


Motivation and Introduction 
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Reliability of Grids 
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  Grids like EGEE offer sufficient capacity for even 
most challenging large-scale computational 
experiments 

  However, Grids have notoriously low reliability: 
  Data processing challenges of the WISDOM project 

(2005) have shown that only 32% (FlexX) and 57% 
(Autodock) of the jobs completed with "OK" status 

  A nine-month long study found that only 48% of jobs 
submitted in South-Eastern-Europe completed 
successfully (*) 

(*) Analyzing the Workload of the South-East Federation of the EGEE. G. DaCosta, 
M.D. Dikaiakos, S. Orlando. Proceedings MASCOTS 2007. 

     Harvesting Large-Scale Grids for Software Resources, A. Katsifodimos, G. Pallis, 
M. D. Dikaiakos, Proceedings of CCGrid 2009. 



Detecting and Managing Failures 
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  Detecting and managing failures is an important step 
to make Grids reliable  

  This is an extremely complex task that relies on  
  over-provisioning of resources 
  ad-hoc monitoring  
  Sys.admin & user intervention   

  Unique characteristics of Grids make it difficult to use 
ideas from cluster computing, Internet systems, and 
software systems 



Why is Detecting Failures in Grids Hard? 
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  Lack of central administration makes it difficult to 
access the remote sites in order to monitor failures 

  Heterogeneity and legacy impede integration of 
failure feedback mechanisms in the application logic 

  Huge system size make it difficult to acquire and 
analyze failure feedback data at a fine granularity 

  It is more efficient to identify the overall state of the 
system and to exclude potentially unreliable sites 
than to identify reasons for individual failures 

Failure Management in Grids: The Case of the EGEE Infrastructure. 
K. Neocleous, M.D. Dikaiakos, P. Fragopoulou and E.P. Markatos, Parallel 
Processing Letters, Vol. 17, Issue 4, World Scientific, pp 391-410, December 
2007 



Short-Term Prediction of Site Failures 
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  In our approach we predict queue (site) failures on 
short-term time scale by deploying (off-the-shelf) 
machine learning algorithms 

Grid sites (queues) 



Exploiting Generic Feedback Sources 
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  Instead of using application-specific feedback data, 
we exploit a set of generic feedback sources 
  representative low-level measurements (SmokePing) 
  websites, e.g. Grid Statistics (GStat) 
  functional tests and benchmarks 

  Such predictions can be used for deciding where to 
submit new jobs and help operators to take 
preventive measures 



Previous Work   
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  In previous work – the FailRank system – we have 
used linear models of monitoring data  
  they continuously ranked K sites with the highest potential 

to failure 
  In this study we apply individual models per queue 

and a more sophisticated approach, including 
  statistical selection of most meaningful sources 
  non-linear classification algorithms from machine learning 

"Metadata Ranking and Pruning for Failure Detection in Grids", D. Zeinalipour-Yazti, H. 
Papadakis, C. Georgiou, M.D. Dikaiakos, Parallel Processing Letters, Special Issue on Grid 
Architectural Issues: Scalability, Dependability, Adaptability,Sept. 2008. 
"Identifying Failures in Grids through Monitoring and Ranking." Demetrios Zeinalipour-
Yazti, Kyriakos Neocleous, Chryssis Georgiou, and Marios D. Dikaiakos, in the Proceedings of 
the Seventh IEEE International Symposium on Networking Computing and Applications, NCA 
2008. 
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FailRank Architecture 

 FailShot Matrix (FSM): A Snapshot of all failure-
related parameters at a given timestamp. 

 Top-K Ranking Module: Efficiently finds the K 
sites with the highest potential to feature a failure 
by utilizing FSM. 

 Data Exploration Tools: Offline tools used for 
exploratory data analysis, learning and prediction 
by utilizing FSM. 



Focus on Prediction Accuracy 
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  We focus on several essential questions related to 
prediction accuracy: 
  How many sources are necessary for high prediction accuracy? 
  Which of the sources yield the highest predictive information? 
  How accurately can we predict the failure of a given Grid site X 

minutes ahead of time? 

  Evaluation on a 30-day trace from 197 EGEE queues 
shows that prediction accuracy is highly dependent on:  
  the selected queue 
  the type of failure 
  the preprocessing and  
  the choice of input variables 



Data and Modeling 
Methodology 
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Input Data and FailBase Repository 
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  Our study uses data from our FailBase Repository  
  characterizes the EGEE Grid in respect to failures 

between 16/3/2007 and 17/4/2007  
  maintains information for 2,565 Computing Element (CE) 

queues (sites accepting computing jobs) 
  For our study we use  a subset of 197 queues with 

most types of monitoring data 
  For each queue data is a 

sequence of pairs 
(timestamp, attribute vector)  
  Each attribute vector consists 

of 40 measurements from to 
various sensors and tests 

  Sampled every 1 minute 
Exemplary attribute (RTT) over time 



Types of Input Data 
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  A. Information Index Queries (BDII): 11 attributes 
from LDAP queries 
  e.g. number of free CPUs; max. number of running and 

waiting jobs  
  B. Grid Statistics (GStat): processed data from the 

monitoring web site of Academia Sinica 
  e.g. geographical region of site; available storage space 

  C. Network Statistics (SmokePing): Data of the gPing 
database from ICS-FORTH 
  average round-trip-time (RTT);  the packet loss rate 

  D. Service Availability Monitoring (SAM): 14 attributes 
derived from raw html published by the CE sites 
  e.g. the version number of the middleware; results of various 

replica manager tests; results from test job submissions 



Predictive Models 
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  Our prediction methods are model-based 
  A model in this sense is a function f mapping vectors of 

sensor values to an output (queue healthy (0) or not (1) ) 
  We use as models classification algorithms   

  Classifiers "learn" the relationship between input data and 
the output (“class value”) based on historical examples 

  They are well-established in data mining and have been 
perfected over time 

  We deploy several common classifiers 
  C4.5 (decision tree), AdaBoost, Naive Bayes, LS 



Learning the Model 

•  To predict, we need to learn the relationship between inputs (A, 
B) @"now" and the value of our model f @(now + T) 

•  First stage (training, model fitting): 

•  Supply training data consisting of triples [A@x, B@x, f@(x
+T)]  sampled at different times x 

•  Then learn a function which captures this relation 

•  Second stage (prediction): supply (A,B) and compute f @(x+T)]  

Metric A  Metric B f  

Example 1 60 1000 [30-33] 

… … … … 

Example k 1.4 106 [3-6] 

Unknown Sample 30 50000 ? 

} 1. fit model 

2. predict ← 
15 

@ = "at time" 



Classifiers Explained Visually 

•  Assume that you have two metrics, and want to use 
them for predicting some (discrete) value - a class 
•  Interpret inputs as coordinates of points in the plane 

•  Then training data = multicolored points in R2 
•  color corresponds to a class (here: healthy or no) 

•  Training: finding a suitable 
subdivision of the plane 
•  model = a compact 

representation of a colored 
subdivision 

•  Prediction: given a new 
sample, find its color = class 

•  We have 40 metrics instead 
of 2 (R40), but same idea 

in
pu

t B
 

input A region of the 
class "green" 

 region of the 
class "pink" 
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Attribute Selection 
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  Initially, we do not know which of the 40 metrics (= 
attributes) contain most predictive information 

  Keeping all create some serious problems 
  Overfitting 
  Inefficiency: memory "explodes" at training phase 
  We don't learn which metrics are really relevant  

  Therefore we use attribute selection 
  Learn and evaluate "probe models" on training data 

with various subsets of attributes 
  Then use attribute sets with lowest errors 
  For specialists: we use forward or backward branch-

and-bound selection with C4.5 (decision tree)  



Evaluation Metrics   
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 To quantify prediction errors we use  
  Recall = probability that a (randomly selected) failure is 

indeed predicted 
  Precision = probability that a (randomly selected) 

failure prediction indicated a true failure 
 These metrics are then averaged over all 197 

queues for most diagrams 



Model Updates 

training test 
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  Models are periodically updated to ensure 
adaptability to profile changes 
  How? Train model on the orange part and test on the 

blue part, then advance by the blue part etc. 

  The used values are: 
  training interval: 15 days (21600 of 1-minute samples) 
  update interval = test interval = 10 days (14400 

samples) 
  why? – will be shown later 



Experimental Results 
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Identifying Failure Indicators 
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  Unfortunately, we do not have any additional data 
whether jobs on a site have failed or not 

  As a substitute, we used as failure indicators two 
metrics from the Service Availability Monitoring 
(SAM) measurements (group D): 
  sam-js: a test that submits a simple job for execution to 

the Grid and then seeks to retrieve that job’s output from 
the UI 

  sam-rgma: R-GMA makes all Grid monitoring data appear 
like one large DB; this test insert a tuple and run a query 
for that tuple 

  Values (0/1) of each of these 2 metrics are assumed 
to mean "queue failed" or "queue healthy"  



Why sam-js and sam-rgma? 
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  First: we computed averaged 
recall / precision for all 14 SAM 
(group D) attributes 

  This eliminated only two of them   

  We then looked per attribute at: 
  standard deviation - more 

changes = more information 
  failure ratio = (#all samples 

indicating a failure) / (# all 
samples) 

  low FR = not enough "bad 
cases" to train a predictor 

  From the remainder ones we 
selected these 2 by importance 
of representing failures 



Data Characteristics 
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  A. Is there a relationship between 
failure ratio (FR) and accuracy? 
  FR = (#all samples indicating 

a failure) / (# all samples) 
  Plot: recall of sam-js (bars) sorted 

by FR or sam-js (line) 
  No! => Models are "non-trivial" 

  B. What are the failure patterns 
in our data? 

  Typically, the failure state does 
not change frequently (long 
"runs" of failures / non-failures 

  Prediction errors occur 
frequently right after the change 
of failure state 

true  
failures 

predicted 
failures 

errors 



Are Individual Models (per Queue) Useful? 
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  We have created separate model (trained classifier) per queue 
  This is a lot of effort – is it useful? 
  It turns out that prediction accuracy varies hugely between queues! 
  Lessons: 

re
ca

ll 
of

 s
am

-js
 

queue index – 0 to 196 

  "Aggregated models" of reliability 
(i.e. one model for many queues) 
can be severely inappropriate 

  Scheduling decisions should 
take into account confidence of 
the model per queue 
  How likely is to predict a 

failure for this queue? 
  If confidence is low, increase 

redundancy / overprovision 
for this queue preemptively 



lead time (in minutes)    1          4           16        60      4*60  

Lead Time vs. Accuracy 
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  How much into future can we predict? 
  we set the lead time to 15 minutes 
  lead times of 1-8 minutes were slightly more accurate 

  but not very useful – might not give enough time to react 
  lead times above 30 minutes yielded larger errors 

Averaged recall & 
precision for sam-js 



Most Relevant Types of Input Metrics 
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 Which of the input types (A, B, C, D) provide most 
predictive information? 

  We tested all input combinations A, B,.., AB, AC,…, ABCD 
  Group D (SAM = functional tests) is most relevant 

  In fact, groups A, B, C do not carry any additional information 

Averaged recall &  
precision for sam-js 

  A B AB C AC BC ABC  D           ...       BCD.all Group combination 



2          4         8         16       25  

Training Data Size 
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 How much training data (# samples) is needed 
for accurate models? 

  In general, the less the better 
  Higher adaptability to changes, less "waiting time" until first results 

  But too little data 
decreases  accuracy 

  Training interval of 15 
days turned out optimal 

  Test interval = Model 
update interval was 
irrelevant 

Averaged recall & precision   
vs. training time (days) 



Classifier Type & Attribute Selection 
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  Are some classifiers more accurate than others? 
  Except for the least sophisticated algorithm (LS = linear 

perceptron, a hyperplane in Rd) accuracy is comparable 
  How much attribute selection matters 

  Mixed results: for LS & Naïve Bayes improvement, for 
C4.5 (decision tree) deterioration 

Averaged recall for sam-js 
(no selection / 
 with attribute selection) 

C4.5        LS       St.   AdaBoost  NB 



Conclusions 
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  Short-term prediction of failures in Grid queues can yield 
high accuracy (precision / recall) 

  However, this accuracy varies hugely among queues 
  Individual queue modeling is essential 

  Some metrics (like Service Availability Monitoring (SAM)) 
are more informative than all others together 
  Consider this for "economical" metric collection 

  Sophisticated classification algorithms yield comparable 
accuracy  

Future work 
  Direct comparison with FailRank (linear models) 
  Scheduling strategies with consideration of model 

confidence 



Additional Slides 
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Why is Detecting Failures in Grids Hard? 
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  Lack of central administration makes it difficult to 
access the remote sites in order to monitor failures 

  Heterogeneity and legacy impede integration of 
failure feedback mechanisms in the application logic 

  Huge system size make it difficult to acquire and 
analyze failure feedback data at a fine granularity 

  It is more efficient to identify the overall state of the 
system and to exclude potentially unreliable sites 
than to identify reasons for individual failures 



Exploiting Generic Feedback Sources 
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  Instead of using application-specific feedback data, 
we exploit a set of generic feedback sources 
  representative low-level measurements (SmokePing) 
  websites, e.g. Grid Statistics (GStat) 
  functional tests and benchmarks 

  Such predictions can be used for deciding where to 
submit new jobs and help operators to take 
preventive measures 



Classifiers Explained Visually 

•  Assume that you have two metrics, and want to use 
them for predicting some (discrete) value - a class 
•  Interpret inputs as coordinates of points in the plane 

•  Then training data = multicolored points in R2 
•  color corresponds to a class (here: healthy or no) 

•  Training: finding a suitable 
subdivision of the plane 
•  model = a compact 

representation of a colored 
subdivision 

•  Prediction: given a new 
sample, find its color = class 

•  We have 40 metrics instead 
of 2 (R40), but same idea 

in
pu

t B
 

input A region of the 
class "green" 

 region of the 
class "pink" 
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Attribute Selection 
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  Initially, we do not know which of the 40 metrics (= 
attributes) contain most predictive information 

  Keeping all create some serious problems 
  Overfitting 
  Inefficiency: memory "explodes" at training phase 
  We don't learn which metrics are really relevant  

  Therefore we use attribute selection 
  Learn and evaluate "probe models" on training data 

with various subsets of attributes 
  Then use attribute sets with lowest errors 
  For specialists: we use forward or backward branch-

and-bound selection with C4.5 (decision tree)  
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Training Data Size 
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 How much training data (# samples) is needed 
for accurate models? 

  In general, the less the better 
  Higher adaptability to changes, less "waiting time" until first results 

  But too little data 
decreases  accuracy 

  Training interval of 15 
days turned out optimal 

  Test interval = Model 
update interval was 
irrelevant 

Averaged recall & precision   
vs. training time (days) 


