

Motivation and Introduction

2

Reliability of Grids

3

  Grids like EGEE offer sufficient capacity for even
most challenging large-scale computational
experiments

  However, Grids have notoriously low reliability:
  Data processing challenges of the WISDOM project

(2005) have shown that only 32% (FlexX) and 57%
(Autodock) of the jobs completed with "OK" status

  A nine-month long study found that only 48% of jobs
submitted in South-Eastern-Europe completed
successfully (*)

(*) Analyzing the Workload of the South-East Federation of the EGEE. G. DaCosta,
M.D. Dikaiakos, S. Orlando. Proceedings MASCOTS 2007.

 Harvesting Large-Scale Grids for Software Resources, A. Katsifodimos, G. Pallis,
M. D. Dikaiakos, Proceedings of CCGrid 2009.

Detecting and Managing Failures

4

  Detecting and managing failures is an important step
to make Grids reliable

  This is an extremely complex task that relies on
  over-provisioning of resources
  ad-hoc monitoring
  Sys.admin & user intervention

  Unique characteristics of Grids make it difficult to use
ideas from cluster computing, Internet systems, and
software systems

Why is Detecting Failures in Grids Hard?

5

  Lack of central administration makes it difficult to
access the remote sites in order to monitor failures

  Heterogeneity and legacy impede integration of
failure feedback mechanisms in the application logic

  Huge system size make it difficult to acquire and
analyze failure feedback data at a fine granularity

  It is more efficient to identify the overall state of the
system and to exclude potentially unreliable sites
than to identify reasons for individual failures

Failure Management in Grids: The Case of the EGEE Infrastructure.
K. Neocleous, M.D. Dikaiakos, P. Fragopoulou and E.P. Markatos, Parallel
Processing Letters, Vol. 17, Issue 4, World Scientific, pp 391-410, December
2007

Short-Term Prediction of Site Failures

6

  In our approach we predict queue (site) failures on
short-term time scale by deploying (off-the-shelf)
machine learning algorithms

Grid sites (queues)

Exploiting Generic Feedback Sources

7

  Instead of using application-specific feedback data,
we exploit a set of generic feedback sources
  representative low-level measurements (SmokePing)
  websites, e.g. Grid Statistics (GStat)
  functional tests and benchmarks

  Such predictions can be used for deciding where to
submit new jobs and help operators to take
preventive measures

Previous Work

8

  In previous work – the FailRank system – we have
used linear models of monitoring data
  they continuously ranked K sites with the highest potential

to failure
  In this study we apply individual models per queue

and a more sophisticated approach, including
  statistical selection of most meaningful sources
  non-linear classification algorithms from machine learning

"Metadata Ranking and Pruning for Failure Detection in Grids", D. Zeinalipour-Yazti, H.
Papadakis, C. Georgiou, M.D. Dikaiakos, Parallel Processing Letters, Special Issue on Grid
Architectural Issues: Scalability, Dependability, Adaptability,Sept. 2008.
"Identifying Failures in Grids through Monitoring and Ranking." Demetrios Zeinalipour-
Yazti, Kyriakos Neocleous, Chryssis Georgiou, and Marios D. Dikaiakos, in the Proceedings of
the Seventh IEEE International Symposium on Networking Computing and Applications, NCA
2008.

9

FailRank Architecture

 FailShot Matrix (FSM): A Snapshot of all failure-
related parameters at a given timestamp.

 Top-K Ranking Module: Efficiently finds the K
sites with the highest potential to feature a failure
by utilizing FSM.

 Data Exploration Tools: Offline tools used for
exploratory data analysis, learning and prediction
by utilizing FSM.

Focus on Prediction Accuracy

10

  We focus on several essential questions related to
prediction accuracy:
  How many sources are necessary for high prediction accuracy?
  Which of the sources yield the highest predictive information?
  How accurately can we predict the failure of a given Grid site X

minutes ahead of time?

  Evaluation on a 30-day trace from 197 EGEE queues
shows that prediction accuracy is highly dependent on:
  the selected queue
  the type of failure
  the preprocessing and
  the choice of input variables

Data and Modeling
Methodology

11

Input Data and FailBase Repository

12

  Our study uses data from our FailBase Repository
  characterizes the EGEE Grid in respect to failures

between 16/3/2007 and 17/4/2007
  maintains information for 2,565 Computing Element (CE)

queues (sites accepting computing jobs)
  For our study we use a subset of 197 queues with

most types of monitoring data
  For each queue data is a

sequence of pairs
(timestamp, attribute vector)
  Each attribute vector consists

of 40 measurements from to
various sensors and tests

  Sampled every 1 minute
Exemplary attribute (RTT) over time

Types of Input Data

13

  A. Information Index Queries (BDII): 11 attributes
from LDAP queries
  e.g. number of free CPUs; max. number of running and

waiting jobs
  B. Grid Statistics (GStat): processed data from the

monitoring web site of Academia Sinica
  e.g. geographical region of site; available storage space

  C. Network Statistics (SmokePing): Data of the gPing
database from ICS-FORTH
  average round-trip-time (RTT); the packet loss rate

  D. Service Availability Monitoring (SAM): 14 attributes
derived from raw html published by the CE sites
  e.g. the version number of the middleware; results of various

replica manager tests; results from test job submissions

Predictive Models

14

  Our prediction methods are model-based
  A model in this sense is a function f mapping vectors of

sensor values to an output (queue healthy (0) or not (1))
  We use as models classification algorithms

  Classifiers "learn" the relationship between input data and
the output (“class value”) based on historical examples

  They are well-established in data mining and have been
perfected over time

  We deploy several common classifiers
  C4.5 (decision tree), AdaBoost, Naive Bayes, LS

Learning the Model

•  To predict, we need to learn the relationship between inputs (A,
B) @"now" and the value of our model f @(now + T)

•  First stage (training, model fitting):

•  Supply training data consisting of triples [A@x, B@x, f@(x
+T)] sampled at different times x

•  Then learn a function which captures this relation

•  Second stage (prediction): supply (A,B) and compute f @(x+T)]

Metric A Metric B f

Example 1 60 1000 [30-33]

… … … …

Example k 1.4 106 [3-6]

Unknown Sample 30 50000 ?

} 1. fit model

2. predict ←
15

@ = "at time"

Classifiers Explained Visually

•  Assume that you have two metrics, and want to use
them for predicting some (discrete) value - a class
•  Interpret inputs as coordinates of points in the plane

•  Then training data = multicolored points in R2
•  color corresponds to a class (here: healthy or no)

•  Training: finding a suitable
subdivision of the plane
•  model = a compact

representation of a colored
subdivision

•  Prediction: given a new
sample, find its color = class

•  We have 40 metrics instead
of 2 (R40), but same idea

in
pu

t B

input A region of the
class "green"

 region of the
class "pink"

16

Attribute Selection

17

  Initially, we do not know which of the 40 metrics (=
attributes) contain most predictive information

  Keeping all create some serious problems
  Overfitting
  Inefficiency: memory "explodes" at training phase
  We don't learn which metrics are really relevant

  Therefore we use attribute selection
  Learn and evaluate "probe models" on training data

with various subsets of attributes
  Then use attribute sets with lowest errors
  For specialists: we use forward or backward branch-

and-bound selection with C4.5 (decision tree)

Evaluation Metrics

18

 To quantify prediction errors we use
  Recall = probability that a (randomly selected) failure is

indeed predicted
  Precision = probability that a (randomly selected)

failure prediction indicated a true failure
 These metrics are then averaged over all 197

queues for most diagrams

Model Updates

training test

19

  Models are periodically updated to ensure
adaptability to profile changes
  How? Train model on the orange part and test on the

blue part, then advance by the blue part etc.

  The used values are:
  training interval: 15 days (21600 of 1-minute samples)
  update interval = test interval = 10 days (14400

samples)
  why? – will be shown later

Experimental Results

20

Identifying Failure Indicators

21

  Unfortunately, we do not have any additional data
whether jobs on a site have failed or not

  As a substitute, we used as failure indicators two
metrics from the Service Availability Monitoring
(SAM) measurements (group D):
  sam-js: a test that submits a simple job for execution to

the Grid and then seeks to retrieve that job’s output from
the UI

  sam-rgma: R-GMA makes all Grid monitoring data appear
like one large DB; this test insert a tuple and run a query
for that tuple

  Values (0/1) of each of these 2 metrics are assumed
to mean "queue failed" or "queue healthy"

Why sam-js and sam-rgma?

22

  First: we computed averaged
recall / precision for all 14 SAM
(group D) attributes

  This eliminated only two of them

  We then looked per attribute at:
  standard deviation - more

changes = more information
  failure ratio = (#all samples

indicating a failure) / (# all
samples)

  low FR = not enough "bad
cases" to train a predictor

  From the remainder ones we
selected these 2 by importance
of representing failures

Data Characteristics

23

  A. Is there a relationship between
failure ratio (FR) and accuracy?
  FR = (#all samples indicating

a failure) / (# all samples)
  Plot: recall of sam-js (bars) sorted

by FR or sam-js (line)
  No! => Models are "non-trivial"

  B. What are the failure patterns
in our data?

  Typically, the failure state does
not change frequently (long
"runs" of failures / non-failures

  Prediction errors occur
frequently right after the change
of failure state

true
failures

predicted
failures

errors

Are Individual Models (per Queue) Useful?

24

  We have created separate model (trained classifier) per queue
  This is a lot of effort – is it useful?
  It turns out that prediction accuracy varies hugely between queues!
  Lessons:

re
ca

ll
of

 s
am

-js

queue index – 0 to 196

  "Aggregated models" of reliability
(i.e. one model for many queues)
can be severely inappropriate

  Scheduling decisions should
take into account confidence of
the model per queue
  How likely is to predict a

failure for this queue?
  If confidence is low, increase

redundancy / overprovision
for this queue preemptively

lead time (in minutes) 1 4 16 60 4*60

Lead Time vs. Accuracy

25

  How much into future can we predict?
  we set the lead time to 15 minutes
  lead times of 1-8 minutes were slightly more accurate

  but not very useful – might not give enough time to react
  lead times above 30 minutes yielded larger errors

Averaged recall &
precision for sam-js

Most Relevant Types of Input Metrics

26

 Which of the input types (A, B, C, D) provide most
predictive information?

  We tested all input combinations A, B,.., AB, AC,…, ABCD
  Group D (SAM = functional tests) is most relevant

  In fact, groups A, B, C do not carry any additional information

Averaged recall &
precision for sam-js

 A B AB C AC BC ABC D ... BCD.all Group combination

2 4 8 16 25

Training Data Size

27

 How much training data (# samples) is needed
for accurate models?

  In general, the less the better
  Higher adaptability to changes, less "waiting time" until first results

  But too little data
decreases accuracy

  Training interval of 15
days turned out optimal

  Test interval = Model
update interval was
irrelevant

Averaged recall & precision
vs. training time (days)

Classifier Type & Attribute Selection

28

  Are some classifiers more accurate than others?
  Except for the least sophisticated algorithm (LS = linear

perceptron, a hyperplane in Rd) accuracy is comparable
  How much attribute selection matters

  Mixed results: for LS & Naïve Bayes improvement, for
C4.5 (decision tree) deterioration

Averaged recall for sam-js
(no selection /
 with attribute selection)

C4.5 LS St. AdaBoost NB

Conclusions

29

  Short-term prediction of failures in Grid queues can yield
high accuracy (precision / recall)

  However, this accuracy varies hugely among queues
  Individual queue modeling is essential

  Some metrics (like Service Availability Monitoring (SAM))
are more informative than all others together
  Consider this for "economical" metric collection

  Sophisticated classification algorithms yield comparable
accuracy

Future work
  Direct comparison with FailRank (linear models)
  Scheduling strategies with consideration of model

confidence

Additional Slides

30

Why is Detecting Failures in Grids Hard?

31

  Lack of central administration makes it difficult to
access the remote sites in order to monitor failures

  Heterogeneity and legacy impede integration of
failure feedback mechanisms in the application logic

  Huge system size make it difficult to acquire and
analyze failure feedback data at a fine granularity

  It is more efficient to identify the overall state of the
system and to exclude potentially unreliable sites
than to identify reasons for individual failures

Exploiting Generic Feedback Sources

32

  Instead of using application-specific feedback data,
we exploit a set of generic feedback sources
  representative low-level measurements (SmokePing)
  websites, e.g. Grid Statistics (GStat)
  functional tests and benchmarks

  Such predictions can be used for deciding where to
submit new jobs and help operators to take
preventive measures

Classifiers Explained Visually

•  Assume that you have two metrics, and want to use
them for predicting some (discrete) value - a class
•  Interpret inputs as coordinates of points in the plane

•  Then training data = multicolored points in R2
•  color corresponds to a class (here: healthy or no)

•  Training: finding a suitable
subdivision of the plane
•  model = a compact

representation of a colored
subdivision

•  Prediction: given a new
sample, find its color = class

•  We have 40 metrics instead
of 2 (R40), but same idea

in
pu

t B

input A region of the
class "green"

 region of the
class "pink"

33

Attribute Selection

34

  Initially, we do not know which of the 40 metrics (=
attributes) contain most predictive information

  Keeping all create some serious problems
  Overfitting
  Inefficiency: memory "explodes" at training phase
  We don't learn which metrics are really relevant

  Therefore we use attribute selection
  Learn and evaluate "probe models" on training data

with various subsets of attributes
  Then use attribute sets with lowest errors
  For specialists: we use forward or backward branch-

and-bound selection with C4.5 (decision tree)

2 4 8 16 25

Training Data Size

35

 How much training data (# samples) is needed
for accurate models?

  In general, the less the better
  Higher adaptability to changes, less "waiting time" until first results

  But too little data
decreases accuracy

  Training interval of 15
days turned out optimal

  Test interval = Model
update interval was
irrelevant

Averaged recall & precision
vs. training time (days)

