Given the lack of physio-
logical data on the process, some elements of
the model are necessarily speculative.

The architecture design is guided by following
considerations: We assume a layered organi-
zation of brain areas. Given that neurons have
a limited receptive field in the previous layer,
several layers will be needed to ensure a com-
plete representation of the stimulus. We also
assume that each layer has the same number of
neurons. More speculatively, we assume that
each neuron is capable of self-sustained firing
and that is projects inhibitory feedback to its
inputs in the previous layer. This ensures in-
formation propagation, while minimizing the
neuronal activity.

The representation is of all-or-none type. This
minimizes the number of neurons involved in
representing any stimulus and reflects the se-
lective response of neurons in the visual sys-
tem.

The proposed learning mechanism is designed
to automatically generate a sparse pyramid of
nodes representing completely the stimulus S.
This implements a representational push. At
the same time, the response R is given the
power to guide the growth of the pyramid to-
wards activating the desired neurons in the
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response layer (Activity pull).

This model has been initially implemented us-
ing binary neurons, demonstrating fast learn-
ing of binary S-R pairs. Its implementation with spiking neurons will be discussed at the
workshop, including effects of the limited selectivity of spiking neurons, the required synaptic
learning rules and the trade-off between speed of learning and capacity.

Overall, this work addresses the problem of fast S-R learning across several neural layers, using
a representation and code guided by considerations of energy consumption minimization.
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ABSTRACT

Some fish generate weakly electric discharges (EOD) by activating an electric organ derived
either from muscular or neural tissue. The polarization of objects by such electric field creates
an electric image sensed by electroreceptor organs distributed on the skin of the fish. This
sensory modality is called active electroreception because it is based on the sensing of an electric
field ultimately caused by the activity of the fish own electric organ. While some fish have a
localized electric organ generating a brief EOD, others have an electric organ distributed all
along the body.

Since discovering of active electroreception it has been an important incognita on how elec-
trosensory images generated by fish with distributed electric organs are coded at the skin of
these fish.

In order address this problem we have studied the electric images of objects by measuring the
local field along the fishs lateral surface and constructed the first neural image (i.e. the pattern
of discharge of primary afferents) by modeling the transduction and coding mechanisms at the
level of each receptor type.

We found that different regions of the electric organ generate dissimilar waveforms that summate
to form the whole electric field polarizing the surrounding objects. Thus, objects having equal
material but unlike shapes accentuate or attenuate differently the frequency components of the
illuminating field depending on their relative position and orientation respect to the fish (Fig
1).

Taking into account that the electro-sensory organs respond with and dumped oscillation, we
modeled sensory transduction as a second order linear system in which gain and resonant fre-
quency can be tuned to match biological data obtained by recording local receptor potentials
(Fig. 1A). Sensory cells converge synaptically onto a single primary afferent which integrates
these signals. We model the generator potential and the spike train using a leaky-integrate-and-
fire model. Because of the synapse there is a rectification and because of membrane properties
there is low pass filtering. This causes that the spike train depends on the envelope of the
receptor damped oscillation (Fig. 1B).

As expected latency and number of spikes may vary according the model parameters. Then,
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we tuned the model parameters to match the three types of afferent tuning curves that can be
obtained experimentally. In this way, taking into account the local EOD profiles obtained in the
presence of various objects we were able to construct and compare their neural images.

Our main finding is that extensive attributes of an object as for example shape could be coded
in a parallel by the activity of different receptor types. Because of the action of the object
on different electrogenic sources the limits of the image of an object having edges are sharper
than as those of a sphere. Since local sources have different power spectra, receptors with
different tuning curves code differently the image. As shown in the example of Fig 1C and 1D
low frequency waveforms mainly generated at the rostral region of the fish’s body are better
sensed by low pass receptors located in front of the rostral limit of the object and high frequency
waveforms mainly generated at the caudal region of the fish’s body are better sensed by narrow
band receptors located in front of the caudal limit of the object.

We conclude that if the three types of receptors are represented on the side of the fish, object’s
shape might be coded by the combination of activities of multiple receptor types. Ongoing
experiments are in progress to test such hypothesis.

Figure 1

Keywords: Electric images, receptor transduction, afferent coding.
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ABSTRACT

In linear modeling single auditory neuron’s response to complex sounds, less success is found
at the higher brain centers when compared to primary auditory afferents. The difficulty has
commonly been attributed to greater nonlinear property at higher levels of the brain. The
auditory midbrain is an important center along the ascending pathways where neurons sensitive
to frequency modulation (FM) but not steady tones first emerge [1]. The exact neural mechanism
of FM coding remains elusive. Spectrotemporal receptive field (STRF) is a powerful way to
characterize the input-output relationship particularly of FM-sensitive cells. In these STRFs,
spike-averaging the preceding spectral sound energy typically displays the putative FM-trigger
features which have been used to model neural response to other sounds. Previous studies
on STRFs of FM cells in the rat midbrain suggested the presence of multiple trigger features,
separable into main and partial components [2]. We speculated that such trigger features could
reflect synaptic events likely taking place over dendrites of the FM-sensitive cells. Here we
developed and tested a method to answer the following question: how effective it is to predict a
cell’s response by integrating information in its STRF and peri-stimulus time histogram (PSTH)
to FM sounds using artificial neural networks that involve mainly linear elements.

Single unit responses of auditory midbrain neurons to sounds were first recorded extracellularly in
urethane-anesthetized rats using glass microelectrode. Two sets of sound stimuli were presented:
(a) random FM: a family of random FM tone that varied across 60 trials, and (b) frozen FM: a
member of the random FM tone that was repeated as identical stimulus across 60 trials. Spike
responses to random FM were used to generate STRF and those to frozen FM generated PSTH.
STRF was generated by adding in the spectro-temporal plane the instantaneous frequency time
profiles within 40 msec preceding the spikes, followed by de-jittering to enhance the trigger
features. PSTH was generated by computing spike counts at 0.4 msec time bins, followed by
low-pass filtering to obtain the probability of firing. A novel method of data analysis was
developed that integrated results obtained with both stimuli. First we separated STRF trigger
features, using a progressive thresholding method, into two categories: main and partial. A
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similar thresholding method was used to separate peaks in the PSTH into strong and weak
responses. An artificial neural network was trained to model separately the strong and weak
responses based on spectro-temporal characteristics of the preceding modulating signal. This
approach in time series prediction involves constructing an underlying model that best produces
the observed neural events. A finite impulse response neural network (FIRNN) which models
synapses as FIR linear filters was used in the form of autoregressive time series. The performance
of the model was finally assessed in terms of probability of spike firing (or PSTH fidelity)
against a new frozen FM sound in comparison with empirical data obtained from the modeled
neuron. Furthermore, the part of pre-spike stimulus critical for the modeling the cell response
was determined by artificially lesioning portions of the modulating waveform in a systematic
manner using a sliding time window. The effect of lesioning was again assessed based on the
model performance.

With this integrated approach we found a highly satisfactory performance of our model in
predicting the spike occurrence to FM sounds. Over 90% success was attained particularly
with the strong responses. Furthermore, the critical segments of the pre-spike modulating time
waveform coincided well in time with the trigger features as determined in the STRF. Results
were also taken to indicate that it is not strictly necessary to rely on non-linear property of
the system to model FM responses at the auditory midbrain if spike responses were treated as
heterogeneous populations.

When the strong responses were compared with the preceding modulating signal, the main
trigger feature often corresponded with an FM tone sweeping through a restricted spectral
range and mostly at a fixed rate. Often we found two or more temporal segments of the pre-
spike signal particularly critical for successful modeling. These results are consistent with the
STRF reported for midbrain auditory neurons that are sensitive to FM sounds and could reflect
interacting synaptic events taking place on the cells dendrites. On the other hand, the partial
trigger feature that associated with weak response appeared less obvious in the STRF and
appeared more variable across neurons. For example, partial trigger feature could fall close to
main trigger features in one cell, but lie distant to the main trigger feature in another. The exact
nature of partial trigger features cannot be fully determined in the present study which assumed
that trigger features are primarily excitatory events. The auditory midbrain is well known to
be rich in inhibitory mechanisms (including post-inhibitory rebound) as shown by immuno-
histochemistry and in vivo as well as in vitro electrophysiological studies [3]. In relation to
this, it is not clear to what extent such inhibition-related phenomenon could underlie the weak
responses. We suggest that testing responses of these auditory neurons to sounds with multiple
spectral components and other complex sounds (e.g., dynamic ripples) would be useful to answer
this question.

Keywords: complex sound coding, frequency modulation, neural modeling, artificial neural
network.
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ABSTRACT

Softky and Koch [8, 9] analysed spike train recordings from cortical neurons and demonstrated
that these cells in vivo fire irregularly at high rates. They also showed that the Leaky Integrate-
and-Fire (LIF) neuron model, which temporally integrates excitatory postsynaptic potentials
generated by independent stochastic input spike trains, failed in reproducing this observed high
firing irregularity. While many methods were proposed to reproduce Softky and Koch’s findings
(see [2, 3] for a brief review), we have shown that a LIF neuron model with partial somatic reset is
a very good candidate for reproducing the observed highly irregular firing at high rates by cortical
neurons [1, 3]. In this paper, we are investigating whether the high firing irregularity produced
by LIF neurons with the partial somatic reset mechanism, when used in spiking neural networks
in the benchmark problem of XOR and in a general-sum game, enhances reward-modulated
Spike Timing-Dependent Plasticity (STDP) with eligibility trace [5]. More specifically, in the
case of the general-sum game, we have a multiagent Reinforcement Learning (RL) task with
spiking neural networks as agents in the iterated version of Prisoner’s Dilemma (PD) [7] (systems
architecture same as the one we designed and used in [4], but with learning based on modulation
of STDP with eligibility trace [6]) and we are examining whether its cooperative outcome could
be enhanced if the LIF neurons of the networks comprising the agents are equipped with the
partial somatic reset mechanism. According to the results, the increased firing irregularity at
high rates does indeed enhance learning for both systems investigated [5].

Keywords: High firing irregularity, partial somatic reset, reward-modulated Spike Timing-
Dependent Plasticity
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ABSTRACT

Since Hubel and Wiesel [3] showed that there were ‘preferred stimuli’ which evoked a more
vigorous response in cortical neurons it has become commonplace to think of discrete neural
units as having stimulus preferences. Although it is widely believed that auditory perception is
based on the responses of cortical neurons that are tuned to spectro-temporal ‘features’ [7] it is
not clear what these features are or how they might come in to existence. There is, however,
evidence that cortical responses develop to reflect the nature of stimuli experienced in the early
post-natal period, and that the development of these responses can be disrupted by exposure to
impoverished or noisy auditory environments (for a review see [4]).

It has been reported recently [1, 2] that a recurrently connected cortical model exhibiting spike
timing dependent plasticity (STDP) will, when exposed to a range of formative stimuli, develop
responses with varying temporal properties and exhibiting a range of heterotopic integration.

Here we extend previous results by characterizing the responses of a large number of model
neurons exposed to synthetic, parametric stimuli and arguing that the responses of the trained
network can be understood as ‘feature preferences’. We also show that these feature preferences
can, in the first instance, be demonstrated in terms of the observed firing rate. However it
is not clear whether the rates of firing fully characterize the differences between neurons. To
investigate this we construct difference matrices in terms of the van Rossum spike metric [6]
using a range of values for the time variable (λ) and show that the discrimination between two
stimuli, as evident in the distance between pairs of neurons, depends on timing as well as rate
of firing.

In addition we show that both before and after training, the neurons exhibit simple receptive
fields when these are characterized with simple, ‘tonal’ stimuli despite exhibiting more complex
spectro-temporal preferences. This can be understood in terms of cortico-fugal activity which
exerts modulatory rather than driving influence on the thalamus and provides insight into how
areas “might interact to compute features of the auditory scene” [5].
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ABSTRACT

Information coding and transmission play a relevant role in understanding and describing the
behavior of biological and engineering systems. Entropy, as a baseline concept in the field of
information theory, was introduced by Shannon [4] and Wiener [5], and it is, for instance, also
invoked to deal with information in the context of theoretical neurobiology (see for instance
Johnson and Glantz [3]).

The classical approach to the description of information related to a non-negative absolutely
continuous random variable X is based on the differential entropy of X, or Shannon information
measure. Other measures of uncertainty as suitable generalizations or modifications of the
classical entropy have been proposed in the recent literature such as the weighted entropy or the
cumulative residual entropy.

Here we consider the cumulative entropy of a non-negative random variable X, defined as (see
Di Crescenzo and Longobardi [1])

CE(X) = −

∫
+∞

0

F (x) log F (x) dx,

where F (x) = P (X ≤ x) is the distribution function of X. We present various properties of
such information measure. Furthermore, we recall the empirical cumulative entropy, which is a
suitable estimate of CE(X) (see, for instance, Di Crescenzo and Longobardi [2]). We discuss the
role of the empirical cumulative entropy to describe the information content and the variability
in neuronal data sets.
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ABSTRACT

Detecting the excess of spike synchrony and testing its significance can not be done analytically
for many types of spike trains and relies on adequate surrogate methods. The main challenge for
these methods is to conserve certain features of the spike trains, the two most important being
the firing rate and the inter-spike interval statistics. In this study we make use of operational
time to introduce generalizations to spike dithering and propose two novel surrogate methods
which conserve both features with high accuracy. Compared to earlier approaches, the methods
show an improved robustness in detecting excess synchrony between spike trains.
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ABSTRACT

We analyze the stochastic-dynamical process produced by the Morris-Lecar neuron model, where
the randomness arises from channel noise. Using stochastic averaging, we show that in a neigh-
borhood of the stable point, representing subthreshold fluctuations of the neuron, this two-
dimensional stochastic process can be approximated by a two-dimensional Ornstein-Uhlenbeck
modulation of a constant circular motion. The firing of the Morris-Lecar neuron corresponds
to this Ornstein-Uhlenbeck process crossing a boundary, which is equivalent to the crossing of
a one-dimensional leaky integrate-and-fire model with state dependent noise. This model is the
Feller neuron model where an inhibitory reversal potential is accounted for. The result justifies
the large amount of attention paid to the stochastic leaky integrate-and fire models. A more
detailed picture emerges from simulation studies.

Keywords: Ornstein-Uhlenbeck process, Feller model, Separate time scales.
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ABSTRACT

In this talk, we develop a Bayesian Markov Chain Monte-Carlo (MCMC) estimation scheme for
the parameters of a computational model of the olfactory receptor neuron (ORN) in mouse. Our
approach is a Bayesian extension of the method of Ramsay et al. [1] and involves conditioning
the model likelihood on specific pivotal feature statistics [2] identified in the neuronal outputs.
We invoke a specific intrinsic property of locally weighted polynomial regression to develop a
novel adaptive likelihood penalty term. We explore through high-dimensional visualization the
penalty’s optimality properties. Nonparametric kernel densities are used in formulating the like-
lihood of spike trains. The resulting model is a multi-scale extension of the transduction cascade
model of Dougherty et al. [3] able to predict both the slow transduction current emanating from
the cilia and the fast spike train emanating from the axon. We analyze recordings obtained
from a mouse line which lack olfactory marker protein (OMP). OMP is a protein of unknown
function, which is ubiquitous and selectively expressed in vertebrate ORNs. OMP−/− ORNs
display a 10-fold slowed olfactory response making them particularly interesting for our mod-
eling approach [4]. Principle components analysis of the estimated model parameters provides
some meaningful insights into the role of OMP within ORNs.

Keywords: Bayesian, Mouse, Receptor, Neuron, OMP
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ABSTRACT

The single neuron study had the goal of comparing the frequency response functions of two
motoneuron (MN) models having similar soma dynamics but different dendritic dynamics: one
had a passive dendrite and the other an active dendrite. Motoneurons with active dendrites have
been described in decerebrate cats [7] in relation to the generation of a persistent inward current
(PIC), bistability and plateau potentials, and are believed to occur also in humans [4]. The
chosen passive-dendrite MN model was a two-compartment soma-dendrite model described in
[2]. The active-dendrite MN model was based on the passive-dendrite model with the inclusion
of a voltage-dependent L-type Ca++ channel in the dendritic compartment so that it could
generate a PIC. The two models (the passive and active) were made to discharge at the same
mean rate around 30/s, driven by a frequency-modulated presynaptic spike train (the input)
of mean rate 4000/s (passive-dendrite) and 2000/s (active-dendrite) acting on the dendritic
compartment. These presynaptic mean firing rates were different because in the active model
the PIC that is generated in response to the synaptic drive contributes to the firing rate. Each
cycle histogram obtained from the instantaneous firing rate of each of the simulated MN models
(the output) was fitted by a sine function and the gain and phase shift were computed with
respect to the input modulating sine function. Note that the force generated by a motor unit
associated with the motoneuron would follow the modulating frequency with no attenuation at
least up to 1 Hz [1]. The frequency responses in absolute value (gain) were quite different in the
two models: the passive-dendrite MN showed an increasing gain up to about 13 Hz and then
decayed while the active-dendrite MN showed a monotonic decreasing gain of lowpass nature,
with a -1 dB cutoff frequency around 0.5 Hz. The tentative functional role ascribed to a potential
PIC in human motoneurons is related to the maintenance of a standing posture [6] because the
resulting bistability would require very little control from the descending pathways during quiet
standing. Simplistically, these pathways would be required to turn on the MN (make it discharge
regularly) by a burst of excitatory activity, therefore, freeing the upper centers from detailed
control of the motoneuron pool. On the other hand, human postural sway has about 74% of
the power concentrated at low frequencies up to 0.25 Hz [8], which are due to oscillations of the
center of pressure [3]. Hence, for the task of controlling quiet standing, the lowpass feature of
the active-dendrite MN model seems to be well-suited, as it would attenuate higher-frequency
perturbations that could increase the postural sway. At the same time, the MN would pass
the low frequencies needed for the feedback to correct displacements of the center of gravity. If
human motoneurons do indeed exhibit such a lowpass feature during quiet standing is an open
question which suggests new directions for future research.

The second study veryfied how the force variability, measured by the standard deviation of an
isometric maintained force, depended on the mean force value. A network of 900 motoneurons
(800 type S, 50 type FR and 50 thpe FF), representing the MN pool that drives the soleus
muscle, was driven by 100 axons, each carrying a Poisson process with a specified intensity
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and with an innervation ratio of 20% (meaning that each axon innervated a randomlychosen
subset of the motoneurons containing 20% of the MN pool). If there was no limit set to the
firing rates of the MNs in the pool, then the force standard deviation (std) showed a parabolic-
like dependence on the mean force level, increasing with mean force and then decreasing as
the mean force increased still further. However, if the firing rates of real MNs from humans
are taken into account, then the valid part of the force std x force mean relationship is just a
monotonic increasing function. This result suggests that for the soleus muscle the hypothesis
of signal-dependent-noise [5] is applicable. A new investigation would be required to verify if
the same is valid for the gastrocnemi muscles, as these are important synergists of the soleus in
exerting plantarflexion but have a different motor unit type composition. A further step would
be to study the influence of feedback from muscle spindles and Golgi tendon organs on force
variability during isometric and nonisometric force and position control.

Keywords: persistent inward current, motoneuron models, force variability.
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ABSTRACT

While simplistic (or reductionistic) approaches have their own merits in neuronal modeling
(such as ease of analysis and efficiency of computation), models based on the Hodgkin-Huxley
(HH) formalism are the physiologically more realistic alternative allowing a direct connection
of theoretical and experimental studies. All state variables and parameters have a physiological
meaning and can, at least in principle, be observed experimentally. Experimental biological data,
however, are notoriously noisy. Accordingly, also model neurons should consider the effects
of noise not only for physiologically realistic simulations. Also cooperative effects between
noise and nonlinear dynamics can occur, e.g. stochastic resonance and coherence resonance
phenomena, depending on the neurons’ dynamic state.

For the examination of noise effects at different dynamic states we have used a four-dimensional
HH-type model neuron, the Huber-Braun-model [1]. This model can generate a diversity of
physiologically relevant impulse pattern, including impulse groups (bursts), chaotic impulse se-
quences as well as two different types of single-spike discharges (tonic firing). In such HH-type
models, the membrane potential is given by the sum of ion currents that are charging or dis-
charging the membrane capacitance (membrane equation) while the ion currents are determined
by voltage- (or transmitter-) dependent activation and/or inactivation kinetics. Accordingly
noise can be implemented at different levels and in different ways.

For simplicity, noise from different possible sources is often comprised in a single term of mostly
Gaussian white noise that is added to the membrane equation (current noise). Another pos-
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sibility is the addition of noise to the activation variables of the ionic currents (conductance
noise). The effects on the impulse activity are in most situations principally the same. Both
current and conductance noise smooth the deterministically abrupt transitions between different
dynamic states. In the regular bursting regime, some random fluctuations of spike generation
are induced and both types of noise can induce typical stochastic resonance effects when the
neuron operate close to the threshold of spike generation [2,4,5].

However, when the neuron is operating in the pacemaker-like tonic firing regime, significant
difference can be seen in comparison of current and conductance noise. While current noise es-
sentially leads to random fluctuation of interspike-intervals the implementation of conductance
noise can induce burst-like discharges in the previously tonic-firing state. This is apparently
due to the propagation of conductance noise to the membrane equation where it enters as corre-
lated noise with a correlation time according to the activation time-constants [2]. Accordingly,
similar effects could be achieved with implementation of current noise with a correlation time
corresponding to the activation time constants. Also in this case, such dramatic noise effects
only appear in the deterrnistically pacemaker-like tonic firing regime [5]. State space analysis
elucidates the functionally relevant dynamics in this regime: The trajectories show large ex-
cursions from the deterministic limit cycle towards an unstable saddle point [3]. We compare
these particular phenomena with noise effects in other types of neurons and discuss whether the
particular dynamics in this tonic-firing regime may also be responsible for the impairment of
neuronal synchronization, for example in comparison to the bursting regime [5].

Keywords: impulse pattern, burst firing, pacemaker, conductance noise, correlated noise

References

[1] Braun HA, Huber MT, Anthes N, Voigt K, Neiman A and Moss F (2001) Noise Induced Im-
pulse Pattern Modifications at Different Dynamical Period-One Situations in a Computer-
Model of Temperature Encoding. Biosystems 62: 99 112

[2] Finke C, Vollmer J, Postnova S, Braun HA (2008) Propagation effects of current and con-
ductance noise in a model neuron with subthreshold oscillations. Mathematical Biosciences

214: 109-121

[3] Finke C, Postnova S, Rosa E, Freund JA, Huber MT, Voigt K, Moss F, Btaun HA, Feudel U
(2010) Noisy activation kinetics induces bursting in the Huber-Braun neuron model. Europ

Phys J (in press)

[4] Huber MT, Braun HA (2007) Conductance versus current noise in a neuronal model for
noisy subthreshold oscillations and spike generation. Biosystems 89: 38 43

[5] Postnova S, Finke C, Jin W, Schneider H, Braun HA (2010) A computational study of the
interdependencies between neuronal impulse pattern, noise effects and synchronization. J

Physiol Paris 104: 176-189



��

Stochastic Modelling of Neuron Activity
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ABSTRACT

Real data from a neurophysiology experiment are analysed. During the experiment, the spiking
activity of a place cell of hippocampus of a rat moving in an arena together with the track of the
rat was recorded. The action potentials (spikes) of the neuron are modelled as a Cox process
on a curve. Also other approaches to such data are discussed. The first one is an estimation of
a conditional intensity of the temporal process of spikes using recursive filtering. In the second
one, the track of the rat together with the random driving intensity function of the process of
the spikes is viewed as a random marked set.

Keywords: Cox point process, Spatio-temporal process, Random marked closed.
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ABSTRACT

The insect antennal lobe (AL) is the first synaptic relay that processes olfactory information and
is the analog of the vertebrate olfactory bulb. The olfactory receptor neurons of the antennae,
each expressing a single functional receptor gene, send their axons to the AL, where they collate
by receptor type and converge into specific glomeruli. In the glomeruli they provide synaptic
input to projection neurons and local interneurons (LNs). The projection neurons relay informa-
tion to higher order neuropiles including the lateral lobe of the protocerebrum and the mushroom
bodies. The LNs mediate complex inhibitory and excitatory interactions between glomeruli to
structure the olfactory representation in the AL, which ultimately shapes the tuning profile of
projection neurons.

In Periplaneta americana we characterized two main LN types with distinctive physiological
properties: 1) type I LNs that generated Na+ driven action potentials upon odor stimulation and
exhibited GABA-like immunoreactivity (GLIR) and 2) type II LNs, in which odor stimulation
evoked depolarizations, but no Na+ driven action potentials. Type II LNs did not express voltage
dependent transient Na+ currents and accordingly would not trigger transmitter release by Na+

driven action potentials. 90% of type II LNs did not exhibit GLIR. Type I LNs had arborizations
in many, but not all glomeruli, while the density of neurites varied between glomeruli of a given
neuron. Type II LNs had arborizations in all glomeruli, whereas the density and distribution
of processes were similar in all glomeruli of a given neuron. In subsequent studies we identified
two classes of non-spiking LNs (type IIa LNs and type IIb LNs) with distinct morphological
features and distinct active membrane properties. The specific functional properties of ICa in
both classes of non-spiking LNs correlated clearly with the active membrane properties of both
LN types. Type IIa LNs with a large transient ICa component had stronger active membrane
properties compared to type IIb LNs, in which this transient current component was significantly
less pronounced.

The distinct intrinsic firing properties were reflected in functional parameters of their voltage-
activated Ca2+ currents (ICa). Consistent with graded synaptic release, we found a shift in
the voltage for half-maximal activation of ICa to more hyperpolarized membrane potentials in
the type II LNs. These marked physiological differences between the two LN types imply con-
sequences for their computational capacity, synaptic output kinetics, and thus their function
in the olfactory circuit: 1) The spiking, inhibitory, GABAergic type I LNs expressed different
branching patterns in different glomeruli, suggesting a polar organization with defined input
and output regions. Accordingly, the synaptic input from a defined receptive field (e.g. one
or a few glomeruli) would be integrated at a local spike initiation zone into action potential
firing that would spread to other innervated glomeruli, and provide a defined set of glomeruli
with synaptic input. Glomeruli could interact independently of their distance: not only near-
estneighbor glomeruli could interact, but also glomeruli that are distributed throughout the
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entire AL. 2) In contrast, type II LNs have very similar branching patterns in all glomeruli,
suggesting that they can receive synaptic input from all innervated glomeruli. However, dur-
ing odor stimulation, synaptic input from olfactory receptor neurons will be typically restricted
to certain glomeruli, in which graded postsynaptic potentials will be generated. In type IIa
LNs with strong active membrane properties, the transient ICa component might help to boost
and shape dynamic signals such as EPSPs. Such mechanisms might help to shape functional
compartments, for example for local integration or they might help to activate nearby output
synapses. For non-spiking LNs with weakly active membrane properties, such as the type IIb
LNs, interactions between glomeruli would be dependent of their (electrotonical) distance: po-
tentials would spread only within the same glomerulus or to glomeruli that are electrotonically
close to the stimulated glomerulus. These scenarios are testable with detailed structural, elec-
trophysiological, and optophysiological studies together with structure and conductance based
modeling.

Keywords: Antennal Lobe, Local Interneurons, Olfaction.
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Leonel Gòmez-Sena, Juan Ignacio Sanguinetti, Ruben Budelli

Laboratorio de Neurociencias, Facultad de Ciencias, UdelaR.
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ABSTRACT

Weakly electric fish (as Gnathonemus petersii, modeled here) use the distortions of the electric
field, produced by its own electric organ, to perceive the world in close vicinity [4]. They have an
arrangement of electric sensors distributed unevenly over the skin with the rostral zone having
the highest density [2]. Pulse type fishes trigger the electric organ discharge (EOD) discontinu-
ously in time, getting an “electric snapshot” of the nearby world, adapting the frequency of the
discharge according to the requirement of perceptual information.

These animals can navigate successfully in complete darkness and can discriminate objects based
on position, distance, shape and impedance [7, 8]. This implies that they can segment the electric
scene using the information contained in the electric image. The electric sense peculiarities make
it difficult to determine which elements of the physical electric image can be used as clues to
segment the electric scene and how they are used to get unequivocal information about the
objects in the scene. For example, objects that distort the electric field behave as a new source
generating an image that is not the sum of the individual images [5].

Segmentation of an electrolocation image is a complex task. In vision the image of an object is
projected to a region of the retina and does not superpose to the image of any other. By the
contrary the images in electrolocation spread over the whole skin of the fish and the superposition
of images is the rule. Nevertheless, for isolated objects or in the presence of a few objects
projecting on widely separated regions of the skin, some clues can be used: the place on the skin
where the image reach its peak signals the location of the object, distance is coded as a kind of
blurriness given by the slope of the normalized image of the object, etc. But in complex scenes
there is no one unequivocal simple parameter of the image that signals characteristics of the
object. For example the size of the image is related with the size of the object but also with its
distance. Active exploration could help to solve many of those ambiguities, since the change of
perspective may be resourceful to estimate the parameters of the object in a three dimensional
world from a two dimensional image. Composing images obtained from different positions, the
fish could get additional information in the same way as we do using parallax in vision [1].
Consequently, this sense should, more appropriately, be included among the haptic senses that
require the use of sequences of sensory and motor acts to solve perceptual ambiguities.

We developed a model using the boundary element method (BEM) [6], to explore this idea
simulating the electric images generated on the skin of the fish in sequences of different spatial
configurations. We define the “intensity” of an image as the square root of the addition of
its square at each node on the surface. To compare images we defined a “intensity difference”
as the square root of the addition of the square of each point to point difference between the
images. This measure is 0 when images are equal and proportional to the information available
to discriminate between them when they are different. In order to establish a realistic minimum
of discriminability we relate this measure with behavioral experiments.

We show, for objects of the same size, that the intensity of the image produced decreases with
distance to the fish. When we compare the intensity difference of a sphere (or rounded object)
in a given position and another of the same shape but different size, the difference depends on
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the distance of the second one, reaching a minimum (close to zero) for a given distance. Then,
the size and relative distance of these objects cannot be clearly determined with only one image.
In this case the exploratory swimming of the fish improves the capacity of discrimination of
the size and position of these objects. Besides, the change of the position of the image on the
skin surface, when the fish approaches and rotates around the object, provides more information
about the object and its position.

Objects with edges generate sequences of images that change when the fish swims around them.
The images of cubes, with edges perpendicular to the rostro-ventral direction, present different
intensities as the fish moves around them, with a period of 90 degrees. Then, integrating
information about the movement of its body and information provided by electrolocation, fish
are able to determine the presence and position of the edges of the object. As before, this
mechanism may work only for objects in close vicinity.

When the object is presented against a background, swimming may help to its segmentation,
since the part of the scene image that changes as the fish moves corresponds to the image gen-
erated by the object. Besides, differences in impedance may also contribute to object discrimi-
nation if the shape of the objects image changes in a different way than that of the background
[3].

Images, coded in the latency of spikes of primary afferents, reach the electrosensory lateral
line lobe (ELL) as a somatotopically ordered pattern. From this temporal structure and the
architecture and physiology of the ELL we can infer neurocomputational rules that extract
object information from static and dynamic parameters of the electric images.

Keywords: electrolocation, image, active sense.
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ABSTRACT

In the male moth, the sex pheromone plume emitted by females is detected by a population of
specialized olfactory receptor neurons (ORNs) housed in antennal sensilla of conspecific males.
A large number of these ORNs converge onto a few glomeruli in the brain antennal lobe, where
they connect synaptically to a smaller number of projection neurons (PNs).

To study the transformation of the signal from ORNs to PNs, we recorded single ORNs [1] and
PNs [2] in the Noctuid moth Agrotis ipsilon. Responses of these neurons to different concen-
trations of sex pheromone were characterized by their latency and firing rate. Mathematical
functions were fitted to the concentration-response curves. To describe their variability across
neurons, probability density functions of the fitting parameters were estimated [3]. Finally, the
distributions obtained from ORNs and PNs were compared.

The results suggest that the ORNs with the lowest thresholds and shortest latencies in the
population trigger the PN response; this may explain the higher sensitivity of the PNs at low
concentrations of sex pheromone. They also show that the relatively variable ORN responses to
a given pheromone stimulation are converted into less variable responses across PNs.

Keywords: olfaction, electrophysiology, quantitative analysis.
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ABSTRACT

The oscillatory nature of the cortical local field potential (LFP) is commonly interpreted as a
reflection of synchronized network activity, but its relationship to observed transient coincident
firing of neurons on the millisecond time-scale remains unclear. Here we present experimental
evidence to reconcile the notions of synchrony at the level of neuronal spiking and at the meso-
scopic scale. We demonstrate that only in time intervals of excess spike synchrony, coincident
spikes are better entrained to the LFP than predicted by the locking of the individual spikes.
This effect is enhanced in periods of large LFP amplitudes. A quantitative model explains the
LFP dynamics by the orchestrated spiking activity in neuronal groups that contribute the ob-
served surplus synchrony. From the correlation analysis, we infer that neurons participate in
different constellations but contribute only a fraction of their spikes to temporally precise spike
configurations, suggesting a dual coding scheme of rate and synchrony. This finding provides
direct evidence for the hypothesized relation that precise spike synchrony constitutes a major
temporally and spatially organized component of the LFP. Revealing that transient spike syn-
chronization correlates not only with behavior, but with a mesoscopic brain signal corroborates
its relevance in cortical processing.
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ABSTRACT

The sense of smell has attracted profound scientific interest and has been a source of fascination
over the centuries. Yet, considerably less insight into the functionality and organization of
olfactory system has been gained when compared to other sensory modalities in humans. One
of the key challenges in the attempt to understand fundamental computational mechanisms
underlying the functionality of the sense of smell is to elucidate the neural representation of
key stimulus features. It still remains unclear how the olfactory system conveys the information
about odor identity and intensity to facilitate robust recognition in natural environments. In
this regard, the functional nature of the transformations in odor representation that take place
in the so-called early stages of olfactory information processing, particularly in the olfactory
bulb (OB) of vertebrates and the antennal lobe (AL) of insects, is of special importance [1].

The study outlined here deals with computational evaluation of different hypothetical early
olfactory coding strategies from the perspective of the discriminative power of the resultant
secondary representations. Specifically, it was aimed to examine a recently proposed concept of
fuzzy interval coding of odor concentration [2][3] in comparison with concentration-saturating
representations [4]. The simulated neural responses to single and mixed odorant stimuli at a wide
range of concentration levels were generated using a reduced version of the computational model
of olfactory processing in the layer of olfactory receptor neurons and the OB in vertebrates [2][3].
It should be mentioned that in this work the temporal characteristics of olfactory responses were
not taken into account since the focus was on neural coding in terms of static activity patterns,
similarly as in other modeling, e.g. [5], and experimental studies [6].

The separability of the induced patterns of neural activity at the OB output was analysed in
the context of one of the most fundamental tasks that the sense of smell addresses - odor dis-
crimination. To this end, a range of recognition scenarios were devised with two key variables
- odor identity and intensity. The objective was to investigate to what extent the information
about these target features is conveyed in the coding patterns under consideration. Their dis-
criminative properties and the potential for relevant generalizations of one variable despite wide
variations in the other one, as in concentration-invariant odor identification, were of special
interest in this evaluation. Collectively, three groups of recognition tasks were tested. Firstly,
concentration dependent setup assumed the assignment of the olfactory data to the classes of
objects from the Cartesian product of odor labels and three concentration categories - low,
medium and high. Secondly, concentration invariant odor recognition was verified using differ-
ent intensity ranges for classification system’s learning and recall. Thirdly, the odor recognition
was performed separately for concentration and identity target variables.
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The classification accuracy, obtained with support vector machines and connectionist neural
network methods, was utilised as the criterion in the evaluation of the alternative olfactory
coding strategies within the aforementioned odor recogntion framework. This quantification
approach provided a link with artificial olfaction and the discussion of various learning and
classification scenarios conveyed in this work should also be relevant to the development of
modern electronic noses.

In conclusion, despite that no significant differences in the average performance of neural net-
works and support vector machines were reported, the latter classifiers produced the most con-
sistent results and facilitated a fast model selection process. In terms of olfactory coding, the
outcome of the extensive evaluation demonstrated that the fuzzy interval approach clearly fa-
vored concentration dependent odor recognition allowing for reliable classification of odor iden-
tity and detection of its concentration range. The specificity of this coding strategy though
rendered the resultant representation less conducive to generalization. In this respect, conven-
tional concentration-saturating codes had more universal characteristics in the tasks considered
here. Finally, it should be emphasised that the approach adopted to examine the scope for
concentration invariant odor classification by learning to recognize their identity at different in-
tensity levels corresponds to biological scenarios where odorants appear in natural environments
at rapidly fluctuating concentrations.

Keywords: Olfaction, Classification, Invariance.
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ABSTRACT

It is widely believed that it is the plastic properties of dendritic spines (synapses) that allows in-
formation to be learnt and stored in the brain, thus resulting in memory formation [1]. However,
the interplay between synapse location, active membrane properties and processes mitigating
synaptic plasticity remains largely unexplored. Recent experiments indicate that the synaptic
strength within clustered—i.e. proximally located—synapses are synergistically strengthened
through synaptic cross-talk. This suggests that clusters of nearby synapses may be the pre-
ferred physiological substrate underlying the learning and storage of new information.

In parallel, current experimental data supports the notion that synaptic strengths may have a
limited number of discrete states, whose values are finitely bounded [2, 3, 4]. Such experiments
have shown that when a single appropriately timed presynaptic input is paired with a large post-
synaptic depolarization, then ‘step’ increases or decreases in synaptic strength occurs, switching
between different stable discrete states. These all-or-none switching events result from increases
in intracellular calcium concentration, which triggers the activation of different intracellular sig-
nalling cascades and ultimately leads to the insertion or removal of AMPA receptors from the
postsynaptic density of the spine.

This experimental evidence is further supported by efforts in modelling biochemical signalling
cascades, where such models naturally give rise to synapses with discrete multiple states [5].
One example is the binary synapse, where synaptic strength can be in one of two stable discrete
states. Such synapses are known to have better robustness to noise than continuous synapses,
despite an individual synapse’s limited storage capacity.

Furthermore, synapses with discrete states are known to endow networks with the palimpsest
property where old memories decay automatically as they are overwritten by new ones [6].
Network studies employing such synapses have further highlighted a higher degree of robustness
to retain a memory trace in the face of ongoing plastic changes when compared to networks with
continuous unbounded synapses [7].

Recent studies have further explored this issue in networks using multistate synapses, where
such states differ in several degrees of freedom and not simply in their synaptic strength. These
studies adopted the unifying principle where plasticity is combined with metaplasticity in a
cascade of states increasingly resistant to plastic change and have illustrated superior ongoing
storage, robustness, and memory retention capabilities [8, 3, 9].

Inspired by these recent experimental findings, we investigate the issue of information storage
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capacity and robustness between spatially distributed synapses in a simplified neuron model,
called the clusteron [10, 11]. For i synapses, and denoting wi as the efficacy of synapse i, and
xi as its input, the clusteron model states that the synaptic response is given by

h =
n∑

i=1

wixi

∑
j∈Di

xjwj ,

where Di is a set of neighbours of synapse i, including synapse i itself. Thus, this models the
notion that the response depends on the spatial distribution of synapses.

Using this abstract model, we illustrate the dependence of storage capacity and robustness on
various factors including the number of synapses in the cluster and the number of synaptic
states. We provide analytical expressions for information capacity for such a neural system and
compare our results to a recent study where the neuron is treated as an additive linear device and
synapses were assumed to have binary states. Furthermore we propose a potential (information
theoretical) role for cross-talk between synapses in dendrites.

Nicolangelo Iannella is the recipient of an ARC (Australian Research Council) Australian Post-
doctoral Fellowship (project number DP1096083). Mark D. McDonnell is the recipient of an
ARC Australian Research Fellowship (project number DP1093425).
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ABSTRACT

Our visual system has evolved to deal with stimuli that change instantaneously and unpre-
dictably in the environment. Furthermore, even the ones that are significant for the system
are often weak inducing a neural signature that represents only a tiny fraction of the neural
activity elicited by other irrelevant stimuli. Yet, these small fraction of neural responses are
the only clues available to humans for fleeting opportunities or deadly threads. It is therefore
expected that evolution would have endowed the brain with mechanisms for fast and accurate
recognition, emphasizing correct and fast recognition of biologically salient stimuli. It is not
possible to wire in advance all different stimuli. In addition the objects in the external world are
unlabeled, so early in life the brain has to invent its own categories and learn their significance
through trial and error. The brain accomplishes the miracle of perception through neural activ-
ity. This neural activity contains only indirect imprints of real world objects as it is recorded
at the sensory organs and tranformed into electrical changes in the brain. It is believed that
the main, possibly only, way that the brain codes information is through the spikes that relay
activity from one neuron to the next. Deciphering the neural code is thought to be equivalent
to understanding how transformations between different representations is achieved through the
organization in space and time of neural spikes. However, the neural code in the brain must
not be equated with a dry information transfer in a static communication network. Instead, it
has been proposed to view the various manifestations of neural spike signaling as adaptations
that optimize ecological expected utility [1]. This leads to competing constraints for the way
neural coding should be studied. On one hand, scientific rigor demands precise control of stimuli
and using one sensory modality at the time creating conditions that are different from the ones
encountered in the environment. On the other hand, ecological considerations demand natural
stimuli often engaging more than one sensory modality with physical properties that vary in a
non-systematic way.

It is not feasible to study collective activity elicited by complex stimuli with methods allowing
mapping of localized neural responses in only one or few brain regions; it requires simultaneous
mapping of activity over a wide range of brain areas. To satisfy this requirement we recorded
magnetoencephgraphic (MEG) signals and used magnetic field tomography (MFT) [2, 3] to
extract tomographic estimates of activity throughout the whole brain from each timeslice of
data, i.e. with a millisecond temporal resolution. Moreover, we have resolved the competing
requirements of rigorous stimulus control and ecological relevance by focusing on the visual
modality and using visual stimuli that have well-defined physical properties and proven biological
significance. Specifically we recorded the MEG signal from subjects while they participated in
category/object detection, face affect recogntion and gender recognition tasks. We have focused
on the visual system because we have a reasonably good understanding of how visual processing
is organized and particularly how function is seggregated in different cortical areas. We have also
contrasted the activity evoked by stimuli presented at the centre of the visual field or in one of
the quadrants for two reasons. First, placing stimuli in specific parts of the visual field allowed



�A

our precise tomographic analysis to capture the first arrival of the stimulus-evoked response
in the primary visual cortex V1 and to follow the activity in each extrastriate area. Second,
ecological considerations [4] and our own results showed that different neural circuits may be
activated by stimuli in different parts of the visual field, at least in the early stages of processing.

Our results demonstrate that neural mechanisms underlying visual information processing in the
brain are ultra-fast: attentional selection based on object location or category, and differentiation
of facial expressions of emotion are completed well within 100 milliseconds post-stimulus and
they depend on where the stimuli appear in the visual field. Moreover, our findings show that
this fast neural processing is organized into stages of processing, each lasting about 30 ms, and
involving cooperative activity of widely distributed brain areas (e.g. amygdala, V1 and fusiform
gyrus). Within each stage of processing, activity from many areas converges into one hub.
Then, the “processed information spreads from the hub to many other areas. Although the
early processing, well within 100 ms post-stimulus, is below awareness, it is particularly refined:
it is influenced by attention [5] and it distinguishes facial expressions [6]. The information flow
is not fixed, but rather it depends on how difficult the task is [7] and where the stimulus appears
in the visual field [8].

The features of visual processing highlighted by our results must be linked to attempts to deciper
neural coding. At present our results can put only general constraints on possible neural codes,
but more detailed results are expected from future experiments expoiting recently developed
capabilities to identify contributions from specific cytoarchitectonic areas [9] and the use of
stimuli and tasks designed to probe specific aspects of neural coding.

Keywords: Magnetoencephalography (MEG), magnetic field tomography (MFT), visual sys-
tem, stages of processing, early attention, face, emotion.
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ABSTRACT

Many neurons in the primary visual cortex of mammals are selective to visual stimuli of specific
orientations. Although the specific details of how orientation tuning emerges in this area are still
being debated, it is widely accepted that the neural response is driven through a combination
of both feed-forward and recurrent feedback connections.

Many computational models have been proposed to understand and explain orientation selec-
tivity in visual cortex, using these assumptions [5, 4, 6]. In particular models based on soft
winner-take-all (WTA) networks have been shown to explain orientation tuning and describe
many of the observed computational tasks the brain continuously performs [2, 3].

However it is still not clear if and how WTA is realized in the cortex. While most soft WTA and
competitive-cooperative models of cortical circuits assume broad inhibition and local recurrent
excitation (e.g., which give rise to Mexican-hat like response profiles), the connectivity of neurons
in the upper cortical layers, suggests a different network architecture, with local inhibition and
broad excitation [1]. This is especially true in layers 2/3 of the visual cortex, where the WTA
microcircuits are believed to be located.

While most of the previously proposed models were built from a top-down, functional point
of view (with broad inhibition and narrow recurrent excitation), we approached the modeling
task from the bottom-up: we started with anatomically realistic connectivity profiles [1] and
determined the conditions under which visual cortical properties, and in particular soft-WTA
behaviors, are reproduced. We first carried out theoretical analysis and parameter sweeps on
networks of linear threshold units (LTUs) and then performed numerical simulations of net-
works of spiking neurons, using biophysically realistic parameters and anatomically consistent
connectivity profiles.

Our findings suggest that the lateral non-isotropic, orientation-specific connectivity patches of
the cortical network are critical for the emergence of competitive computation such as cross-
orientation suppression. Surround inhibition is mediated by isotropic, local connections, while
strong stimuli are recurrently amplified by orientation-specific lateral connections of excitatory
cortical neurons.

Our network simulations are based on three anatomical assumptions:

1. Orientation-specific excitatory synapses connect preferably to excitatory neurons.

2. About 30% of the excitatory synapses are orientation-specific.
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3. Orientation-specific lateral clusters have a smaller diameter than the local, isotropic con-
nectivity region.

If these anatomical assumptions are correct, the performance of the simulated spiking net-
work model can explain the electrophysiological findings in the primary visual cortex of cats.
Cooperative-competitive behaviors and soft WTA competition is observed for inputs of sig-
nificant strength differences, while inputs of similar strengths are equally represented by the
neuronal activity. Furthermore, an analysis of the spike timing properties of the neural network
revealed strong spike correlations of nearby neurons. These correlations come from the all-to-all
connectivity applied in this model and reduce the soft-WTA effect of the network especially at
high spike rates.

Keywords: soft WTA, orientation tuning, area V1, spiking neuron.
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ABSTRACT

The membrane voltage, in most of neuronal models, depends on two kinds of parameters, the
input parameters and the intrinsic parameters. The input parameters are characterized by the
mean and variance of the input signal. The intrinsic parameters characterize the membrane
properties, such as the membrane capacitance or the ionic conductances.
We consider an estimation problem of input parameters from a single voltage trace obtained
by intracellular recordings. Several methods for this estimation problem have been developed
recently, [1, 2]. All these methods are based on the assumption that the input parameters are
constant in time. However, it is natural to expect that neuronal activity in vivo is time-variable,
reflecting the variable external conditions, [3]. We propose a Bayesian method to estimate the
time-varying input parameters in absence of the firing. The proposed method is applied to the
Ornstein-Uhlenbeck neuronal model and its estimation performance is evaluated.

Keywords: Ornstein-Uhlenbeck process, Statistical inference, Empirical Bayes method
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ABSTRACT

Theoretical approach to the problem of information processing in neuronal systems has received
significant attention over the past few decades, with information theory providing the fundamen-
tal framework. Of particular interest are the optimality conditions under which the information
between stimuli and responses is maximized, leading to the idea of efficient coding.

We derive an approximate expression for mutual information in a broad class of discrete-time
stationary channels with continuous input, under the constraint of vanishing input amplitude
or power. The approximation describes the input by its covariance matrix, while the channel
properties are described by the Fisher information matrix. This separation of input and channel
properties allows us to analyze the optimality conditions in a convenient way [1].

We provide illustration of the method on a simple model of electro-sensory neuron [2]. Our
general results apply also to the study of information transfer in single neurons subject to weak
stimulation, with implications to the problem of coding efficiency in biological systems.

Keywords: information capacity, neuronal coding.
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ABSTRACT

We present a metric for measuring the level of synchrony between spike trains at a neuron’s input
that were relevant to the firing of response spikes. The metric is calculated using the normalised
slope of the membrane potential prior to the spikes fired by a neuron and we show that it is able
to distinguish between the two operational modes that neurons are thought to be employing:
temporal integration or coincidence detection [1]. The importance of this distinction lies in the
fact that each mode implies a corresponding encoding mechanism; temporal integration suggests
that information is encoded on the average firing rate, while coincidence detection indicates the
importance of timing of individual spikes [2].

Our metric is inspired by the work of Kisley & Gerstein [3], which shows how higher levels of input
synchrony result in higher pre-spike membrane potential slopes. These authors demonstrated
how coincidence detection, enforced by high levels of input synchrony, resulted in higher pre-spike
slopes than temporal integration. We expand on this by defining the bounds of the pre-spike
membrane potential slope associated with each operational mode quantitatively, which in turn
allows us to define an exact measure of the relative contribution of each mode to the firing of
the neuron. The upper bound of the metric, which corresponds to coincidence detection, is
defined as the slope of the membrane potential resulting from the arrival of synchronous input
spikes, while the lower bound, which corresponds to temporal integration, requires defining the
expected slope of the membrane potential of a neuron driven by random spike trains (i.e., no
synchrony). More specifically, the upper bound is calculated as the slope of the membrane
potential that rises from the resting potential to the threshold within a very short time period
w. The parameter w is the duration of the “coincidence” window and its value is determined
by what we consider to be the maximum difference between the arrival of two (or more) spikes
that are still considered to be coincident. Coincident spikes may arrive from different inputs or
from the same one, since no refractory period is used at the inputs. Any pre-spike membrane
potential slopes with values higher than the upper bound, are regarded as equivalent to the
bound. On the other hand, the lower bound of the membrane potential slope is calculated
separately for each response spike and requires calculating the slope of the membrane potential
that rises from the resting potential to threshold during the current inter-spike interval (ISI).
This is based on the assumption that in the absence of any significant synchrony at the input,
the membrane potential rises steadily towards the threshold during each ISI. Any lower slope
values are considered to be equivalent to the bound. The calculation of the bounds may be
generalised to account for arbitrary post-spike membrane potential reset values. For the upper
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bound, this is done by calculating the potential of the membrane after it has decayed towards
the resting potential (which assumes that no input is present during a given ISI) and measuring
the slope of the theoretical membrane potential that rises from the decayed state towards the
threshold within the time interval specified by the coincidence window (w) just preceding the
end of the ISI. The bounds are used to linearly normalise the slope of the pre-spike membrane
potential of each spike during a trial. Since the time course of the pre-spike membrane potential
is a curve, we use the slope of the secant line that intersects the membrane potential curve at
the beginning and at the end of the coincidence window (i.e., average rate of change). The result
is a value between 0 and 1, where values closer to 0 denote dominance of temporal integration
and values closer to 1 indicate coincidence detection. The metric has so far been applied to
the membrane potential time course of a leaky integrate-and-fire (LIF) neuron model driven
by inputs with varying levels of synchrony. The results indicate that the normalised pre-spike
membrane potential slope can reliably measure input synchrony. We have also measured the
normalised pre-spike membrane potential slope of a model neuron exhibiting highly irregular
firing at high rates. This requires the use of a variant of the LIF model that employs a partial
somatic reset mechanism, which has been shown to be the most likely candidate to reflect the
mechanism used in the brain for producing the irregular firing of cortical neurons at high rates
[4, 5]. This is the reason for deriving bounds for the normalisation for arbitrary reset values,
explained above. The results suggest that neurons firing highly irregularly at high rates operate
mainly as temporal integrators and coincidence detection is not necessary for producing the
observed irregularity at high rates, as was suggested by Softky & Koch [6, 7].

While similar work exists on measuring spike train correlations and synchrony, either by directly
observing the spikes fired from a population of neurons [8, 9], or by identifying synchronous
activity in local field potentials [10], our proposed metric differs in that it only responds to the
correlations between spike trains converging into a single neuron, when they are responsible
for the triggering of response spikes. In this way, the metric is only concerned with the input
statistics that affect the neuron’s own spiking. It is this particular feature which links our metric’s
estimation of spike train synchrony to the underlying operational mode. The operational mode
of a neuron is not defined solely by the synchrony of the spike trains it receives, but also by
whether or not that synchronous activity causes firing. Our intent is to apply the metric to
membrane potential data generated by increasingly complex neuron models and eventually from
experimental intracellular recordings, in order to determine the operational mode of real neurons.
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ABSTRACT

A number of important data analysis problems in neuroscience can be solved using state-space
models [1]. The optimal estimate of the state is its conditional expectation given the observation
histories, but this expectation is computationally demanding when nonlinearities are present.
Various authors have therefore used Gaussian approximations to posterior densities that appear
in the formulation.

In the first part of the presentation, we investigate this approach, showing that the errors
introduced by the approximation are not compounded across time. We then consider second-
order expansions, and show that they can provide second-order accuracy in state estimates –
but that no additional accuracy is possible by higher-order approximations [2]. We discuss
implementation of these methods and illustrate by decoding multielectrode motor cortical data.

In the second part of the presentation, we have developed real-time software which implements
our decoding methods in conjunction with a brain-computer interface. We show results from
a monkey using these methods to control a cursor on a computer screen, and compare the
performance of our decoding methods to that of the population vector algorithm and the optimal
linear estimator. We also discuss the difference between off-line and on-line analysis [3].

Part of this works have been done in collaboration with R. E. Kass (CMU) and A. B. Schwartz
(Univ. of Pittsburgh).
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ABSTRACT

The subthalamic nucleus (STN) plays a key role in the basal ganglia. Abnormal neuronal activity
in the STN plays a crucial role in the pathophysiology of Parkinson’s disease (PD) [4]. the STN
receives topographically organized input from the cerebral cortex, and it provides the major
glutamatergic excitation to the substantia nigra pars reticulata (SNr) [1] and internal part of
the globus pallidus (GPi) (entopeduncular nucleus in rodents) that provide the basal ganglia
(BG) output to the thalamus and brainstem. Dopamine (DA) modulates the efficacy (promotes
LTP or LTD) of glutamatergic and GABAergic inputs to STN neurons directly, through pre- and
postsynaptic receptors, and indirectly, through modulation of activity in all BG nuclei [2]. The
STN is in a strategic position to exert a prominent control over the basal ganglia-related motor
functions since it integrates the somatic motor information from various cortical/subcortical
brain areas (including the motor cortex, thalamus and pedunculopontine nucleus) [3]. Figure 1
illustrates the activation of the cortico - basal ganglia thalamocortical circuit by DA neurons.

The understanding of the physiological role of DA within the neural circuit involving the BG
and STN is important for the development of possible therapies for PD. Investigation on rat,
nonhuman primate models and human PD patients have shown that the death of DA cells in the
SNc modifies the firing pattern of STN neurons and can induce an increase of their firing rate
that will eventually produce characteristic changes in motor behaviour. Chronic DA depletion
that underlies the pathology of PD can be obtained experimentally by lesions of DA cells in the
substantia nigra pars compacta (SNc) by means of 6-OHDA or MPTP. These lesions provoke
changes in the activity of all nuclei connected with the BG, but contradictory reports exist about
changes in the firing pattern of the homolateral STN. In this study, we investigate the changes in
rodent STN neuronal activity using multielectrode recordings in the STN after 6-OHDA lesion
in the SNc and compare these results with recordings performed in human PD patients [5].

Unilateral 6-OHDA lesioning was carried out in the SNc. Under anesthesia with ketamine/
xylazine the subject received one injection of 6µl of solution at the stereotaxic coordinates. Ex-
tracellular multiple single unit recordings with glass-coated platinum-plated tungsten electrodes
and with micropipettes were performed in the STN 2 weeks after 6-OHDA lesion of the SNc.
We could sort out multiple spike trains from the same channel and we recorded 109 pairs of
neighbour cells [6]. Data from 15 rats (6 treated and 9 controls) anaesthetized with Equithesine
showed no major differences in firing pattern and firing rate of single units between the two
groups. However, the 6-OHDA treated group showed a significant increase (from 25% to 49%)
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Figure 1: GPe and GPi, external and internal segment of the globus pallidus; D1 and D2,
dopaminergic receptors; S-N and S-P, striatonigral and striatopallidal cells; SNr and SNc, sub-
stantia nigra pars reticulata and compacta; STN, subthalamic nucleus; PfN, parafascicular tha-
lamic nucleus, PPNd and PPNc, pars dissipate and compacta of pedunculopontine nucleus; VL,
ventral lateral nucleus; VTA, ventral tegmental area. Red arrows indicate inhibitory connec-
tions (GABAergic); green arrow, excitatory (Glu) connections; blue arrows indicate modulatory
influence of DA.

in the number of synchronized cell pairs without an increased tendency to fire in burst.

In normal conditions DA, which modulates GABA release and excitatory inputs to projecting
cells of STN, can influence in opposite ways the dischargers of different STN cells [2]. The
absence of DA tends to decrease the differences of firing pattern among STN cells and therefore
their synchronization can be stronger. Strong synchronization of STN neurons is likely to affect
in a more efficient way the activation of their targets in the SNr, and eventually in the thalamus
and neocortex, thus affecting motor activity. The synchronization could facilitate the funneling
propagation and modify parallel propagation of signals from the neocortex through the BG [1].

Keywords: Basal Ganglia, Synchronization, Dopamine.
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ABSTRACT

Computational neural network models have successfully reproduced several aspects of experi-
mental data, such as activity levels, spike rates and spike discharge patterns, global oscillatory
phenomena and functional criteria. What is largely missing however are attempts to unify and
reproduce all these findings in a single model. We have previously developed a biophysically
detailed attractor network model of cortical layer 2/3 constrained by cortical geometry, con-
nectivity, firing rates and activity levels [1]. The network recalled stored memories and the
activity level was roughly 1%, which corresponds to both recordings and metabolic constraints,
and the connectivity and synaptic conductances were set to match experimental data [2]. The
original model constituted some 1300 Hodgkin-Huxley type neurons but was later scaled up to
the proportions of a rat brain with 22 million neurons [3]. Interestingly, the up-scaled model
maintained its memory function and had fast (∼ 50 ms) and coherent transitions between the
attractor states despite the distances and associated axonal delays.

Recently we have also constrained the model with in vivo spike train statistics from delayed
match to sample tasks [4]. We showed that the network operated in a regime of balanced
excitation and inhibition with highly irregular low rate firing both during fixation and delay.
Further, the elevation in firing rates during delay activity was much smaller than typically seen
in attractor models reproducing this paradigm and in line with experimental data. This latter
finding was due to the fact that the model operated in a regime of oscillatory activity both
during fixation and delay. The frequency of these oscillations increased from alpha/beta during
fixation to gamma-type oscillations during delay also in accordance with experimental findings.
In order for attractor models to successfully reproduce the fixation/delay they must operate in a
bistable regime [5]. It was found that oscillatory activity greatly enhanced the robustness of this
regime towards changes in excitation level and produced highly irregular spike output without
fine-tuning parameters.

In a fourth line of work [6], we have looked closer into global oscillations and found that we
can reproduce many of the phenomena as measured by LFP and EEG, such as elevated power
of gamma and theta oscillations during active processing, and alpha/beta during an idling
state. Further, theta power correlated with working memory load as reported in literature.
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The functional and mechanistic origin of these rhythms could then be studied, together with
coherence and phase-locking patterns of both synthetic spike-LFP and LFP-LFP activity.

In conclusion, all this work shows that while a considerable amount of information has been de-
rived from minimal models, which appear to be at an advantage when only a single phenomenon
is to be reproduced, models of higher complexity can also contribute valuable knowledge. First
of all, it is important to demonstrate that several functions and experimental observations can
be reproduced in a single model and that they are not mutually exclusive. This is a crucial step
in the verification of biological plausibility. Secondly, new knowledge might emerge from such
unification as different levels are found to interact, for instance in the case of bistability robust-
ness and irregular firing. Lastly, while complex models certainly have an increasing number of
parameters, they can be constrained by even larger amounts of experimental data in the attempt
to model observed phenomena. In doing so they can form a bridge between experimental data
from microscopic to macroscopic and behavioral levels.

Keywords: Irregular firing, Oscillations, Modular attractor memory networks.
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ABSTRACT

A novel model is proposed to describe the rich dynamics of spiking activities of leaky integrate-
and-fire (LIF) neuronal networks via the moment neuronal network approach. Different from the
existing neuronal field model (for example, Wilson-Cowan-Amari model) which only takes the
first-order moment (mean firing rate) into considerations, we develop a Gaussian random field
to qualitatively describe the spatiotemporal distribution of the first- and second-order moments:
mean firing rate, variance or coefficient of variation (CV) equivalently, and the coefficient of
correlation (CC), of spiking trains. By this neuronal field model, we find out that the firing rate
response with respect to the input may be not sigmoidal or even monotonic if the inhibition
is stronger than excitation, which leads fruitful dynamical behaviors, in comparison with the
sigmoidal response. In addition, within this framework, we can analyse the synchronisation
propagation in the LIF neuronal network. We use our Gaussian random field model to investigate
how the three key factors: the ratio between inhibition and excitation, the size of synchronous
cluster, and the background firing rate, decide the stability of a synfire chain.
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ABSTRACT

There exists substantial evidence that Bayesian inference is carried out in the brain. But a
model that explains how these computations could emerge in generic cortical microcircuits on
the basis of experimentally supported learning algorithms has been missing. We show here,
that Bayesian inference emerges in common motifs of generic cortical microcircuits (pyramidal
neurons with local lateral inhibition) through STDP. In fact, we show that STDP approximates
in such generic network motifs a very powerful method for the creation of implicit generative
models: Expectation Maximization (EM). The particular version of the STDP rule that op-
timally supports EM, where the size of weight potentiation decreases rapidly as a function of
the initial weight, but weight depression does not correlate with the initial weight size, agrees
with experimental data. We also show that adaptation of intrinsic excitability of neurons could
support Bayesian computation by creating priors for hidden causes of high-dimensional spike
inputs.

Computer simulations of such networks of spiking neurons demonstrate the autonomous emer-
gence of detectors for repeating spatio-temporal spike patterns through STDP, even in the
presence of large noise and time-warps, emergence of orientation selective cells, as well learn-
ing to discriminate handwritten digits from the standard Machine Learning benchmark dataset
MNIST without any supervision. The emergence of Bayesian computation through STDP works
particularly well when the number of input spike trains approaches biologically realistic num-
bers (i.e., a few thousand). Altogether this framework drastically improves existing methods for
demonstrating impressive computing and learning capabilities of networks of spiking neurons
with STDP.

We propose, that networks of such emergent modules for Bayesian computation in different
cortical areas provide a new basis for modelling computations and learning in large network of
neurons in the brain. In fact, recurrent networks of such modules provide a new perspective for
modelling the emergence and interlinking of assemblies that encode longterm memory.

A first description of the underlying principles, in a very simplified setting, has appeared in [1].
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ABSTRACT

Natural stimuli have a rich temporal structure, yet it is still unclear whether the encoding
of such stimuli employs more than one response time scale. We investigated this issue by
analyzing the activity of neurons recorded in primary visual cortex of anesthetized macaques
during presentation of naturalistic color movies following procedures detailed in [1] and we
quantified the amount of information carried by neural codes operating at different temporal
scales. We divided the recording time into stimulus windows of 16-80 ms, and we computed the
information carried by the neural response about which stimulus window was being shown. First
we measured the information carried by the total number of spikes in the stimulus window (spike
count). Then we measured the information carried by the temporal pattern of spikes, computed
by subdividing each stimulus window into time bins of size ∆t and considering the binary spike
train given by the absence/presence of spikes inside each bin. The information conveyed by
temporal spike patterns with a ∆t of 8 or 16 ms was up to 20% more than that conveyed by the
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spike count. This information gain did not increase further when considering resolutions finer
than 8 ms, indicating that this is the precision of the spike patterns code. Coherently with the
results of [2], we found that spike patterns carried information complementary to that carried by
the phase of firing by quantifying if the joint knowledge of the spike pattern and the LFP phase
of firing carried more information than either code considered alone. The information gained
by the simultaneous knowledge of the phase of low frequency LFPs and of the spike patterns
was 50% higher than the information carried by spike patterns alone and 15% higher than the
information carried by the phase of firing alone. This suggests that the information carried by
slow LFP fluctuations complements that carried by spike patterns.

In summary, we found evidence for complementary response time scales for the encoding of
naturalistic stimuli in visual cortex. Informative codes range from spike timing precision at 10ms
resolution to the much coarser phase of firing with respect to low frequency fluctuations. These
findings indicate that sensory cortices may enhance their information capacity by multiplexing
complementary information at different time scales.
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ABSTRACT

Electroencephalography (EEG)—and other more localized measurements, e.g. of local field po-
tentials (LFP)—readily highlight ‘rhythmic’ oscillatory brain signals [1, 2]. Mathematical ap-
proaches have contributed to explaining how oscillations arise e.g. via emergent synchronization
of many periodically spiking individual neurons [1, 3]. In comparison, the fundamental question
of the function of oscillations remains largely unresolved, despite many theories. We are aiming
to assess the hypothesis that communication between physically different brain regions (e.g. the
thalamus and neocortex) is facilitated by modulation of neuronal oscillations, where we mean
modulation in the sense relevant to communications engineering.

There has been much recent qualitative discussion of supporting experimental evidence for mech-
anisms analogous to amplitude modulation in the brain [4, 5]. Recent experiments where LFPs
in the cortex were recorded and analysed (and associated simulations) [4], have suggested that
two different neuronal communication channels convey independent information about visual
stimuli from the thalamus to the visual cortex. In particular, the ‘amplitude’ of neural spike
rate input to a cortical network was observed to ‘modulate’ the power of that network’s gamma
frequency oscillations. This effect was quantified using information theory [4], using an Erdős-
Rényi random network model. However, for oscillations to act as modulated carrier waves,
mechanisms for both modulation and demodulation, as well as selective filtering are required.
This is beyond the capabilities of information theory. Instead, hypothesis confirmation requires
biologically feasible neuronal mechanisms for these concepts to be demonstrated.

As a first step towards assessing such hypotheses, we have reproduced the core results of [4] via
simulation of the same model. This model consists of a network of 5000 recurrently connected
integrate-and-fire model neurons. The network has 4000 excitatory neurons (to model pyra-
midal cortical neurons that produce excitatory AMPA currents) and 1000 inhibitory neurons
(to model cortical interneurons that produce inhibitory GABA currents). Connected neurons
receive current input with 1-ms propagation delays, with exponential rise and fall times. The
LFP of this network is modelled in a simple way as proportional to the sum of the excitatory
currents in the network. Each neuron in the network receives a correlated input, which models
inputs received from the thalamus. One of the key results of [4] was to show that if these input
signals are modelled as a Poisson spike train with a certain time varying rate, ν(t) = νo + ξ(t),
where νo is a constant, and ξ(t) is a noise process, then the power spectrum of the LFP increases
with increasing νo in the gamma frequency range.

Many recent experimental studies have found that the topology of local networks in the cortex
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has a ‘small-world’ structure [6]. Small-world networks are random networks that are charac-
terized by connections between nodes such that there is a high level of local clustering, but an
overall relatively short mean-shortest path between nodes [7]. We therefore modified the model
of [4] to assess whether emergent gamma oscillations were sensitive to the level of local cluster-
ing. We replaced the Erdős-Rényi network model with the small world network model of [7],
where a small world network is generated by rewiring links in a regular network. This model,
known as the Watts-Strogatz model, has previously been used in many studies of networks of
model neurons, e.g. [8], and is produced by randomly rewiring links within a regular lattice,
with a probability p.

We have found that generating a network using the Watts-Strogatz process leads to significant
changes in the power spectrum of the LFP. Indeed, unless the network has only a very small
amount of local clustering (i.e. rewiring probability p is close to unity), neurons in the network
spike at rates close to saturation. For large p, modulations in the power spectrum with changing
νo are qualitatively similar to those of [4]. To compare different values of p for the same νo, we
computed the resultant power spectrum for three values of p (SW) for νo = 2.4, and that of the
Erdős-Rényi (ER) network for comparison. We found that a small amount of local clustering
significantly increases the LFP power for all frequencies, while the peak LFP power shifts to
lower frequencies as p decreases.

Finally, we found that the model of [7] with p = 1 provides different results to the Erdős-Rényi
network. This is somewhat surprising, since one may assume both networks should result in a
random network with every node having identical connection probabilities. We are currently
investigating this difference, as well as how other network topologies affect the power spectrum.

Mark D. McDonnell is the recipient of an Australian Research Council Australian Research
Fellowship (project number DP1093425).
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ABSTRACT

Regular sequences of tones have long been used to assess the response properties of neurons
sensitive to sound. One such property, evident in neurons at multiple sites along the auditory
pathway, is stimulus-specific adaptation (SSA), whereby tones that appear in the sequence often
(standards) evoke fewer spikes on average than those that appear rarely (deviants) [4, 1, 7]. SSA
thus provides a rudimentary mechanism for tracking the statistics of a sequence and highlighting
the tones that stand out against a monotone background. Here we describe a model neural circuit
able to reproduce a variety of qualitative experimental observations from SSA studies and, most
importantly, able to perform genuine deviance (as opposed to rarity) detection where other
models have hitherto failed.

The suggestion that SSA might arise from adaptation on the inputs to a neuron (e.g., due to
synaptic depression or the facilitation of inhibition) was advanced in one of the earliest papers to
describe the phenomenon [4]. In line with this proposal, the first model we present incorporates
neurons that receive depressing synapses [6] converging from a tonotopically-ordered array of
input neurons. The repeated presentation of a tone depletes the synaptic resources associated
with a localised region of the input array, leading to a reduced response in the post-synaptic
target. Conversely, the presentation of a new tone activates distinct synaptic resources, which in
turn leads to a large ‘deviant’ response. The properties of this model have been more thoroughly
investigated in [2].

Despite its simplicity, this model can account for several characteristics of the SSA response.
First, decreasing the frequency separation between the standard and deviant tones reduces the
magnitude of the SSA, because it increases the overlap in the synaptic resources consumed by the
transmission of the signal. Secondly, increasing the rarity of the deviant increases the magnitude
of the SSA, because the synaptic resources associated with the deviant are given longer to
recover. Thirdly, if the standard and the deviant tones are swapped in the middle of a sequence,
SSA neurons eventually respond to the new deviant, as the distribution of synaptic resources
adjusts to reflect the new stimulus statistics. This accords with findings from switching-blocks

experiments [4].

A notable deficiency of this model is its failure to predict larger responses for deviants embedded
in a sequence containing one standard than for deviants embedded in many standards—as others
who have developed similar models have noted [3, 5]. This subtlety is captured in the distinction
we draw between rarity and deviance. A tone which appears with 10% probability on average
amid a uniform background of standard tones is a proper deviant by virtue of its violation of a
pattern; a tone which appears with 10% probability amid a background of nine other distinct
and equiprobable tones is not deemed a deviant—although it appears with the same rarity.
Surprisingly, one physiological study reported that more than half of the SSA neurons tested
were sensitive to deviance; i.e., the response to deviant tones embedded in a single standard
exceeded or matched that elicited in response to the same deviant presented amongst many
standards [3].
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The authors of the aforementioned study [3] concluded that it is “necessary to assume that
in the presence of oddball sequences, the adaptation channels become narrower than in other
conditions.” Here we contend that such an assumption is unnecessary and difficult to realise
in practice: it requires a separate circuit to recognise oddball sequences and then to modulate
the input bandwidths. The second model we present circumvents this demand by employing
multiple layers of depressing synapses, such that another type of SSA neuron is formed in the
later layers, which receives input both directly from the tonotopic array and from other SSA
neurons via depressing synapses. (The connections between SSA neurons may be recurrent or
strictly feed-forward.) These latter neurons exhibit the desired response property, i.e., they
respond most vigourously to deviants presented in a single-standard configuration.

At this juncture we are unaware of any pattern in the data from physiological SSA experiments
that is incompatible with our second model. The model requires only a few free parameters to
be tuned (e.g., input bandwidth and synaptic time constants) in order to match data obtained
from real neurons in response to oddball sequences. This gives rise to the prospect that, once
the model has been fitted to data from a real neuron measured in response to oddball sequences
(in which each element is statistically independent of every other), it can be used to make
explicit predictions regarding the response of the same neuron to more complex sequences such
as Markov chains.

Keywords: Stimulus-specific adaptation, synaptic depression, oddball sequences.
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ABSTRACT

Rodents use whiskers to sample the space around them. Tactile information from whiskers
is relayed to and processed in a region of the somatosensory cortex called the barrel cortex.
Typical of cortical regions, the barrel cortex has a six-layered structure with layer IV receiving
input [1]. Understanding information processing capabilities of this layer IV circuit is crucial to
the understanding of tactile sensory processing in cortex.

Synaptic depression is the decrease in efficacy of synaptic response with repeated stimulation.
Based on short-term depression properties, synapses between layer IV excitatory neurons are
either type 1 or type 2 [2]. Type 1 synapses show diminished response to a stimulus pulse only
when neurotransmitter was released in response to the previous pulse (release-dependent depres-
sion). The rate at which the response is restored (recovery rate) is constant and independent of
stimulation frequency. Type 2 synapses, on the other hand, depress even when no neurotrans-
mitter was released in response to the previous pulse (release-independent depression). That is,
they also depress in the event of a release failure. Recovery rate is dependent on stimulation
frequency. Synapses stimulated at higher frequencies recover faster than those stimulated at
lower frequencies.

Individually, type 1 synapses encode changes to stimulation frequency in their response. In
contrast, type 2 synapses encode the stimulation frequency. The implications of type 1 and
type 2 dynamics for information transmission through a single neuron are largely unexplored.
Also unknown are the computational capabilities provided by these synapses to a network of
neurons. There is therefore much scope for insights to be gained by exploring these problems
using experimentally relevant computational models of type 1 and type 2 synapses.

As a starting point, we have investigated the impact of extending existing simulation results
based on networks of neuron models [3], to include synapses of both types. The existing model
consists of a network of 5000 recurrently connected integrate-and-fire model neurons. The net-
work has 4000 excitatory neurons (to model pyramidal cortical neurons that produce excitatory
AMPA currents) and 1000 inhibitory neurons (to model cortical interneurons that produce in-
hibitory GABA currents).

The local field potential (LFP) of this network is modelled in a simple way as proportional
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to the sum of the excitatory currents in the network. Each neuron in the network receives a
correlated input, which models inputs received from the thalamus. One of the key results of [3]
was to show that if these input signals are modelled as a Poisson spike train with a certain time
varying rate, ν(t) = νo + ξ(t), where νo is a constant, and ξ(t) is a noise process, then the power
spectrum of the LFP increases with increasing νo in the gamma frequency range.

Based on this model for the LFP, we are undertaking a comparative study of how the power
spectrum depends on the proportion of type 1 and type 2 synapses, with the aim of assessing
the potential impact for information transmission in the network. In particular, the work of [3]
suggests that two different neuronal communication channels convey independent information
from the thalamus to cortex, and we aim to compare this result to the case where the two types
of synapses are present.

Our preliminary results suggest that for the same inputs, introducing plastic synapses decreases
the mean population spike rate of pyramidal neurons by about 25% while that of interneurons
decreases by about 50%. Further, the network simulated with type 2 synapses exhibits a 10%
decrease in the mean population spike rate of interneurons when compared to the network
simulated with type 1 synapses. The mean spike rate of pyramidal neurons remains stable.

Mark D. McDonnell is the recipient of an Australian Research Council Australian Research
Fellowship (project number DP1093425).
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ABSTRACT

Cochlear implants [1] can restore hearing when deafness has been caused by the loss of inner

hair cells in the cochlea (inner ear). In a healthy ear, these cells transduce sounds into action
potentials in fibres of the auditory nerve, which propagate to the brain where they are processed
and perceived as sound. The purpose of a cochlear implant is to mimic the behavior of missing
hair cells, via a microphone linked to an array of electrodes that are surgically implanted in
the inner ear. Electrical current produced by the electrodes spreads through the inner ear, and
evokes action potentials in the auditory nerve that the brain can learn to interpret as sounds.

An unresolved problem in the design of cochlear implants is that of how many electrodes achieves
best hearing performance in patients. The limiting factor is that more electrodes mean that
each would stimulate larger overlapping populations of fibres within the auditory nerve [1]. This
problem is often referred to as ‘current spread’ [2].

It is efficient to avoid using more electrodes if doing so does not give a performance improvement.
Whether an improvement can be gained by inclusion of more electrodes depends crucially on
physical properties such as distance of the electrode array from the auditory nerve, and current
spread. Future technologies may allow the electrode array to be placed closer to the nerve,
which would allow smaller currents. Consequently, current spread would be reduced and more
electrodes may be used to transmit more detailed sound information to the auditory nerve.

We have recently developed an information theoretic approach to determining the optimal num-
ber of electrodes, and their positions along the basilar membrane, for a simple one dimensional
cochlea model, and linearly attenuated current spread [3]. This approach is based on the model
of Figure 1; the optimal number of electrodes is the value M that maximizes the mutual in-
formation between the random variables Xe and Z. The information theoretic approach uses
the assumption that spike generation is stochastic [2, 4], and the fact that most information
transmission channels are optimized when only a finite number of symbols are used to represent
information [5].

Here we extend this approach, which is based on the model of [2], to make use of more bio-
logically realistic models of the complex three-dimensional geometry of the cochlea [6], as well
as an improved model of stochastic action potential production in fibres of the auditory nerve
developed in [4]. We also compare the results obtained when the cochlear implant is assumed
to use bipolar stimulation, with that of monopolar stimulation.

Mark D. McDonnell is the recipient of an Australian Research Council Australian Research
Fellowship (project number DP1093425).
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Figure 1: Geometry of our model and the variables associated with the conversion from electrode
current to an output that is interpreted by the brain. The auditory input is modelled as the
random variable, X

e
, which maps to an electrode location with index j between 1 and M , and

normalized electrode location xe,j . This single electrode produces current Ce,j Amps for every
sample of X

e
. After attenuation due to propagation of a normalized distance d

i,j
, this current

decreases to Cf,i Amps at nerve fibre i, located at normalized location xf,i, where i = 1, .., N .
Whether a fibre produces an action potential or not is represented by the random variable
Y

i
. It is assumed that the brain has learnt to associate action potentials in fibre i with the

electrode closest to that fibre; the set φ0, .., φM
are the normalized locations of the boundaries

of the intervals within which all fibres are associated with an electrode. The aggregate interval
outputs, W1, ..,WM

are random variables, the outcomes of which are the sum of the number of
action potentials produced by fibres located within each interval. These determine the output
Z, which is the index m for the W

m
with the largest outcome, and which the brain must use to

decide on which electrode location was stimulated. (Figure adapted from [3])
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ABSTRACT

Most single neurons threshold models in the literature account for spike-frequency adaptation
by means of a single exponential spike-triggered current. However, it is well known that, in
real neurons adaptation occurs on multiple timescales [1], ranging from tens of milliseconds to
seconds. Here, we use a Leaky Integrate-and-Fire model with escape noise [2] extended with
two adaptive mechanisms: each time a spike is fired, both an adaptive current and a change in
the threshold are triggered. Importantly, the functional shape of these two processes are not
imposed a priori but are directly extracted from the data. We find that pyramidal neurons of
the cortex have a moving threshold that last for 200 ms and a spike triggered adapting current
that lasts for at least 20 seconds. Fast-Spiking and non-Fast-Spiking interneurons have less
adapting current and no moving threshold. The shape of the spike after effect can determine
alone the neuron class and it approaches a power-law in the case of the pyramidal neurons.
Our model is able to predict up to 70% of the observed spikes with an accuracy of 2 ms and
accurately predicts the firing-rate modulations on large timescales. These adaptation processes
also influence the synaptic plasticity rules that maximize information transfer. The different
types of spike after-effects may indicate that different cell types use a different coding strategy.

Keywords: Single-neuron models, spike-frequency adaptation, cell classes.
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ABSTRACT

Multiple types of measures have been developed to measure the similarity between two spike
trains. These were extensively used either to classify neuron responses according to stimuli or to
validate mathematical models that predict spike times. Here we analyze the existing similarity
measures in the light of trial-to-trial variability. Using only a small sets of spike trains it is
often impossible to discriminate correctly between different generative processes [1]. We find
that many existing similarity measures do not discriminate shifts in overall firing intensity or
changes in the amount of jitter in the spike timing. We find that it is possible to modify some of
the existing measures by taking into account the variance of the measure across spike trains from
the same set. In so doing we remove a sample bias and we find that it is possible to discriminate
generating processes for all the test cases studied. Finally, we demonstrate that such bias will
always favour more deterministic models if similarity measures that do not remove the sample
bias are used for validating mathematical models with respect to a small set of experimentally
observed spike trains.

Keywords: Spike-Train Similarity Measures, Small-sample bias.
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ABSTRACT

The phenomenon of spike frequency adaptation (SFA) is observed in spiking neurons of various
different systems [1] including pyramidal neurons in the neocortex. Here, we explore the effect of
SFA on the signal-to-noise ratio of the population rate code. We use a novel theoretical approach
to the ensemble activity of non-renewal point processes in order to derive general expression for
the serial interval and second order count statistics of superimposed processes [2]. Applying this
approach to a rate model that approximates a conductance-based I&F model [3] allows us to
make predictions for ensembles of regular spiking neurons with SFA. Finally, we validate our
model prediction of noise reduction in the population activity of SFA neurons in an ensemble of
in vivo spike train recordings from rat cortical neurons.

Theoretical approach. We employ a master equation for general non-renewal processes to
calculate the interval and count statistics of superimposed processes governed by a slow adapta-
tion variable. To study SFA neurons we define an ensemble point process by the specific hazard
function (rate model) given in [3], which incorporates an adaptation variable with an exponen-
tial decay time constant. This model was shown to approximate a more detailed neuron model
including voltage dynamics and conductance-based synapses.

Negative serial interval correlations. Our rate model predicts negative serial correlation of
the inter-spike intervals (ISIs) under stationary input conditions [3] in agreement with biophys-
ical models of SFA neurons (e.g. [3,4]). Indeed, negative serial interval correlations have been
repeatedly reported in the spontaneous activity of spiking neurons (for review see [5]). We show
that this non-renewal property transfers to the superposition of k individual processes, i.e. the
pooled population activity of an ensemble of SFA neurons exhibits negative serial correlations
[2].

Regularization of the counting process. Next, we derived the variance of the spike count
and the Fano factor (FF; variance divided by mean) for an observation interval of arbitrary length
(Fig. 1, left). We show that the FF of the superimposed non-renewal process with negative
serial correlations is smaller then the FF for the superimposed renewal process with identical
marginal ISI distribution. Thus, the SFA mechanism at the single neuron level regularizes the
counting process that describes the population activity of many SFA neurons [2]. We confirm
this result in a small population of 5 cortical neurons which were recorded intracellular from
the somatosensory cortex of the anesthetized rat. All neurons displayed regular spiking and
exhibited short-lived negative serial interval correlations [6]. When we superimpose the spike
trains of al 5 neurons we find the predicted result of a low FF when compared to the control
where we randomly shuffled the order of the ISIs of each individual process before superposition
in order to enforce renewalty (Fig. 1, right).
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Figure 1: Adaptation reduces the Fano factor of the ensemble process. Left: Dashed line:
Theoretical FF for arbitrary observation time normalized to unit mean interval. Solid line: FF
for equivalent renewal ensemble process. Dash-dotted line: CV2. Right: Dashed: The estimated
FF for the pooled spike trains of 5 cortical neurons. Solid: FF for the superposition of shuffled
spike trains and standard deviation across 100 repeated shufflings.

Implications for neural coding and decoding. The reduction of the count variance in the
population activity of SFA neurons effectively reduces the noise of a population rate code, a
result that was previously established for at the single neuron level (e.g. [7,5,6]). If we take the
perspective of a postsynaptic decoder, we may consider the neuronal population activity which
provides the converging input to a receiver neuron. By using the Kulback-Leibler-Divergence
(KLD) between two states of input characterized by a small change in the population rate,
we show that the KLD is larger for an ensemble of adapting presynaptic neurons than for an
ensemble of non-adapting neurons, resulting in a gain of information [2].

Our results provide a novel interpretation of the neural population code where an improved
signal-to-noise ratio at the population level emerges from the neuron-intrinsic property of SFA.
This is in contrast to prevailing models of population coding that assume Poisson statistics
for the superimposed neural ensemble activity. At the level of the post-synaptic receiver, the
regularization of the ensemble process improves the discrimination of different input rates.

Keywords: rate coding, non-renewal point process, Fano factor
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ABSTRACT

Peripheral ampullary electroreceptors of some freshwater fish exhibit spontaneous oscillations
in their sensory epithelium. At the same time, primary electroreceptor afferents are character-
ized by the background tonic spiking, adapting to external thermal and electrical stimuli. The
existence of two distinct coupled oscillators in the electroreceptor system results in a biperiodic
firing of primary afferents [1], characterized by long-lasting serial correlations of interspike in-
tervals [2]. Using modeling we explore the functional significance of biperiodic organization of
electroreceptors in enhancement of information transmission and detection of external electrical
signals. We show that the coherent oscillations may lead to significant enhancement of informa-
tion transfer and to enhanced discriminability of weak signals [3, 4]. Theoretical predictions are
supported by an analysis of experimental recording from the paddlefish electroreceptors.

Keywords: Electroreceptors, Oscillations, Serial correlations, Information rate.
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ABSTRACT

The firing rate of afferent neurons is limited. Also, the time available for decoding the message
in the brain is limited. We obtain the optimal tuning function for a population of the Poisson
neurons by maximizing the Shannon mutual information and investigate how optimal coding
changes with the time available for decoding. We prove that the information-optimal tuning
function is discrete [1].

In other words, we prove that the optimal tuning function has a multi-step form and the num-
ber of steps depends on the decoding time. The number of discrete steps undergoes a hierar-
chy of phase transitions from mono-population coding, for small decoding time, toward multi-
population coding with two, three more subpopulations for larger decoding times. We postulate
that the presence of subpopulations with specific neural characteristics, such as the threshold
to stimulus, could be a signature of an optimal coding strategy and we use the mammalian
auditory system as an example.

Keywords: Optimal neural coding, Poisson neuron, Phase transitions.
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ABSTRACT

An approach is reported to estimate the functional connection from the possible anatomical
connections and physiological response of each neuron. Here we focus on the brain of Bombyx

mori, a male silkmoth, which exhibits a programmed behavior for the pheromone orientation on
a pheromone detection[1]. The neuroethological experiments revealed that the motor command
is generated in the premotor center, composed of the lateral accessory lobe (LAL) and the ven-
tral protocerebrum (VPC). The morphology and the physiological response to the pheromone
stimulus are obtained for each main type of LAL-VPC neuron through the intensive electro-
physiological and immunohistochemical experiments[2]. However, how the motor command is
generated in LAL-VPC, or the information pathway in the network, is still unknown. That
is, each piece of puzzle is fairly well investigated, though they are not yet fit in to reveal the
whole picture. The goal of our study is to investigate the functional connection in LAL-VPC to
elucidate the mechanism of the motor command generation for the programmed behavior.

The present approach is to consider an artificial three-layered neural network (Fig.1) based on
the experimental findings of LAL-VPC neuron[3] (Fig.2). Each input/output unit corresponds
to one type of neuron. Each connection corresponds to input/output terminal of a neuron.
And each hidden unit corresponds to a neuropile region, where LAL-VPC neurons connect each
other. To describe the discrete time dynamics of LAL-VPC, input unit expresses a neuron state
at time t, while corresponding output unit expresses its state at t+1. Input/output signals are
given by the physiology data of each neuron[2]. Then, back-propagation (BP) algorithm is used
to obtain the connection weight, which corresponds to the functional connection strength to
generate the LAL-VPC dynamics.

The network has 86 units for input/output layers, 10 hidden units, and 189 connections based
on the experimental data. Among 2,000 BP trials, about 10% attained the error below a certain
threshold, converging to the close connection vectors. 61 connections are zero, that is, one third
of the anatomically observed connections are not used. Several main connections correspond
to each physiological type. Two neurons fail to reproduce the observed physiology, for which
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missing connections are predicted. An extended framework using more extensive data followed
by a simulation is now undergoing, to reveal the dynamics in LAL-VPC by integrating the
multi-level neuron data.

Keywords: Functional connection, Insect brain, Premotor center.
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Figure 1: Three-layered neural network

Figure 2: 5 neuropile regions in LAL-VPC
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ABSTRACT

In the last years we have developed large neural network models for the realization of complex
cognitive tasks in a neural network architecture that resembles the network of the cerebral cortex
(e.g. [1]). We have used networks of several (10 − 40) cortical modules that may correspond
to cortical hypercolumns, but contain only two populations of neurons (one excitatory, one
inhibitory) with several hundred up to about two thousand neurons per module (a real cortical
hypercolumn has in the order of 105 neurons [2, 3]). The excitatory populations in these so-called
’cortical networks’ are organized as a graph of Bidirectional Associative Memories (BAMs, [4]),
where edges of the graph correspond to BAMs connecting two neural populations or modules and
nodes of the graph correspond to excitatory populations with associative feedback connections
(and inhibitory interneurons).
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Figure 1: The right part shows the block matrix structure of the cortical connections correspond-
ing to the graph on the left. Each block corresponds to one module, the diagonal represents
local intracortical connections, the off-diagonal cortico-cortical long range connections ([2]).

The neural code in each of these modules consists essentially of the firing pattern of the excita-
tory population, where mainly it is the subset of active neurons that codes the contents to be
represented, but also temporal aspects play a role, like the temporal order in which subgroups
of the population are activated and the degree of synchronicity within activated subgroups.

These features can be used to distinguish different properties of the patterns that are presented
which we need to distinguish and control when performing complex tasks like language under-
standing with these cortical networks. The most important pattern properties or situations
are:

• exactly fitting/matching input pattern

• incomplete information or partially matching pattern

• superposition of several patterns
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• conflicting information

• new information (to be learned)

• unimportant random patterns.

In the talk we want to discuss how to distinguish these situations based on the internal activation
pattern of the module.

Keywords: bi-directional associative memory; cortical module; large scale simulations; cell
assemblies; neural patterns
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ABSTRACT

Information obtained in experiments in which the spikes are recorded, usually from a single
neuron or from quite limited number of them, is fundamentally different from that which a
neuron receives from the network of interconnected neurons. In the experiments, a spike train
is recorded for a relatively long period of time and the properties of the firing are deduced. If
the type of the investigated firing is transient, like in the stimulated activity, then the extensive
length of the record is replaced by repetitions assuming that these are identical and independent
copies of the same phenomenon. In natural conditions, neuron receives a large number of spike
trains, up to several thousands, and the information has to be deduced in short-time intervals.
This creates a discrepancy between what can be read from the experiments and how real neurons
perform.

To estimate the firing frequency in the parallel neuronal data is rather simple task even if the
time window available for the observation is very short. In our recent paper [1] we showed
how to estimate the coefficient of variation of interspike intervals under the scenario with the
short-time window. The aim of the present contribution is to introduce and compare several
nonparametric methods for estimation of the cumulative distribution function of the interspike
intervals under the same restriction posed on the observation.

Keywords: interspike interval, statistical inference, parallel processing

References

[1] Pawlas Z., Klebanov L.B., Prokop M., Lansky P. (2008) Parameters of spike trains observed
in a short time window. Neural Computation, 20: 1325-1343.



	�



	�

Individual Firing Frequencies

Estimated From Superimposed Spike Trains
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ABSTRACT

When analyzing the pooled record of several independent spike trains with silent (refractory)
period, one can identify specific groups of the spikes appearing in time intervals shorter than the
silent period (these are usually called doublets, triplets, . . . , see Figure 1). We show how the
firing frequencies (intensities) of individual spike trains are related to the relative frequencies
of occurence of these groups of spikes in the superimposed spike train. The derived analytical
expression allows the estimation of the intensities of individual records from the knowledge of
the pooled record. In [3], this problem was solved for two independent spike trains and the
result is generalized for any number of independent records here. The task is analogous to the
problem of coincidence detection, [1, 2].
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Figure 1: A schematic example of three spike trains N1, N2, N3 with the same silent period ∆.
The pooled record is denoted by P . During the depicted time interval 12 spikes, 8 doublets and
2 triplets are observed. The doublets and the triplets in P are highlighted at the bottom.
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ABSTRACT

To connect neuronal activity to function, there must be means to carry out interventions. Even
though an old and seemingly heavy-handed technique, selective ablations remain the shoulders
on which we interpret the role of neuronal activity in behavior. The importance of this technique
is illustrated by finding across several examples in which neuronal activity has not predicted the
outcome of selective ablations of the tissue under investigations. Molecular biology offers many
means to carry out much more subtle and targeted interventions. We have made substantial
progress in developing these tools for use in awake monkey experiments, with targeting selective
brain regions, neuronal types and projection patterns. These tools should open up a whole new
world for interpreting the connection between neuronal activity and behavior.
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ABSTRACT

In the inferior temporal visual cortex (IT) most of the information about the stimulus presented
is available in the number of spikes emitted by single neurons in a fixed time period, the firing
rate. Most of the rate information is available in short periods, e.g. 20-40 ms of neuronal firing,
with the timing of spikes within a response carrying little information [1].

Across a population of neurons, the firing rate information provided by each neuron tends to
be independent; that is, the information increases approximately linearly with the number of
neurons [1]. An implication of the independence is that the response profiles to a set of stimuli
of different neurons are uncorrelated, and weak ergodicity applies [2].

The information in the firing rate across a population of neurons can be read moderately ef-
ficiently by a decoding procedure as simple as a dot product. This is the simplest type of
processing that might be performed by a neuron, as it involves taking a dot product of the
incoming firing rates with the receiving synaptic weights to obtain the activation of the neuron.
This type of information encoding ensures that the simple emergent properties of associative
neuronal networks such as generalization, completion, and graceful degradation can be realized
naturally and simply [1].

There is little additional information to the great deal available in the firing rates from any
stimulus-dependent cross-correlations or synchronization that may be present, even during top-
down attentional search (¡ 5% of the total) [3]. Stimulus-dependent synchronization might in any
case only be useful for grouping different neuronal populations, and would not easily provide a
solution to the binding problem in vision. Instead, the binding problem in vision may be solved
by the presence of neurons that respond to combinations of features in a given spatial position
with respect to each other [1].

The neuronal firing rate probability distribution is exponential or gamma, with relatively dis-
tributed representations in perceptual systems such as IT and the taste and olfactory corti-
cal systems (a = 0.7), with more sparse representations in memory systems such as the hip-
pocampus (a = 0.3) in line with the need to increase memory capacity [1]. (The sparseness
a = (3

i=1,S
r
i
/S)2/3

i=1,S
(ri2/S) where r

i
is the firing rate of the neuron to stimulus i in the set

of S stimuli.)

Decoding of the information available from multiple voxels with fMRI indicates great redundancy
consistent with the signal reflecting the average of tens of thousands of neurons [4]. More
information is encoded by single neurons, which is the level at which the information is exchanged
between the computing elements of the brain, the neurons, and the level at which information
must be encoded.

The noise in the brain caused by the approximately Poisson nature of neuronal firing for a given
mean rate is greater with graded as compared with uniform firing rate distributions in integrate-
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and-fire attractor network models of decision-making and memory recall [5]. The implication
is that the beneficial effects of noise in the brain [6] extend up to realistically large cortical
neuronal networks. Interestingly, the networks show a decrease in the Fano factor of 1 during
spontaneous activity to a value of 0.5 after the network has entered a stimulus-driven decision
states, and the Fano factor smaller as the difference ∆λ in the two inputs to the decision-making
process increases [5].
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ABSTRACT

The mechanisms by which odor stimuli are received and transduced in the first-order olfactory
neurons (ORNs) and how they are processed in the second-order neurons (mitral/tufted cells)
of the olfactory bulb (OB) have been intensively studied during the last two decades [1, 2, 8].
However, much less is known on the global properties of the signals that the whole population
of ORN delivers to the OB and how they are transformed by the population of mitral cells of
the OB. In the framework of our continuing research on intensity coding in the olfactory system
[6, 7], we have examined population coding of odor intensity in the first two neuron layers of
the olfactory system.

Spiking activities of neurons were recorded with extracellular electrodes from the olfactory ep-
ithelium and bulb of frog Rana ridibunda. Three neuron populations were studied: (1) ORNs
of the ventral olfactory epithelium; (2) mitral/tufted cells normally connected to the ventral
and dorsal olfactory epithelia; (3) mitral cells connected only to the ventral epithelium after
sectioning the dorsal epithelium. Four different odorants at various concentrations were applied
as square pulses lasting for 2 seconds.

We estimated the time-varying firing rate by convoluting the spike trains with a Gaussian
function (kernel) centered on each spike. The only free parameter in the method is the width of
the kernel. We applied this method to our three populations. Instead of analyzing separately
the time-varying rates of each spike train we summated them over several records in order to
describe the collective behavior of diverse neuron populations defined anatomically (first- and
second-order neurons) or functionally by their responses to a certain concentration or a given
odorant.

Two main questions were addressed in the present study: (1) How do the firing rates of the
first- or second-order neuron populations evolve in time after a stimulus of fixed duration? (2)
How does the number of spikes fired by a neuron population depend on the odorant dose?
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We report two key findings. (1) The rate functions of the three populations present clear
distinguishing features. First, the second-order neurons are intrinsically less active (in spikes/s)
than the first-order neurons on the same odorant concentration range. Second, the falling phase
which follows the initial peak is symmetrical to the rising phase in first-order neurons for all
odorants but asymmetrical in second-order neurons, either because of a long lasting excitation
or a pronounced inhibition. (2) The firing activity of a neuron population, whether first- or
second-order, is independent of the odorant concentration. This means that the total number of
action potentials fired by a neuron in response to any concentration of an odorant is constant.
This is in apparent contradiction with the concentration-dependent responses. The significance
of these results, especially the surprising second one, will be discussed in the framework of
population coding [1, 5] and energy demands [3, 4].
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ABSTRACT

In the classical coding schema a neuron codes information in its spiking times. Information is
transmitted from a neuron to the others through dendritic connections, and spiking times of a
neuron is influenced by the activity of the neurons belonging to its network. Hence in order to
study the information transmission it becomes necessary to develop models devoted to describe
the joint behavior of two or more neurons. In this frame the development of models able to
reproduce dependencies between the spike trains of neurons coupled according different laws is
an important goal. Unfortunately the available mathematical methods are insufficient for this
main purpose. Hence it seems necessary to start from simplified instances, such as the study of
the dependencies between the times until the first spike of two neurons. After developing the
necessary mathematical support for this problem, one can hope to become able to pursue the
mathematical study considering the coupling of spike trains. In this work we limit our study
to the dependencies between the times until the first spike for two neurons coupled according
different laws. Extension to a larger number of neurons is immediate but implies more complex
notation, hence we avoid it. On the contrary the switch from the coupling of the time until
the first spike, to the coupling of ISIs presents further mathematical difficulties that are not yet
solved but will be illustrated here.

Interspike intervals of a single neuron are often regarded as coming from a stochastic leaky
integrate and fire model and their study corresponds to the study of the first passage time of a
stochastic process, generally the Ornstein-Uhlenbeck one, through a boundary. Here we model
the membrane potential evolution of the two neurons through a jump diffusion process where the
jumps time of one neuron determine a jump in the membrane potential of the connected neuron.
Other studies already exist on this model but here we focus on the study of the dependencies
between the spike times of the two neurons. We develop a numerical method to determine
the joint distribution of these first passage time that allows the study of their copula in some
exemplificative instances.

Keywords: Spiking times, Dependencies, Leaky Integrate and Fire model
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ABSTRACT

There exists a large literature on the Stein’s model (cf. [4], [2]). However, the largest part of these
studies performs a diffusion limit on Stein’s equation to get a mathematically tractable stochastic
process. Use of these continuous processes has allowed the discovery of various neuronal features
that are hidden in the original Stein’s model, for instance the stochastic resonance.

In this work, we consider a diffusion limit (cf. [1]) of two or more neuronal dynamics governed by
Stein’s model to describe dependencies between their spike times. For this reason, we separate
the PSPs impinging on each neuron into two groups, one with the PSPs coming from a common
network and the other one with those typical of the specific neuron. In the case of two neurons,
the Stein’s equations are:

dX1(t) = −

∫ t

0

X1(s)

θ
ds + δ1adN(t) + adM+

1
(t) + idM−

1
(t) (1)

dX2(t) = −

∫ t

0

X2(s)

θ
ds + δ2adN(t) + adM+

2
(t) + idM−

2
(t), (2)

where θ > 0, a > 0, i < 0, δ1 = ±1, δ2 = ±1 and N(t), M+

j (t), M−

j (t) are independent Poisson

processes with parameters, respectively, αt, λjt, ωjt for j = 1, 2. Here M+

j and M−

j count the
PSPs impinging on neuron j while N counts those common to the two neurons. Note that the
values of δ1 and δ2 determine positive and/or negative common jumps on neurons and thus
different association properties can be modeled by this model.

We study the diffusion limit of equations (1) and (2), superimposing a common threshold S and
we describe the interspike intervals as first passage times of the bidimensional diffusion processes
through the boundary. The introduced dependency between the two Stein’s processes is main-
tained in the diffusion limit. Hence, the Brownian increment of the resulting two dimensional
diffusion has a covariance matrix Σ with elements different from zero on both diagonals. More
precisely, we obtain:

Σ =

(
σ2

1 + σ2
C δ1δ2σ

2
C

δ1δ2σ
2
C σ2

2 + σ2
C

)

where σ2
1 and σ2

2 are coefficients depending on the specific inputs on neurons 1 and 2 respectively,
and δ1δ2σ

2
C is the covariance between the two neurons, depending only on the common input.
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Note that all these constants are related to those of the Stein’s equations.
The aim of this work is to relate the introduced dependencies on the processes with those
obtained on the spike times of the two neurons, through their joint law. We refer to [3] for some
preliminary results obtained with a different approach to couple the neurons.

Some examples are given to illustrate different joint behaviors, both in the case of positive and
negative dependencies.

Keywords: First passage times, Diffusion limits, Stein’s model.
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ABSTRACT

Background

Auditory brainstem calculates horizontal direction (azimuth) of sound from the ITD (interau-
ral time delay). Two theories exist about how brainstem circuit calculates the azimuth from
the ITD. Jeffress [3] proposed in 1948 that azimuth is computed by an array of delay lines.
The anatomical existence of such array in mammals is still under debate [2, 4]. Our group in
2005 explored the possibility of the stochastic algorithm [6]. We demonstrated that in cochlear
implantees is azimuth detected same way as in normal hearing subjects [1].
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Figure 1: Correlation model suits well to neurons as coincidence detectors.

Model using coincidence detection has properties of autocorrelation function. Side peaks are
lower and the highest peak is offset in the full model of excitation together with inhibition. This
is a numerical simulation of neural response to alternating stimulus. x-axis shows the ITD and
on the y-axis are spikes.

Model and Results

We use the simplest yes-or-no neuronal model. The computation of output quantities is based
on the stochastic processing. For simplicity of the model, we use the ergodic assumption that
averaging over the population of neurons and averaging over several time periods yield same
outputs. In the presentation we will explain where and how we violate this assumption. Our
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approach makes possible to compare conditions with different stimulation protocols. For illus-
tration we show in Figure 1 neural response to alternating stimuli. We model these stimuli in
accordance with the experiments of Laback and Majdak [5]. In Figure 2 we use the stimulus
corresponding to continuous pure tone stimulation.abstract
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Figure 2: Towards higher sound frequencies, the response range gets lower.

Axes description: the x-axis shows varying ITD, on the y-axis characteristic frequency is changed
and the z-axis shows output spikes. The difference, why previous figure has one maximum
and this figure shows series of periodic functions is in the envelope structure of the stimulus
(alternating versus continuous).

Conclusion

Our results are useful in explaining some recent puzzling observations on the binaural cochlear
implantees [5].

Keywords: Coincidence detection, directional hearing, interaural time delay, stochastic neu-
ronal model, cochlear implants.
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ABSTRACT

We consider a slowly varying extracellular concentration of potassium ions around excitable
neurons. It opens a specific chemical pathway for neurons to interact. It can significantly
influence the behavior of single neurons and that of large ensembles. The released chemical agent
diffuses in the external medium and lowers thresholds of individual excitable units creating a
kind of adaptive environment.
We address this problem by studying simplified excitable units given by a modified FitzHugh-
Nagumo dynamics [1]. In our model the neurons interact only chemically via the released and
diffusing potassium in the surrounding non-active medium and are permanently affected by noise
which models the remaining activity at the low time scale.
First we study the dynamics of a single excitable unit embedded in the extracellular matter. That
leads to a number of noise-induced effects, like self-modulation of firing rate in an individual
neuron. After the consideration of two coupled neurons we consider the spatially extended
situation. By holding parameters of the neuron fixed various patterns appear ranging from
spirals and traveling waves to oscillons and inverted structures depending on the parameters of
the medium. Also stochastic pacemakers at boundaries are found and discussed.
In the last part we reduce the dynamics to a stochastic two state description charecterized by
waiting time density for rest and activated states of the neurons [2]. The effect of the environment
characterized by the time depemdemt external potassium density leads to memory effect in the
transition rates of the neurons. We discuss methods allowing a quialitative discussion of the
reduced model.

Keywords: Excitable media, Noise induced temprary and spatial structures, Delay in Non
Markovian Dynamics.
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ABSTRACT

Until recently, spontaneous neocortical activity was thought to reflect only stochastic network
fluctuations and internal noise sources. Emerging evidence, however, has suggested that the
spontaneous dynamics of neural activity can be modulated and/or engaged by sensory stim-
ulation. For instance, spontaneous population activity may contain traces of recent sensory
experience [1,2], leading to the conjecture that spontaneous spatiotemporal neural dynamics
may be shaped by sensory inputs. Using the mouse barrel cortex as a model, we asked whether
naturalistic sensory stimulation can induce specific long-term changes in spontaneous cortical
state dynamics. Adult mice were anaesthetized with a combination of light urethane and either
Hypnorm/Hypnovel or Chlorprothixene, and a multi-electrode array (Neuronexus Technologies)
was inserted into the whisker barrel cortex. Individual neurons were isolated from either su-
perficial or deep cortical layers by spike-sorting based on a tetrode configuration of electrode
sites, and monitored during periods of spontaneous and sensory-evoked activity. In some exper-
iments, a linear array spanning the depth of the cortex was used to examine multi-unit activity
in all layers. Whiskers were trimmed, and wide-field sensory stimulation was applied to the
mystacial vibrissae with sandpaper. We observed that a stimulation pattern applied at 10 Hz
with a cycle approximating the mouse whisking pattern resulted in a statistically significant
increase in deep layer spontaneous single-unit activity, whereas superficial layer spontaneous
activity was slightly decreased. These changes lasted for at least several minutes. The result
was also apparent, although not as strong, in the multi-unit activity. We then used subspace
projection approaches including principal component analysis and multi-dimensional scaling to
analyse the effect of sensory stimulation on the spatiotemporal pattern of spontaneous activity.
We found that sensory stimulation induces long-term changes in the trajectory followed by the
subsequent spontaneous activity. Details of this change were dependent upon the cortical layer
in which the neuronal ensemble laid. We conclude that sensory stimulation induces long-term
plasticity in spontaneous cortical network state dynamics, and speculate that this might re-
late to mechanisms underlying distributed neocortical storage and/or reconsolidation of sensory
“memories”.

Keywords: spontaneous activity, cortical oscillations, sensory coding
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Department of Computer Science and Electrical Engineering
1 Adaptive and Regenerative Software Systems, 2 Mobile Multimedia Information Systems,

3 Deutsches Zentrum fr Neurodegenerative Erkrankungen
Albert-Einstein-Str. 21, 18057 Rostock, Germany

ars,mmis.informatik.uni-rostock.de
Corresponding author: lars.schwabe@uni-rostock.de

ABSTRACT

Despite a rather long history in vestibular physiology, the neural coding of vestibular signals at
the cortical level is poorly understood. While many cortical areas show responses to vestibular
stimulation, no “primary vestibular cortex” has been identified. Instead, the vestibular signals
seem to be intermixed with signals from other modalities in multi-sensory areas responsive to,
for example, vestibular and visual stimuli. Neural coding theories should explain such responses,
not only in a qualitative manner, but also quantitatively.

Extending previous work about the statistics of natural vestibular stimuli [1], here we measure
the stimulation of the human vestibular system in various natural conditions using motion
capture technology, we describe these signals in terms of statistical properties, and we derive
predictions for the neuronal representation of these signals by applying different theories. More
specifically, we predict the layout of a hypothetical topographic vestibular map using Kohonen’s
self organizing map applied to the measured angular and linear accelerations of the head with
1) Euclidean and spherical distance measures between the map representations and the sensory
signals, and 2) a distance measure derived from the Information Bottleneck Method [2], where
the distance between map representations and the sensory signals is quantified in term of how
informative the signals are about another latent variable of interest. In our case this is the tilt
of the head relative to the gravity vector, which is behaviourally highly relevant, but due to
the ambiguity of the otholitic responses between linear acceleration and tilt relative to gravity
cannot be assessed directly.

We find marked differences between the two predicted representations in terms of how much
of the limited representational resources are allocated to represent the measured linear and
angular accelerations. For example, while in the first case the resulting map approximates the
statistics of the sensed accelerations, the second map overemphasizes those accelerations, which
are particularly informative about the head tilt. Finally, in a more speculative part, we briefly
discuss our predictions in the context of differences in motion behaviour of elderly people. Here
we are specifically interested in the impact of cognitive impairment on motion behavior and
postural control, as they may be partly related to dysfunctions in vestibular processing and
navigation. This research is based on a study with twenty subjects suffering from Alzheimer’s
disease (mild and medium severity), age 6580, whose long-term motion behaviour (duration up
to 50 hours) is being recorded using accelerometric motion-capture technology [3].

Keywords: efficient coding, information bottleneck, self-organizing map, motion capture

References

[1] L. Schwabe and O. Blanke (2008) The vestibular component in out-of-body experiences: a
computational approach. Front Hum Neurosci vol. 2 p. 17.



���

[2] N. Tishby, F. Pereira, and W. Bialek (1999) The Information Bottleneck Method. The 37th

annual Allerton Conference on Communication, Control, and Computing.

[3] A. Hein, A. Hoffmeyer, T. Kirste (2009) Using an Accelerometric Bracelet for Ubiquitous
Gesture-based Interaction Proc. HCI International.



���

Effect of Feedback Projections Between Networks

in Evolvable Hierarchically Organized Neural Circuits

Vladyslav Shaposhnyk, Alessandro E. P. Villa

NeuroHeuristic Research Group, Grenoble Institute of Neuroscience Equipe 7
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ABSTRACT

Figure 1: Thick red lines emphasize the
feedback projections added to circuit FB.

In the present study we simulate the activity of a
neural circuit undergoing developmental phases. The
neural circuit is characterized by two layers of of feed-
forward networks and we study the emergent proper-
ties of stimulus coding in presence of feedback pro-
jections between the layers of networks. In previ-
ous studies [1, 2] we have shown that the presence
of feedback connections increase the complexity of
spatio-temporal firing patterns. We use a simula-
tion framework that allows us to combine several neu-
ral networks of biologically inspired spiking neurons
into a neural circuit connected following a hierarchi-
cal organization, that can be static or changing over
time, in addition to spike-timing dependent plasticity
(STDP). In addition to spike trains we record neuro-
mimetic signals, called Electrochipograms (EChG), similar to electro-corticograms (ECoG) and
local field potentials (LFP) by the means of realistic virtual electrodes [3, 4]. Our simulation
framework introduces also genetic features such that model parameters are coded in its genome
and mimic brain evolution by the implementation of brain reproduction with certain probabili-
ties of mutation in the selected genes belonging to the genome of the parent brain. We studied
a layered hierarchical circuit, labeled FF circuit, with one sensory network stimulated by an
external stimulus projecting to a two layered circuit with feedforward and horizontal connectiv-
ity between the neural networks that project to a “motor” network. The addition of feedback
projections between the neural networks defined the FB circuit (Fig. 1). The whole circuit is
formeed by 33,750 cells (six 2D toroidal networks of 75x75 cells), each neural network featuring
apoptosis, STDP and synaptic pruning processes ([5, 6]). The external stimulus is a complex
pattern which is applied for 500 ms followed by 1000 ms without stimulation. For both circuits,
FF and FB, we have simulated 9 generations of “brains” with variations only in the genetic code
responsible for the pattern of neuronal interconnectivity and programmed cell death. The aim
is to determine invariant salient features that are likely to be unrelated to a particular genome
but to the presence or absence of feedback projections. The rationale is that STDP embedded
in the neural network models drives the build-up of auto-associative network links within each
network. The spike train activity as well as EChGs (one EChG per network, then 6 channels
EChG per circuit), characterized by virtual electrodes sampling an area of 900 cells (i.e. 16% of
all cells), were recorded in our experiments. Among various time and frequency domain analy-
ses that we perform with these signals we emphasize here the evoked potentials (EvP). At first,
for each network with any genome, we compute the EvP as the difference between the EChGs
evoked by the stimulus and the corresponding EChGs obtained with the same random seeds but
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in presence only of background noise. Then, we compute the average of EvP over the 9 genomes,
labeled EvP

Lx.y
, e.g. EvP

L1.2 for the network 2 of Layer 1 (Fig. 1). Then, for each network,
we compute the difference between EvP

Lx.y
for FB and FF circuits, labeled EvP

Lx.y
diff. The

last step consists in averaging the differences across networks located in the same layer such to
get the potential EvP

Lx
diff for layer x. Figure 2 shows a strong phasic onset response in both

layers, thus suggesting the invariance of this response pattern depending only on the presence of
feedback projections. Notice a significant late response appearing only in layer 2 after 400 ms

from stimulus onset. We will present further results that illustrate several characteristics in
neural coding that are determined by the presence of feedback connections.
Keywords: spiking neural network, gene regulatory network, computational biology.

FIRST LAYER (L1.1,L1.2)

SECOND LAYER (L2.1,L2.2)

Figure 2: Averaged differential Evoked Potentials for the networks of layer 1 (upper panel) and the
networks of layer 2 (lower panel) obtained by subtracting the EvP of circuit FF to the EvP of circuit FB.
The grey area correspond to the stimulus delivery.
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ABSTRACT

A rationale for estimating the neuronal firing rate in the neurophysiology lies in the presumption
that neurons may express information in the frequency of spike occurrences. Since precise spike
times are generally not reproduced by the same behavioral stimulus, neuronal spike firing has
often been approximated by the inhomogeneous Poisson process in which spikes are derived
independently from an instantaneous rate of firing. From real spike trains recorded in vivo, we
further abstracted the deviation from ideal Poisson firing by measuring the local variation of
inter-spike intervals, and revealed that a non-Poisson firing characteristic that may be called
as regular or bursty is rather prevalent among cortical neurons and is stably correlated to
the physiological functions of the cortical areas [5,6]. Two hypotheses have been proposed for
potential advantage of using non-Poisson spike trains in transmitting information, namely, the
sender may signal the firing irregularity by changing it in addition to the rate of firing [3], or
alternatively, the receiver may estimate the firing rate accurately by making the most of non-
Poisson inter-spike dependency in the received signals [1,2,4]. Here I take up the latter issue as
a general problem of defining the firing rate for non-Poissonian spike trains.

Keywords: Firing patterns, Rate estimation.
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ABSTRACT

Single-neuron firing is often analyzed relative to an external event, such as successful task per-
formance or the delivery of a stimulus. The perievent time histogram [1] (PETH) is generated by
binning and counting the spikes across the repeated presentations of the stimulus. This allows
examination how, on average, neural firing modulates before and after the alignment event.

However, the PETH contains no information about the single-trial reliability of the neural
response, which is important from the perspective of a target neuron. Neurones can and do vary
their responses from trial to trial and this variability can occur along several different dimensions
such as the onset latency, duration and amplitude of the response. This variability will have an
impact on what a downstream neuron can extract regarding when an event occurred.

We propose the concept of using the neural activity to predict the timing of the occurrence of
an event, as opposed to using the event to predict the neural response [2]. We first estimate
the likelihood of an observed spike train, under the assumption that it was generated by an
inhomogeneous gamma process with rate profile similar to the PETH shifted by a small time.
This is used to generate a probability distribution of the event occurrence, using Bayes’ rule.
By an information theoretic approach, this method yields a single value (in bits) that quantifies
the reduction in uncertainty regarding the time of an external event following observation of the
spike train.

We show that the approach is sensitive to the amplitude of a response, to the level of baseline
firing, and to the consistency of a response between trials. Rather than attempting to account
for any latency or amplitude changes from trial to trial, these are treated as genuine features
of the cell’s response because such variability degrades the cell’s ability to represent the time of
the alignment event and leads to smaller information values.

The technique can provide a useful means not only of determining which of several behavioral
events a cell encodes best, but also of permitting objective comparison of different cell popula-
tions. In addition it is easy to apply to datasets of multiple simultaneously recorded neurones.
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ABSTRACT

Tuning curves are a common tool used to characterize the response properties of sensory neu-
rons to relevant stimuli. They are obtained by plotting the mean firing rate of the neuron as a
function of a stimulus parameter. One of the most famous examples of tuned neural responses is
orientation selectivity, by which neurons in primary visual cortex (V1) of higher mammals (also
called simple cells) exhibit tuned responses to oriented edges and gratings. The feed-forward
input to simple cells is provided by the lateral geniculate nucleus (LGN), whose neurons do not
show orientation preference. According to the original model of Hubel and Wiesel [7] orientation
selectivity of simple cells arises mainly from the feed-forward anisotropic, specific connectivity
patterns from LGN neurons to V1 simple cells. Following studies however suggested that also
recurrent cortical connections play an important role in shaping orientation selectivity [9]. To
model the effect of recurrent connectivity observed in the cortex, cooperative-competitive net-
works, or soft-WTA networks of neurons have been proposed [1]. Furthermore, it has been also
recently shown that although the basic structure of the connectivity patterns underlying selectiv-
ity is innate, visual experience is essential for enhancing its specific features and for maintaining
the responsiveness and selectivity of cortical neurons [5]. These evidences suggest that both
fixed WTA architectures and plasticity or learning mechanisms are required for reproducing the
robust feature selectivity properties of cortical neurons.

In this work we explore interaction between these two mechanisms and its effect on tuning curves,
using both software simulations, and a neuromorphic VLSI system, comprising a network of
silicon neurons with synaptic circuits that exhibit bio-physically realistic dynamics, and spike-
driven plasticity [6, 8]. The theoretical basis for this work is based on [2], where Bennett shows
that soft-WTA competition supports unsupervised learning, as it enhances the firing rate of
the most active neurons hence increasing the probability of inducing learning on the afferent
synapses.

In our experiments we implemented a network of Integrate-And-Fire (I&F) neurons with a
Winner-Take-All (WTA) connectivity profile [4], using synapses that update their weights ac-
cording to the spike-timing dependent learning algorithm described in [3]. The pre-specified
initial conditions of the network we implemented, expressed in its feed-forward connectivity
structure between the LGN and V1 neurons, give rise to coarse feature selectivity and broad
tuning curves: uniform inputs induce a weakly localized activity at the output which reflect the
nature of the particular connectivity profile used. The uniform input represents the activity of
all the neurons in LGN which are tuned to the same feature of the stimulus. We show how the
network’s WTA mechanism amplifies and sharpens the neurons response profile and how this
is equivalent to producing a teacher signal for the learning mechanism of the neurons receiving
the strongest excitation.

As the network learns robustly to sharpen the pre-built broad selectivity profile, in both the bit-
precise SW simulations and the noisy hardware implementation, the WTA architecture proposed
plays an important role in shaping the coarse innate feature selectivity on the basis of experience.
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ABSTRACT

Olfactory coding begins in olfactory receptor neurons (ORNs). These neurons can be sponta-
neously active, but modify their spiking output when they encounter odorants. With electro-
physiological recordings from ORNs and from three successive layers of follower cells, and with
computational models, we explored how the olfactory system extracts signal from noise, and
generates informative patterns of activity that represent different odorants.

In the insect olfactory system, ORNs and second order projection neurons (PNs) and local neu-
rons (LNs) of the antennal lobe exhibit high baseline activity in the absence of deliberately deliv-
ered odor stimuli. However, third-order neurons (Kenyon Cells, KCs) exhibit very low baseline
activity, and very sparse responses to odors, under the same conditions. (In vertebrates, similar
observations have been made in first and second order olfactory neurons.) We used the locust
olfactory system to explore where baseline activity originates and how it propagates through
multiple layers of neurons. To locate the source of baseline activity, we reversibly silenced the
ORNs by specifically cooling the antenna while tracking activity in each type of downstream cell.
Cooling the antenna significantly lowered the spontaneous firing rate of ORNs and had three
main effects downstream. First, odor responses were eliminated. Second, spontaneous spiking
in PNs was nearly eliminated. Third, as the antenna cooled, the resting membrane potentials of
PNs LNs, and KCs significantly decreased. These results demonstrate that the ORNs provide
a constant barrage of spontaneous input that propagates to later stages of olfactory processing.
This input contributes to the spike rates of PNs and helps determine the resting membrane
potentials of higher-order neurons. With a simple Receiver-Operator Characteristic model we
demonstrated discriminating signal from noise is best when firing thresholds in PNs are rela-
tively low and thresholds in KCs are relatively high. This configuration permits the maximal
convergence of information, and allows the transformation signals arising in highly sensitive but
noisy ORNs into very sparse codes in KCs within two layers of neurons.

Pulses of odorants are represented as spatiotemporal patterns of spikes in neurons of the antennal
lobe (AL; insects) and olfactory bulb (OB; vertebrates) [2]. These response patterns have been
thought to arise primarily from interactions within the AL/OB [1], an idea supported, in part, by
the assumption that olfactory receptor neurons (ORNs) respond to odorants with simple firing
patterns. However, activating the AL directly with simple pulses of current evoked responses
in AL neurons that were much less diverse, complex, and enduring than responses elicited by
odorants. Similarly, models of the AL driven by simplistic inputs generated relatively simple
output. How then are dynamic neural codes for odors generated? Consistent with recent results
from several other species, our recordings from locust ORNs showed a great diversity of temporal
structure. Furthermore, we found that, viewed as a population, many response features of ORNs
were remarkably similar to those observed within the AL. Using a set of computational models
constrained by our electrophysiological recordings, we found that the temporal heterogeneity of
responses of ORNs critically underlies the generation of spatiotemporal odor codes in the AL. A
test then performed in vivo confirmed that, given temporally homogeneous input, the AL cannot



���

create diverse spatiotemporal patterns on its own; however, given temporally heterogeneous
input, the AL generated realistic firing patterns. Finally, given the temporally structured input
provided by ORNs, we clarified several separate, additional contributions of the AL to olfactory
information processing. Thus, our results demonstrate the origin and subsequent reformatting
of spatiotemporal neural codes for odors [3].

Keywords: coding, sparse, spatiotemporal.
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ABSTRACT

The study of the synaptic plasticity and its models [2] showed that synaptic efficacy can change
in a very short time window. This time scale could be small enough to possibly have an effect
on pattern recall processes in neural network. We extended the model published in [1] with the
short term potentiation of synapses. Our model is based on the two artificial neural nets which
were among first [4, 3]. The purpose of this is to include the short term plasticity in pattern
recall process as well. We have shown that this approach preserves the ability of the network
to recognize the patterns stored to the network and that the network does not respond to other
patterns at the same time. We show that this approach could dramatically increase the capacity
of the network for the cost of a longer pattern recall process. We discuss that the network
possesses two types of recall. The fast recall does not need the synaptic plasticity to recognize
a pattern. The slower recall utilizes also the synaptic plasticity. This is something that we all
experience in our daily lives. Specifically that some memories could be recalled promptly and
other memories need much more time to unearth.
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ABSTRACT

Memory formation as well as other functional properties of neural networks are dependent on the
network connectivity. Connections between neurons are formed by synapses (synaptic weights)
and are modified by different biological mechanisms. In this study, we considered the following
three mechanisms: Hebbian, Homeostatic, and Spike-Timing-Dependent (STDP) plasticity. In
Hebbian plasticity [5, 4] weight change depends on the activity rate of pre- and post-synaptic
neuron and, thus, is a local learning rule, whereas in Homeostatic plasticity [8, 7] weight change
depends only on the rate of the post-synaptic neuron. This mechanism adjusts all synapses
of the incoming inputs of the neuron and, therefore, is a global plasticity process. STDP, like
Hebbian plasticity, is a local process, however, differently from Hebbian plasticity (which can
only produce long-term potentiation) it does not depend on the rates of pre- and post-synaptic
neuron, but on the timing of the neuronal activity, and can either lead to long-term potentiation
or long-term depression (LTP and LTD, [1, 3]). However, STDP can be reformulated in a rate
description [2, 6].

In this study we are interested in the behavior of these three mechanisms with respect to the
change of the dynamics when they interact with each other. To test this we analyzed single and
two neuron systems analytically and numerically by looking at their fixed points in weight de-
velopment. We found out that these fixed points change their position and stability state (from
stable to unstable or vice versa) dependent on the parameter space related to these mechanisms.
We show that an interaction of Homeostatic plasticity with both other mechanisms leads to a
stable weight development. We also demonstrate that Hebbian together with Homeostatic plas-
ticity shows qualitatively the same behavior as the rate description of STDP. This means that
STDP, which has both LTP and LTD, can be a mixture of Hebbian and Homeostatic plasticity.

In general, we demonstrate that dynamically different plasticity mechanisms change their be-
havior dramatically when they interact with each other as they do in biology.

Keywords: Plasticity, Hebbian learning, Stability analysis
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ABSTRACT

A Potts associative memory, a simplified model of an extended cortical network, can retrieve
up to pc ∼ CS2/[alnS] randomly assigned memory patterns, if C is the number of tensor
connections per unit, S the number of Potts active states, and a the pattern sparseness [1].
That is, if memories are stored on the connections by a model Hebbian rule, analogous to the
Hopfield model, attractor dynamics lead to the full cortical activity distribution from a partial,
e.g. sensory cue. If patterns are correlated with each other and neural dynamics is endowed with
plain fatigue, the network after retrieving the first pattern can hop to a second, to a third and
so on what we have dubbed latching dynamics [2]. While with a few stored patterns latching
dies out after a while, we find that it extends indefinitely in time above a critical value pl, which
in a mean-field regime is independent of C and scales up with S. I shall discuss the critical issue
of the values of C and S for which pl < pc, allowing a cortical network to function as a memory
when cued and then to sustain infinite spontaneous transitions. It may be that humans crossed
pl from below some hundred thousand years ago, through a kind of percolation phase transition.
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ABSTRACT

We propose and analyze a mathematical model for an unsupervised learning. It has been
observed that simulations of such processes result most often either in a network which is almost
entirely connected, or, on the contrary, the connections are almost extinct. This poses a question
whether a feed-forward network with almost constant finite in- and out- degrees can be a result
of some natural evolution of a neural network, which initially admits all-to-all connections.

Making use of the recent results on bootstrap percolation in random graphs, first we argue that
an unsupervised learning in a network with excitatory connections only can not produce the
desired property of a feed-forward network. Then we show that the model which incorporates
the inhibitory connections as well, admits a set of parameters which allow a stable critical regime
which leads to a network with almost equal (small) in-and out- degrees.
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ABSTRACT

The cochlear inner hair cell (IHC) ribbon synapse constitutes the primary coding synapse for
auditory signals in the mammalian auditory system [1]. Various auditory models have been
developed over the years that try to capture the stimulus response of the IHC ribbon synapse.
Arguably, the most well known and widely used model is the Meddis model [2], together with a
later modication known as the Sumner model [3]. Although these phenomenological models are
successful in simulating a number of the synaptic responses observed experimentally, they fail
to replicate all the response characteristics correctly [4].
Here, the IHC ribbon synapse models mentioned above will be reviewed, together with sugges-
tions for modi?cations or improvements, that may be used to overcome some of these modeling
problems.
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ABSTRACT

Stochastic resonance is a counter-intuitive effect that is said to occur when random noise has
some kind of benefit to the processing of information or signals [1]. It only occurs in nonlinear
systems, and is prevalent in nonlinear dynamical systems, such as in the spiking behaviour of
neurons [2]. Recently a new form of ‘noise-benefits’ was described within the classical Hodgkin-
Huxley model of neuronal spiking [3]. This was termed ‘inverse stochastic resonance’ [4], because
unlike other forms of stochastic resonance, noise has the effect of decreasing a parameter of the
output of the system, rather than increasing it [4, 5]. Moreover, there is a ‘resonant-like’ peak
where that parameter is maximally decreased, rather than increased. In this case, the parameter
is the mean spike rate, and therefore inverse stochastic resonance can be described as ‘noise-
induced inhibition.’

The work of [4, 5] considers a single Hodgkin-Huxley neuron stimulated by a constant signal
(either an injected current, or a conductance based current). Here we expand on that work to
show that a specific kind of stochastic resonance called suprathreshold stochastic resonance [6,
7, 8] can be demonstrated in a network of N > 1 parallel Hodgkin-Huxley model neurons, where
each has an independent noise source. This requires several significant extensions to the model,
including introduction of a randomly varying input current, and measuring performance as an
average across the range of input currents. By extension of the term introduced in [4], the
resulting effect may be termed inverse suprathreshold stochastic resonance.

We replaced the summing array of N threshold devices of [6] with an array of Hodgkin-Huxley
model neurons as used by Gutkin [4]. Simulations of this were produced to provide population
spike counts in a time interval of 1000ms. The input was the “current-driven mode” which
essentially consists of I(t) = µ + σw(t) where µ is a uniformly distributed random variable of
magnitude 0 to 8, σ is chosen between 0 snd 4 and w(t) is a standard Gaussian white noise.
The correlation coefficient between the spike count averaged over 100 independent instances of
neuron model with the recorded µ, plotted against the incremental σ produces the plot in Fig. 1.

Figure 1 shows that the network of Hodgkin-Huxley neuron model generally has an increasing
spike rate as the noise introduced grows in magnitude. However a range of small noise levels that
decreases the spike rate relative to both the absence of noise, and large noise levels is observed,
like that termed inverse stochastic resonance by [4, 5].

Engineered dynamical systems or signal processing algorithms often rely on feedback as a means
of control. We speculate that noise-induced inhibition that leads to inverse suprathreshold

stochastic resonance may play an equivalent role as feedback in real biological neurons.

Observations of suprathreshold stochastic resonance has previously inspired new approaches to
signal coding in cochlear implants [8]. The notion of inverse suprathreshold stochastic resonance
may similarly be of benefit to other biomedical prosthetics or brain-machine interfaces (BMIs).
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Figure 1: Plot of correlation coefficient vs noise level, σ, for a network consisting of 100 neurons,
for a random input current, µ. The correlation coefficient is based on the spike count within
1000 ms.
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ABSTRACT

In order to numerically perform large-scale simulations of cortical neural networks and theo-
retically investigate their dynamics, we wish to establish an element neuron model that is not
only computationally tractable and fast but also capable of accurately describing diverse spiking
behaviors of biological neurons.

Recently, Izhikevich made assessment of 11 representative single neuron models on the basis
of the diversity of their producible firing patterns and the implementation cost or the compu-
tational complexity [3, 4]. He demonstrated that there is a tendency for the computational
cost and biological plausibility to become incompatible, namely, the simpler models are more
computationally efficient but possess less capability in producing abundant firing patterns of
biological neurons, and vice versa; the Hodgkin-Huxley (HH) model is evaluated as biologically
highly plausible, reproducing a rich variety of firing patterns, but is expensive to implement; the
leaky integrate-and-fire model is computationally efficient to implement and to perform simula-
tions, but is poor in the firing patterns. In the assessment, the Izhikevich model deviated from
this general incompatible tendency and was capable of not only producing rich variety of firing
patterns but also being computationally fast.

In addition to the qualitative richness of firing patterns, it has recently been regarded important
that neuron models can quantitatively reproduce and predict spike timing [2, 5]. The quantita-
tive ability of single neuron models is evaluated by the performance of predicting the timing of
individual spikes of biological neurons that are injected with fluctuating current. Previous results
of the international competitions on the spike time prediction [2, 5, 6] eventually revealed that
the simpler models rather achieved the higher predictive performance than biologically detailed
models such as HH-type models. In the competitions, the multi-timescale adaptive threshold
(MAT) model proposed by Kobayashi et al. [6], which belongs to the category of simple leaky
integrator models such as the model proposed by Bugmann et al. [1], provided the highest
performance in predicting the spike timing of biological neurons. However, it remains open
whether the MAT model can reproduce a rich variety of firing patterns exhibited by cortical
spiking neurons.

In this study, we examine the dynamical property of the MAT model for its capability of repro-
duing the standard table of 20 qualitatively distinct firing patterns, which we call the Izhikevich
table. It turns out that the MAT model may reproduce some of the firing patterns, such as
the bursting or the class 2 excitability, but is unable to produce specific patterns of more than
half the number in the table. In order to overcome its poor performance of firing pattern repro-
ducibility, we propose a minimal extension of the model, with which we succeed in reproducing
all of the 20 patterns in the table.
Keywords: Simplified single neuron models, Firing patterns, Spike time prediction.
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ABSTRACT

Information coding in the olfactory system of insects has a long tradition in a handful of main
animal models: Locust, honeybee, Drosophila, moths, and cockroach. In the last 3 years our
group has concentrated on the specific problem of coding in the pheromone sub-system, in
particular, the macro-glomerular complex (MGC) of moths. Contrary to earlier reports in
locust [1], honeybee [2] and Drosophila [3], we were unable to observe oscillations in the local
field potential in the MGC. We take this as an indication that the coding strategy in the MGC
of moths may differ from the popular account of coding of odour information in locust [4, 5].

We have identified two important aspects of information coding in the MGC which I will discuss
in this talk:

1. On the level of individual glomeruli in the MGC, the extreme sensitivity of the moth
to conspecific pheromone blends implies a wide dynamical range for the recognition of
the concentration of the chemical components. This wide dynamical range is implied by
behaviour but has also been directly observed experimentally on the level of projection
neurons in the MGC [6]. The common view that the dynamic range arises in the chemical
transduction pathways within the ORNs is not enough as the dynamic range appears to
be dependent on neuromodulation in the MGC [6].

2. On the level of the whole MGC network, the fact that sexual pheromones of moths are
blends of two to three separate chemicals at fixed concentration ratios, implies that male
moths need to recognise pheromone blend component ratios, in particular when sympatric,
related species use pheromone blends that only differ in their component ratios [7]. This
ratio recognition ability has to be concentration independent.

On the single glomerulus level we propose a model of nearly-critical rate dynamics. In a multi-
scale model encompassing conductance based formulations, rate reductions and further mean
field approximations we can consistently demonstrate that

1. the observed rate patterns in LN and PN responses can be explained by a generic network
of inhibitory LNs

2. the LN network can form an implicit disinhibition pathway that could explain the late
excitatory response of the PNs that is to a degree inconsistent with dominantly direct
ORN input to PNs.

3. the dynamic range of PN responses becomes maximised in this model when we approach
the critical point in the model dynamics where the baseline state becomes unstable.

On the network level we have formulated a model of neuronal competition for pheromone
blend ratio recognition. The prototype model demonstrates component ratio recognition for
two pheromone components in a 1:1 ratio. The core finding in this part of the work were that
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Figure 1: Minimal single LN model (A) and two more realistic (and more successful) populations
models (B and C) for pheromone blend component concentration ratio recognition.

1. in a minimal model of three individual LNs which receive inputs from either of the re-
ceptor populations, or both, and compete through lateral inhibition (figure 1) the coding
inadvertently reverts to a latency-to-first spike code.

2. the latency code is not beneficial for ratio recognition across a wide range of concentrations.

3. populations of neurons allow a more gradual competition (rate based coding) which im-
proves ratio recognition, in particular its stability across concentrations.
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